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ABSTRACT

This paper presents an image reconstruction method for
positron-emission tomography (PET) based on a penalized,
weighted least-squares (PWLS) objective. For PET measure-
ments that are precorrected for accidental coincidences, we ar-
gue statistically that a least-squares objective function is as ap-
propriate, if not more so, than the popular Poisson likelihood
objective. We propose a simple data-based method for deter-
mining the weights that accounts for attenuation and detector ef-
ficiency. A nonnegative successive over-relaxation (+SOR) al-
gorithm converges rapidly to the global minimum of the PWLS
objective. Quantitative simulation results demonstrate that the
bias/variance tradeoff of the PWLS+SOR method is compara-
ble to the maximum-likelihood expectation-maximization (ML-
EM) method (but with fewer iterations), and is improved rela-
tive to the conventional filtered backprojection (FBP) method.
Qualitative results suggest that the streak artifacts common to
the FBP method are nearly eliminated by the PWLS+SOR
method, and indicate that the proposed method for weighting
the measurements is a significant factor in the improvement over
FBP.

Keywords: Emission tomography, image reconstruction, ac-
cidental coincidences.

I. I NTRODUCTION

PET imaging provides noninvasive quantification of human
physiology for medical diagnosis and research. The quantitative
accuracy of PET is limited by the imperfect system response
and by the methods used to reconstruct trans-axial images from
projection measurements. The conventional FBP reconstruc-
tion method is based on a mathematical idealization of tomo-
graphic imaging [1]. The FBP method disregards the spatially-
variant system response of PET systems, and statistical noise is
treated in a post-hoc manner by spatially-invariant smoothing.
Although these approximations may be adequate for some pur-
poses, there is little question that the FBP method is suboptimal
for quantitative applications such as brain activation studies [2]
and nonlinear functional images [3]. Such studies are partic-
ularly challenging since the total numbers of detected photon
coincidence events per slice are often fairly low.

Statistical image reconstruction (SIR) methods can account
for spatially-variant system responses, and can also incorporate
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the measurement statistics. This potential has motivated the de-
velopment of a great many iterative reconstruction algorithms.
Ironically, most of the SIR methods reported for PET have
been implemented using spatially-invariant approximations to
the system response, and have been based on an idealized model
for the measurement statistics. Since the full capabilities of SIR
methods have therefore not been realized in practice, it is per-
haps unsurprising that there is ongoing debate as to whether the
potential improvements of SIR over FBP are significant enough
to justify the additional computation time involved.

The benefits of SIR methods are likely to depend on the task
of interest. In this paper, we focus on the specific context of
quantifying radiotracer concentrations within small structures.
This task is important because small structures are poorly quan-
tified by FBP [4], which in turn degrades the accuracy of para-
metric images [3]. Recent work by several groups has indi-
cated potential improvements for similar tasks using SIR meth-
ods [5–7]. Furthermore, the bias and variance within a small
point source in a uniform background are directly related to res-
olution and noise, respectively, so this task provides a somewhat
generic measure of reconstruction algorithm performance.

SIR methods require five components: (i) a finite parameter-
ization of the positron-annihilation distribution, e.g., its repre-
sentation as a discretized image, (ii) a system model that relates
the unknown image to the expectation of each detector measure-
ment, (iii) a statistical model for how the detector measurements
vary around their expectations, (iv) an objective function that is
to be maximized to find the image estimate, and (v) an algo-
rithm, typically iterative, for maximizing the objective function,
including specification of the initial estimate and stopping cri-
terion.

In Section II, we review the prevailing choices for the five
SIR components, and, where appropriate, contrast them with
the approach proposed in this paper. We argue that the mea-
surement statistics are non-Poisson and analytically intractable
when accidental coincidence events are precorrected, and there-
fore propose that a penalized, weighted least-squares objective
is an appropriate practical compromise. We apply the +SOR
“coordinate-descent” method for fast, globally convergent min-
imization of that objective, subject to nonnegativity constraints.
In Section III, we describe the computer simulations used to
compare quantification by FBP, ML-EM, and the PWLS+SOR
reconstruction method. Section IV summarizes the results of
this comparison, and also qualitatively illustrates the different
noise characteristics of the methods on FDG thorax images. Fu-
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ture directions are discussed in Section V.

II. T HEORY

This section briefly reviews the literature for the five com-
ponents of SIR methods, and describes the method proposed in
this paper.

A. Object Parameterization

The blurring effect of positron range implies that the annihi-
lation distribution for a PET study is band limited. Thus, dis-
cretization of the distribution is acceptable. Decomposing the
annihilation distribution into rectangular voxels is thede facto
standard for parameterizing images. Although smoother bases
have been suggested [8, 9], the voxel basis has the important
practical property that its support is minimal (no overlap), thus
the system matrix (described below) is maximally sparse. This
sparseness facilitates computations. Ifλ(x) denotes the spatial
distribution of the positron annihilations, then we approximate
λ by:

λ(x) ≈
∑
j

λjIj(x), (1)

whereλj denotes the mean activity in thejth voxel, andIj(x)
is the indicator function with thejth voxel as its support [8].

The dimension of the voxels is an important design issue
that is unique to SIR methods. The classical Nyquist sampling
theory was developed for noiseless, spatially-invariant systems,
and does not directly apply to PET reconstruction. An example
of this was illustrated by Mintunet al. [10] in their discus-
sion of axial resolution. The FBP method can, in principle, re-
construct images with arbitrarily fine pixel grids, whereas with
unregularized SIR methods, voxel sizes that are too small lead
to over-parameterization and numerical instability. Conversely,
voxel sizes that are too large can produce model mismatch and
loss of image features. Although the importance of system sam-
pling is well understood for FBP [11], the effect of image sam-
pling for SIR methods appears to have been addressed only indi-
rectly under an idealized model for X-ray CT [12]. Recently de-
veloped Cram´er-Rao bound methods [13–15] may help address
the question of voxel dimension for realistic system models.

B. System Model

Having discretized the annihilation distribution into a set of
voxels, one represents a model for the tomographic system by
a “system matrix”P . An elementpij of P denotes the prob-
ability that an annihilation in thejth voxel is detected by the
ith detector pair. Ideally, perhaps after certain corrections, the
mean of theith detector pair measurement would be approxi-
mately

ȳi =
∑
j

pijλj (2)

for an annihilation distributionλ(x) represented by (1).
Although the importance of accurate system modeling has

been amply illustrated in the SPECT literature, a spatially-
invariantGaussian response has been the most popular approxi-
mation for PET [5,16]. The spatially-invariant Gaussian method

was convenient due to its computational simplicity for algo-
rithms that use “run-time” probability calculations. However,
the decrease in cost of computer memory has diminished this
motivation, and allows precomputing the nonzero elements of
P , which significantly reduces the computations per iteration.

Even with precomputed system matrices, there remains a
tradeoff between accuracy and sparseness. The most accurate
analytical approach might be to use an “inverse Monte Carlo”
approach analogous to that proposed for SPECT [17], but the re-
sulting system matrix is not sparse. Practical considerations dic-
tate use of sparse approximations, which inevitably introduce
some system model inaccuracies. The effects of such model
mismatch on reconstruction by SIR methods is not well under-
stood. Presumably one would want to use the most sparse sys-
tem matrix that adequately describes the system, i.e. the effects
of modeling errors are well below the statistical noise.

Although a thorough treatment of system modeling is beyond
the scope of this paper, future efforts should consider (1) the dif-
ference between cross-slice and direct-slice system responses,
(2) the “third dimension” effect described by Silvermanet al.
[18] due to the finite axial width of the detector crystals, and (3)
the spatially variant crystal response inherent to PET detector
blocks due to inter-crystal mispositioning errors [19].

C. Statistical Model: Non-Poisson

The statistical model describes the distribution of each mea-
surement about its mean, and consequently determines a mea-
sure of similarity between the actual measurements and the
calculated projections (2). Since the introduction of an ML-
EM [20] algorithm for PET a decade ago [21,22], SIR methods
based on a Poisson statistical model [23, 24] have been studied
extensively.

The original formulations were based on an idealized PET
system, and ignored the effects of accidental coincidence (AC)
events. Since accurate quantification of radiotracer activity us-
ing PET must include corrections for the effects of AC events
[25,26], several recent papers have attempted to incorporate AC
effects into the Poisson framework under the assumption that
the AC events are additive Poisson variates with exactly known
mean [6, 16, 27]. This assumption is unrealistic for many PET
systems.

In routine use, our PET systems1 use real-time subtraction of
delayed-window coincidences [25,28] to correct for AC events.
The system detects coincidence events during two time win-
dows. For events within the first “prompt” window, the cor-
responding sinogram bin is incremented. These increments
should be well approximated by a Poisson process. However,
for events within the second “delayed” window, the correspond-
ing sinogram bin is decremented [28]. Although these decre-
ments should also be a Poisson process, the combined effect of
the increments and decrements is not Poisson. Even for moder-
ate AC rates (10-20%), this correction produces many negative
measurements, clearly violating the Poisson statistical model.
Higher percentages of AC events are common for scans ac-
quired shortly after radiotracer injection.

1CTI ECAT 931 and 921
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To illustrate the inaccuracy of the Poisson measurement
model for AC precorrected measurements, we have performed
a small Monte Carlo simulation summarized by Figure 1. Let
yi be the precorrected measurement for theith coincidence de-
tector pair, then

yi = yi,p − yi,d, (3)

whereyi,p andyi,d are the number of coincidences within the
prompt and delayed windows respectively [28]. If the mean
numbers of true coincidence events and AC events during the
acquisition arent andna respectively, then a reasonable model
is:

yi,p ∼ Poisson{nt + na}

yi,d ∼ Poisson{na}. (4)

The expectation ofyi is nt, soyi is an unbiased estimate of the
number of true coincidences. Sinceyi,p andyi,d are statistically
independent, the variance ofyi is nt + 2na, a larger variance
than would be expected for a pure Poisson variate.

For concreteness, letnt = 9 andna = 1. The circles in Fig-
ure 1 show a simulated histogram foryi generated by a pseudo-
random number generator in accordance with the distributions
described above (N=30000). The top figure shows the approx-
imation based on a Poisson distribution with mean 9, the ideal
mean. The bottom figure shows the approximation by a Gaus-
sian distribution also with mean 9 and with variance 11. As
measured by theχ2 statistic, the Gaussian distribution is the
better approximation. Of course for large means, the Poisson
distribution is also approximately Gaussian by the Central Limit
Theorem [29]. But this example illustrates that even for small
true rates and 10% accidental coincidence rates, a Gaussian ap-
proximation is as appropriate, if not more so, than the Poisson
approximation.

If one could acquire separate sinograms for the prompt and
delayed coincidences, then one could consider jointly estimat-
ing2 the AC means and theλj ’s from the two sinograms [22].
Alternatively, one could exploit the spatial smoothness of AC
events, form an estimate of their means using the delayed-
window measurements, and then incorporate those estimates
as “known AC means” into the ML-IB method of Politte and
Snyder [16]. In principle such methods would have the ad-
vantage that they retain the higher-order moments associated
with the skewness of the Poisson distribution, whereas a Gaus-
sian approximation only models the first and second moments.
Whether that theoretical advantage produces practical improve-
ments is an open question.

Since the mean AC contributions to the precorrected mea-
surements are unknown3, the probability distributions of the
precorrected measurements are also unknown. Thus, pure
likelihood-based methods are inapplicable, and one must resort
to approximate similarity measures. In light of Figure 1, we
propose using a weighted least-squares (WLS) similarity mea-

2We have studied a similar joint estimation method for accounting for sta-
tistical uncertainties in transmission scans [30, 31].

3The AC contributions are recorded over the entire slice only, not on a ray-
by-ray basis.

sure:
1

2
(ŷ − Pλ)′Σ−1(ŷ − Pλ) (5)

where′ denotes transpose,λ is the vector of annihilation rates
λj , P is the system matrix, and the measurement vectorŷ rep-
resents an emission sinogram that has been precorrected for
the effects of dead-time, attenuation, detector sensitivity, AC
events, and possibly scatter. (Thusŷi is an estimate of̄yi.) The
matrixΣ is diagonal withith entryσ2i , an estimate of the vari-
ance of theith precorrected measurementŷi. This weighting
is critical to the method, and our approach to computingΣ is
described in the Appendix.

Is an approximate statistical model likely to achieve the goals
of SIR methods? One aim is to achieve resolution recovery
and uniformity by incorporating the system response. The WLS
similarity measure accommodates the system response through
the first-order moment. Another benefit of SIR methods is a
nonuniform weighting of the measurements, where the weight-
ing reflects the relative information of each measurement. The
ML-EM algorithm implicitly incorporates such a weighting by
dividing each measurement by its predicted value before back-
projecting. This is in complete contrast to the conventional FBP
method which treats all measurements equally, despite the large
variations in counts and correction factors. The WLS similar-
ity measure also accounts for the relative information of each
measurement through the weights. Even if the weights are sub-
optimal, as the data-weighting discussed in the Appendix may
be, it should nevertheless be an improvement over the uniform
weights implicit in FBP!

D. Objective Function

Objective functions based solely on the measurement statis-
tics, be they Poisson or Gaussian, perform poorly due to the
ill-conditioned nature of tomographic reconstruction. Unregu-
larized methods produce increasingly noisy images with itera-
tion [32]. To remedy this problem, several regularization meth-
ods have been investigated that impose smoothness constraints
on the image estimate.

One approach is the method of sieves [33, 34]. When AC
effects are included in the Poisson case, the ML-IB method of
Politte and Snyder apparently requires that the resolution and
kernel sieves be equal, in which case the method of sieves is
equivalent4 to post-filtering the ML image estimate [16]. There-
fore the method of sieves retains the slow convergence of the
ML-EM algorithm, for which a few hundred [33], if not several
thousand [6,35] iterations are required.

A more flexible approach is to incorporate a smoothness
penalty or “prior” [36–39], which is particularly straightforward
with the WLS similarity measure. Sauer and Bouman [40] have
proposed one approach in the context of X-ray transmission to-
mography that we have adapted to PET reconstruction. This
method is based on the followingpenalized, weighted least-
squaresobjective function:

Φ(λ) =
1

2
(ŷ − Pλ)′Σ−1(ŷ − Pλ) + βR(λ), (6)

4Under the often disregarded assumption that the smoothing operator and
the projection operator commute [33, eqn. (12)].
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whereR(λ) is a regularizing penalty term. (Similar objectives
have been used for “Bayesian” methods [8, 40]). The goal is to
estimateλ from ŷ:

λ̂ = argmin
λ≥0
Φ(λ).

The effect of the penalty term is to discourage disparities be-
tween neighboring pixel values, while the effect of the first term
in (6) is to encourage agreement with the measured data. These
are usually conflicting goals, and the smoothing parameterβ
controls the tradeoff between the two, in analogy with the filter
window that one must choose for FBP reconstruction.

Many penalty functionsR(λ) have been proposed for image
reconstruction [36, 37, 41–46], some of which aim to smooth
“uniform” regions while maintaining edge sharpness. Since we
are interested in low-count scans where edge preservation is
probably unrealizable, in this paper we use a simple quadratic
smoothness penalty:

R(λ) =
1

2
λ′Rλ =

1

2

∑
j

∑
k∈Nj

wjk
1

2
(λj − λk)

2, (7)

whereNj is the set of eight neighbors of thejth pixel. The
weightswjk equal1 for horizontal and vertical neighbors, and
1/
√
2 for diagonal neighbors. The following theorem shows

that this penalty leads to a strictly convex objective functionΦ.

Theorem 1 If Σ−1/2P1 6= 0 where1 is a column vector of
ones, i.e. the projection of a uniform source is nonzero, thenΦ
is strictly convex forβ > 0, i.e. its Hessian

H = ∇2Φ = PΣ−1P + βR (8)

is positive definite.

Proof: It suffices to show thatx′Hx 6= 0 ∀x 6= 0. From (7) it
is clear thatx′Rx = 0 only whenx = 0 or x = c1 for some
c 6= 0. But c1′Hc1 = c2‖Σ−1/2P1‖2 6= 0 by assumption.2

E. Iterative Algorithm

Ideally the objective function alone would determine the sta-
tistical properties of an estimator. In practice, the convergence
characteristics of the algorithm that maximizes the objective
may also influence those properties. For example, if the algo-
rithm only finds local extrema ofΦ, then the estimator is in-
efficient. The ML-EM algorithm for the unpenalized Poisson
objective is converges to a global maximum [21,22]. However,
when one regularizes the Poisson objective with a smoothness
penalty, the maximization step of the EM algorithm becomes
cumbersome, and the corresponding iterative algorithms con-
verge slowly to possibly local extrema [41,43].

The classical methods for minimizing quadratic objectives,
such as steepest descent or conjugate gradient, do not easily
accommodate the physical nonnegativity ofλ. However, min-
imizing a quadratic objective subject to a nonnegativity con-
straint is a type of “linear complementarity problem” [47, 48],
for which the (projected) successive overrelaxation (+SOR)
method is a natural algorithm since the nonnegativity constraint
applies independently to each parameter. A special case of the

+SOR method is the Gauss-Siedel algorithm [49,50], which has
been applied to transmission tomography by Sauer and Bouman
[40]. In the Bayesian literature it is known as ICM [51].

The +SOR algorithm updates each image parameter individ-
ually by minimizing the objective function (6) over that parame-
ter while holding the other parameters fixed. Since our objective
is quadratic, the minimization is computed analytically (no line
searches are required). One iteration consists of updating every
pixel value in some sequence.

A detailed discussion of +SOR is given in [40, 47], so we
only summarize the algorithm here. Letλ̂ denote the current
estimate ofλ, and letpj denote thejth column ofP . The
PWLS+SOR procedure is as follows.

Initialization:

λ̂ = FBP{y}

r̂ = ŷ − Pλ̂

sj = p′jΣ
−1pj , ∀j (9)

dj = sj + β
∑
k∈Nj

wjk. (10)

For eachj:
begin

λ̂oldj := λ̂j

λ̂newj :=
p′jΣ

−1r̂ + sj λ̂
old
j + β

∑
k∈Nj

wjkλ̂k

dj

λ̂j := max{0, (1− ω)λ̂
old
j + ωλ̂

new
j }

r̂ := r̂ + pj(λ̂
old
j − λ̂j)

end .

Note that the updates tôλ are done sequentially in place, in
contrast to most reconstruction algorithms that simultaneously
update all pixels. Although successive algorithms are difficult to
parallelize in general, parallel methods for +SOR are available
[48].

F. Convergence Properties

SinceΦ is strictly convex by Theorem 1, it follows from [47,
p. 465] that there is a uniquêλ ≥ 0 that minimizesΦ (i.e., satis-
fies the Karush-Kuhn-Tucker conditions [47, p. 560]), and that
the +SOR sequence converges from any initial estimate to that
unique minimum forω ∈ (0, 2) [47, p. 372]. Furthermore, if
ω ∈ (0, 1], then the sequence of estimates monotonically de-
creasesΦ.

The convergencerate of the SOR algorithm depends on
ω. Sauer and Bouman analyzed the convergence properties of
Gauss-Siedel (ω = 1) [40], and in the remainder of this section
we apply their analysis method to SOR. First, decompose the
Hessian (8) by:

H = L+D +L′,
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whereD is the diagonal ofH, andL is a strictly lower triangu-
lar matrix. Then without the nonnegativity constraint, the SOR
method can be compactly written [47]:

λi+1 = (1− ω)λi + ωD−1(A′Σ−1y −L′λi −Lλi+1),

or

λi+1 = (D + ωL)−1[−((ω − 1)D + ωL′)λi + ωA′Σ−1y].

This sequence converges geometrically, and its convergence
rate is governed by the eigenvalues of

Gω = −(D + ωL)
−1((ω − 1)D + ωL′) (11)

(cf [40, eqn. (24)] forω = 1).
To analyze the eigenvalues ofGω as a function ofω, we adopt

simplifications similar to those in [40], i.e.:Σ = σ2I, and the
matricesP ′P ,R, andH are circulant-block-circulant. The lat-
ter assumption implies that multiplication by any of these ma-
trices is equivalent to periodic convolution of the image by a
spatially-invariant 2D kernel. Since the discrete Fourier trans-
form diagonalizes circulant matrices, we can use 2D-FFT of the
2D kernels to study the eigenvalues ofGω. To determine the
kernel of the matrixP ′P , Sauer and Bouman projected and
then backprojected a point source. Here, we use the following
analytical approximation:

f(r) =

{
π − 2r, r ∈ [0, 1]
2(arcsin(1/r) + (r −

√
r2 − 1)) r > 1,

,

which is shown in Figure 2 (cf [40, Fig. 11] and [52, Fig. 1] ).
This function has the expected1/r asymptotic form, but is well
behaved near zero—as it must be for a discrete system. Ignoring
edge effects, the kernel of the regularization matrixR described
by (7) is


 0 −1 0
−1 4 −1
0 −1 0


+ 1

√
2


 −1 0 −1
0 4 0
−1 0 −1


 . (12)

DefineKP to be the128 × 128 matrix with (i, j)th ele-
ment equal tof(

√
(i− 65)2 + (j − 65)2). DefineKR to be

the128 × 128 matrix of zeros except let the3 × 3 block cen-
tered at(65, 65) equal the kernel ofR (12). DefiningK =
σ−2KP + βKR, thenK is the kernel of the circulant-block-
circulant approximation toH (cf (8)). LetKL be the “causal”
part ofK with respect to the conventional left-right/top-down
ordering, i.e.,KL is identical toK for the first 64 rows and for
the first 63 elements of the 65th row, and zero elsewhere. Let
KD be element(65, 65) ofK, and letl(fx, fy) be the 2D FFT
ofKL. Then the eigenvalues ofGω are given by

gω(fx, fy) = −
(ω − 1)KD + ω l?(fx, fy)

KD + ω l(fx, fy)
,

where? denotes complex conjugate (cf (11) and [40, eqn. (25)]).
Figures 3 and 4 show plots of

max
fx
|gω(fx, ·)| and max

fy
|gω(·, fy)|

for β = 1 and a few values ofω. One sees that usingω > 1
would increase all of the eigenvalues, and thus reduce the con-
vergence rate. On the other hand, usingω < 1 will increase
the convergence rate of the low-frequency components, at the
expense of slower convergence for the high-frequency compo-
nents. We have found that this tradeoff is useful for improving
the overall convergence rate. We usually initialize the iteration
with a smooth FBP image, for which the low spatial-frequency
components of the initial estimate are nearly correct. A few it-
erations withω < 1 will quickly fine-tune the low frequencies,
followed by a few more iterations withω = 1 to converge the
high frequencies. To counteract the directional effect illustrated
in Figs. 3 and 4, we update the image pixels in four different
raster scan orderings.

Note that for anyω, the high frequencies will converge faster
with SOR (smaller eigenvalues) than the low frequencies. This
characteristic of successive algorithms is the opposite of the
usual simultaneous algorithms (ML-EM, conjugate gradient,
etc.) for which the low frequencies converge fastest. Since FBP
provides a reasonable initial estimate of the low frequencies,
fast convergence of the high frequencies (with suitable regular-
ization) is desirable. Typically the pixel estimates change very
little after about 20 iterations. In contrast, ML-EM pixel values
continue to change substantially after dozens of iterations.

III. SIMULATION

Every reconstruction method has a parameter that affects the
tradeoff between bias and variance. For FBP it is the window
type and the cutoff frequencyα, for ML-EM it is the number
of iterations, and for PWLS+SOR it is the parameterβ. Our
aim was to address the question: for various levels of bias (i.e.
various resolutions), how do the variances of the image esti-
mates compare between algorithms? To address this question,
we performed a simulation using the software phantom shown
in Figure 5, consisting of a uniform background with intensity
1, several hot pixels with intensity 2, and several cold pixels
with intensity 0. (Several pixels were used so that we could av-
erage among them and obtain statistically significant compar-
isons with a moderate number of noise realizations.) The pixel
grid is 128 × 128, with 3 mm pixels. The ellipse radii were
125 mm and 150 mm (approximate abdomen dimensions).

This pixelated software phantom was forward projected (2)
using a precomputed system model corresponding to an ideal-
ized PET system with 128 angular samples over180◦, and 110
radial samples with 3 mm spacing. Eachpij was calculated
as the area of intersection between thejth pixel and a strip of
width 6 mm. (Since the strip width of 6 mm is wider than the
detector spacing of 3 mm, the strips overlap.) The detector re-
sponse of this system is thus a 6 mm wide rectangular function.
Since this system model is spatially-invariant, this is a “best-
case” situation for the FBP algorithm. The same system model
was used for calculating the projections and for the ML-EM
and PWLS+SOR algorithms, so they also represent best-case
performance. A more rigorous comparison between FBP and
iterative methods would use a non-pixelated (or finely binned)
phantom. Since this paper emphasizes the comparison between
Poisson likelihood and weighted least-squares similarity mea-
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sures, we used a pixelated phantom to eliminate possible con-
founding effects due to system model mismatch. The effects of
system model mismatch needs further investigation for all sta-
tistical reconstruction methods.

The projections were multiplied by nonuniform attenuation
factors corresponding to an ellipse with radii 125 mm and
150 mm and attenuation coefficient of 0.01/mm. Nonuniform
detector sensitivities were applied by using pseudo-random log-
normal variates with standard deviation 0.4, (based on empirical
fits to the logarithm of measured efficiency normalization fac-
tors). After globally scaling the sinogram to a mean sum of
700000 true events,N = 100 realizations of AC precorrected
sinogram measurements were generated using pseudo-random
Poisson variates according to (13) in the Appendix. The mean
AC contribution to each bin was about 9%. We chose a low
number of counts and a small AC percentage because one ex-
pects the WLS approximation to be the poorest at low event
rates. If the AC rates were increased the ML-EM algorithm
would be increasingly positively biased since the negative mea-
surements must be set to 0, whereas the WLS would become in-
creasingly more accurate since the measurements will approach
a Gaussian distribution by the central limit theorem. Thus, a low
AC percentage puts PWLS+SOR at theleastadvantage relative
to ML-EM.

A. ML-EM

For the ML-EM algorithm, the noisy measurements were
forced nonnegative, and the (known) effects of attenuation, de-
tector efficiency, and global scaling were incorporated intoP .
Each of the 100 measurement realizations were reconstructed
starting from a uniform ellipse with intensity 1. The estimates
from iterations 10, 20, 30, 40, 50, 100,. . ., 400 were archived
for subsequent statistical analysis. Each ML-EM iteration re-
quired approximately 1.5 seconds on a DEC 3000/400.

B. PWLS+SOR

For PWLS+SOR the noisy measurements were precorrected
for the (known) effects of attenuation, detector efficiency, and
global scaling, and the variance weights were estimated using
the smoothing method described in the Appendix. The resulting
precorrected measurementsŷ were reconstructed using 20 iter-
ations of PWLS+SOR, again initialized with a uniform ellipse,
for β = 2−7, 2−6, . . . , 2−1. Each iteration required approxi-
mately 2.0 seconds. To put this in perspective, all 47 slices of a
CTI 921 EXACT could be reconstructed in about 30 minutes.

For both ML-EM and PWLS+SOR, only pixels within a sup-
port ellipse with radii 150 mm and 159 mm were updated. Us-
ing this support, there were 8104 unknown pixels and 13394 rel-
evant sinogram measurements; such marginal sampling makes
regularization essential.

C. FBP

The measurements were precorrected as for PWLS+SOR.
One filter used for radial smoothing was a third-order Butter-

worth filter:
1

1 +
(
f
αfN

)6
wherefN corresponds to 0.5 cycles per radial bin, forα = 0.3,
0.4, 0.6, 0.8, and 0.9. Or, to “restore” some of the high frequen-
cies attenuated by the rectangular system response, the follow-
ing Wiener filter was substituted:

sinc(f/fN)

sinc2(f/fN) +
(
f
αfN

)10 ,

for α = 0.4, 0.6, 0.8, and 1.0.

D. Statistics

Let λ̂nj be the estimate of thejth pixel from thenth noise
realization,n = 1, . . . , N = 100. We define the within-image
average of the hot pixels to be:

θ̂nhot =
1

9

∑
j:hot

λ̂nj ,

where the summation is over the 9 small hot pixels, and sim-
ilarly define the within-image averages of the cold pixels. Let
θ̂hot andθ̂cold be the ideal values for̂θnhot andθ̂ncold respectively,
i.e. θ̂hot = 2 andθ̂cold = 0. Then by standard definitions:

biashot = θ̄hot − θ̂hot =
1

N

N∑
n=1

θ̂nhot − θ̂hot,

and

variancehot =
1

N − 1

N∑
n=1

(θ̂nhot − θ̄hot)
2,

with similar definitions for the cold pixels. Since the contrast
is 1 for both hold and cold pixels, the percent bias is simply
100 · bias. Likewise for the percent standard deviation.

IV. RESULTS

A. Quantitative

Figures 6 and 7 show the tradeoff between bias and variance
for the estimated activity in the cold and hot pixels respectively.
Because the point sources are in a uniform background, there is
an inverse monotonic relationship between bias (more smooth-
ing) and variance for all methods. The following conclusions
can be drawn from Figs. 6 and 7:

• Although FBP with a Wiener filter did have the desired
effect of reducing bias relative to FBP with a Butterworth
filter, it did so at a price of increased variance; at any given
bias level the Wiener filter had no advantage.

• For both the hot and cold pixels, the ML-EM algo-
rithm and the PWLS+SOR methods had comparable bias-
variance curves, although clearly with fewer iterations for
PWLS+SOR. In our opinion this is unsurprising since both
methods are based on reasonable approximations to the
measurement statistics.
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• For the cold pixels both SIR methods both showed sig-
nificantly reduced variability relative to FBP for any level
of bias. For the hot pixels the SIR methods offered only
a slight improvement. This is consistent with studies by
other investigators.

The agreement between the performance of ML-EM and
PWLS+SOR suggests that the smoothing method for estimat-
ing the variances described in Appendix A is an adequate
approximation. To further demonstrate this, we applied the
PWLS+SOR method using the “ideal” variancesσ2i = Var{ŷi},
which one can only do in a simulation. The results were indis-
tinguishable both visually and in terms of the statistical anal-
yses describes above. Apparently either the image estimates
are somewhat insensitive to the weights, or at the count rates
simulated in this study the accuracy of the data-based variance
estimate is adequate.

B. Qualitative

The noise properties of reconstruction methods are also of
considerable interest because noise structure affects the de-
tectability of small lesions. Figures 8–10 compare the FBP,
ML-EM, and PWLS+SOR reconstructions of an FDG thorax
image of a patient with breast cancer. There were about 750K
prompt coincidences and 20K delayed coincidences for the slice
shown. The noise structure is strikingly different. The reduc-
tion in streak artifacts may lead to improved detection of lower
contrast lesions. It may also improve the detection of brain ac-
tivation foci by statistical criteria [2].

Readers who are accustomed to simulated ML-EM studies
without accidental coincidences may find the grey background
in Fig. 9 to be unexpected. This positive bias is apparently due
to the unmodeled accidental coincidences events, and continues
to persist after hundreds of iterations. In the absence of AC
events and scatter, the sinogram measurements outside of the
object would be zero, and the ML-EM algorithm would quickly
converge those pixels towards zero.

We conjecture that the reduced streak artifacts in Fig. 10 are
due to the variance weighting of PWLS+SOR. Since the at-
tenuation correction factors for the thorax can be very large,
even small measurement errors can be amplified by the atten-
uation correction. The FBP method ignores such statistical
differences between different projection elements, whereas the
PWLS+SOR method explicitly accounts for them. To substanti-
ate this conjecture, Figure 11 displays a penalized least-squares
reconstruction usinguniform variance weights. The reappear-
ance of the streak artifacts strongly suggests that the variance
weighting is essential, and it plays a crucial role in the improved
noise structure of PWLS+SOR.

V. DISCUSSION

We have considered the measurement statistics for PET sys-
tems that precorrect for AC events, and have argued that a
PWLS objective is appropriate for such measurements. We
summarized the +SOR algorithm for minimizing that objec-
tive, and demonstrated that it has fast convergence. Quantita-
tive comparisons to FBP on a simple phantom with small hot

and cold pixels demonstrated significant reductions in variance
for any level of bias. Qualitative comparisons suggest that the
variance weighting of PWLS+SOR significantly improves the
noise structure. Although the PWLS objective and +SOR algo-
rithm are not necessarily optimal for PET, the method appears
to have some quantitative and qualitative advantages over FBP.
The required computation time is nearing the realm of being
practical for routine use.

For the generic quantification task studied here, the
bias/variance tradeoffs of PWLS+SOR and ML-EM were com-
parable. This does not exclude the possibility of other scenarios
where the Poisson likelihood has measurable advantages over
weighted least squares. However, the PWLS objective proved
viable even in our test case which was deliberately chosen with
low counts and low AC events to “stress” the Gaussian approx-
imation.

How one chooses to tradeoff bias and variance is clearly task
dependent. For certain kinetic estimation tasks, uptake bias
leads to inaccuracies in functional parameters [3]. On the other
hand, some increase in variance may be tolerable for such tasks
since one is generally fitting a low-order parametric model to
multiple images. For PWLS+SOR, the parameterβ controls
this tradeoff. We are currently investigating the relationship be-
tweenβ, Σ and reconstructed resolution using methods simi-
lar to that in Section II-F. The result of this study should be a
method for specifyingβ in terms of the desired “average” re-
constructed resolution as a function of the measurement noise.
The PWLS objective is easier to analyze in this context than
a penalized Poisson likelihood, since without the nonnegativity
constraint the image estimate is linear in the measurements after
the weights are specified.

Although it was high AC fraction studies that initially moti-
vated our considering the PWLS alternative to the Poisson crite-
rion, the method also appears to work well for low AC fraction
scans. The FDG scan shown in Figure 8 was acquired about
an hour after injection, and there were less than 3% AC coinci-
dences.

There remain several questions pertaining to the PWLS
method that may be worth pursuing. These include: 1) What
is the optimal voxel size? 2) How should the different system
response for direct and cross planes be incorporated? 3) Would
a method such as iteratively-reweighted least-squares [53] for
variance estimation improve performance enough to offset its
considerable computational cost? (The results of our compari-
son using ideal variances suggest not.) and 4) Should the non-
negativity constraint be enforced in all situations? If the non-
negativity constraint is unneeded or undesirable for some tasks,
then there may be even faster alternatives than SOR for mini-
mizing the objective [52,54].

For simplicity, we have adopted a quadratic penalty func-
tion, which permits an analytical minimization of the objective
function with respect to each pixel value. There may be non-
quadratic penalty functions that result in an even more favor-
able bias-variance tradeoff. It remains to be seen whether or not
the benefits of such penalty functions are significant enough to
outweigh the increased computational requirements for a non-
quadratic objective. As observed by Herman [8, p. 107] long
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before the advent of fast workstations: “It is unlikely that an
efficacious reconstruction algorithm would for long remain un-
used solely because of computational reasons.”

APPENDIX: VARIANCE

Unlike the Poisson objective, for which the variance equals the
mean, the Gaussian objective requires a separate estimate of the
variances or weightsσ2i . This appendix describes the data-based
variance estimate used in the simulations above. This estimate
is based on thea priori expectation that an object’s projections
are smooth.

If y denotes the raw sinogram measurement, then the ideal
Poisson-difference model is:

yi ∼ Poisson{n−1i (a
−1
i ȳi + ri)} − Poisson{n−1i ri}, (13)

whereni is theith detector efficiency normalization factor,ai
is the attenuation correction factor for theith detector pair,ri
is the mean AC contribution to theith detector pair, and̄yi is
defined by (2). The precorrected measurement is then:

ŷi = ni ai yi,

which is an unbiased estimator ofȳi, as desired. The variance
of this precorrected measurement is:

Var{ŷi} = n2i a
2
i Var{yi} = ni a2i (a

−1
i ȳi + 2ri).

The factor “2” reflects the fact that independent AC events are
being added and subtracted fromy, so their variances add. We
seek an estimate of the variance ofŷi.

If ỹi is an estimate of̄yi, then a natural choice for the variance
estimate is:

σ2i = ni a
2
i (a

−1
i ỹi + 2 r̂i),

wherer̂i is an estimate of the mean AC event rate for theith
detector pair, typically the total delayed-window events for the
slice divided by the total number of sinogram bins. For the sim-
ulations above, we have used the following estimate ofȳi:

ỹi = max{Smooth{ŷi}, 7}, (14)

where the smoothing was performed with a 1 pixel FWHM
Gaussian kernel in the radial direction only. The threshold of
7 ensures that the method is not overly sensitive to bins with
only a few counts.
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Figure 1: Comparison of Poisson and Gaussian fits (-) to the
distribution (o) of PET measurements precorrected for acciden-
tal coincidences (see text). The Gaussian fit is more accurate as
measured by theχ2 statistic.

-80 -60 -40 -20 0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

r

f(
r)

Figure 2: Plot of f(r), the cross-section of the kernel
of the circulant-block-circulant approximation to the projec-
tion/backprojection operatorP ′P . The tails decrease like the
expected1/r response.
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date direction, forω = 1, 0.7, and 1.6.
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Figure 4: Maximum eigenvalues of SOR algorithm perpendic-
ular to update direction, forω = 1, 0.7, and 1.6.

Figure 5: Simulated annihilation distribution. The bias and vari-
ance of the reconstructed values within the small hot and cold
pixels serve as measures of resolution and noise.
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Figure 6: Tradeoffs between bias and variance in the cold pixels
as reconstructed by FBP, ML-EM, and PWLS+SOR. For a given
bias (i.e. resolution), the standard deviations (i.e. noise) of ML-
EM and PWLS+SOR are about 40% smaller than FBP.

65 70 75 80 85 90 95 100
0

5

10

15

20

25

30

35

40

% Bias

%
 S

td
. D

ev
.

Hot Spots

FBP: Wiener
FBP: Butterworth
ML-EM
PWLS+SOR

Figure 7: Tradeoffs between bias and variance in the hot pixels
as reconstructed by FBP, ML-EM, and PWLS+SOR.
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Figure 8: FDG thorax scan of breast cancer patient via FBP
with third-order Butterworth filter withα = 0.4 (approximately
8mm FWHM).

Figure 9: FDG thorax scan reconstructed with 100 ML-EM it-
erations post-filtered to approximately 8mm FWHM resolution.

Figure 10: FDG thorax scan reconstructed with 20 PWLS+SOR
iterations. The streak artifacts of the FBP method are nearly
eliminated by the statistical ML-EM and PWLS+SOR methods,
which may lead to improved detection of lesions with lower
contrast than the one shown.

Figure 11: Anunweightedpenalized least-squares reconstruc-
tion of the FDG scan. The reappearance of the streak artifacts
strongly suggests that the variance weighting is essential to the
PWLS+SOR method, and plays a significant role in the im-
provement over FBP.


