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Abstract

We derive an iterative algorithm that calculates submatrices of the Cram�er-Rao (CR) matrix bound on
the covariance of any unbiased estimator of a vector parameter �. Our algorithm computes a sequence of
lower bounds that converges monotonically to the CR bound with exponential speed of convergence. The
recursive algorithm uses an invertable \splitting matrix," and we present a statistical approach to selecting
this matrix based on a \complete data - incomplete data" formulation similar to that of the well known EM
parameter estimation algorithm. As a concrete illustration we consider image reconstruction from projections
for emission computed tomography.
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1 Introduction

The Cramer-Rao (CR) bound on estimator covariance is an important tool for predicting fundamental limits
on best achievable parameter estimation performance. For a vector parameter � 2 � � IRn, an observation
Y, and a p.d.f. fY (y; �), one seeks a lower bound on the minimum achievable variance of an unbiased

estimator �̂1 = �̂1(Y) of a scalar parameter �1 of interest. More generally, if, without loss in generality, the
p parameters �1; : : : ; �p are of interest, p � n, one may want to specify a p � p matrix which lower bounds

the error covariance matrix for unbiased estimators �̂1; : : : ; �̂p. The upper left hand p � p submatrix of the
n � n inverse Fisher information matrix F�1Y provides the CR lower bound for these parameter estimates.
Equivalently, the �rst p columns of F�1Y provide this CR bound. The method of sequential partitioning [11]
for computing the upper left p�p submatrix of F�1

Y
and Cholesky based Gaussian elimination techniques [3]

for computing the p �rst columns of F�1Y are e�cient direct methods for obtaining the CR bound but require
O(n3) oating point operations. Unfortunately, in many practical cases of interest, e.g. when there are a large
number of nuisance parameters, high computation and memory requirements make direct implementation
of the CR bound impractical.

In this correspondence we give an iterative algorithm for computing columns of the CR bound which
requires only O(pn2) per iteration. This algorithm falls into the class of \splitting matrix iterations" [3] with
the imposition of an additional requirement: the splitting matrix must be chosen to ensure that a valid lower
bound results at each iteration of the algorithm. While a purely algebraic approach to this restricted class of
iterations can easily be adopted [16], the CR bound setting allows us to exploit additional properties of Fisher
information matrices arising from the statistical model. Speci�cally, we formulate the parameter estimation
problem in a complete data - incomplete data setting and apply a version of the \data processing theorem"
[1] for Fisher information matrices. This setting is similar to that which underlies the classical formulation
of the Maximum Likelihood Expectation Maximization (ML-EM) parameter estimation algorithm. The

ML-EM algorithm generates a sequence of estimates f�̂kgk for � which successively increase the likelihood
function and converge to the maximum likelihood estimator. In a similar manner, our algorithm generates
a sequence of tighter and tighter lower bounds on estimator covariance which converge to the actual CR
matrix bound.

The algorithms given here converge monotonically with exponential rate where the speed of convergence
increases as the spectral radius �(I �F�1X FY ) decreases. Here I is the n�n identity matrix and FX and FY
are the complete and incomplete data Fisher information matrices, respectively. Thus when the complete
data is only moderately more informative than the incomplete data, FY is close to FX so that �(I �F�1X FY )
is close to 0 and the algorithm converges very quickly. To implement the algorithm, one must 1) precompute
the �rst p columns of F�1X , and 2) provide a subroutine that can multiply F�1X FY or F�1X E�[r11Q(�; �)] by
a column vector (see (17)). By appropriately choosing the complete data space this precomputation can be
quite simple, e.g. X can be chosen to make FX sparse or even diagonal. If the complete data space is chosen
intelligently only a few iterations may be required to produce a bound which closely approximates the CR
bound. In this case the proposed algorithm gives an order of magnitude computational savings as compared
to conventional exact methods of computing the CR bound.

The paper concludes with an implementation of the recursive algorithm for bounding the minimum
achievable error of reconstruction for a small region of interest (ROI) in an image reconstruction problem
arising in emission computed tomography. By using the complete data of the standard EM algorithm for
PET reconstruction [15], FX is diagonal and the implementation of the CR bound algorithm is very simple.
As in the PET reconstruction algorithm, the rate of convergence of the iterative CR bound algorithmdepends
on the image intensity and the tomographic system response matrix.
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2 CR Bound and Iterative Algorithm

2.1 Background and General Assumptions

Let �i be an open subset of the real line IR. De�ne � = [�1; : : : ; �n]T a real, non-random parameter vector
residing in � = �1 � � � � � �n. Let fP�g�2� be a family of probability measures for a certain random
variable Y taking values in a set Y. Assume that for each � 2 �, P� is absolutely continuous with respect
to a dominating measure � so that for each � there exists a density function f(y; �) = dP�(y)=d� for Y.

The family of densities ffY (y; �)g�2� is said to be a regular family [9] if � is an open subset of IRp and: 1)
fY (y; �) is a continuous function on � for �-almost all y; 2) ln f(Y; �) is mean-square di�erentiable in �; and
3)r� ln f(Y; �) is mean-square continuous in �. These three conditions guarantee that the Fisher information
matrix FY (�) = E�[rT

� ln f(Y; �)r� lnf(Y; �)] exists and is �nite, where r� = [@=@�1; : : : ; @=@�n] is the

(row) gradient operator.

Finally we recall convergence results for linear recursions of the form

vi+1 = Avi; i = 1; 2; : : :

where vi is a vector and A is a matrix. Let �(A) denote the spectral radius, i.e. the maximum magnitude
eigenvalue, of A. If �(A) < 1 then vi converges to zero and the asymptotic rate of convergence increases as
the root convergence factor �(A) decreases [14].

2.2 The CR Lower Bound

Let �̂ = �̂(Y) be an unbiased estimator of � 2 �, and assume that the densities ffY (y; �g�2� are a regular

family. Then the covariance matrix of �̂ satis�es the matrix CR lower bound [9]:

cov�(�̂) � B(�) = F�1Y (�): (1)

In (1) FY (�) is the assumed non-singular n�n Fisher information matrix associated with the measurements
Y:

FY (�)
def
= E�[ru lnfY (Y;u)ju=�]T [ru lnfY (Y;u)ju=� ]: (2)

Under the additional assumption that the mixed partials @2

�i�j
fY (Y; �), i; j = 1 : : : ; n, exist, are continuous

in �, and are absolutely integrable in Y, the Fisher information matrix is equivalent to the Hessian, or
\curvature matrix," of the mean ln fY (Y; �):

FY (�) = �E�[rT
uru ln fY (Y;u)ju=�] = �rT

uruE�[ln fY (Y;u)]ju=�: (3)

Assume that among the n unknown quantities � = [�1; : : : ; �n]
T only a small number p � n of param-

eters �I = [�1; : : : ; �p]T are directly of interest, the remaining n� p parameters being considered \nuisance
parameters." Partition the Fisher information matrix FY as:

FY =

�
F11 FT

12

F12 F22

�
; (4)

where F11 is the p�p Fisher information matrix for the parameters �I of interest, F22 is the (n�p)� (n�p)
Fisher information matrix for the nuisance parameters, and F12 is the (n � p) � p information coupling
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matrix. The CR bound on the covariance of any unbiased estimator �̂
I
= [�̂1; : : : ; �̂p]T of the parameters of

interest is simply the p� p submatrix in the upper left hand corner of F�1Y :

cov�(�̂
I
) � ETF�1Y E (5)

where E is the n�p matrix consisting of the p �rst columns of the n�n identity matrix, i.e. E = [e1; : : : ; ep]
and ej is the j-th unit column vector in IRn. Using a standard identity for the partitioned matrix inverse [3]
this submatrix can be expressed in terms of the partition elements of FY yielding the following equivalent
form for the unbiased CR bound:

cov�(�̂
I
) � �

F11 � FT
12F

�1
22 F12

��1
: (6)

By using the method of sequential partitioning [11], the right hand side of (6) could be computed with O(n3)
oating point operations. Alternatively, the CR bound (5) is speci�ed by the �rst p columns F�1Y E of F�1Y .
These p columns are given by the columns of the n� p matrix solution U to FY U = E . The topmost p� p
block ETU of U is equal to the right hand side of the CR bound inequality (5). By using the Cholesky
decomposition of FY and Gaussian elimination [3] the solution U to FY U = E could be computed with
O(n3) oating point operations.

Even if the number of parameters of interest is small, for large n the feasibility of directly computing
the CR bound (5) is limited by the high number O(n3) of oating point operations. For example, in the
case of image reconstruction for a moderate sized 256� 256 pixelated image FY is 2562� 2562 so that direct
computation of the CR bound on estimation errors in a small region of the image requires on the order of
2566 or 1019 oating point operations!

2.3 A Recursive CR Bound Algorithm

The basic idea of the algorithm is to replace the di�cult inversion of FY with an easily inverted matrix F . To
simplify notation, we drop the dependence on �. Let F be a n�n matrix. Assume that FY is positive de�nite

and that F � FY ; i.e. F �FY is nonnegative de�nite. It follows that F is positive de�nite, so let F
1

2 be the

positive de�nite matrix-square-root-factor of F . Then F�
1

2FY F
�

1

2 is positive de�nite, F�
1

2 (F � FY )F
�

1

2

is non-negative de�nite, and therefore:

F�
1

2FYF
�

1

2 = [I � F�
1

2 (F � FY )F
�

1

2 ] > 0:

Hence 0 � I�F� 1

2FY F
�
1

2 < I so that all of the eigenvalues of I�F�1

2FYF
�
1

2 are non-negative and strictly

less than one. Since I � F�
1

2FY F
�
1

2 is similar to I � F�1FY , it follows that the eigenvalues of I � F�1FY
lie in [0; 1) [8, Corollary 1.3.4]. Thus, applying the matrix form of the geometric series [8, Corollary 5.6.16]:

B = [FY ]
�1 = [F � (F � FY )]

�1

= [I � F�1(F � FY )]
�1F�1

=

 
1X
k=0

[I � F�1FY ]
k

!
F�1: (7)

This in�nite series expression for the unbiased n�n CR bound B is the basis for the matrix recursion given
in the following theorem.

Theorem 1 Assume that FY is positive de�nite and F � FY . When initialized with the n � n matrix of
zeros B0 = 0, the following recursion yields a sequence of matrix lower bounds Bk = Bk(�) on the n � n
covariance of unbiased estimators �̂ of �. This sequence asymptotically converges to the n� n unbiased CR
bound F�1Y with root convergence factor �(A).
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Recursive Algorithm: For k = 0; 1; 2; : : :

Bk+1 = A �Bk + F�1; (8)

where A = I �F�1FY has eigenvalues in [0; 1). Furthermore, the convergence is monotone in the sense that
Bk � Bk+1 � B = F�1Y , for k = 0; 1; 2; : : :.

Proof

Since all eigenvalues of I � F�1FY are in the range [0; 1) we obviously have �(I � F�1FY ) < 1. Now
consider:

Bk+1 � F�1Y = (I � F�1FY )B
k + F�1 � F�1Y

= (I � F�1FY )(B
k � F�1Y ) (9)

Since the eigenvalues of I � F�1FY are in [0; 1), this establishes that Bk+1 ! F�1Y as k ! 1 with root
convergence factor �(I � F�1FY ). Similarly:

Bk+1 �Bk = (I � F�1FY )[B
k � Bk�1]; k = 1; 2; : : : ;

with initial condition B1 � B0 = F�1. By induction we have

Bk+1 �Bk = F�
1

2

h
F�

1

2 (I � FY )F
�

1

2

ik
F�

1

2

which is non-negative de�nite for all k � 0. Hence the convergence is monotone. 2

By right multiplying each side of the equality (8) by the matrix E = [e1; : : : ; ep], where ej is the j-th unit

vector in IRn we obtain a recursion for the �rst p columns BkE = [bk1 ; : : : ; b
k
p]. Furthermore, the �rst p rows

ETBkE of BkE correspond to the upper left hand corner p� p submatrix of Bk and, since ET [Bk+1 �Bk]E
is non-negative de�nite, by Theorem 1 ETBkE converges monotonically to ETF�1Y E . Thus we have the
following Corollary to Theorem 1.

Corollary 1 Assume that FY is positive de�nite and F � FY and let E = [e1; : : : ; ep] be the n � p matrix
whose columns are the �rst p unit vectors in IRn. When initialized with the n � p matrix of zeros �0 = 0,
the top p� p block ET�k of �k in the following recursive algorithm yields a sequence of lower bounds on the
covariance of any unbiased estimator of �I = [�1; : : : ; �p]

T which asymptotically converges to the p � p CR
bound ETF�1Y E with root convergence factor �(A):

Recursive Algorithm: For k = 0; 1; 2; : : :

�(k+1) = A � �(k) + F�1; (10)

where A = I �F�1FY has eigenvalues in [0; 1) and F�1 = F�1E is the n� p matrix consisting of the �rst p

columns of F�1. Furthermore, the convergence is monotone in the sense that ET�(k) � ET�(k+1) � ETF�1Y E ,
for k = 0; 1; 2; : : :.

The n�n times n�p matrix multiplicationA ��k requires only O(pn2) oating point operations. Hence,
for p� n the recursion (10) requires only O(n2) oating point operations per iteration.
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2.4 Discussion

We make the following comments on the recursive algorithms of Theorem 1 and Corollary 1.

1. For the algorithm (10) for computing columns of F�1Y to have signi�cant computational advantages
relative to the direct approaches discussed in Section 2, the precomputation of the matrix inverse F�1

and multiplication by the matrix product A = I � F�1FY must be simple, and the iterations must
converge reasonably quickly. By choosing an F that is is sparse or diagonal the computation of F�1

and A requires only O(n2) oating point operations. If in addition F is chosen so that �(I�F�1FY ) is
small, then the algorithm (10) will converge to within a small fraction of the corresponding column of
F�1
Y

with only a few iterations and thus will be an order of magnitude less costly than direct methods
requiring O(n3) operations.

2. One can use the recursion I � FYB
k+1 = A � [I � FYB

k], obtained similar to (9) of the proof of
Theorem 1, to monitor the progress of the j-th column bkj � FYB

k towards zero. This recursion can
be implemented alongside of the bound recursion (10).

3. For p = 1 the iteration of Corollary 1 is related to the \matrix splitting" method [3] for iteratively
approximating the solution u to a linear equation Cu = c. In this method, a decomposition C = F �N
is found for the non-singular matrix C such that F is non-singular and �(F�1N ) < 1. Once this
decomposition is found the algorithm below produces a sequence of vectors uk which converge to the
solution u = C�1c as k!1:

uk+1 = F�1Nuk + F�1c: (11)

Identifying C as the incomplete data Fisher information FY , N as the di�erence F � FY , u as the
j-th column of F�1Y , and c as the j-th unit vector ej in IRn, the splitting algorithm (11) is equivalent
to the column recursion of Corollary 1. The novelty of the recursion of Corollary 1 is that based
on statistical considerations presented in the following section we have identi�ed a particular class of
matrix decompositions for FY that guarantee monotone convergence of the j-th component of bkj to

the scalar CR bound on var�(�̂j). Moreover, for general p � 1 the recursion of Corollary 1 implies that
when p parallel versions of (11) are implemented with c = ej and uk = ukj , j = 1; : : : ; p, respectively,

the �rst p rows of the concatenated sequence [uk1 ; : : : ; u
k
p] converge monotonically to the p � p CR

bound on cov�(�̂
I
), �̂I = [�̂1; : : : ; �̂p]T . Monotone convergence is important in the statistical estimation

context since it ensures that no matter when the iterative algorithm is stopped a valid lower bound is
obtained.

4. The basis for the matrix recursion of Theorem 1 is the geometric series (7). A geometric series approach
was also employed in [12, Section 5] to develop a method to speed up the asymptotic convergence
of the EM parameter estimation algorithm. This method is a special case of Aitken's acceleration
which requires computation of the inverse of the observed Fisher information F̂Y (�) = �r2 lnfY (Y; �)
evaluated at successive EM iterates, � = �k, k = m;m + 1;m + 2; : : : where m is a large positive
integer. If F̂ (�k) is positive de�nite then Theorem 1 of this paper can be applied to iteratively compute
this inverse. Unfortunately, F̂Y (�) is not guaranteed to be positive de�nite except within a small

neighborhood f� : k� � �̂k � �g of the MLE, so that in practice such an approach may fail to produce
a converging algorithm.

3 Statistical Choice for Splitting Matrix

The matrix F must satisfy F � FY and must also be easily inverted. For an arbitrary matrix F , verifying
that F � FY could be quite di�cult. In this section we present a statistical approach to choosing the
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matrix F ; the matrix F is chosen to be the Fisher information matrix of the complete-data that is intrinsic
to an EM algorithm. This approach guarantees that F � FY through a Fisher information version of the
data-processing inequality.

3.1 Incomplete Data Formulation

Many estimation problems can be conveniently formulated as an incomplete data - complete data problem.
The setup is the following. Imagine that there exists a di�erent set of measurements X taking values in
a set X whose probability density fX (x; �) is also a function of �. Further assume that this hypothetical
set of measurements X is larger and more informative as compared to Y in the sense that the conditional
distribution of Y given X is functionally independent of �. X and X are called the complete data and
complete data space while Y and Y are called the incomplete data and incomplete data space, respectively.
This de�nition of incomplete - complete data is equivalent to de�ning Y as the output of a �-independent
possibly noisy channel having input X. Note that our de�nition contains as a special case the standard
de�nition [2] whereby X and Y must be related via a deterministic functional transformation Y = h(X),
where h : X ! Y is many-to-one.

Assume that a complete data set X has been speci�ed. For regular probability densities fX (x; �), fY (y; �),

fXjY (xjy; �) we de�ne the associated Fisher informationmatrices FX(�) = �E�

h
r�rT

� ln fX (X; �)
i
, FY (�) =

�E�

h
r�rT

� ln fY (Y; �)
i
, FXjY (�) = �E�

h
r�rT

� ln fXjY (XjY; �)
i
, respectively. First we give a decompo-

sition for FY (�) in terms of FX (�) and FXjY (�)..

Lemma 1 Let X and Y be random variables which have a joint probability density fX;Y (x; y; �) relative to
some product measure �X��Y . Assume that X is more informative than Y in the sense that the conditional
distribution of Y given X is functionally independent of �. Assume also that ffX (x; �)g�2� is a regular family

of densities with mixed partials @2

�i�j
fX(x; �) which are continuous in � and absolutely integrable in x. Then

ffY (x; �)g�2� is a regular family of densities with continuous and absolutely integrable mixed partials, the
above de�ned Fisher information matrices FX(�), FY (�), and FXjY (�) exist are �nite and

FY (�) = FX(�)� FXjY (�) (12)

Proof of Lemma 1

Since X;Y has the density fX;Y (x; y; �) with respect to the measure �X � �Y there exist versions
fY jX(yjx; �) and fXjY (xjy; �) of the conditional densities. Furthermore, by assumption fY jX (yjx; �) =
fY jX(yjx) does not depend on �. Since fY (y; �) =

R
X
fY jX (yjx)fX (x; �)d�X it is straightforward to show

that the family ffY (y; �)�2� inherits the regularity properties of the family ffX (x; �)�2�. Now for any y
such that fY (y; �) > 0 we have from Bayes' rule

fXjY (xjy; �) =
fY jX(yjx)fX (x; �)

fY (y; �)
: (13)

Note that fX;Y (x; y; �) > 0 implies that fY (y; �) > 0, fX (x; �) > 0, fY jX (yjx) > 0 and fXjY (xjy; �) > 0.
Hence, we can use (13) to express:

log fXjY (xjy; �) = log fX(x; �) � log fY (y; �) + logfY jX (yjx); (14)

whenever fX;Y (x; y; �) > 0. From this relation it is seen that fXjY (xjy; �) inherits the regularity properties
of the X and Y densities. Therefore, since the set f(x; y) : fX;Y (x; y; �) > 0g has probability one we obtain
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from (14):

E�[�r2
� log fXjY (XjY; �)] = E�[�r2

� log fX (Y; �)]� E�[�r2
� log fY (X; �)]

This establishes the lemma. 2

Since the Fisher information matrix FXjY is non-negative de�nite, an important consequence of the
decomposition of Lemma 1 is the matrix inequality:

FX (�) � FY (�): (15)

The inequality (15) can be interpreted as a version of the \data processing theorem" of information theory
[1] which asserts that any irreversible processing of data X entails a loss in information in the resulting data
Y.

3.2 Remarks

1. The inequality (15) is precisely the condition required of the splitting matrix F by the recursive CR
bound algorithm (10). Furthermore, in many applications of the EM algorithm, the complete-data
space is chosen such that the dependence of X on � is \uncoupled," so that FX is diagonal or very
sparse. Since many of the problems in which FY is di�cult to invert are problems for which the EM
algorithm has been applied, the Fisher information of the corresponding complete-data space is thus a
natural choice for F .

2. If the incomplete data Fisher matrix FY is available the matrix A in the recursion (8) can be precom-
puted as:

A = I � F�1X FY : (16)

On the other hand, if the Fisher matrix FY is not available, the matrix A in the recursion (8) can be
computed directly from Q(u; v) = Eflogf(X; �)jY; ��g arising from the E step of the EM parameter
estimation algorithm [2]. Note that, under the assumption that exchange of order of di�erentiation
and expectation is justi�ed [10, Sec. 2.6]:

FXjY (�) = E�

h
�r2

uE�

�
ln fXjY (XjY;u)jY� ju=�i

= E�

��r20H(�; �)
�
;

where H(u; v)
def
= EvflogfXjY (XjY;u)jY = yg. We can make use of an identity [2, Lemma 2]:

r20H(�; �) = �r11H(�; �)

Furthermore,

r11H(�; �) = r11Q(�; �):

This gives the identity:

FXjY (�) = E�[r11Q(�; �)]:

Giving an alternative expression to (16) for precomputing A:

A = F�1X E�[r11Q(�; �)]: (17)

3. The form �(I � F�1X
FY ) for the rate of convergence of the algorithms (8) and (10) implies that for

rapid convergence the complete data space X should be chosen such that X is not signi�cantly more
informative than Y relative to the parameter �.
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4. The matrix recursion of Theorem 1 can be related to the following Frobenius normalization method
for inverting a sparse matrix C:

Bk+1 = Bk[I � �C] + �I; (18)

where � = 1=kCk2 is the inverse of the Frobenius norm of C. When initialized with B0 = I the
above algorithm converges to C�1 as k !1. For the case that C is the Fisher matrix FY the matrix
recursion (18) can be interpreted as a special case of the algorithm of Theorem 1 for a particular choice
of complete data X. Speci�cally, let the complete data be de�ned as the concatenation X = [YT ;ST ]T

of the incomplete data Y and a hypothetical data set S = [S1; : : : ;Sm]T de�ned by the following:

S = c(�) +W; (19)

where W = [W1; : : : ;Wm]T are i.i.d. standard Gaussian random varibles independent of Y, and
c = [c1; : : : ; cm]T is a vector function of �. It is readily veri�ed that the Fisher matrix FS for � based
on observing S is of the form: FS =

Pm

j=1rT cj(�)rcj(�), where r = [ @
@�1

; : : : ; @
@�n

]. Now since S
and Y are independent FX = FS + FY so that if we could choose c(�) such that FS = kFY k � I � FY
the recursion of Theorem 1 would be equivalent to (18) with FY = C, F�1X = �I, A = I � �FY . In
particular, for the special case that FY is functionally independent of �, we can take m equal to n and
take the hypothetical data S = [S1; : : : ;Sn]T as the n-dimensional linear Gaussian model:

Sj = cj�
T +Wj ; j = 1; : : : ; n;

where

cj = [kFY k2 �
p
�j]�j; j = 1; : : : ; n;

and f�1; : : : ; �ng are the eigenvectors and f�1; : : : ; �ng are the eigenvalues of FY . With this de�nition
of S, FY =

Pn

j=1 �j�j�
T
j is simply the eigendecomposition of the matrix kFY k � I � FY so that

FX = kFY k � I = �I as required.

4 Application to ECT Image Reconstruction

We consider the case of positron emission tomography (PET) where a set of m detectors is placed about an
object to measure positions of emitted gamma-rays. The mathematical formulation of PET is as follows.
Over a speci�ed time interval a number Nb of gamma-rays are randomly emitted from pixel b, b = 1; : : : ; n,
and a number Yd of these gamma-rays are detected at detector d, d = 1; : : : ;m. The average number
of emissions at pixels 1; : : : ; n is an unknown vector � = [�1; : : : ; �n]T , called the object intensity. It is
assumed that the Nb's are independent Poisson random variables with rates �b, b = 1; : : : ; n, and the Yd's
are independent Poisson distributed with rates �d =

Pn

b=1Pdjb�b, where Pdjb is the transition probability
corresponding to emitter location b and detector location d. For simplicity we assume that �d > 0 8d. The
objective is to estimate a subset [�1; : : : ; �p]

T , p � n, of the object intensities within a p-pixel region of
interest (ROI). In this section we develop the recursive CR bound for this estimation problem.

The log-likelihood function for � based on Y = [Y1; : : : ;Ym]
T is simply

lnfY (Y; �) = ln
mY
d=1

[�d]

Yd!

Yd

e��d (20)

= �
mX
d=1

�d +
mX
d=1

Yd ln�d + constant: (21)

9



From this the Hessian matrix with respect to � is simply calculated and, using the fact that E�[Yd] = �d,
the n � n Fisher information matrix FY is obtained:

FY =
mX
d=1

1

�d
PT
dj�Pdj� (22)

=

  
mX
d=1

PdjiPdjj

�d

!!
i;j=1;:::;n

;

where Pdj� = [Pdj1; : : : ; Pdjn] is the d-th row of the m � n system matrix ((Pjji)). If m � n, and the linear
span of fPdj�gnd=1 is IRn, then FY is invertible and the CR bound exists. However, even for an imaging
system of moderate resolution, e.g. a 256� 256 pixel plane, direct computation of the p� p ROI submatrix
ETF�1Y E , E = [e1; : : : ; ep], of the (256)

2 � (256)2 Fisher matrix FY is impractical.

The standard choice of complete data for estimation of � via the EM algorithm is the set Ndb, d =
1; : : : ;m, b = 1; : : : ; n, where Ndb denotes the number of emissions in pixel b which are detected at detector d.
fNdbg are independent Poisson random variables with intensity E�[Ndb] = Pdjb�b, d = 1; : : : ;m, b = 1; : : : ; n.
By Lemma 1 we know that, with FX the Fisher information matrix associated with the complete data,
FX � FY is non-negative de�nite. Thus FX can be used in Theorem 1 to obtain a montonically convergent
CR bound recursion.

The log-likelihood function associated with the complete data set X = [Ndb]
m;n

d=1;b=1 is of similar form to
(21):

ln fX (X; �) = �
mX
d=1

nX
b=1

Pdjb�b +
mX
d=1

nX
b=1

Ndb ln �b + constant:

The Hessian r2
� ln fX (X; �) is easily calculated, and, assuming �b > 0

forallb, the Fisher information matrix FX is obtained as:

FX = diagb

�Pm

d=1 Pdjb

�b

�
; (23)

where diagb(ab) denotes a diagonal n� n matrix with the ab's indexed successively along the diagonal.

Using the results (23) and (22) above we obtain:

A = I � F�1X FY (24)

= I �
  

dX
l=1

�iPm

d=1 Pdji

PljiPljj

�l

!!
i;j=1;:::;n

:

The recursive CR bound algorithm of Corollary 1 can now be implemented using the matrices (23) and (24).

The rate of convergence of the recursive CR bound algorithm is determined by the maximum eigenvalue
�(A) of A speci�ed by (24). For a �xed system matrix ((Pjji)) the magnitude of this eigenvalue will depend
on the image intensity �. Assume for simplicity that with probability one any emitted gamma-ray is detected
at some detector, i.e.

Pm

d=1 Pdjb = 1 for all b. Since trace(A) =
Pn

i=1 �i, where f�igni=1 are the eigenvalues
of A, using (24) it is seen that the maximum eigenvalue �(A) must satisfy:

1

n
trace(A) = 1� 1

n

dX
l=1

Pn

i=1 P
2
lji�iPn

j=1Pljj�j
� �(A) < 1: (25)

Now applying Jensen's inequality to
Pn

i=1P
2
lji�i it can be shown that

1

n
trace(A) � 1� 1

n
; (26)
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where equality occurs if Pljj independent of j. On the other hand, it can easily be seen that equality is
approached in (26) as the intensity � concentrates an increasing proportion of its mass on a single pixel ko,
e.g.:

�i =

8<
:

(1� �)n�1
n

Pn

b=1 �b; i = ko

� 1
n

Pn

b=1 �b i 6= ko

;

and � approaches zero. Thus for this case we have from (25): 1 � 1=n < �(A) < 1. Since n is typically
very large, this implies that the asymptotic convergence rate of the recursive algorithm will su�er for image
intensities which approach that of an ideal point source, at least for this particular splitting matrix.

5 Conclusion and Future Work

We have given a recursive algorithmwhich can be used to compute submatrices of the CR lower bound F�1Y on
unbiased multi-dimensional parameter estimation error covariance. The algorithm sucessively approximates
the inverse Fisher informationmatrixF�1Y via a monotonically convergent splitting matrix iteration. We have
given a statistical methodology for selecting an appropriate splitting matrix F which involves application of
a data processing theorem to a complete-data incomplete-data formulation of the estimation problem. We
are currently investigating a purely algebraic methodology in which a splitting matrix F is selected from sets
of diagonal, tridiagonal, or circulant matrices to optimize the norm di�erence kF �FY k subject to F � FY .
We are also developing analogous recursive algorithms to sucessively approximate generalized matrix CR
bounds, such as those developed in [7], for biased estimation.
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