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ABSTRACT

The expectation-maximization (EM) method can facilitate
maximizing likelihood functions that arise in statistical esti-
mation problems. In the classical EM paradigm, one itera-
tively maximizes the conditional log-likelihood of a single un-
observablecomplete data space, rather than maximizing the
intractable likelihood function for the measured orincomplete
data. EM algorithms update all parameterssimultaneously,
which has two drawbacks: 1) slow convergence, and 2) difficult
maximization steps due to coupling when smoothness penalties
are used.

This paper describes the space-alternating generalized EM
(SAGE) method, which updates the parameterssequentiallyby
alternating between several smallhidden-data spacesdefined
by the algorithm designer. We prove that the sequence of esti-
mates monotonically increases the penalized-likelihood objec-
tive, we derive asymptotic convergence rates, and we provide
sufficient conditions for monotone convergence in norm. Two
signal processing applications illustrate the method: estimation
of superimposed signals in Gaussian noise, and image recon-
struction from Poisson measurements. In both applications, our
SAGE algorithms easily accommodate smoothness penalties,
and converge faster than the EM algorithms.

I. I NTRODUCTION

In a variety of signal processing applications, direct calcu-
lations of maximum-likelihood (ML), maximuma posteriori
(MAP), or maximum penalized-likelihood parameter estimates
are intractable due to the complexity of the likelihood functions
or to the coupling introduced by smoothness penalties or priors.
EM algorithms and generalized EM (GEM) algorithms [1] have
proven to be useful for iterative parameter estimation in many
such contexts,e.g. [2, 3]. In the classical formulation of an
EM algorithm, one supplements the observed measurements, or
incomplete data, with a singlecomplete-data spacewhose re-
lationship to the parameter space facilitates estimation. An EM
algorithm iteratively alternates between an E-step: calculating
the conditional expectation of the complete-data log-likelihood
and an M-step:simultaneouslymaximizing that expectation
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with respect to all of the unknown parameters. EM algorithms
are most useful when the M-step is easier than maximizing the
original likelihood. The simultaneous update used by a classi-
cal EM algorithm necessitates overly informative complete-data
spaces, which in turn leads to slow convergence. In this paper
we show improved convergence rates by updating the parame-
terssequentiallyin small groups.

The convergence rate of an EM algorithm is inversely related
to the Fisher information of its complete-data space [1], and
we have previously shown that less-informative complete-data
spaces lead to improved asymptotic convergence rates [4–6].
Less informative complete-data spaces can also lead to larger
step sizes and greater likelihood increases in the early itera-
tions [5–7]. Since the relationship between complete-data space
information and convergence is therefore more than just an
asymptotic phenomenon, we believe that one should strive to
minimize the information of the complete-data space. However,
in the classical EM formulation a less informative complete-
data space can lead to an intractable maximization step [1, 5],
due to the simultaneous update employed by EM algorithms.
(As an example, the least-informative admissible “complete”
data space would be the measurement space itself!)

To circumvent this tradeoff between convergence rate and
complexity, in this paper we extend the concepts in [4, 6] by
proposing a new space-alternating generalized EM (SAGE)
method. This method is suited to problems where one can se-
quentially update small groups of the elements of the parameter
vector. Rather than using one large complete-data space, we
associate with each group of parameters ahidden-data space
(Definition 2 in Section II), which would be a complete-data
space in the sense of [1] if the other parameters were known.
We define a flexible admissibility criterion that ensures that the
algorithm monotonically increases the penalized-likelihood ob-
jective. In the examples we describe here and in [8], one can
design the hidden-data space for each parameter subset to be
considerably less informative than the natural single complete-
data space. This reduction leads to faster convergence.

Convergence rate is one of two motivations for the SAGE
method. In applications such as tomographic imaging and im-
age restoration, where the parameter space is very large, it
is often necessary or desirable to regularize using smoothness
penalties. Such penalties usually introduce couplings that ren-
der intractable the maximization steps of classical EM meth-
ods [9]. Several approaches to this problem have been proposed,
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many motivated by emission tomography, including GEM algo-
rithms [10–12], linearizations of the penalty function [9], line
searches [13], applyingad hocsmoothing in lieu of a smooth-
ness penalty [14], red-black orderings [15], and majorization of
the penalty functional [16, 17]. These methods are all rooted
in the classical EM method, and often they share its slow con-
vergence. In contrast, by using a separate hidden-data space
for each parameter, a SAGE algorithm intrinsically decouples
the parameter updates. Surprisingly, not only is the maxi-
mization simplified, but the convergence rate is improved as
well. Two related approaches that also decouple the update are
the hybrid ICM-EM algorithm of Abdalla and Kay [18], and
the coordinate-wise Newton-Raphson method of Bouman and
Sauer [19,20].

A variety of methods have been proposed for accelerating
EM algorithms, most of which are based on standardnumerical
tools such as Aitken’s acceleration [21], over-relaxation [22],
line-searches [23], Newton methods [19,24], and conjugate gra-
dients [23,25]. These methods, although often effective, do not
guarantee monotone increases in the objective unless one ex-
plicitly computes the objective function. The SAGE method is
based fundamentally onstatistical considerations, and mono-
tonicity is guaranteed. The relative importance of monotonicity
and convergence rate will of course be application dependent.

When the EM algorithm was first introduced, discussants
questioned the term “algorithm” since the general method does
not prescribe specific computational steps for particular appli-
cations [1]. The SAGE method is similarly general, if not more
so! Therefore, we devote much of this paper to a detailed com-
parison of SAGE and classical EM for two signal processing
applications: estimation of superimposed signals in Gaussian
noise, and image reconstruction from Poisson measurements.
We have simplified the examples for the purposes of illustration,
while hopefully retaining sufficient complexity that the reader
will gain insight into how to apply SAGE to other problems.

The organization of this paper is as follows. Section II de-
fines the generalized concept of “hidden data space,” describes
the general form of the SAGE algorithm, and establishes mono-
tonicity in objective. Sections III and IV describe the applica-
tions. Appendix A discusses convergence of the algorithm and
a region of monotone convergence in norm. Appendix B estab-
lishes that the region of monotone convergence is nonempty for
suitably regular problems. Appendix C examines the relation-
ship between convergence rate and Fisher information of the
hidden-data spaces.

II. T HE SAGE ALGORITHM

A. Problem

Let the observationY have the probability density2 func-
tion f(y;θtrue), whereθtrue is a parameter vector residing
in subsetΘ of thep-dimensional space IRp. Given a measure-
ment realizationY = y, our goal is to compute the maximum

2For simplicity, we restrict our description to continuous random variables.
The method is easily extended to general distributions [4].

penalized-likelihood estimatêθ of θtrue, defined by:

θ̂
4
= argmax

θ∈Θ
Φ(θ)

where
Φ(θ)

4
= log f(y;θ)− P (θ). (1)

Unfortunately, direct maximization ofΦ is often intractable due
to the complexity off , the coupling inP , or both. Thus one
must resort to iterative methods, and in many problems it is nat-
ural to consider subsets of the elements of the parameter vector
θ. (Updating in subsets also often leads to remarkably fast con-
vergence, e.g. [26].) The following definition formalizes this
idea.

Definition 1 A setS is defined to be anindex setif it i) is
nonempty, ii) is a subset of the set{1, . . . , p}, and iii) has no
repeated entries. The setS̃ denotes the complement ofS inter-
sected with{1, . . . , p}.

Let the cardinality ofS bem, then we useθS to denote them
dimensional vector consisting of them elements ofθ indexed
by the members ofS. Similarly defineθS̃ to be thep − m
dimensional vector consisting of the remaining elements ofθ.
For example, ifp = 5 andS = {1, 3, 4}, then S̃ = {2, 5},
θS = [θ1 θ3 θ4]

′, andθS̃ = [θ2 θ5]
′, where′ denotes matrix

transpose. Note that when we useS as a superscript, as inφS

defined below, it serves as a reminder that the function or matrix
depends on the choice ofS.

One more notational convention will be used hereafter. Func-
tions likeΦ(θ) expect ap-dimensional vector argument, but it
is often convenient to split the argumentθ into two vectors:θS
andθS̃ , as defined above. Therefore, we define expressions
such as the following to be equivalent:Φ(θS ,θS̃) = Φ(θ).

In a “grouped coordinate-ascent” method, one sequences
through different index setsS = Si and updates only the ele-
mentsθS of θ while holding the other parametersθS̃ fixed [27].
At the ith iteration one would usually like to assignθi+1S to the
argument that maximizesΦ(θS ,θ

i
S̃
) overθS . However, in ap-

plications such as the imaging problem described in Section III,
there isno analytical formfor the maximum ofΦ(θS ,θS̃) over
θS , even if the index setS contains only one element.One could
apply numerical line-search methods, but these can be computa-
tionally demanding if evaluatingΦ(θS ,θ

i
S̃
)−Φ(θi) for several

values ofθS is expensive.
The basic idea behind the SAGE method is borrowed directly

from the EM method. By introducing a “hidden-data” space for
θS based on the statistical structure of the likelihood, we replace
the maximization ofΦ(θS ,θ

i
S̃
) overθS with the maximization

of another functionalφS(θS ;θ
i). If the hidden-data space is

chosen wisely, then one can maximize the functionφS(·;θi) an-
alytically, obviating the need for line searches. Even if one can-
not maximizeφS analytically, one can often choose hidden-data
spaces such that it is easier to evaluateφS(·;θi) − φS(θiS ;θ

i)
thanΦ(·,θi

S̃
) − Φ(θiS ,θ

i
S̃
), so line searches for maximizing

φS(·;θi) would be cheaper than line searches for maximizing
Φ(·;θi

S̃
). Just as for an EM algorithm, the functionalsφS are

constructed to ensure that increases inφS yield increases in
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Φ. Furthermore, we have found empirically for tomography
that by using a new hidden-data space whose Fisher informa-
tion is small, the analytical maximum ofφS(·;θi) increases
Φ(·,θi

S̃
) nearly as much as maximizingΦ(·,θi

S̃
) itself. This is

formalized in Appendix C, where we prove that less informative
hidden-data spaces lead to faster asymptotic convergence rates.
In summary, the SAGE method uses the underlying statistical
structure of the problem to replace cumbersome or expensive
numerical maximizations with analytical or simpler maximiza-
tions.

B. Hidden-Data Space

To generate the functionsφS for each index setS of interest,
we must identify an admissible hidden-data space defined in the
following sense:

Definition 2 A random vectorXS with probability density
function f(x;θ) is an admissible hidden-data spacewith re-
spect toθS for f(y;θ) if the joint density ofXS andY satisfies

f(y,x;θ) = f(y|x;θS̃)f(x;θ), (2)

i.e., the conditional distributionf(y|x;θS̃) must be indepen-
dent ofθS . In other words,XS must be a complete-data space
(in the sense of [1]) forθS given thatθS̃ is known.

A few remarks may clarify this definition’s relationship to re-
lated methods.

• The complete-data space for the classical EM algorithm [1]
is contained as a special case of Definition 2 by choosing
S = {1, . . . , p} and requiringY to be a deterministic func-
tion ofXS [4].

• Under the decomposition (2), one can think ofY as the
output of a noisy channel that may depend onθS̃ but not
onθS , as illustrated in Figure 1.

• We use the term “hidden” rather than “complete” to de-
scribeXS , since in generalXS will not be complete for
θ in the original sense of Dempsteret al. [1]. Even the
aggregate ofXS over all ofS will not in general be an
admissible complete-data space forθ.

• The most significant generalization over the EM complete-
data that is embodied by (2) is that the conditional dis-
tribution of Y onXS is allowed to depend on all of the
other parametersθS̃ (Figure 1). In the superimposed sig-
nal application described in Section IV, it is precisely this
dependency that leads to improved convergence rates. It
also allows significantly more flexibility in the design of
the distribution ofXS .

• The cascade EM algorithm [28] is an alternative gener-
alization based on a hierarchy of nested complete-data
spaces. In principle one could further generalize the SAGE
method by allowing hierarchies for eachXS .

C. Algorithm

An essential ingredient of any SAGE algorithm is the follow-
ing conditional expectation of the log-likelihood ofXS :

QS(θS ; θ̄) = QS(θS ; θ̄S , θ̄S̃)

4
= E

{
log f(XS ;θS , θ̄S̃)|Y = y; θ̄

}
(3)

=

∫
f(x|Y = y; θ̄) log f(x;θS , θ̄S̃) dx.

We combine this expectation with the penalty function:

φS(θS ; θ̄)
4
= QS(θS ; θ̄)− P (θS , θ̄S̃). (4)

Letθ0 ∈ Θ be an initial parameter estimate. A generic SAGE
algorithm produces a sequence of estimates{θi}∞i=0 via the fol-
lowing recursion:

SAGE Algorithm
For i = 0, 1, . . . {

1. Choose an index setS = Si.

2. Choose an admissible hidden-data spaceXS
i

for θSi .

3. E-step: ComputeφS
i

(θSi ;θ
i) using (4).

4. M-step:

θi+1Si = argmax
θSi
φS

i

(θSi ;θ
i), (5)

θi+1
S̃i

= θi
S̃i
. (6)

5. Optional3: Repeat steps 3 and 4.

},
where the maximization in (5) is over the set

ΘS(θi) = {θSi : (θSi ,θ
i
S̃i
) ∈ Θ}. (7)

If one chooses the index sets and hidden data spaces appropri-
ately, then typically one can combine the E-step and M-step
via an analytical maximization into a recursion of the form
θi+1Si = g

Si(θi). The examples in later sections illustrate this
important aspect of the SAGE method.

Note that if for some index setS one choosesXS = Y ,
then for thatS one sees from (3) and (4) thatφS(θS ;θ

i) =
Φ(θS ,θ

i
S̃
). Thus, grouped coordinate-ascent [27] is a special

case of the SAGE method, which one can use with index setsS
for whichΦ(θS ,θ

i
S̃
) is easily maximized.

Rather than requiring a strict maximization in (5), one could
settle simply for local maxima [4], or for mere increases inφS ,
in analogy with GEM algorithms [1]. These generalizations
provide the opportunity to further refine the tradeoff between
convergence rate and computation per-iteration.

3Including the optional sub-iterations of the E- and M-steps yields a “greed-
ier” algorithm. In the few examples we have tried in image reconstruction, the
additional greediness was not beneficial. (This is consistent with the benefits of
under-relaxation for coordinate-ascent analyzed in [29].) In other applications
however, such sub-iterations may improve the convergence rate, and may be
computationally advantageous over line-search methods that require analogous
sub-iterations applied directly toΦ.
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D. Choosing Index Sets

To implement a SAGE algorithm, one must choose a se-
quence of index setsSi, i = 0, 1, . . .. This choice is as much art
as science, and will depend on the structure and relative com-
plexities of the E- and M-steps for the problem. To illustrate the
tradeoffs, we focus on imaging problems, for which there are at
least four natural choices for the index sets: 1) the entire image,
2) individual pixels, i.e.,

Si = {1 + (i modulop)}, (8)

(this was used in the ICM-EM algorithm of [18]), 3) group-
ing by rows or by columns, and 4) “red-black” type orderings.
These four choices lead to different tradeoffs between conver-
gence rate and ability to parallelize. A “red-black” group-
ing was used in a modified EM algorithm in [15] to address
the M-step coupling introduced by the smoothness penalties.
However, those authors recently concluded [16] that a new
simultaneous-update algorithm by De Pierro [17] is preferable.
Those methods use the same complete-data space as in the con-
ventional EM algorithm for image reconstruction [3], so the
convergence rate is still slow. Since the E-step for image re-
construction naturally decomposes intop separate calculations
(one for each element ofθ), it is natural to update individual
pixels (8). By using the less informative hidden-data spaces
described in Section III, we show in [8,30] that the SAGE algo-
rithm converges faster than the GEM algorithm of Hebert and
Leahy [10], which in turn is faster than the new method of De
Pierro [17]. Thus, for image reconstruction it appears that (8) is
best for serial computers.

As noted by the reviewers, for image restoration problems
with spatially-invariant systems, one can compute the E-step of
the conventional EM algorithm using fast Fourier transforms
(FFTs). A SAGE algorithm with single-element index sets (8)
would require direct convolutions. Depending on the width and
spectrum of the point-spread function, the improved conver-
gence rate of SAGE using (8) may be offset by the use of direct
convolution. A compromise would be to group the pixels alter-
nately by rows and by columns. This would allow the use of 1D
FFTs for the E-step, yet could still retain some of the improved
convergence rate. Nevertheless, the SAGE method may be most
beneficial in applications with spatially-variant responses.

Regardless of how one chooses the index sets, we have con-
structedφS to ensure that increases inφS lead to monotone in-
creases inΦ, as shown next.

E. Monotonicity

Let S andXS respectively denote an index set and hidden
data space used in a SAGE algorithm. Under mild regularity
conditions [1, 4], one can apply Bayes’ Theorem to (3) to see
that

QS(θS ; θ̄) =

∫
f(x|Y = y; θ̄) log f(x;θS , θ̄S̃) dx

= L(θS , θ̄S̃) +H
S(θS ; θ̄)−W

S(θ̄), (9)

where
L(θS , θ̄S̃)

4
= log f(y;θS , θ̄S̃),

HS(θS ; θ̄)
4
= E

{
log f(XS |Y = y;θS , θ̄S̃) |Y = y; θ̄

}
,

(10)
and due to (2)

WS(θ̄)
4
=

∫
f(x|Y = y; θ̄) log f(y|x; θ̄S̃) dx.

Note thatWS is independent ofθS , so it does not affect the
maximization (5). Using these definitions and Jensen’s inequal-
ity [1], one can easily show that

HS(θS ; θ̄) ≤ H
S(θ̄S ; θ̄), ∀θS , ∀θ̄, (11)

from which the following theorem follows directly.

Theorem 1 Let θi denote the sequence of estimates generated
by a SAGE algorithm (5). Then 1)Φ(θi) is monotonically non-
decreasing, 2) if̂θ maximizesΦ, thenθ̂ is a fixed point of the
SAGE algorithm, and 3)

Φ(θi+1)− Φ(θi) ≥ φS(θi+1S ;θ
i)− φS(θiS ;θ

i).

Proof: From (4) and (9) it follows that

Φ(θS , θ̄S̃)− Φ(θ̄) =

φS(θS ; θ̄)−H
S(θS ; θ̄)− (φ

S(θ̄S ; θ̄)−H
S(θ̄S ; θ̄)).

Thus, if φS(θS ; θ̄) ≥ φS(θ̄S ; θ̄), thenΦ(θS , θ̄S̃) ≥ Φ(θ̄)
using (11). The results then follow from the definition of the
SAGE algorithm. 2

Standard numerical methods require evaluation ofΦ(θi+1) −
Φ(θi) to ensure monotonicity. That requirement is obviated for
SAGE methods by the monotonicity theorem above.

F. Convergence

For a well behaved objectiveΦ, the monotonicity property
ensures that the sequence{θi} will not diverge, but it does not
guarantee convergence even to a local maximum ofΦ. (Some
EM algorithms have fixed points that are not local maxima
[1,31].) Therefore, in the appendices we provide additional the-
orems that give sufficient conditions for convergence in norm,
and that characterize the asymptotic convergence rate. To sum-
marize briefly, these theorems show under suitable regularity
conditions that:

• If a SAGE algorithm is initialized in a region suitably close
to a local maximum in the interior ofΘ, then the sequence
of estimates will converge monotonically innorm to it.
(This may not apply when the local maximum lies on the
boundary ofΘ, as often happens in the example in Section
III.)

• For strictly concave objectives, the region of monotone
convergence in norm is guaranteed to be nonempty.

• The asymptotic convergence rate of a SAGE algorithm will
be improved if one chooses a less informative hidden-data
space.
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This last point is subtle, but is perhaps one of the most impor-
tant conclusions of our analyses since it emphasizes the need
for careful design of the hidden-data spaces. Less informative
hidden-data spaces yield faster convergence, but more informa-
tive hidden-data spaces may yield easier M-steps [5,8,30].

III. E XAMPLE 1

Linear Poisson Measurements
The EM method has been used for over a decade to compute
ML estimates of radionuclide distributions from tomographic
data, such as that measured by positron emission tomography
(PET) [3, 32]. In this section we present a brief review of the
classical EM algorithm for this problem, and then introduce two
SAGE algorithms. The second SAGE algorithm is based on a
new hidden-data space, and converges faster than even an accel-
erated EM algorithm. For simplicity we focus in this paper on
ML estimation; the penalized version is described in [8,30].

Assume that a radionuclide distribution can be discretized
into p pixels with emission ratesλ = [λ0, . . . , λp]′. Assume
that the emission source is viewed byN detectors, and letNnk
denote the number of emissions from thekth pixel that are de-
tected by thenth detector. Assume the variatesNnk have inde-
pendent Poisson distributions:

Nnk ∼ Poisson{ankλk} , (12)

where theank are nonnegative constants that characterize the
system [3]. The detectors record emissions from several
source locations, so at best one would observe only the sums∑p
k=1Nnk, rather than eachNnk. Background emissions, ran-

dom coincidences, and scatter contaminate the measurements,
so we observe

Yn =

p∑
k=1

Nnk +Rn,

where{Rn} are independent Poisson variates:

Rn ∼ Poisson{rn} , (13)

with means{rn} assumed known for simplicity. Thus,

Yn ∼ Poisson

{
p∑
k=1

ankλk + rn

}
. (14)

Given realizations{yn} of {Yn}, the log-likelihood for this
problem is given by [3]:

log f(y;λ) =

N∑
n=1

(−ȳn(λ) + yn log ȳn(λ)) ,

where

ȳn(λ) =

p∑
k=1

ankλk + rn.

We would like to compute the ML estimatêλ from y.
To apply coordinate ascent directly to this likelihood, one

might try to updateλk by equating the derivative of the like-
lihood to zero:

0 = −a·k +
N∑
n=1

ank
yn

ank(λk − λik) + ȳn(λ
i)
, (15)

wherea·k =
∑N
n=1 ank. Unfortunately, this equation has no

analytical solution. A line-search method would require mul-
tiple evaluations of (15), which would be expensive—hence
the popularity of EM-type algorithms [3] that require no line
searches.

The complete-data space for the classical EM algorithm [3]
for this problem is the set of unobservable random variates

X1 = {{Nnk}
p
k=1, {Rn}}

N
n=1. (16)

For this complete-data space, theQ function (3) becomes [3,
eqn. (4)]:

Q1(λ;λi) =
N∑
n=1

p∑
k=1

(
−ankλk + N̄nk log(ankλk)

)
,

where [3]

N̄nk = E{Nnk|Y = y;λ
i} = λikankyn/ȳn(λ

i).

MaximizingQ1(·;λi) analytically leads to the following algo-
rithm:

ML-EM Algorithm for Poisson Data
for i = 0, 1, . . . {

ȳn :=

p∑
k=1

ankλ
i
k + rn, n = 1, . . . , N

for k = 1, . . . , p {

ek =
N∑
n=1

ankyn/ȳn

λi+1k = λikek/a·k (17)

}
}.

In words, the previous parameter estimate is used to compute
predicted measurements, those predictions are divided into the
measurements and backprojected to form multiplicative correc-
tion factors, and the estimates aresimultaneouslyupdated using
those correction factors. This EM algorithm converges glob-
ally [3,5] but slowly. The root-convergence factor is very close
to 1 (even ifp = 1 [5]), since the complete-data space is con-
siderably more informative than the measurements [5,8,30].

We now derive two SAGE algorithms for this problem, both
of which use individual pixels for the index sets:Si = {k},
wherek = 1 + (i modulo p). The most obvious hidden-data
for λk is just

XS
k

= {Nnk, Rn}
N
n=1,

which is a subset of the classical complete-data space (16). The
QS

k

function for thekth parameter is:

QS
k

(λk;λ
i) =

N∑
n=1

(
−ankλk + N̄nk log(ankλk)

)
.
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MaximizingQS
k

(·;λi) analytically yields the following algo-
rithm:

ML-SAGE-1 Algorithm for Poisson Data
Initialize: ȳn =

∑p
k=1 ankλ

0
k + rn, n = 1, . . . , N .

for i = 0, 1, . . . {
for k = 1, . . . , p {

ek =

N∑
n=1

ankyn/ȳn

λi+1k = λikek/a·k (18)

λi+1j = λij , j 6= k

ȳn := ȳn + (λ
i+1
k − λik)ank, ∀n : ank 6= 0

}
}.

This SAGE algorithm updates the parameterssequentially, and
immediately updates the predicted measurementsȳn within the
inner loop, whereas the ML-EM algorithm waits until all pa-
rameters have been updated. ML-SAGE-1 is the unregularized
special case of the “ICM-EM” algorithm of [18]; a local con-
vergence result for ICM-EM was mentioned in [18].

We found that ML-SAGE-1 converges somewhat faster than
ML-EM for well conditioned problems, but the difference is
minimal for poorly conditioned problems. The reason is that

XS
k

is still overly informative since the background events are
isolated from the parameter being updated (cf (12) and (13))
[8, 30]. Therefore, we now introduce a new less informative
hidden-data space that associates some of the uncertainty of the
background eventsRn with the particular parameterλk as it is
updated [8, 30]. Whereas the ordinary complete-data space has
some intuitive relationship with the underlying image formation
physics, this new hidden-data space was developed from a sta-
tistical perspective on the problem and its Fisher information.
First, define

zk = min
n:ank 6=0

{rn/ank},

and define unobservable independent Poisson variates:

Znk ∼ Poisson{ank(λk + zk)}

Bnk ∼ Poisson


rn − ankzk +

∑
j 6=k

anjλj


 , (19)

and let the hidden-data space forλk onlybe

XS
k

= {Znk, Bnk}
N
n=1.

Then clearly
Yn = Znk +Bnk

has the appropriate distribution (14) for any particulark. We
have absorbed all of the background events into the termsZnk
andBnk which are associated withλk. Thus, the aggregate

of all p of the hidden-data spaces isnot an admissible hidden-
data space for the entire parameter vectorλ. Using a similar
derivation as in [3] (see [8,30] for details), one can show:

QS
k

(λk;λ
i) =

N∑
n=1

(−ank(λk + zk)+ Z̄nk log(ank(λk + zk)),

where

Z̄nk = E{Znk|Y = y;λ
i} = (λik + zk)ankyn/ȳn(λ

i).

MaximizingQS
k

(·;λi) analytically (subject to the nonnegativ-
ity constraint), yields the ML-SAGE-2 algorithm, which has the
same sequential structure as ML-SAGE-1, except that (18) is re-
placed by:

λi+1k := max{(λik + zk)ek/a·k − zk, 0}.

Providedzk 6= 0, which is always the case in PET since random
coincidences are pervasive, this remarkably small modification
yields significant improvements in convergence rate.

The Fisher information for the classical complete-data space
with respect toλ is diagonal with entries

a·k/λ̂k,

provided the ML estimatêλ is positive. In contrast, Fisher in-
formation for the new hidden-data space is diagonal with entries

a·k/(λ̂k + zk),

which is clearly smaller sincezk > 0. The improved conver-
gence rate of ML-SAGE-2 is closely related to this difference.

To illustrate, Figure 2 displays the likelihoodΦ(θi) versus it-
eration for the ML-EM algorithm and for ML-SAGE-2 applied
to a simulation of PET data. The image was a 80×110 dis-
cretization of a central slice of the digital 3D Hoffman brain
phantom (2mm pixel size). The sinogram size was 70 radial
bins (3mm wide) by 100 angles. A 900000 count noisy projec-
tion was generated using (6mm wide) strip-integrals for{ank}
[29] including the effects of nonuniform head attenuation and
nonuniform detector efficiency. A uniform field of random co-
incidences was added, reflecting a scan with 9% of the total
counts due to randoms (i.e.,

∑N
n=1 rn ≈ 0.1

∑N
n=1 ȳn(λ)), a

typical fraction for a PET study. Futher details can be found
in [8, 30], including comparisons over a large range ofrn’s.
Also shown in Fig. 2 is the LINU unbounded line-search accel-
eration algorithm described by Kaufman [23]. The ML-SAGE-
2 likelihood clearly increases faster and reaches its asymptote
sooner than both ML-EM and ML-LINU algorithm4. (ML-
SAGE-2 was also considerably easier to implement than the
bent-line LINU method.)

The convergence in norm given by Theorem 3 of Appendix A
is inapplicable to this Poisson example when the ML estimate
has components that are zero, i.e., when the ML estimate lies

4Fast convergence is clearly desirable for regularized objective functions,
but we advise caution when using “stopping rules” in conjunction with
coordinate-based algorithms for the unregularized case, since for such algo-
rithms thehighspatial frequencies converge faster than the low frequencies [26].
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on the boundary of the nonnegative orthant [33]. See [30] for
a global convergence proof for ML-SAGE-1 and ML-SAGE-2
similar to the proofs in [3,17].

The reader may wonder whether one can also find a better
complete-data space for the classical EM algorithm. Because
the EM update is simultaneous, one must distribute the back-
ground events amongall pixels, so the termszk are reduced by
a factor of roughly

√
p [8, 30]. Since

√
p is in the hundreds,

the change in convergence rate is insignificant, which is con-
sistent with the small reduction in Fisher information [8, 30].
Other simultaneous updates [17] similarly do not improve much
[30]. Apparently one benefits most from this less informative
hidden-data space by using a SAGE method with the parame-
ters grouped into many small index sets.

An alternative to SAGE is the coordinate-wise sequential
Newton-Raphson updates recently proposed by Bouman and
Sauer [19]. That method is not guaranteed to be monotonic, but
when it converges it might do so somewhat faster than SAGE
since it is even greedier. One can obtain similar (but mono-
tonic) greediness by using multiple sub-iterations of the E- and
M-steps in the SAGE algorithm, as indicated by Step 5 of the
generic SAGE algorithm. However, for the few cases we have
tested, we have not observed any improvement in convergence
rates using multiple sub-iterations. Although further investiga-
tion of the tradeoffs available is needed, including comparisons
with possibly super-linear methods such as preconditioned con-
jugate gradient [23,34], it appears that the statistical perspective
inherent to the SAGE method is a useful addition to conven-
tional numerical tools.

IV. EXAMPLE 2

Linear Gaussian Measurements
The Poisson problem has important practical applications, but
the nonlinearity of the algorithms complicates a formal anal-
ysis of the convergence rates. In this section, we analyze the
problem of estimating superimposed linear signals in Gaussian
noise [2,9]:

Y = a1θ1 + · · ·+ apθp + ε = Aθ + ε, (20)

whereA = [a1 . . . ap], andε is additive zero-mean Gaussian
noise with covarianceΠ, i.e.ε ∼ N (0,Π). For simplicity we
consider a quadratic penaltyP (θ) = 1

2θ
′Pθ so the penalized-

likelihood objective function is:

−Φ(θ) =
1

2
(y −Aθ)′Π−1(y −Aθ) +

1

2
θ′Pθ.

Such objective functions arise in many inverse problems [9].
We assumeA has full column rank,P is symmetric nonnega-
tive definite, and the intersection of the null spaces ofP andA
is empty, in which case the (unique) penalized-likelihood esti-
mate is

θ̂ = (A′Π−1A+ P )−1A′Π−1y. (21)

If A is large, or if positivity constraints onθ are appropriate,
then (21) is impractical and iterative methods may be useful.
(One can also think of (20) as a linearization of the more in-
teresting nonlinear problem [2].) We present the linear version

here since we can derive exact expressions for the convergence
rates. We first present admissible hidden-data spaces for this
problem, derive EM and SAGE algorithms, and then prove that
the SAGE algorithm converges faster.

Since the mean ofY is linear in θ, the conventional
complete-data [2, 9] for the EM algorithm for this problem is
also linear inθ. Here, we restrict our attention to hidden-data
spacesXS whose means are also linear inθ, and for which the
conditional mean ofY givenXS is linear inXS andθS̃ . Con-
sidering a general index setS, the natural hidden-data space for
θS is

XS ∼ N (BθS + B̃θS̃ ,C)

Y |XS = x ∼ N (Gx+ G̃θS̃ ,W ),

which is admissible provided the two normal distributions are
independent and consistent with (20), i.e.AS = GB, AS̃ =
GB̃ + G̃, andΠ =W +GCG′. The log-likelihood forXS

is given by
log f(XS ;θS ,θ

i
S̃
) = c1

−
1

2
(XS −BθS − B̃θ

i
S̃
)′C−1(XS −BθS − B̃θ

i
S̃
)

= c2 + (BθS + B̃θ
i
S̃
)′C−1(XS −

1

2
(BθS + B̃θ

i
S̃
)),

wherec1 andc2 are independent ofθS . By standard properties
of joint normal distributions:

X̄
S
= E{XS |Y = y;θi}

= BθiS + B̃θ
i
S̃
+CG′Π−1(y −Aθi).

TheφS function of (4) is thus

φS(θS ;θ
i) =

(BθS + B̃θ
i
S̃
)′C−1(X̄

S
−
1

2
(BθS + B̃θ

i
S̃
)),

−
1

2

[
θS
θi
S̃

]′ [
P 1 P 2
P ′2 P 3

] [
θS
θi
S̃

]
+ c2,

which maximized overθS yields the following generic com-
bined E- and M-step:

θi+1S = (F SX + P 1)
−1[B′C−1(X̄

S
− B̃θi

S̃
)− P 2θ

i
S̃
]

= θiS + (F
S
X + P 1)

−1A′SΠ
−1[y −Aθi]

−(F SX + P 1)
−1[P 1 P 2]θ

i, (22)

whereF SX = B
′C−1B is the Fisher information ofXS for

θS .

A. EM Algorithm

The ordinary EM algorithm [2, 9] is based on the follow-
ing choices for the complete-data space:S = {1, . . . , p},
B = diag{ak}, C = 1

p
Ip ⊗ Π, G = (1′p ⊗ Ip), and

B̃ = G̃ = W = 0, where diag{·} denotes a diagonal or
block-diagonal matrix appropriately formed,1p denotes thep
vector of ones, and⊗ is the Kronecker matrix product. Note
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that these choices distribute a fraction1p of the noise covariance

Π to each signal vectorak. ThusFX = p diag
{
a′kΠ

−1ak
}

,
which being a diagonal matrix is easily inverted. However,
sinceS = {1, . . . , p}, the penalized EM algorithm (22) requires
inversion ofFX +P , which could be just as difficult as invert-
ing A′Π−1A + P for a generalP . Therefore, we consider
the case whereP = diag{Pkk}, for which the EM algorithm
simultaneouslyupdates all parameters via:

θi+1k =
1

p
(a′kΠ

−1ak + Pkk/p)
−1a′kΠ

−1(y −Aθi)

+ (a′kΠ
−1ak + Pkk/p)

−1a′kΠ
−1akθ

i
k, (23)

for k = 1, . . . , p.

B. SAGE Algorithm

Because of the additive form of (20), it is natural for the
SAGE algorithm to update each parameterθk individually, i.e.
Si = {k} wherek = 1 + (i modulo p). In light of the discus-
sion in Appendix C, we would like the Fisher information of the
hidden-data space forθk to be small, so we associateall of the
noise covariance with the signal vectorak:

XS
k

∼ N (akθk,Π)

Y = XS
k

+
∑
j 6=k

ajθj .

Thus,F S
k

X = a
′
kΠ
−1ak, which isp times less informative than

the EM case, which associates only a fraction1/p of the noise
covariance with each signal. (This provides a statistical inter-
pretation of the modified EM algorithms used in [35,36].)

The above choice for the hidden-data space corresponds to
B = aj , C = Π, B̃ = W = 0, G = I, and G̃ =
[a1 . . . ak−1 ak+1 . . . ap], which substituted into (22) yields
the following algorithm.

SAGE Algorithm for Superimposed Signals
Initialize: ε̂ = y −Aθ0

for i = 0, 1, . . . {

k = 1 + (i modulo p), S = {k},

θi+1k := θik − (a
′
kΠ
−1ak + Pkk)

−1P kθ
i

+(a′kΠ
−1ak + Pkk)

−1a′kΠ
−1ε̂

ε̂ := ε̂+ (θi+1k − θik)ak,

θi+1j := θij , j = 1, . . . , k − 1, k + 1, . . . , p,

}

wherePkk is thekth diagonal entry ofP , andP k is thekth row
of P . Note that unlike the EM algorithm, the SAGE algorithm
circumvents the need to invertP by performing asequential
update, so a non-diagonal smoothness penaltyP is entirely fea-
sible.

C. Convergence

To establish convergence of the EM and SAGE algorithms,
we use Definition 3 and Theorem 3 of Appendix A. A few

definitions are needed. LetH = A′Π−1A+P be the Hessian
for this problem, and decompose it by:

H = LH +DH +L
′
H , (24)

whereDH is a diagonal matrix with the diagonal entries ofH ,
andLH is a strictly lower triangular matrix. Similarly let

F = A′Π−1A = LF +DF +L
′
F ,

DH = DF +DP ,

whereDP = diag{Pkk} andF is the Fisher information for
Y with respect toθ.

Let ‖x‖ denote the standard Euclidian norm of a vectorx,
and for a nonsingular matrixT define‖x‖T = ‖Tx‖, which
induces the matrix norm

‖A‖T = maxx

‖Ax‖T
‖x‖T

= ‖TAT−1‖.

Also, let ρ(A) denote matrix spectral radius, the maximum
magnitude eigenvalue ofA.

C.1 SAGE Algorithm

From the SAGE algorithm given above, one can show (cf
proof of Theorem 3) that

θ(i+1)p − θ̂ =Mp · · · · ·M1 · (θ
ip − θ̂) (25)

where

Mk = I − ekH
−1
kk e

′
kH ,

= H−1/2
(
I −H1/2ek(Hkk)

−1e′kH
1/2
)
H1/2,

= T−1
(
I − tk(t

′
ktk)

−1t′k
)
T ,

= T−1P⊥k T ,

and whereT = H1/2, thekth column ofT is tk, P⊥k is the
orthogonal projection ontotk, andek is the kth unit vector
of lengthp. Since an orthogonal projection is nonexpansive,
‖Mk‖T ≤ 1, which confirms condition 2 of Definition 3. To
confirm condition 3, rewrite the SAGE algorithm using (24) as:

θ(i+1)p − θ̂ = [I − (DH +LH)
−1H](θip − θ̂),

which is the Gauss-Siedel iteration [37, p. 72]. Condition 3
follows from [37, p. 109] since

‖I − (DH +LH)
−1H‖T = ‖Mp · · · M 1‖T < 1.

C.2 EM Algorithm

One can use (21) and (23) to show that

θi+1 − θ̂ =M · (θi − θ̂),

for the EM algorithm, where (cf (37))

M = I − (pDF + P )
−1H.
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Thus the EM algorithm is closely related to the simultaneous
overrelaxation (JOR) iteration [37, p. 72]. To establish that
‖M‖T < 1 for T = H1/2 using Theorem 4, we must show
thatS + S′ > H, where in this caseS = pDF + P . Since
H = LF +DF +L

′
F +P andP ≥ 0, it suffices to show that

pDF > LF +DF +L
′
F , or equivalently thatpI > L̄+I+ L̄,

whereL̄ = D−1/2F LFD
−1/2
F . SinceA′Π−1A is positive def-

inite by assumption,x′(L̄ + I + L̄
′
)x > 0 for any nonzerox,

so usingx = ej ± ek, we see that̄Lij ∈ (−1, 1). Thus for any
nonzerox,x′(L̄+I+L̄

′
)x < (

∑
k |xk|)

2 ≤ p‖x‖2, where the
second inequality is a special case of H¨older’s inequality. The
result then follows.

We have thus established that both the EM and SAGE algo-
rithm converge globally. The convergence is globally mono-
tonic in norm with respect to the normT = H1/2, i.e.R+ is
all of IRp.

D. Convergence Rates

To compare the root-convergence factors of EM and SAGE,
we focus on the case whereP is diagonal, since otherwise the
EM algorithm is in general impractical. From the results above
then,

ρEM = ρ
(
I − (pDF + P )

−1H
)

= ρ
(
I − ((p− 1)DF +DH)

−1H
)
, (26)

ρSAGE = ρ
(
I − (DH +LH)

−1H
)
, (27)

sinceP = DP for diagonalP .

Theorem 2 For linear superimposed signals in Gaussian noise
with a diagonal penalty matrix, the SAGE algorithm asymptoti-
cally converges faster than the EM algorithm, i.e.

ρSAGE< ρEM < 1.

Proof: The right inequality follows fromρEM ≤ ‖M‖T <

1. From (24), I = L̄H + D̄H + L̄
′
H where L̄H =

H−1/2LHH
−1/2 and D̄H = H

−1/2DHH
−1/2. Thus for

any vectorx,

x′L̄Hx = x
′L̄
′
Hx = (‖x‖

2 − x′D̄Hx)/2. (28)

SinceI − G−1H is similar to the real symmetric matrixI −
G−1/2HG−1/2, the eigenvalues ofI − (DH + LH)−1H are
real. Forν = ρSAGE∈ [0, 1) there existsv 6= 0 such that

[I − (DH +LH)
−1H]v = νv,

thus
[I − (D̄H + L̄H)

−1]x = νx,

wherex =H1/2v. Rearranging and multiplying both sides by
x′:

‖x‖2 = (1 − ν)x′(L̄H + D̄H)x.

Combining with (28),

x′D̄Hx =
1 + ν

1− ν
‖x‖2.

By the invariance of eigenvalues under similarity transforms,

ρEM = ρ(I − ((p− 1)DF +DH)
−1H)

= ρ(I − ((p− 1)DF +DH)
−1/2H

((p− 1)DF +DH)
−1/2)

≥ 1−
‖H1/2((p− 1)DF +DH)−1/2z‖2

‖z‖2
,

for any z (by definition of spectral radius). In particular, for
z = ((p− 1)DF +DH)1/2H

−1/2x:

ρEM ≥ 1−
‖x‖2

‖((p− 1)DF +DH)1/2H
−1/2x‖2

= 1−
‖x‖2

x′[(p− 1)H−1/2DFH
−1/2 + D̄H ]x

≥ 1−
‖x‖2

x′D̄Hx

= 1−
1

(1 + ν)/(1− ν)
=

(
2

1 + ν

)
ν

> ν = ρSAGE,

where the last inequality follows fromν ∈ [0, 1). 2

The inequalities in this proof are rather loose, and often the
difference in convergence rate between EM and SAGE is more
dramatic than the proof might suggest. To illustrate, consider
the case whereP = 0. Then returning to (25), for the EM
algorithm we have

M =
1

p

p∑
k=1

Mk = T
−1

(
1

p

p∑
k=1

P⊥k

)
T .

Since eigenvalues are invariant to similarity transforms, it fol-
lows that root-convergence factors for the two algorithms are
given by the following spectral radii:

ρEM = ρ

(
1

p

p∑
k=1

P⊥k

)
,

ρSAGE= ρ

(
p∏
k=1

P⊥k

)
,

i.e., for the EM algorithm we have a convex combination of
orthogonal projections and for the SAGE algorithm we have
the product of those projections. Thus this SAGE algorithm is
closely related to the method of alternating projections [38,39].
In particular, ifP = 0 and the columns ofA are orthogonal,
thenρSAGE = 0 whereasρEM ≥ 1 − 1/p, i.e., the SAGE
algorithm converges in one iteration, while EM converges very
slowly.

When p = 2, using a Gram-Schmidt argument one can
show thatt1 = [1 0]′ and t2 = [α

√
1− α2]′ whereα =

|a′1Π
−1a2|/(‖a1‖‖a2‖) is the cosine of the complementary

angle betweena1 anda2. Thus,

ρSAGE= ρ

([
α2 0
0 0

])
= α2
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ρEM = ρ

(
1

2

[
1− α2 −α

√
1− α2

−α
√
1− α2 1 + α2

])
=
1

2
+
α

2
.

Figure 3 illustrates that the root-convergence factor of SAGE
is significantly smaller than that of EM, which substantially re-
duces the number of iterations required.

Not only is ρSAGE < ρEM, but alsoρSAGE < ρ
2
EM, so

one SAGE iteration is better than two EM iterations, at least
whenp = 2. Thus, even though the EM algorithm appears to
have the advantage that one can parallelize the M-step using
p processors that simultaneously update all parameters, in this
case the convergence rate of the parallel algorithm is so much
slower that a sequential update may be preferable. This depends
of course on how difficult the M-step is; in the nonlinear case
discussed in [2], the M-step is presumably fairly difficult, so
parallelization may be advantageous. Equations (26) and (27)
help one examine these types of tradeoffs.

V. DISCUSSION

We have described a generalization of the classical EM al-
gorithm in which one alternates between several hidden-data
spaces rather than using just one, and updates only a subset of
the elements of the parameter vector each iteration. By updat-
ing the parameters sequentially, rather than simultaneously, we
demonstrated that SAGE algorithms yield faster convergence
than EM algorithms in two signal processing applications.

The particular SAGE algorithms that we presented in this
paper sacrifice one important characteristic of the EM algo-
rithm: they are less amenable to a parallel implementation since
they are coordinate-wise methods. However, the general SAGE
method is very flexible, and work is in progress on more par-
allelizable algorithms using index setsS consisting of several
elements ofθ. The benefits of parallelization must be weighed
against the convergence rates for each application.

It is probably no coincidence that the applications we put
forth are ones in which the terminology “incomplete-data” and
“complete-date” as introduced in [1] are somewhat unnatural.
In most of the statistical applications discussed in [1], there is
a clearly identifiable portion of the data that is “missing,” and
hence one natural complete-data space. In contrast, there is
nothing really “incomplete” about tomographic measurements;
the problem is simply that the log-likelihood is difficult to max-
imize. The EM algorithm is thus just a computational tool. (To
further illustrate this point, note that in classical missing data
problems the estimates of the missing data may be of some in-
trinsic interest, whereas the “complete-data” for tomography is
never explicitly computed and would be of little use anyway.)
SAGE algorithms may be most useful in such contexts.

We have emphasized that the SAGE algorithm improves the
asymptotic convergence rate. The actual convergence rate will
certainly depend on how close the initial estimate is to a fixed-
point. In tomography and image restoration, fast linear algo-
rithms can provide good initializers for penalized likelihood es-
timation. A greedy algorithm like SAGE is likely to be most
beneficial in applications where such initializers are available.

I. M ONOTONECONVERGENCE INNORM

Because the SAGE “algorithm” is so general, a single conver-
gence theorem statement/proof cannot possibly cover all cases
of interest (see for example the variety of special cases consid-
ered for the classical EM algorithm in [40].) Here we adopt
the Taylor expansion approach of [4] since it directly illumi-
nates the convergence rate properties and prescribes a region
of monotone convergence in norm. However, this general ap-
proach has the drawback that it assumes the fixed point lies
in the interior ofΘ. This restriction is often not a necessary
condition, and at least for some applications one can often find
specific convergence results without the restriction, e.g. [3,30].
Readers who are satisfied with the assurance of monotonicity
of the objectiveΦ(θi), as provided by Theorem 1, may wish to
simply skim this appendix.

For simplicity, we discuss only the case where the index sets
Si are chosen cyclically with periodK, i.e.Si = Sk wherek =
1+(imoduloK). We also assume that

⋃K
k=1 S

k = {1, . . . , p}
so that each parameter is updated at least once per cycle.

Before stating the convergence theorem, several definitions
are needed. Consider an index setS, and letm denote its
cardinality. Bearing in mind our notational convention that
φS(θS ; θ̄) = φ

S(θS ; θ̄S , θ̄S̃), we define them×m matrices

(∇200φS)(θS ; θ̄) = (∇θS∇
′
θS
φS)(θS ; θ̄S , θ̄S̃)

and

(∇110φS)(θS ; θ̄) = (∇¯θS
∇′θS
φS)(θS ; θ̄S , θ̄S̃),

and them× (p−m)matrix

(∇101φS)(θS ; θ̄) = (∇¯θS̃
∇′θS
φS)(θS ; θ̄S , θ̄S̃),

where∇ denotes the (row) gradient operator and∇′ its trans-
pose. Let̂θ be a fixed point of the SAGE algorithm, and define

US(θS ; θ̄) =

−

∫ 1
0

(∇200φS)(tθS + (1− t)θ̂S ; tθ̄ + (1 − t)θ̂) dt, (29)

V S(θS ; θ̄) =∫ 1
0

(∇110φS)(tθS + (1− t)θ̂S ; tθ̄ + (1− t)θ̂) dt, (30)

and
W S(θS ; θ̄) =∫ 1

0

(∇101φS)(tθS + (1− t)θ̂S ; tθ̄ + (1− t)θ̂) dt. (31)

LetRS denote thep × p permutation matrix that reorders the
elements of{S, S̃} into {1, . . . , p}. Then define thep× p com-
posite matrix

MS(θS ; θ̄) =

RS
[
US(θS ; θ̄)

−1[V S(θS ; θ̄)W
S(θS ; θ̄)]

0(p−m)×m Ip−m

]
(RS)′, (32)

whereIn denotes then× n identity matrix.
With the above definitions, we can define the following re-

gion of monotone convergence in norm toθ̂.
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Definition 3 R+ ⊂ Θ is a region of monotone convergence in
norm if there exists a nonsingularp× pmatrixT such thatR+
is an open ball with respect to the norm‖ · ‖T and

1. for k = 1, . . . ,K, US
k

(θSk ; θ̄) is invertible for all θ̄ ∈
R+ and for allθSk ∈ Θ

Sk(θ̄) (see (7)),

2. for k = 1, . . . ,K, ‖MSk(θSk ; θ̄)‖T ≤ 1 for all θ̄ ∈ R+
and for allθSk ∈ Θ

Sk(θ̄),

3. there existsα < 1 such that for anȳθ
1
, . . . , θ̄

K
∈ R+ and

θSk ∈ Θ
Sk(θ̄

k
), k = 1, . . . ,K,

‖MSK (θSK ; θ̄
K
) · · ·MS1(θS1 ; θ̄

1
)‖T ≤ α. (33)

In general,T may depend on̂θ, but we do not allowT to
vary with iteration. The hard work is to verify condition 3 (see
Appendix B), but if one can do so, the reward is the following
theorem.

Theorem 3 Assume i)Si = Sk wherek = 1 + (i modulo K)
and

⋃K
k=1 S

k = {1, . . . , p}, ii) θ̂ is a fixed point of the SAGE
algorithm (5) in the interior ofΘ, iii) for all θ̄ ∈ R+ the max-
imum overθSk of φS

k

(θSk ; θ̄) is in the interior ofΘS
k

(θ̄), iv)
φS

k

(θSk ; θ̄) is twice differentiable in both arguments∀θ̄ ∈ Θ
and ∀θSk ∈ Θ

Sk(θ̄), and v) the region of monotone conver-
genceR+ for a norm‖ · ‖T is nonempty.

1. If θ0 ∈ R+ then

‖θi+1 − θ̂‖T ≤ ‖θ
i − θ̂‖T ∀i,

and
‖θ(i+1)K − θ̂‖T ≤ α‖θ

iK − θ̂‖T , (34)

whereα < 1 is defined by (33). Therefore,‖θiK − θ̂‖T
converges monotonically to zero with at least linear rate.

2. The root-convergence factor [41] of the subsequence
{θiK}∞i=0 is given by the spectral radius

ρ
(
MSK (θ̂SK ; θ̂) · · ·M

S1(θ̂S1 ; θ̂)
)
, (35)

which is bounded above byα < 1.

Note that by the equivalence of matrix norms [37, p. 29], mono-
tone convergence with respect to the norm‖ · ‖T implies con-
vergence with respect to any other norm, although probably
non-monotonically. Since the index sets are chosen cyclically,
a “full iteration” consists ofK updates, so (34) bounds the con-
vergence rate of the subsequence{θiK}∞i=0.

Proof: Consider theith iteration and letS = Sk wherek =
1 + (i moduloK). Define

z =


 θSθ̄S
θ̄S̃


 , ẑ =


 θ̂Sθ̂S
θ̂S̃


 ,

and letφS(z) = φS(θS ; θ̄). Let

d(z) = d(θS ; θ̄) = (∇
′
θS
φS)(z),

then by assumption (iv) we can apply the Taylor formula with
remainder [42] to expandd(z) aboutẑ:

d(z) = d(ẑ) +

∫ 1
0

(∇d)(tz + (1− t)ẑ) dt (z − ẑ).

Sinceθ̂ is a fixed point of the SAGE algorithm, by assumption
(iii) and (iv),d(ẑ) = 0. Observe that by the definitions (29-31):

(∇d)(z) =
[
−US(θS ; θ̄) V

S(θS ; θ̄) W
S(θS ; θ̄)

]
.

By assumption (iii) and (iv),d(θi+1Sk ;θ
i) = 0 for the SAGE

algorithm (5), so

US
k

(θi+1Sk ;θ
i)(θi+1Sk − θ̂Sk) =

V S
k

(θi+1
Sk
;θi)(θiSk − θ̂Sk) +W

Sk(θi+1
Sk
;θi)(θi

S̃k
− θ̂S̃k).

(36)
By property 1 (invertibility) of Definition 3:

θi+1Sk − θ̂Sk =

US
k

(θi+1Sk ;θ
i)−1V S

k

(θi+1Sk ;θ
i)(θiSk − θ̂Sk)

+ US
k

(θi+1Sk ;θ
i)−1W Sk(θi+1Sk ;θ

i)(θi
S̃k
− θ̂S̃k)

From (6) the components ofθi
S̃k

are just copied, so after per-
muting usingRS (32):

θi+1 − θ̂ =MSk(θi+1Sk ;θ
i)(θi − θ̂), (37)

whereMSk was defined by (32). Therefore, sinceθ0 ∈ R+,
by property 2 of Definition 3,

‖θi+1 − θ̂‖T ≤ ‖θ
i − θ̂‖T

so it follows by induction thatθi ∈ R+. A full cycle consists
of one update over each of theK index sets, so applying (37)
K times:

(θ(i+1)K − θ̂) =

MSK (θ
(i+1)K
SK

;θ(i+1)K−1) · · ·MS1(θiK+1S1 ;θiK)(θiK − θ̂).

Thus by property 3 of Definition 3,

‖θ(i+1)K − θ̂‖T ≤ α‖θ
iK − θ̂‖T ,

so the subsequence{θiK}∞i=0 converges monotonically in norm
to θ̂ asi→∞ with linear rate at mostα.

By continuity of the derivatives ofΦSk , one can show [4] that
the root convergence factor of the subsequenceθiK is governed
by the spectral radius

ρ(MSK (θ̂SK ; θ̂) · · ·M
S1(θ̂S1 ; θ̂)).

Since the spectral radius is bounded above by any matrix norm,
the root convergence factor is bounded above byα. 2
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II. R+ IS NONEMPTY

In this appendix, we show that the region of monotone con-
vergence in normR+ is nonempty for suitably regular prob-
lems. Thus the conditions for Theorem 3 are reasonable, and
the superimposed signals example in Section IV is a concrete
example.

First note that from (10) one can show that

(∇110HS)(θ̂S ; θ̂) = −(∇200HS)(θ̂S ; θ̂),

(∇101HS)(θ̂S ; θ̂) = 0

(cf (3.16) of [1]). For an index setS, define

F SX |y = −(∇
200HS)(θ̂S ; θ̂),

then from (10) one can see that the matrixF SX |y is the condi-

tional Fisher information ofXS for θS givenY = y and given
all of the other parametersθS̃ .

Define the Hessian of the objective atθ̂ by

H = −∇2Φ(θ̂),

and the following submatrices of the Hessian:

HS = −(∇θS∇
′
θS
Φ)(θ̂)

HS,S̃ = −(∇θS∇
′
θS̃
Φ)(θ̂).

(To simplify notation we leave implicit the dependence onθ̂.)
Note thatHS is the curvature of the objectiveΦ with respect to

θS , andHS,S̃ is the coupling betweenθS andθS̃ induced by
Φ. Combining the above definitions with (29)-(31):

US = HS + F SX |y

V S = F SX |y

W S = −HS,S̃. (38)

If H is positive definite, thenUS will be invertible, so by (32)

MS = RS
[
(US)−1V S (US)−1W S

0 I

]
(RS)′

Substituting in (38):

(RS)′MSRS =[
(HS + F SX |y)

−1F SX |y −(HS + F SX |y)
−1HS,S̃

0 I

]

= I −

[
I
0

]
(HS + F SX |y)

−1[HS HS,S̃]

= I −

[
I
0

]
(HS + F SX |y)

−1[I 0](RS)′HRS ,

Thus
H

1
2MSH−

1
2 =

I −H
1
2RS

[
(HS + F SX |y)

−1 0

0 0

]
(RS)′H

1
2 . (39)

For simplicity, we now consider the case the index sets
are disjoint and are chosen cyclically in the natural order, i.e.
Si = Sk, wherek = (1 + i modulo K) and{S1, . . . , SK} =
{1, . . . , p}. In that case, it follows from (39) that

MSK · · ·MS1 = I − (D̃H + D̃F + L̃H)
−1H , (40)

whereD̃F is block-diagonal withF S
k

X |y in thekth block, and

H = L̃H + D̃H + L̃
′

H (41)

whereD̃H is a block diagonal matrix containing the diagonal
blocks ofH that correspond to the subsetsSk, andL̃H is the
corresponding strictly lower block triangular matrix. We can

thus establish that‖MSK · · ·MS1‖T < 1 by using the fol-
lowing “splitting matrix” theorem (p. 79 of [37]

Theorem 4 If H is positive definite andS is invertible, then

‖I − S−1H‖T < 1

for T =H
1
2 if

S + S′ >H. (42)

From (40), for a SAGE algorithmS = D̃H + D̃F + L̃H , so
in light of (41), condition (42) of Theorem 4 is satisfied. Thus,

‖MSK · · ·MS1‖T < 1.
Using the relationships derived above, one can establish the

following result.

Theorem 5 Let θ̂ be a fixed point of a SAGE algorithm, and
assume thatΦ is strictly concave on an open set local tôθ
(so thatH is positive definite). Then ifΦ and the functions
φS are all twice continuously differentiable nearθ̂, there exists
a nonempty region of monotone convergence in normR+ sat-
isfying the conditions of Definition 3 for the norm induced by
T =H

1
2 .

III. F ISHER INFORMATION

From (35) we see that the root-convergence factor of a SAGE
algorithm is given by the spectral radius of a product of matrices
MS(θ̂S ; θ̂) of the form (32). For an EM algorithm, this spectral
radius increases towards 1 as the complete-data becomes more
informative, i.e., as its Fisher information increases [1, 4, 5]. In
this section we demonstrate that a similar relationship holds for
the convergence rate of a SAGE algorithm.

Defining

δi =H
1
2 · (θi − θ̂),

we see from (39) that forδi small,

δi+1 ≈(
I −H

1
2RS

[
(HS + F SX |y)

−1 0
0 0

]
(RS)′H

1
2

)
δi.

(43)
This last equation suggests that minimizingF SX |y will im-

prove the rate of convergence of‖δi‖ to 0. To demonstrate
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this more formally, letD̃F1 andD̃F2 be the block diagonal ag-
gregate of the Fisher information matrices for two SAGE al-
gorithms withD̃F1 < D̃F2 . Then one can use (40) with an
argument similar to the proof of Theorem 2 to show that

ρ(I−(D̃H+D̃F1+L̃H)
−1H) < ρ(I−(D̃H+D̃F2+L̃H)

−1H).

Thus, less informative hidden-data spaces lead to smaller root-
convergence factors and hence faster converging SAGE algo-
rithms. In particular, once one has chosen the index setsSk

the optimal hidden-data space from the point of view ofasymp-
totic convergence rate would simply beXS = Y , since then
F SX |y = 0. But that choice will often lead to an intractable M-
step. The SAGE algorithm allows one to choose hidden-data
spaces whose Fisher information matrices are much smaller
than that of the usual complete-data of an EM algorithm.

Finally, note that from (43), we see that sinceH is deter-
mined byΦ, once the index sets are chosen, the only design
issue left is to choose the hidden-dataXS . This choice should
be made by considering the tradeoff between makingF SX |y
small but yet making the M-step tractable.
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Figure 1: Representing the observed dataY as the output of a
possibly noisy channelC whose input is the hidden-dataXS .
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