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ABSTRACT with respect to all of the unknown parameters. EM algorithms
The expectation-maximization (EM) method can facilitatg:ie ir:‘glsﬁ;eslier:glo\gh?ruéh;x&;;@suiajledraga&z?sm:g;gstgf
maximizing likelihood functions that arise in statistical esti- 9 . ) . > Up . y

. . . .._cal EM algorithm necessitates overly informative complete-data
mation problems. In the classical EM paradigm, one iterd- C :
. - .. o . spaces, which in turn leads to slow convergence. In this paper
tively maximizes the conditional log-likelihood of a single un-

observablecomplete data spag¢eather than maximizing the we show improved convergence rates by updating the parame-

intractable likelihood function for the measuredincomplete ter_;::ﬁequictlillly: smraltl gr?ugséM lgorithm is inverselv related
data. EM algorithms update all parametsisiultaneously € convergence rate ol a algo s INVeTsely relate

which has two drawbacks: 1) slow convergence, and 2) diﬁicﬁﬂet?]zvzsﬁg\r/igjglr m;:fvr\:nofhg‘:‘ ICeZsm-Fr:(:ct)?rfﬁsesgc?r%e |L1t]é-:233
maximization steps due to coupling when smoothness penah}'l\és P ISty . P
are used. spaces lead to improved asymptotic convergence rates [4—6].

This paper describes the space-alternating generalized %&Fs informative complete-data spaces can also lead to larger

: . p sizes and greater likelihood increases in the early itera-
(SAGE).method, which updates the parame‘ae:quenﬂal!yby tions [5-7]. Since the relationship between complete-data space
alternating between several smhltiden-data spacedefined

X . information and convergence is therefore more than just an
by the algorithm designer. We prove that the sequence of esti- . . ;
. X . - . asymptotic phenomenon, we believe that one should strive to
mates monotonically increases the penalized-likelihood objec:” . " . .
. . : minimize the information of the complete-data space. However,
tive, we derive asymptotic convergence rates, and we provide, ; . . .
iInthe classical EM formulation a less informative complete-

sufficient conditions for monotone convergence in norm. Twi . L
. . N : .. data space can lead to an intractable maximization step [1, 5],
signal processing applications illustrate the method: estimatign ; )
. . . . . : ue to the simultaneous update employed by EM algorithms.
of superimposed signals in Gaussian noise, and image re

X . oS ?A?s an example, the least-informative admissible “complete”
struction from Poisson measurements. In both applications, our,

. . ita space would be the measurement space itself!)
SAGE algorithms easily accommodate smoothness penaltie . .
: o circumvent this tradeoff between convergence rate and
and converge faster than the EM algorithms.

complexity, in this paper we extend the concepts in [4, 6] by
proposing a new space-alternating generalized EM (SAGE)
method. This method is suited to problems where one can se-
quentially update small groups of the elements of the parameter
In a variety of signal processing applications, direct calcyector. Rather than using one large complete-data space, we
lations of maximum-likelihood (ML), maximuna posteriori associate with each group of parametefsidden-data space
(MAP), or maximum penalized-likelihood parameter estimat¢Befinition 2 in Section II), which would be a complete-data
are intractable due to the complexity of the likelihood functionspace in the sense of [1] if the other parameters were known.
or to the coupling introduced by smoothness penalties or priovge define a flexible admissibility criterion that ensures that the
EM algorithms and generalized EM (GEM) algorithms [1] havalgorithm monotonically increases the penalized-likelihood ob-
proven to be useful for iterative parameter estimation in magactive. In the examples we describe here and in [8], one can
such contextse.g. [2,3]. In the classical formulation of andesign the hidden-data space for each parameter subset to be
EM algorithm, one supplements the observed measurements;@tsiderably less informative than the natural single complete-
incomplete datawith a singlecomplete-data spacghose re- data space. This reduction leads to faster convergence.
lationship to the parameter space facilitates estimation. An EMConvergence rate is one of two motivations for the SAGE
algorithm iteratively alternates between an E-step: calculatingethod. In applications such as tomographic imaging and im-
the conditional expectation of the complete-data log-likelihocghe restoration, where the parameter space is very large, it
and an M-step:simultaneouslymaximizing that expectation is often necessary or desirable to regularize using smoothness

This work was supported in part by a DOE Alexander Hollaender Postdcpenaltles' Such penalties usually introduce couplings that ren-

toral Fellowship, DOE Grant DE-FG02-87ER60561, NSF grant BCs-90043f4T intractable the maximization steps of classical EM meth-
and NCI grants CA-54362-02 and CA-60711-01. ods [9]. Several approaches to this problem have been proposed,
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2 Il THE SAGE ALGORITHM

many motivated by emission tomography, including GEM algpenalized-likelihood estimate of Otrye defined by:
rithms [10-12], linearizations of the penalty function [9], line

searches [13], applyingd hocsmoothing in lieu of a smooth- 92 arg max ®(0)

ness penalty [14], red-black orderings [15], and majorization of 6eo

the penalty functional [16,17]. These methods are all rootgghare

in the classical EM method, and often they share its slow con- ®(0) AN log f(y;8) — P(6). 1)

vergence. In contrast, by using a separate hidden-data space

for each parameter, a SAGE algorithm intrinsically decoupléifortunately, direct maximization @ is often intractable due

the parameter updates. Surprisingly, not only is the mae the complexity off, the coupling inP, or both. Thus one
mization simplified, but the convergence rate is improved aust resort to iterative methods, and in many problems it is nat-
well. Two related approaches that also decouple the update @@ to consider subsets of the elements of the parameter vector
the hybrid ICM-EM algorithm of Abdalla and Kay [18], andf. (Updating in subsets also often leads to remarkably fast con-
the coordinate-wise Newton-Raphson method of Bouman avergence, e.g. [26].) The following definition formalizes this
Sauer [19, 20]. idea.

A variety of methods have been proposed for acceleratipgfinition 1 A setS is defined to be aindex setif it i) is
EM algorithms, most of which are based on standanmherical nonempty, i) is a subset of the st ..., p}, and iii) has no
tools such as Aitken’s acceleration [21], over-relaxation [22fpeated entries. The sétdenotes the complement$fnter-
line-searches [23], Newton methods [19,24], and conjugate g&gcted with(1,...,p}.
dients [23, 25]. These methods, although often effective, do not L
guarantee monotone increases in the objective unless onel&h-the cardinality of5 bem, then we usds to denote then
plicitly computes the objective function. The SAGE method {dimensional vector consisting of the elements of) indexed
based fundamentally ostatistical considerations, and mono-PY the members of. Similarly defined; to be thep — m
tonicity is guaranteed. The relative importance of monotoniclig)mens'onal vector consisting of the remaining elemeni. of
and convergence rate will of course be application depender{f®" €xample, ifp = 5 andS = {1,3,4}, thenS = {2, 5},

: o . = [01 03 04]', and@5 = [0 65]', where’ denotes matrix
s e e, s inspose. Not hat when we s a superscrpt, 5
9 . n a9 : 9 . ined below, it serves as a reminder that the function or matrix
not prescribe specific computational steps for particular appl-

. S ) epends on the choice 6f
cations [1]. The SAGE method is similarly general, if not more One more notational convention will be used hereafter. Func-

| i i -
so! Therefore, we devote much of this paper to a detailed CoOMs like ®(8) expect ap-dimensional vector argument, but it

parison of SAGE and classical EM for two signal processing s convenient to split the argumehinto two vectorsfy

e e o ool 202 i, 2 defned above. Therefore, we defne exprecsions
We he,lve sim Iif?ed the examples for the purposes ofillustratiosﬁuch as the following to be equivaleri(@s, 65) = (6).
P P purp ‘In a “grouped coordinate-ascent” method, one sequences

while hopefully retaining sufficient complexity that the readetnhrough different index set§ — S' and updates only the ele-

will gain insight into how to apply SAGE to other problems. mentsfs of 6 while holding the other parameteis fixed [27].
The organization of this paper is as follows. Section Il d?&t the ith iteration one would usually like to assig@ﬂ to the
fines the generalized concept of “hidden data space,” descrig?éument that maximizeB(6s, 8'-) overfs. However, in ap-
. . ) S . il
the general form of the SAGE algorithm, and establishes mongr.»1ions such as the imaging problem described in Section I,
tpmcny in obJe_ctNe._ Sections Il and 1V describe the "",ppl'cathere isno analytical fornfor the maximum ofb(8s, 8 <) over
tions. Appendix A discusses convergence of the algorithm agg, even if the index set contains only one elemer@ne could

a region of monotone convergence in norm. Appendix B estall; v nmerical line-search methods, but these can be computa-
lishes that the region of monotone convergence is nonempty{I hally demanding if evaluating (05, 01‘_) _ (I)(ei) for several
suitably regular problems. Appendix C examines the relatiofls ,as off is expensive S

ship between convergence rate and Fisher information of ther, s pagic idea behind the SAGE method is borrowed directly
hidden-data spaces. from the EM method. By introducing a “hidden-data” space for
65 based on the statistical structure of the likelihood, we replace
Il. THE SAGE ALGORITHM the maximization ofb (65, 07%) over@s with the maximization

of another functionabs(es;ei). If the hidden-data space is
chosen wisely, then one can maximize the funcfié; 8*) an-
alytically, obviating the need for line searches. Even if one can-

tion f(y; Otrue), Where e is a parameter vector residingnotmaximizaﬁs ar?a'lyticall_y, one can often c_hooseshid_den_—data

in subset© of the p-dimensional space 'R Given a measure- SP3C€S sugh that it Is easier to evaluaté; 0') — ¢%(0;6")

ment realizatiory” — y, our goal is to compute the maximumthan @(-,05) — (85, 67), so line searches for maximizing
#°(-;0") would be cheaper than line searches for maximizing

2For simplicity, we restrict our description to continuous random variableg?(" 05)' Just as for an EM algomhm’ the functlonaig are

The method is easily extended to general distributions [4]. constructed to ensure that increasespthyield increases in

A. Problem

Let the observatior¥” have the probability densityfunc-
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®. Furthermore, we have found empirically for tomograph@. Algorithm
that by using a new hidden-data space whose Fisher informaA
tion is small, the analytical maximum @f°(-;8*) increases
(-, Og) nearly as much as maximizirgy-, Oig) itself. This is

n essential ingredient of any SAGE algorithm is the follow-
ing conditional expectation of the log-likelihood &F°:

formalized in Appendix C, where we prove that less informative Q°(05;0) = Q°(8s;05,07)
hidden-data spaces lead to faster asymptotic convergence rates. A s _ A
In summary, the SAGE method uses the underlying statistical = F {log F(X7:0s,05)[Y =y; 0} )

structure of the problem to replace cumbersome or expensive
numerical maximizations with analytical or simpler maximiza-
tions.

/f(a:|Y =y;0)log f(z;05,03) dz.

We combine this expectation with the penalty function:
B. Hidden-Data Space oA - -
P 6% (05:0) £ Q3 (05:0) — P(05.053). (4)

To generate the functiors® for each index se§ of interest,

O « age . .
we must identify an admissible hidden-data space defined in thd-€t8" € © be aninitial parameter estimate. A generic SAGE
following sense: algorithm produces a sequence of estima&3:°, via the fol-

lowing recursion:
Definition 2 A random vectorX® with probability density
function f(x; @) is an admissible hidden-data spauwsth re-
specttaf g for f(y; 6) if the joint density ofX © andY” satisfies

SAGE Algorithm
For i=0,1,... {

Choose an index sét= S*.

[y, @;0) = f(yle;05)f(x;6), (2) ;
( ) (wl:03)f (:6) Choose an admissible hidden-data sp&ce for 6:.

i.e., the conditional distributiory (y|x; 65) must be indepen-

1.
2.
3. E-step: Compute®' (8:;6°) using (4).
dent of@s. In other words, X ® must be a complete-data space P pute™ (65 6") 9(4)
4.

(in the sense of [1]) fof 5 given thatf 5 is known. M-step:
A few remarks may clarify this definition’s relationship to re- 0! = argmax o5 (85:;6"), (5)
lated methods. si
, , ot = 0% (6)
e The complete-data space for the classical EM algorithm [1] S

is contained as a special case of Definition 2 by choosin
S ={1,...,p}andrequirindgr” to be a deterministic func-
tion of X [4]. H

where the maximization in (5) is over the set

0%(8") = {0s: : (0:,0%,) € O}. 7

% Optionaf: Repeat steps 3 and 4.

e Under the decomposition (2), one can think¥fas the
output of a noisy channel that may dependégnbut not

onég, as illustrated in Figure 1. If one chooses the index sets and hidden data spaces appropri-
ately, then typically one can combine the E-step and M-step
e We use the term “hidden” rather than “complete” to deyia an analytical maximization into a recursion of the form
scribe X, since in generaK * will not be complete for 01 = ¢5'(6"). The examples in later sections illustrate this
6 in the original sense of Dempstet al. [1]. Even the important aspect of the SAGE method.
aggregate ofX® over all of S will not in general be an Note that if for some index sef one choosesX® = Y,
admissible complete-data space for then for thatS one sees from (3) and (4) thaf (0;6") =
o o @(05,01'3-). Thus, grouped coordinate-ascent [27] is a special
» The mostsignificant generalization over the EM completgase of the SAGE method, which one can use with index$ets
data that is embodied by (2) is that the conditional disgr which (I)(gsvgg) is easily maximized.
tribution of ¥ on X is allowed to depend on all of the  Rather than requiring a strict maximization in (5), one could
other parameter8; (Figure 1). In the superimposed sigsettie simply for local maxima [4], or for mere increasesth
nal application described in Section IV, it is precisely thigy analogy with GEM algorithms [1]. These generalizations
dependency that leads to improved convergence ratespddyide the opportunity to further refine the tradeoff between

also allows Signiﬁcantly more ﬂeX|b|I|ty in the design Ofconvergence rate and Computation per-iteration.
the distribution ofX °.

3Including the optional sub-iterations of the E- and M-steps yields a “greed-
) ) ) ier” algorithm. In the few examples we have tried in image reconstruction, the
e The cascade EM algorithm [28] is an alternative geneddditional greediness was not beneficial. (This is consistent with the benefits of

alization based on a hierarchy of nested complete-dafgerrelaxation for coordinate-ascent analyzed in [29].) In other applications

spaces. In principle one could further generalize the SA@@Never, 'such sub-iterations may improve the convergence rate,. and may be
computationally advantageous over line-search methods that require analogous

method by allowing hierarchies for eadh”. sub-iterations applied directly .
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D. Choosing Index Sets HS(05:0) 2 E {10g FXS|)Y =4;05,05) |Y = y; 9} :
To implement a SAGE algorithm, one must choose a se- (10)

quence of index set§?, i = 0, 1, . ... This choice is as much artand due to (2)

as science, and will depend on the structure and relative com-

plexities of the E- and M-steps for the problem. To illustrate the USIC) 2 /f(w|y = y;0)log f(y|x;0;) da.

tradeoffs, we focus on imaging problems, for which there are at

least four natural choices for the index sets: 1) the entire ima

J S . . -
2) individual pixels, i.e., %ote thatiW= is independent 08, so it does not affect the

maximization (5). Using these definitions and Jensen’s inequal-
S* = {1 + (i modulop)}, (8) ity [1], one can easily show that

(this was used in the ICM-EM algorithm of [18]), 3) group- H%(0s5;0) < H(05;0), V05, 0, (11)
ing by rows or by columns, and 4) “red-black” type orderings.
These four choices lead to different tradeoffs between convésem which the following theorem follows directly.
gence rate anq ability .t(.) parallehze.. A red-black 9rOUPThaorem 1 Let @ denote the sequence of estimates generated
ing was used in a mpd|f|ed EM algorithm in [15] to addre_sg a SAGE algorithm (5). Then #(6") is monotonically non-
the M-step coupling introduced by the smoothness penaltuae.Creasing 2) B maximizesb. thend is a fixed point of the
However, those authors recently concluded [16] that a n GE al o’rithm and 3) '
simultaneous-update algorithm by De Pierro [17] is preferable. 9 '
Those methods use the same complete-data space as in the con- 01 — B(01) > 45(01F1: %) — &5 (0: 9°
ventional EM algorithm for image reconstruction [3], so the (077) — 2(67) 2 ¢7(657:0) — ¢7(053 6).
convergence rate is still slow. Since the E-step for image i8;q0f: From (4) and (9) it follows that
construction naturally decomposes ipteeparate calculations
(one for each element &), it is natural to update individual @(95795) —®(0) =
pixels (8). By using the less informative hidden-data spaces
described in Section |1, we show in [8,30] that the SAGE algo- ¢°(0s;6) — H°(05;0) — (¢°(05;0) — H*(85;0)).
rithm converges faster than the GEM algorithm of Hebert anq1us it 65(05:0) > ¢°(8s:0), then®(0s,05) > ()

, S5 =z s,7), s,03) =2

Leahy [10], which in turn is faster than the new method of De . 11). Th its then follow f he definiti fth
Pierro [17]. Thus, forimage reconstruction it appears that (8)i§'ng( ): heresu ts then follow from the definition of the
AGE algorithm. m|

best for serial computers.

As noted by the reviewers, for image restoration problemgandard numerical methods require evaluatiod (8 *!) —
with spatially-invariant systems, one can compute the E-step®fg*) to ensure monotonicity. That requirement is obviated for

the conventional EM algorithm using fast Fourier transformsaGE methods by the monotonicity theorem above.
(FFTs). A SAGE algorithm with single-element index sets (8)

would require direct convolutions. Depending on the width arfl Convergence
spectrum of the point-spread function, the improved conver-c . - well behaved objectivé, the monotonicity property

gence rate of SAGE usin_g (8) may be offset by the use of diregtsures that the sequeni@ } will not diverge, but it does not
convolution. A compromise would be to group the pixels altey-

telv b db | Thi \d allow th £ uarantee convergence even to a local maximush.ofSome
nately by rows and by columns. ' his would aflow the use o algorithms have fixed points that are not local maxima
FFTs for the E-step, yet could still retain some of the improv

N hel he SAGE hod b ,31].) Therefore, in the appendices we provide additional the-
convergence rate_. gvert (_eess,t_e ) method may be Qa‘ns that give sufficient conditions for convergence in norm,
beneficial in applications with spatially-variant responses.

R dl th h the ind : h and that characterize the asymptotic convergence rate. To sum-
egar Sess oFhow oné chooses the Index Sets, we have G, o briefly, these theorems show under suitable regularity
structedy® to ensure that increasesdn lead to monotone in-

: conditions that:

creases P, as shown next.

o If a SAGE algorithm is initialized in a region suitably close
to a local maximum in the interior @, then the sequence
Let S and X* respectively denote an index set and hidden of estimates will converge monotonically orm to it.

data space used in a SAGE algorithm. Under mild regularity (This may not apply when the local maximum lies on the

conditions [1, 4], one can apply Bayes’ Theorem to (3) to see boundary 09, as often happens in the example in Section

E. Monotonicity

that Il.)
Qs(es;é) = /f(a:|Y =1y;0)log f((l};OS,éS,) dx e For strictly concave objectives, the region of monotone
convergence in norm is guaranteed to be nonempty.

= L(8s,05) + H%(85;0) ~W*(8), (9) _ o
e The asymptotic convergence rate of a SAGE algorithm will
where be improved if one chooses a less informative hidden-data

JAN
L(05705‘) = IOg f(ya 057 09)7 space.



This last point is subtle, but is perhaps one of the most impavherea., = Zﬁ;l ank. Unfortunately, this equation has no
tant conclusions of our analyses since it emphasizes the naeadlytical solution. A line-search method would require mul-
for careful design of the hidden-data spaces. Less informathfge evaluations of (15), which would be expensive—hence
hidden-data spaces yield faster convergence, but more inforitiee popularity of EM-type algorithms [3] that require no line
tive hidden-data spaces may yield easier M-steps [5, 8,30]. searches.

The complete-data space for the classical EM algorithm [3]

1. EXAMPLE 1 for this problem is the set of unobservable random variates
Linear Poisson Measurements L » N
The EM method has been used for over a decade to compute X" = {Nar}i—1 {Bn} o= (16)

ML estimates of radionuclide distributions from tomograph|E
data, such as that measured by positron emission tomogragﬁ
(PET) [3,32]. In this section we present a brief review of theJ
classical EM algorithm for this problem, and then introduce two N p
SAGE algorithms. The second SAGE algorithm is based ona  Q'(A; XY) Z Z (—ank e + Nok log(ankAr))
new hidden-data space, and converges faster than even an accel— n=1k=1
erated EM algorithm. For simplicity we focus in this paper on
ML estimation; the penalized version is described in [8, 30]. where [3]

Assume that a radionuclide distribution can be discretized . NG i _ oy
into p pixels with emission rated = [o,...,)\,)’. Assume No = EANk[Y = 43 X'} = Naniyn/Gn(X)-
that the emission source is viewed bydetectors, and IeV,.  Maximizing Q'(-; A") analytically leads to the following algo-
denote the number of emissions from #ta pixel that are de- (jthm:

tected by thenth detector. Assume the variatds; have inde- _ _
pendent Poisson distributions: ML-EM Algorithm for Poisson Data

for i=0,1,... {

r this complete-data space, thefunction (3) becomes [3,

h. (4]

Npi ~ Poisson{aniAr}, (12)

where thea,,; are nonnegative constants _thgt characterize the G = Z am}\z frp, n=1,...,N
system [3]. The detectors record emissions from several
source locations, so at best one would observe only the sums
Zk 1 Nk, rather than eaclv,,;,. Background emissions, ran- for k=1,...,p {
dom coincidences, and scatter contaminate the measurements,
SO we observe

k=1

N
p €x = Z ankyn/gn
Y, = Z Nunk + Ry, n=1

where{R,} are indepen;(;;t Poisson variates: Ne = Ner/an (17
R,, ~ Poisson{r,}, (13) 1 }
with means{r,,} assumed known for simplicity. Thus,
i L In words, the previous parameter estimate is used to compute
Yo ~ POISSOH{; Ank Ak + r”} (14)  predicted measurements, those predictions are divided into the

measurements and backprojected to form multiplicative correc-
Given realizationgy, } of {Y,,}, the log-likelihood for this tion factors, and the estimates aimultaneouslyipdated using

problem is given by [3]: those correction factors. This EM algorithm converges glob-
N ally [3, 5] but slowly. The root-convergence factor is very close
log f(y; A Z )+ yn log Gn(N)), tq 1 (even ifp = 11[9)]), sjnce the complete-data space is con-
o siderably more informative than the measurements [5, 8, 30].
Where We now derive two SAGE algorithms for this problem, both
of which use individual pixels for the index sets? = {k},
= Z Ak Ak + T wherek = 1 + (¢ modulo p). The most obvious hidden-data
for Ag is just
~ k
We would like to compute the ML estimafefrom y. X9 = {Nnk, Ry, }ﬁ’ 1

To apply coordinate ascent directly to this likelihood, o
might try to update\; by equating the derivative of the like-
lihood to zero:

N&hich is a subset of the classical complete-data space (16). The
QS function for thekth parameter is:

N
Yn X )
" nZ::a kank()\k—)\}'c)-f—gn()\l) (15) k3 Z ~AnkAk klog(ankAx))

n=1
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Maximizing st(-; ") analytically yields the following algo- of all p of the hidden-data spacesrist an admissible hidden-
rithm: data space for the entire parameter vectorUsing a similar

. . derivation as in [3] (see [8, 30] for details), one can show:
ML-SAGE-1 Algorithm for Poisson Data

Initialize: Un = hen ankAy +7rn, n=1,...,N. . , N ~
for i=0,1,...{ Q% ;XY = Z(—ank()\k + 21) + Znk log(ank (A + 21)),
for k=1,...,p{ n=1
N where
e = a 7] > i i _ N
LT 2 i = B{Zu|Y = 4; X'} = (N} + 21)ankin /Gn(X).
AZH = Ae/an (18) Maximizing st'(«; ") analytically (subject 'to the nqnnegativ—
_ _ ity constraint), yields the ML-SAGE-2 algorithm, which has the
/\}+1 =N, J#k same sequential structure as ML-SAGE-1, except that (18) is re-
placed by:

Tn = TYn + ()\?'1 — AD)ank, YN ang # 0 _ .
)\ﬁjl = max{(\, + zx)ex/a.r — 2k, 0}.

}. Providedz;, # 0, which is always the case in PET since random
coincidences are pervasive, this remarkably small modification

This SAGE algorithm updates the parameszguentiallyand Y€lds significantimprovements in convergence rate.
immediately updates the predicted measuremgntsithin the The Fisher information for the classical complete-data space
inner loop, whereas the ML-EM algorithm waits until all paVith respect to\ is diagonal with entries

rameters have been updated. ML-SAGE-1 is the unregularized a/A

special case of the “ICM-EM” algorithm of [18]; a local con- o/ ks

vergence result for ICM-EM was mentioned in [18]. provided the ML estimaté is positive. In contrast, Fisher in-

We found that ML-SAGE-1 converges somewhat faster thggymation for the new hidden-data space is diagonal with entries
ML-EM for well conditioned problems, but the difference is

minimal for poorly conditioned problems. The reason is that ar) Mk + 21),

x5 is still overly informative since the background events are

isolated from the parameter being updated (cf (12) and (13\551ich is clearly smaller since, > 0. The improved conver-
[8,30]. Therefore, we now introduce a new less informati@ence rate of ML-SAGE-2 is closely related to this difference.
hidden-data space that associates some of the uncertainty of th& illustrate, Figure 2 displays the likelihodd(6°) versus it-
background eventg,, with the particular parametex; as itis eration for the ML-EM algorithm and for ML-SAGE-2 applied
updated [8, 30]. Whereas the ordinary complete-data space a8 Simulation of PET data. The image was ax800 dis-
some intuitive relationship with the underlying image formatiofretization of a central slice of the digital 3D Hoffman brain
physics, this new hidden-data space was developed from a §fZ@ntom (2mm pixel size). The sinogram size was 70 radial
tistical perspective on the problem and its Fisher informatiofins (3mm wide) by 100 angles. A 900000 count noisy projec-

First, define tion was generated using (6mm wide) strip-integrals{foy }

ze = min {r/ans}, [29] including the effects of nonuniform head attenuation and

nian,7#0 nonuniform detector efficiency. A uniform field of random co-

and define unobservable independent Poisson variates: incidences was added, reflecting a scan with 9% of the total
counts due to randoms (.6, r, ~ 0.1 5,(N)), a

Zpr ~ Poisson{ani(\x + 21)} typical fraction for a PET study. Futher details can be found
in [8, 30], including comparisons over a large rangergk.

B, ~ Poissond r,, — anpzs + Z anid; b, (19) Also shown in Fig. 2 is the LINU unbounded line-search accel-

eration algorithm described by Kaufman [23]. The ML-SAGE-

2 likelihood clearly increases faster and reaches its asymptote
and let the hidden-data space fgronly be sooner than both ML-EM and ML-LINU algorithfn (ML-
SAGE-2 was also considerably easier to implement than the
X5 = {Zpi, B, bent-line LINU method.)

The convergence in norm given by Theorem 3 of Appendix A
Then clearly is inapplicable to this Poisson example when the ML estimate
Y,, = Zni + Bk has components that are zero, i.e., when the ML estimate lies

i#k

] o ) " - ) i - i
has the appropriate distribution (14) for any particutarWe Fast convergence is clearly desirable for regularized objective functions,
but we advise caution when using “stopping rules” in conjunction with

have absorb_ed all of the b_aCkgrOl_md events into the t&fiMS coordinate-based algorithms for the unregularized case, since for such algo-
and B,,; which are associated with;. Thus, the aggregaterithms thehighspatial frequencies converge faster than the low frequencies [26].
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on the boundary of the nonnegative orthant [33]. See [30] fbere since we can derive exact expressions for the convergence

a global convergence proof for ML-SAGE-1 and ML-SAGE-2ates. We first present admissible hidden-data spaces for this

similar to the proofsin [3,17]. problem, derive EM and SAGE algorithms, and then prove that

The reader may wonder whether one can also find a betteg SAGE algorithm converges faster.

complete-data space for the classical EM algorithm. BecauseSince the mean ofY” is linear in 8, the conventional

the EM update is simultaneous, one must distribute the baclkomplete-data [2, 9] for the EM algorithm for this problem is

ground events amorgl pixels, so the terms;, are reduced by also linear in@. Here, we restrict our attention to hidden-data

a factor of roughly,/p [8, 30]. Since,/p is in the hundreds, spacesX” whose means are also linearéinand for which the

the change in convergence rate is insignificant, which is carenditional mean o¥” given X is linear in X ° andég. Con-

sistent with the small reduction in Fisher information [8, 30kidering a general index s&f the natural hidden-data space for

Other simultaneous updates [17] similarly do not improve mudy is

[30]. Apparently one benefits most from this less informative s .

hidden-data space by using a SAGE method with the parame- X7 ~ N(BOs+ B3 C)

ters grouped into many small index sets. Y|XS =z ~ N(Gzx+ (;'05, W),

An alternative to SAGE is the coordinate-wise sequential

Newton-Raphson updates recently proposed by Bouman &itich is admissible provided the two normal distributions are

Sauer [19]. That method is not guaranteed to be monotonic, bidependent and consistent with (20), i®s = GB, Ag =

when it converges it might do so somewhat faster than SAGEB + G, andII = W + GCG'. The log-likelihood forX®

since it is even greedier. One can obtain similar (but monis-given by

tonic) greediness by using multiple sub-iterations of the E- and log f(X %03, Gg) =c

M-steps in the SAGE algorithm, as indicated by Step 5 of the o o

generic SAGE algorithm. However, for the few cases we have —§(XS — BOs — BOL)'C~(X® — B6s — BOY)

tested, we have not observed any improvement in convergence

rates using multiple sub-iterations. Although further investiga- — ., + (BOs + jggig)fc—l(XS _ 1(393 + Bg%‘))’

tion of the tradeoffs available is needed, including comparisons 2

with possibly super-linear methods such as preconditioned c#¢herec; andc; are independent @s. By standard properties

jugate gradient [23,34], it appears that the statistical perspect@fdoint normal distributions:

inherent to the SAGE method is a useful addition to conven- _ g s ;

tional numerical tools. X" = E{X°|Y =y;6'}

7 Nt Irr—1 7

IV. EXAMPLE 2 BOs + B+ CCML (y — A6).
Linear Gaussian Measurements The¢® function of (4) is thus

The Poisson problem has important practical applications, but 55(05: 0") =

the nonlinearity of the algorithms complicates a formal anal- 5 o

ysis of the convergence rates. In this section, we analyze the

problem of estimating superimposed linear signals in Gaussian

noise [2,9]:

SRR )
Y =a10,+--+ay, +e= A0 +¢, (20) 2 | 0% Py, P3 || 65 »
whereA = [a; ... a,), ande is additive zero-mean Gaussia which maximized ove#g yields the following generic com-

noise with covariancgl, i.e.e ~ A(0,II). For simplicity we rbmed E-and M-step:
consider a quadratic penalf§y(§) = 16'P# so the penalized- g+l
likelihood objective function is: o

y _ 1 -
(BOs + BOL)YC (X" — 5(BOs + BOY)),

= (F% +P) 7 '[B'CH(X® - B6%) - Py6Y]
. . s+ (F% +P1) 'AGIT 'y — A0°]
~®(0) = 5(y — A0)TI"(y — A) + ;6'PO. ~(Fx +P1)"'[P1 P26", (22)
Such objective functions arise in many inverse problems [$here F3- = B'C !B is the Fisher information oX° for
We assumeA has full column rank P is symmetric nonnega- 6.

tive definite, and the intersection of the null space®adnd A _
is empty, in which case the (unique) penalized-likelihood esf™ EM Algorithm

mate is X L e The ordinary EM algorithm [2, 9] is based on the follow-
0=(AIl""A+P) ATl y. (21) ing choices for the complete-data spacé: = {1,...,p},

If Ais large, or if positivity constraints of are appropriate, B = diag{axr}, € = ;I ®IL G = (1, ® I)), and

then (21) is impractical and iterative methods may be usef. = G = W = 0, where diag{-} denotes a diagonal or

(One can also think of (20) as a linearization of the more itock-diagonal matrix appropriately formetl, denotes the

teresting nonlinear problem [2].) We present the linear versigactor of ones, an is the Kronecker matrix product. Note
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that these choices distribute a fracti%nmf the noise covariance definitions are needed. L& = A'TI"' A + P be the Hessian
I1 to each signal vectat. ThusF x = p diag{a}I1 'a;}, forthis problem, and decompose it by:

which being a diagonal matrix is easily inverted. However,
sinceS = {1,...,p}, the penalized EM algorithm (22) requires
inversion of F' x- + P, which could be just as difficult as invert-
ing A'TI"'A + P for a generalP. Therefore, we consider
the case wherd® = diag{ Py}, for which the EM algorithm

whereDy is a diagonal matrix with the diagonal entriesHf,
and Ly is a strictly lower triangular matrix. Similarly let

simultaneouslypdates all parameters via: F=AT'A=Lp+Dp+L,
i+1 1 ! -1 -1 7 -1 i
ek = E(akﬂ ak—l—Pkk/p) akH (y—AO) Dy =Dpr+ Dp,
+ (a T ay, + Pu/p) ‘a), T agbl, (23) WwhereDp = diag{ P} and F is the Fisher information for
Y with respect t@.
fork=1,...,p. Let ||z|| denote the standard Euclidian norm of a vecior

. and for a nonsingular matri¥’ define||x|p = ||Tz|/, which
B. SAGE Algorithm induces the matrix norm

Because of the additive form of (20), it is natural for the
SAGE algorithm to update each parameigindividually, i.e. | Allg = max Az |7
St = {k} wherek = 1 + (i modulo p). In light of the discus- T |zl
sion in Appendix C, we would like the Fisher information of the . . )
hidden-data space f6f, to be small, so we associaa# of the Also, let p(A) denote matrix spectral radius, the maximum

noise covariance with the signal vectoy: magnitude eigenvalue of.

= |TAT .

C.1 SAGE Algorithm

From the SAGE algorithm given above, one can show (cf
proof of Theorem 3) that

Xsk ~ J\/(akek,ﬂ)
Y = )(S,C + ZajOj.
J#k
(+)p _ g — (0" — 6
Thus,F%‘é = agerrlak, which isp times less informative than 0 0 =M, M, - (0 9) (25)
the EM case, which associates only a fractigp of the noise |, hare
covariance with each signal. (This provides a statistical inter-

pretation of the modified EM algorithms used in [35, 36].) M, = I- ekH,;kle;H,
The above choice for the hidden-data space corresponds to 12 12 1 1) 12
B=a;,C=1I,B=W=0,G =1,adG = = H (I—H ei(Hyr) e H )H ;

[@1 ... ak—1 ag+1 ... ap], Which substituted into (22) yields

= T NI —ty(thty) 't)) T,
the following algorithm. ( k(tite) ' 8)

= T'PT,
SAGE Algorithm for Superimposed Signals
Initialize: é=y— AQ° and wherel’ = H'/2, the kth column of T is t;, P;- is the
for i=0,1,... { orthogonal projection onté;, andey, is the kth unit vector
. of lengthp. Since an orthogonal projection is nonexpansive,
ko= 1+ (i mOdllﬂo p),  S={k}, | M|z < 1, which confirms condition 2 of Definition 3. To
0;t = 0, — (al,I1 " ay, + Pei) ' P10’ confirm condition 3, rewrite the SAGE algorithm using (24) as:
+(a} I ay + Py) ta, It _ R -
. . (+Dp _ g _ 17 _ -1 ip _
& = &4 (0 - 0))a, o 6=~ Dy +Ly)" H](E7 -6),
ot = 0, j=1,....k—1k+1,...,p, which is the Gauss-Siedel iteration [37, p. 72]. Condition 3

follows from [37, p. 109] since

}

wherePy, is thekth diagonal entry of?, and Py, is thekth row
of P. Note that unlike the EM algorithm, the SAGE algorithnT.2 EM Algorithm
circumvents the need to inveR by performing asequential
update, so a non-diagonal smoothness perliyentirely fea-
sible. 0t —_ 0= M. @ — 9)7
C. Convergence

I —(Dp+Ly) "Hlp =||M, - Mi|p <1.

One can use (21) and (23) to show that

for the EM algorithm, where (cf (37))
To establish convergence of the EM and SAGE algorithms,

we use Definition 3 and Theorem 3 of Appendix A. A few M =1- (pDp+ P)"'H.
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Thus the EM algorithm is closely related to the simultaneoy the invariance of eigenvalues under similarity transforms,
overrelaxation (JOR) iteration [37, p. 72]. To establish that

-1
|M|p < 1for T = H"? using Theorem 4, we mustshow PEM = P —((p—1)Dr +Dp) " H)
thatS + S’ > H, V\//here in this cas& = pDr + P. Since = pI-((p—1)Dp+Dy) \2H
H=Lpr+Dp+L; ,+ P and]_3 > 0, it suffices to show that (p—1)Dp + Dy)~Y?)
pDp > Lp+ Dp+ Ly, orequivalently thapl > L+ 1+ L,

1/2 —
whereL = D,'/*LpD}'/?. SinceA'TI"! A is positive def- > 1 I1H (i 1)DF2+ D) UQZ"Z’
inite by assumptiong’(L + I + L")z > 0 for any nonzera, =]
SO usingr = e; + ey, we see thal;; € (—1,1). Thusforany for any z (by definition of spectral radius). In particular, for
nonzerar, &' (L+ 1+ L)z < (Y, |zx|)? < pllz|? wherethe z = ((p— 1)Dp + Dy)'/2H ™/ ?g:
second inequality is a special case dl#Er's inequality. The )
result then follows. S - [Ed]

. P
We have thus established that both the EM and SAGE algo- EM |((p— 1)Dp + Dg)/2H /2|2
rithm converge globally. The convergence is globally mono- (|2
.. . o 1/2 . — 1— -
g)”ntljc; :Qpnorm with respect to the norfi = H/“, i.e. R, is 2[(p— VH >DH 2+ Dyl
S
D. Convergence Rates - ' Dyx
To compare the root-convergence factors of EM and SAGE, - 1 1 _ < 2 ) y
we focus on the case whef is diagonal, since otherwise the 14+v)/(1-v) 1+v
EM algorithm is in general impractical. From the results above > V= pSAGE
then,
where the last inequality follows from e [0, 1). O
_ _ -1
pEM = p(I—(pDr+P) H) The inequalities in this proof are rather loose, and often the
= p(I-((p—1)Dr+Dg) 'H), (26) difference in convergence rate between EM and SAGE is more
pspce = »(I—(Du+Ly) 'H), (27) dramatic than the proof might suggest. To illustrate, consider
the case wherd® = 0. Then returning to (25), for the EM
sinceP = Dp for diagonalP. algorithm we have

Theorem 2 For linear superimposed signals in Gaussian noise 1F 12
with a diagonal penalty matrix, the SAGE algorithm asymptoti- M==-Y M,=T""(=) P |T.
cally converges faster than the EM algorithm, i.e. Pi= Pz

< <1 Since eigenvalues are invariant to similarity transforms, it fol-
PSAGE= PEM ' lows that root-convergence factors for the two algorithms are

Proof: The right inequality follows fromgpy < | M| < given by the following spectral radii:

1. From (24),I = Ly + Dy + L, where Ly = L r
H Y?2LyHY? and Dy = H Y2DyH~Y2. Thus for PEM = P (—27’#) ;
any vectore, Pi=
@' Lyx =a'Lyx = (|z||> — ' Dyx)/2. (28) _ Tl
PSAGE = P (kl:llpk ) )

SinceI — G~ ' H is similar to the real symmetric matrik — ) o
G '?HG'/? the eigenvalues of — (Dy + L) 'H are 1€ for the EM algorithm we have a convex combination of

real. Forv = pgagE € [0, 1) there existw # 0 such that orthogonal projections and for the SAGE algorithm we have
the product of those projections. Thus this SAGE algorithm is
[I — (Dy + Ly) 'H]v = v, closely related to the method of alternating projections [38, 39].

In particular, if P = 0 and the columns ofA are orthogonal,

thus thenpgpage = 0 whereaspg)y > 1 — 1/p, i.e., the SAGE
[I - (Dg+ Ly) Yz = v, algorithm converges in one iteration, while EM converges very

slowly.

wherex = H'/?v. Rearranging and multiplying both sides by Whenp = 2, using a Gram-Schmidt argument one can
/ L

T ) . _ show thatt; = [1 0] andt, = [a V1 — a?] wherea =
|=|* = (1 —v)a'(Lu + Du)z. 1 _ _
|aiII™ aq|/(||a1||||@az]|) is the cosine of the complementary
Combining with (28), angle between; anda,. Thus,

_ 1+]/ 2 o Oé2 0 )



10 A MONOTONE CONVERGENCE IN NORM

I. MONOTONE CONVERGENCE INNORM

1{ 1—a? —amD

1
pE|\/|p<§ —av1—a? 1+a? —3"

() e}

Because the SAGE “algorithm” is so general, a single conver-
ence theorem statement/proof cannot possibly cover all cases
Figure 3 illustrates that the root-convergence factor of SAGE interest (see for example the variety of special cases consid-
is significantly smaller than that of EM, which substantially resred for the classical EM algorithm in [40].) Here we adopt
duces the number of iterations required. the Taylor expansion approach of [4] since it directly illumi-

Not only is pgaGgE < PEM. bUt alsopgagE < p2EM, SO0 nates the convergence rate properties and prescribes a region
one SAGE iteration is better than two EM iterations, at leasf monotone convergence in norm. However, this general ap-
whenp = 2. Thus, even though the EM algorithm appears fgroach has the drawback that it assumes the fixed point lies
have the advantage that one can parallelize the M-step usimghe interior of©. This restriction is often not a necessary
p processors that simultaneously update all parameters, in ttisidition, and at least for some applications one can often find
case the convergence rate of the parallel algorithm is so muggiecific convergence results without the restriction, e.g. [3, 30].
slower that a sequential update may be preferable. This depeRdaders who are satisfied with the assurance of monotonicity
of course on how difficult the M-step is; in the nonlinear casef the objectiveb(8"), as provided by Theorem 1, may wish to
discussed in [2], the M-step is presumably fairly difficult, sgimply skim this appendix.
parallelization may be advantageous. Equations (26) and (27)or simplicity, we discuss only the case where the index sets
help one examine these types of tradeoffs. S are chosen cyclically with perioHf, i.e. S* = S* wherek =
1+ (i modulo K). We also assume thf/_, S* = {1,...,p}
so that each parameter is updated at least once per cycle.

Before stating the convergence theorem, several definitions

We have described a generalization of the classical EM &€ needed. Consider an index sgtand letm denote its
gorithm in which one alternates between several hidden-d§@{dinality. Bearing in mind our notational convention that
spaces rather than using just one, and updates only a subsét’¢fs; 8) = ¢°(05s;8s,83), we define then x m matrices
_the elements of the parame_ter vector each ite_ration. By updat- (V20045)(95: 8) = (Vo Vb ¢5)(0s; 93,95)
ing the parameters sequentially, rather than simultaneously, we s Us
demonstrated that SAGE algorithms yield faster convergerasd
than EM algorlthms in two S|g|_1al processing app||cat|0n§. . (V“%S)(Gs; 0) = (Vg VIO ¢S)(0s; 9s,9g),

The particular SAGE algorithms that we presented in this s Us
paper sacrifice one important characteristic of the EM algand them x (p — m) matrix
rithm: they are less amenable to a parallel implementation since 101 48 _ . s o
they are coordinate-wise methods. However, the general SAGE (V797)(05:6) = (végves¢ )(0s;65,03),

method IS very erX|bIe, gnd_work IS In progress on more pavrv'herev denotes the (row) gradient operator évdits trans-
allelizable algorithms using index sefsconsisting of several

elements oB. The benefits of parallelization must be weigheaose' Le® be afixed point of the SAGE algorithm, and define

against the convergence rates for each application. U®(05;0) =

It is probably no coincidence that the applications we put 1
forth are ones in which the terminology “incomplete-data” and —/ (V2005)(t0s + (1 — 1)0g;t0 + (1 — 1)0) dt, (29)
“complete-date” as introduced in [1] are somewhat unnatural. V0 -
In most of the statistical applications discussed in [1], there is VS(GS; 0) =
a clearly identifiable portion of the data that is “missing,” and 1 o .
hence one natural complete-data space. In contrast, there is/ (V100%)(t0s + (1 — t)0s;t0 + (1 — t)0) dt,  (30)
nothing really “incomplete” about tomographic measurements; ’°
the problem is simply that the log-likelihood is difficult to max-2"
imize. The EM algorithm is thus just a computational tool. (To
further illustrate this point, note that in classical missing data
problems the estimates of the missing data may be of some in-
trinsic interest, whereas the “complete-data’ for tomography,is, ps o0 1 thep x p permutation matrix that reorders the
never explicitly computed and would be of little use anyway., lements of S. 5 into {1 Then define the x 1 com-
SAGE algorithms may be most useful in such contexts. fS, 5} {L,.p} exp

. ) , ﬁosite matrix
We have emphasized that the SAGE algorithm improves the

asymptotic convergence rate. The actual convergence rate will s — lrerS _ s _
certainly depend on how close the initial estimate is to a fixed-gS [ U~(05;0)""[V~(6s;0) W” (05 0)] (R%Y, (32)
point. In tomography and image restoration, fast linear algo- 0(p—m)xm Ipm
rithms can provide good initializers for penalized likelihood esvherel,, denotes the x n identity matrix.
timation. A greedy algorithm like SAGE is likely to be most With the above definitions, we can define the following re-
beneficial in applications where such initializers are availablegion of monotone convergence in norméo

V. DISCUSSION

WS(Os; é) =

/1(V101¢S)(t05 +(1—t)0s;t0 + (1 —1)8) dt.  (31)
0

MS(Os;é) =
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Definition 3 R, C © is aregion of monotone convergence imand let¢® (z) = ¢°(0s; ). Let
normif there exists a nonsingular x p matrix T' such thatR ;. _ . s
is an open ball with respect to the nofn || and d(z) = d(0s;0) = (Vg_¢°)(2),

then by assumption (iv) we can apply the Taylor formula with

1. fork = 1,..., K, US (84 8) is invertible for all§ ¢ :
(95::0) remainder [42] to expand(z) aboutz:

R, and for all6g. € ©5"(8) (see (7)),

1
2. fork=1,...,K, HMSk(GSk;é)HT <1forall 6 € R, d(z) =d(2) +/ (Vd)(tz + (1 — t)2) dt (z — 2).
and for all@ 5. € ©5"(0), 0
_ 1 K Sinced is a fixed point of the SAGE algorithm, by assumption
3. there existsx < 1suchthatforany,...,6" € Ry and (jii) and (iv), d(2) = 0. Observe that by the definitions (29-31):
0. c©5°(0"), k=1,... K,
(Vd)(z) = |-U(85:0) V*(85;0) W*(05;0)| .
M5 (0gx;0™) - M (051;0") |7 <. (33)
By assumption (iii) and (iv)d(6%;';6°) = 0 for the SAGE
In general, T’ may depend o, but we do not allowI’ to ~ &lgerithm (5), so
vary with iteration. The hard work is to verify condition 3 (see SE it pisrpidl 2
Appendix B), but if one can do so, the reward is the following U~ (05::0')(0g. —Osr) =
theorem. | VS (051,67) (0% — 0gi) + WS (01167 (0%, — 5.
Theorem 3 Assume i)5* = S* wherek = 1 + (i modulo K) (36)
and Uszl Sk = {1,...,p},ii) 0 is a fixed point of the SAGE By property 1 (invertibility) of Definition 3:
algorithm (5) in the interior 0, iii) for all 8 € R the max-

| T i+l _f
imum oved . of ¢5" (B4:;0) is in the interior of©S" (), iv) 0. —Osi =

¢S (051;0) is twice differentiable in both argument® € © US" (05::6") VS (01167 (01 — Os1)
ST (P i _ . . ) ) ) ~
andVv@gs:. € ©° (0), and v) the region of monotone conver L s (thl;az)*lWSk (eistl;ez)(%k b3

genceR . for anorm|| - |7 is nonempty.

From (6) the components @F;, are just copied, so after per-

1. 1f6° € R, then T
muting usingR"~ (32):

i+l ) i :
and k
100FDE _ Bl < a|6K — 8], (34) whereM®" was defined by (32). Therefore, sin@& € R,
_ . by property 2 of Definition 3,
wherea < 1 is defined by (33). Thereforgg™™ — 0| _ . o
converges monotonically to zero with at least linear rate. 167 — 6|l < 16" 0|

2. The root-convergence factor [41] of the subsequense it follows by induction tha®® e R4. Afull cycle consists
{0“(};’;0 is given by the spectral radius of one update over each of th€ index sets, so applying (37)
K times: .
p (MSK (Bgx;0) - M5 (Bg:; 9)) ,  (35) (0K —6) =
Ko (i i - toni i i ;
MS (efg}tl)Kye( +1)K 1) . 'MS (esllerl;a K)(e K 0)
Thus by property 3 of Definition 3,
Note that by the equivalence of matrix norms [37, p. 29], mono- _ . _ R
tone convergence with respect to the ndra| g implies con- 16TVE g < o]0 — 8|,
vergence with respect to any other norm, although probably _
non-monotonically. Since the index sets are chosen cyclica®@ the subsequen¢@*™ }2, converges monotonically in norm
a “full iteration” consists ofi’ updates, so (34) bounds the conto 6 asi — oo with linear rate at most.

which is bounded above ly < 1.

vergence rate of the subsequenﬁeéK}ng. By continuity of the derivatives ob 5, one can show [4] that
. . o . i the root convergence factor of the subsequétifeis governed
Proof: Consider théth iteration and lefS = S* wherek = by the spectral radius

1 + (¢ moduloK). Define
p(M®" (05x;0)--- M (651;0)).

05' éS
z= @S 2= 05 |, Since the spectral radius is bounded above by any matrix norm,
0; ég the root convergence factor is bounded aboverby a
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Il. Ry 1S NONEMPTY

In this appendix, we show that the region of monotone co
vergence in nornR . is nonempty for suitably regular prob-
lems. Thus the conditions for Theorem 3 are reasonable, a{r]fd' "
the superimposed signals example in Section IV is a concrete

example.
First note that from (10) one can show that

(VIOH®)(05;0) = —(V*°H®)(05:0),
(VIO'H®)(65:0) = 0
(cf (3.16) of [1]). For an index sef, define
Fly = —(V**°H®)(85;0),

then from (10) one can see that the malﬂgdy is the condi-

tional Fisher information oK for 65 givenY = y and given
all of the other parameteék;.
Define the Hessian of the objectivethby

H = -V%®(0),
and the following submatrices of the Hessian:

HS

—(vesvbscp)(é)
—(vgsvbscp)(é).

HSS —
(To simplify notation we leave implicit the dependenceéh
Note thatH Skis the curvature of the objectivie with respect to
65, and H>* is the coupling betweefis and@ g induced by
®. Combining the above definitions with (29)-(31):

U = H°+F%ly
Ve = Fxly
WS = —H5S (38)

If H is positive definite, thel/* will be invertible, so by (32)

(US)—1VS (US)—1WS

S _ ps
MR{ 0 I

] (RS)/
Substituting in (38):
(RS)/MSRS —

[ (HS + P ly) " Fly —(H® + Fly) " H ]
0 I

I _ ~
1| g @ FdEs
=I- { é } (H® + F |y)~'[I 0](R°)HR?,
Thus
HIMSH 3 =
1 S S -1
I- H*RS [ (H +€X|y) g (RSYH?. (39)

C FISHER INFORMATION

For simplicity, we now consider the case the index sets
fre disjoint and are chosen cyclically in the natural order, i.e.
St = S*, wherek = (1 + i modulo K) and{S?,..., 5K} =
,p}. Inthat case, it follows from (39) that
MS".

MS' =1 (Dy+Dp+Lyg)"'H, (40)

whereD is block-diagonal withF§|y in the kth block, and

H=Ly+Dy+1L} (41)
where Dy is a block diagonal matrix containing the diagonal
blocks of H that correspond to the subset, and Ly is the
corresponding strictly lower block triangular matrix. We can
thus establish thatM>" ... MS'||p < 1 by using the fol-
lowing “splitting matrix” theorem (p. 79 of [37]

Theorem 4 If H is positive definite and is invertible, then
||I - S_1H||T <1

forT = H? if

S+S' >H. (42)

From (40), for a SAGE algorithn$ = Dy + Dp + Ly, S0
in light of (41), condition (42) of Theorem 4 is satisfied. Thus,
M5 M| < 1

Using the relationships derived above, one can establish the
following result.

Theorem 5 Let @ be a fixed point of a SAGE algorithm, and
assume thatb is strictly concave on an open set local o
(so that H is positive definite). Then i and the functions
¢S are all twice continuously differentiable ne@r there exists

a nonempty region of monotone convergence in nBrmsat-
isfying tlhe conditions of Definition 3 for the norm induced by
T=H:=.

From (35) we see that the root-convergence factor of a SAGE
algorithm is given by the spectral radius of a product of matrices
M¥ (05;6) of the form (32). For an EM algorithm, this spectral
radius increases towards 1 as the complete-data becomes more
informative, i.e., as its Fisher information increases [1, 4, 5]. In
this section we demonstrate that a similar relationship holds for
the convergence rate of a SAGE algorithm.

Defining

FISHER INFORMATION

§'=H?. (0" - 6),
we see from (39) that fa¥* small,

6i+1 ~

(H + Fly)™ 0

_gips S\ i i

(I HR{ 0 0}(R)H>6.
(43)

This last equation suggests that minimiziﬁg}dy will im-

prove the rate of convergence (‘|| to 0. To demonstrate
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this more formally, letD , and D, be the block diagonal ag-

gregate of the Fisher information matrices for two SAGE al;
gorithms withDr, < Dp,. Then one can use (40) with an

argument similar to the proof of Theorem 2 to show that

p(I—(Dg+Dp +Ly) 'H) < p(I—(Dy+Dp,+Ly) ' H).

[1]

(2]

Thus, less informative hidden-data spaces lead to smaller root-
convergence factors and hence faster converging SAGE algo-

rithms. In particular, once one has chosen the index Skts
the optimal hidden-data space from the point of vieva®fmp-
totic convergence rate would simply B¢ = Y, since then

3]

ngy = 0. But that choice will often lead to an intractable M-

step. The SAGE algorithm allows one to choose hidden-da
spaces whose Fisher information matrices are much small

than that of the usual complete-data of an EM algorithm.
Finally, note that from (43), we see that sinEE is deter-

1

mined by ®, once the index sets are chosen, the only design

issue left is to choose the hidden-d&& . This choice should
be made by considering the tradeoff between malﬁhjq|y
small but yet making the M-step tractable.
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Figure 1. Representing the observed detas the output of a
possibly noisy channel’ whose input is the hidden-da&”® .
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Figure 2: Comparison of log-likelihood incredseg f(y; 8*) — 0.1
log f(y; 8°) vs iterationi for ML-EM, ML-LINU, and ML- 0
SAGE-2 algorithms, for image reconstruction from PET mea- 0 0.2 0.4 0.6 0.8 1

. L. cos(Complementary Angle Between Subspaces)
surements with 9% random coincidences. ML-SAGE-2 clearly

reaches the asymptote sooner. Figure 3: Comparison of root-convergence factors for con-

ventional EM algorithm and proposed SAGE algorithm versus
complementary angle between subspaces of superimposed sig-
nals. The SAGE algorithm has a significantly improved conver-
gence rate.



