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Abstract

As investigators consider more comprehensive measurement models for emission tomography, there will be more choices for
the complete-data spaces of the associated expectation-maximization (EM) algorithms for maximum-likelihood (ML) estimation.
In this paper, we show that EM algorithms based on smaller complete-data spaces will typically converge faster. We discuss
two practical applications of these concepts: (i) the ML-IA and ML-IB image reconstruction algorithms of Politte and Snyder [1]
which are based on measurement models that account for attenuation and accidental coincidences in positron-emission tomography
(PET), and (ii) the problem of simultaneous estimation of emission and transmission parameters. Although the PET applications
may often violate the necessary regularity conditions, our analysis predicts heuristically that the ML-IB algorithm, which has a
smaller complete-data space, should converge faster than ML-IA. This is corroborated by the empirical findings in [1].

I. INTRODUCTION

The ML criterion for tomographic image reconstruction has received considerable attention since Shepp and Vardi [2] introduced
an EM algorithm for computing ML estimates. Although the medical imaging community often refers to “the” ML-EM algorithm,
there are in fact a multitude of feasible EM algorithms, each based on a different complete-data space. A useful complete-data
space supplements the observed measurements in a way that facilitates parameter estimation [3]. Although only one complete-dat
space has been suggested for PET under the simple measurement model used in the early papers [2,4], there will be more choices
investigators consider more comprehensive measurement models, such as those accounting for photon attenuation [5], accident
coincidences [1], deadtime, and scatter [6,7]. This paper illustrates the importance of parsimony in choosing complete-data spaces
and some of the tradeoffs that result.

Accurate quantification of radiotracer activity using PET must include corrections for the effects of attenuation and accidental
coincidences. Recently, Politte and Snyder proposed two ML-EM algorithms for PET image reconstruction that directly incor-
porate the effects of known attenuation and accidental coincidences into the statistical measurement model [1]. The algorithms
are based on two different complete-data spaces, one of which is a subset of the other. They observed in experiments that th
algorithm based on the smaller complete-data space converged faster. In this paper we corroborate their observations by provin
that smaller complete-data spaces yield EM algorithms with faster asymptotic convergence rates.

The measurement models used in [1] assumed exact knowledge of the survival probabilities, the probability that both photons of
a positron-produced pair escape unattenuated. In practice, one must obtain these factors experimentally, typically by a transmissio
scan that precedes the radiotracer injection. As mentioned in [1], @ more accurate approach would account for the statistical
uncertainties in both the emission data and the transmission measurements. An iterative method for simultaneously estimating
the emission intensities and the survival probabilities has been recently proposed by Climthalri8]. In this paper, we
present two algorithms for joint emission/transmission estimation based on generalizations of the two complete-data spaces in [1].
We demonstrate that although the smaller complete-data space may provide a faster algorithm in theory, in practice the larger
complete-data space leads to an EM algorithm with an easier maximization step. Such tradeoffs have been observed in other EN
applications [3], but they may be particularly important to future investigations of PET reconstruction methods because of the
large dimensions of the parameter spaces.

In Section I, we briefly review the EM algorithm, and prove that smaller complete-data spaces result in faster convergence.
This is applied to PET in Section Ill. In Section IV we analyze the joint emission/transmission estimation method for PET.

Il. THEORY

A. EM algorithm

We observey, a realization of a random vectdf having known density(y; ), with the goal of computing the ML estimate
of 8. In many problems, including emission tomography, the measurements are “incomplete” in the sense that several components
of @ may contribute to each component¥f In such problems one can often postulate a “complete data” random \ASdtoat
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is more naturally related to the parameter ve@&pand is related to the observed measurements by a many-to-one mapping
h(X). The densityf (x; 0) of the complete datX must be consistent with the incomplete d&tan that:

9(y;0) = / f(x;0) de.
{xY=h(x)}

Let
— A —
Q(6;0) = E{log f(X;0) |Y =y;6} 6y
= /logf(fv;@) f(x]Y =y;0) d=z

= H(6;0) + L(0), )

where
H(0;0) = E{logf(X|Y =y;0)|Y =y;6},
AN
L) = logg(y;6).

The EM algorithm for ML estimation [3], calls for iterating over the following steps:
E-step: _

ComputeQ(0; 6*),
M-step:

0" = arg rneaxQ(O; 0",

wheref’ denotes the parameter estimate afterithéteration. Note that by Jensen’s inequality [3]:
H(0;0) < H(0;0) V0,

so the EM algorithm produces a likelihood sequeii¢@’) that is monotonically increasing. The basic idea is to com@jte

the conditional expectation of the complete data given the most recent parameter estimate, and then to maximize the parameter’
likelihood as if one had observed the complete data [3]. The EM algorithm is most useful when the complete-data space is chosen
such thaiQ(6; Hi) can be maximized analytically for the M-step, although other approaches are possible [9].

B. EM convergence rate

Several investigators have observed empirically that larger complete-data spaces correspond to slower EM convergence [3, pp
25,34]. In this section we formally establish a version of this result. For our purposes, asymptotic convergence rate is defined by
the following well known result [10, p. 301].

Linear Convergence Theoreri:(i) G : D € R* — R" has a fixed poind* € D, = int(D), (ii) G is Fréchet differentiable at
6, and (iii) p(V*G(8*)) < 1, wherep() denotes spectral radishen the root-convergence factor [10, p. 288]at6* for the
iterative proces8' ™' = G(8") is given byR, (G, 0*) = p(V'G(68)).

This leads to the following definition of convergence rate for EM algorithms corresponding to strictly concave likelihood func-
tions [3].

Theorem 1:Let "' = G(ei) define the iterations for an EM algorithm such that{iand6* satisfy conditions (i) and (i)
of the Linear Convergence Theorem, (#)is defined by solving the system of equationsQ(0; 0)| 0-c(0) = 0, and (iii)

L2 —V2L(6") is positive definite, then the root-convergence fact@afor the EM iterationG is
Ri=p(I-Q7'L) <1, ®)

wherel is then x n identity matrix andR 2 —-V20Q(0*%;0%).

Proof: H £ —V20H(0*; 8™) is nonnegative definite since it is a (conditional) Fisher information matrix [11, p. 126]. From (2),
Q = H + L, so by (iii), Q is positive definite and therefore invertible. From (ii) we see ¥i&Q(G(0); 6) = 0, which can be
differentiated again to yiel#2°Q(G(0); 0)V1G(0) + VIIQ(G(0); 0) = 0. Therefore,

le(a*) — _(v2OQ(0*; 0*))71V11Q(0*; 0*)’
1The (n, m) element of thelim(6) by dim(6) matrix VG is /86, G (6). In general, thelim(6) by dim(6) matrix Vi F(8; 8) denotes the matrix of
partials9*+t7 F(8; 8)/08° 067 .
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sinceG(6*) = 6* by (i). But it is well known [3] that for§ € D
V1Q(8;0) = V' H(6;0) = -V H(6;0)
= V?L(0) — V*Q(0;0).

The theorem then follows from combining the two equations above and the Linear Convergence Theorem,p(dvid@’lL) <
1. To prove this, we parallel an argument of Green [12}x i an eigenvalue of — Q 'L, then|T — Q'L — oI| = 0, hence
(1 -a)Q — L| =0. SinceQ = H+ L, |(1 - a)H — oL| = 0. Thus, by assumption (iii), we must hauwec [0, 1), hence
p(I-Q'L) <1 O

Since@ = H + L, whereH is a conditional Fisher information matrix, one sees from (3) that if a larger complete-data space
has more Fisher information, then the corresponding root-convergence factor will be larger, and the asymptotic convergence rate
will be slower. This is the idea behind the next lemma and theorem, the main results of this section.

Lemma 1:If (i) Qg = H + L, whereH is symmetric nonnegative definite afids symmetric positive definite, and () , =
Qg + N whereN is symmetric nonnegative definite, theg < pa, whereps = p (I — Q;'L) andpg = p (I — Q5'L).
Furthermore, ifN is symmetric positive definite, them < pa.

Proof: Again we borrow from Green [12]. By the arguments in Theorerd K pa < 1 and0 < pg < 1. Sincepg =

p(I-Qz" ) Ju # 0.t (I-Qg'L)yu= pot, so(1— pp)Qpu — Lu = 0. By (i), (1 — pB)Qau — Lu = (1 - pB)Nu
so (1 — pB)QAu — QAQLu =(1- pB)QAzNu Definingv = QAu It fOIIOWS that(1 — pg)v'v — v’QAzLQA v =
(1—pB)v ’C)A2NQA v > 0, if N is nonnegative definite. Hence[I — C)A2LQA ]'v > ppv'v, sop(I — QA2L62A 2) > pB.
But p(I — QA LQ,> ) =p(I — Q" L) = pa, SOpa > pp. The case wheiN is positive definite is similar. ]

Theorem 2:f (i) Ga andGy are two EM algorithms that satisfy the conditions of Theorem 1 and that correspond to complete-
data spaceX , andX g respectively, (i)X g is a subset oKX a, i.e., X a = [ X5, XL], (iii) fa(za|y;0) = fa([zs,zo]|y; 0) =
fe(xBly; 0) fo(xo|y; 0), and (V) fo(xo|y; 0) = fo(xo;0), ie., X, is extraneous complete-data, then algoriBroonverges
faster than algorithm asymptotically at a common fixed poiit.

Proof By integrating (i) and using (iv), one sees that(xa; 0) = fa([zs, z.];0) = fa(zp;0)f.(x.;0). LetQa and@p
denote the&) function (1) forX 5 and X g respectively, then

Qa(0;0) = /log fa(a;0) fa(zaly; 0) dea

- / log fa (w5, z.); 0) fa (s, zo)ly; 0) dws da.
- / log(fis (5 0) fo (0 0)) fi(@ny: 0) o (ely: 0) das daze
- / log f5(x5: 0) fu(enly: 0) den

+/10gf0(330;é) Jo(xo; 0) dx,

= Q5(6;0) + E{log f-(X;0);6}.
Therefore,
—V2Q4(0;0) = —V?°Q5(6;0) + J.(0),

wheredJ, (0) is the Fisher information matrix for the extraneous complete &af@t 6. The conclusion then follows from Lemma
1 and Theorem 1. m|

In summary, Theorem 2 shows that a complete-data space with extraneous variables will lead to an EM algorithm with slower
convergence Our derivation of this theorem relies on several assumptions, including convergence to an interior point, and strict
concavity of the likelihood. The applicability of these assumptions in the PET context is discussed in the next section.

2We have since shown in [13] that Theorem 2 is true under considerably less restrictive conditions than (ii)-(iv), but this version is sufficignirfursiae of
this paper.
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I1l. PET RECONSTRUCTION
A. Two complete-data spaces

In this section, we briefly review the two PET reconstruction algorithms investigated in [1], and then discuss their convergence
rates. For simplicity, we assume that the object is discretizedBntoxels, and denote the radioactivity in thid voxel by \,.

PET measurements are acquired usihgletector pairs, with the number of counts recorded bydthepair denoted’;. The
iterative algorithms attempt to estimale= [Aq,..., ]’ (corresponding to the parame#iin the preceding section) from a
realizationy of Y = [Y1,...,Yp]’. The parameterdomainB={A: X\, >0, b=1,...,B}.

Let pgp denote the point-spread function of the system, normalized s@ﬁg} pap = 1. Letg, denote the detection probability
for an unattenuated event originating in vokebnda, denote the survival probability, assumed known here, for a photon pair
emitted towards thdth detector pair. Then,wg;, is the probability that an event in voxkls detected by théth detector pair,
wherewa, = papgy. Let Ny, denote the number of events from vokelontributing to detector pait; the Ng;,'s have independent
Poisson distributions with meanagwg,Ay. Let Ry denote the number of accidental coincidences counted by detectat; jiaér
R,’s have independent Poisson distributions with megrmssumed known. The total counts in thik detector pair is then

B
Yy=> Nap+Ra, d=1,...,D. (4)
b=1

The two EM algorithms described in [1] were called ML-IA and ML-IB. The complete-data space for ML-IB is

d=1,...
b=1

D
B

X1 = {{Nav}, {Ral}}, ’

geeey

Under the distributions given above,

Mb

log fiB(X18; A —rq + Rglog(ra))
d:l
D B ) )
+ Z Z (—adwdb)\b + Nap log(adwdb)\b)) . (5)
d=1b=1
It follows from (4) that [1]
QaWapAb
E{N, ; = —_—
Nalyi A} = wa=g o (6)
Td
E{Rily; A} = yg—ov, 7
{Raly; A} Yag N (7)
where
Ja(A) = aqwapXs + Ta. (8)
b=1
Combining equations (5)-(7) and (1) yields
D
S x) .
QB(A;A) ;( 7"d+ydg ()\) 0g(¢d)>
D B \ )
+>N ( arqwap Ny + Y e 2L IOg(adwdb)\b)> . )
== Ja(N)

Maximizing Qig(X; A) over A yields the ML-IB iteration\"t* = Gy ("), where

Gre(A) A0 W (aoyogN) o [Wal,

a=ay,...,ap|, gA) = [1(A), ..., 9pN)]), W = {wgp}, andr = [r1,...,rp|". The symbolss and@ denote component-
wise multiplication and division respectively.
The complete-data spadé;a for ML-1A is

. d=1,...,D
Xia = {{Na}, {Ra}, {N3}}, b=1,...,B "’
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which includes not only the componentsXfg, but also the attenuated couX§,. These have independent Poisson distributions
with mean(1 — aq)wapAp. Thus,

log fia(X1a;A) = log fi8(X18; A) + log fo (N A), (10)

where _
log fo(N°;A) =

D B
Z Z 1 — Oéd wdb)\b + Ndb log((l - ad)wdb)\b)) (11)
=1b=1

d
SinceNj, makesno contributionto the measuremenis,
E{Ng|y; A} = (1 — ag)wap Ao (12)

Combining equations (10)-(12) and (1) yields

D B
Qia(AA) = Qis(AA) + ZZ (1 — aa)wapAe
d—=1b=1
+ (1= ag)wapAs log((1 — aa)wapAs)) -

Maximizing Q1 (X; A) over yields the ML-IA iterationA”" = Gya ('), where

Gia(A) 2 A—2A0 (Wa)o (W'1)
+ Ao W (aoyog(Nh) o W]

The vectorl is theD x 1 vector of 1's.
Note that the fixed point(s) @i andGig are identical, and if there were no attenuation,de= 1, then the two algorithms
would be identical.

B. Convergence rates

Since the complete-data spakg, contains the attenuated eveA§, that do not contribute to the measurements, conditions
(ii)-(iv) of Theorem 2 are satisfied. Before invoking Theorem 2 to conclude that ML-IB is faster, we must verify condition (i) of
Theorem 2, including strict concavity, convergence of the algorithms, and convergence to an interior point. Under the assumption
of strict concavity, discussed further below, one can apply the same arguments as in the appendix of [4] to show that ML-IA
and ML-IB converge globally to the same estimate. (Strict concavity is a sufficient condition for convergence, but it may not be
necessary.) From (4) and (8),

MD

L(X) =logg(y; A ) + yalog(ga(N))) (13)
d:l
so the Hessian of the likelihood is

VZL(A) = -W'diag{y 2 4°(\) © o} W. (14)

For strict concavity it is sufficient to have,yg > 0,Vd, providedW has full column rank. In the presence of accidental
coincidences, all PET detectors record nonzero coincidences with very high probability. For an appropriate sampling scheme and
a well-designed PET syster#i” should have full column rank. W is not full rank, such as when “too many” pixels are used,

then the ML estimate is not unique, and the likelihood criterion is inappropriate. In such cases a penalized likelihood estimate is
preferable, as we discuss in Section V. We conclude then, thatWihe full rank, and if the ML estimate is strictly positive, then

the ML-IB algorithm converges faster than ML-IA.

Unfortunately, in most cases the ML estimate in PET will have components that are zero [14], i.e., not in the intBrior of
Strictly speaking, the above analysis is inconclusive for such examples. How likely is it that ML-IB, with its smaller complete-
data space, would converge slower than ML-IA simply because some of the components converge to zero? In the next section we
explore this question by considering a one-dimensional analogue.
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C. Scalar example

One can obtain some insight into the convergence behavior of these two algorithms by considering the following scalar version
of the problem. Suppose the measurement model is:

y ~ Poisson(a\ + r)

where the attenuatiom € (0, 1) and the accidental coincidence rate- 0 are known. In this case, the ML estimate for emission
rateX overD = {A: A > 0} is given by:
X:maX{O,y_r},
a

a truncated subtraction. The ML-1A and ML-IB algorithms are given respectively by the maps

Y
a\+r

Gia(AN) =1 —a)A+ Aa

and

o Yy
Gip(}) = )\a)\ +r

Note that in the absence of attenuatian=£ 1), the two algorithms are identical. One can also verify that both algorithms are
globally convergent i’ > 0. Differentiating:

d B ayr
P P
d yr

aGIB()‘) (Cl)\-l-’l“)Q’

so in particular

y'r
d d

PAZEGIA()\”}\ = 1—G+G5GIB()\)|5\

“iialps-1) > g, (15)

showing that the root-convergence factor for ML-IB is smaller than that of ML-IA. Does ML-IB converge faster? There are three
cases to consider.

Case 1: Ify > r, then both estimates convergeXa> 0, at asymptotic rates governed by the Linear Convergence Theorem, so
by (15), ML-IB converges faster.

Case 2: Ify < r, then both estimates convergefto: 0, on the boundary oD, so at first it seems that the Linear Convergence
Theorem does not apply. Howeveryif> 0 then we can actually make the object domain slightly larger, ay:= {A : A >
—1r/a}, sinceGia andG;p are both differentiable o®_. Directly applying the Linear Convergence Theorem@ga andGig

using (15) shows that if < r, then ML-IB converges faster than ML-IA even though the ML estimate is O!

Case 3: Ify = r, thenps = pp = 1, so the asymptotic convergence rate is not well defined by the Linear Convergence Theorem.
However, sincey is an integer number of counts, ands a real number, the outcomge= r seems rather unlikely in practice. For

a non-asymptotic comparison, one can verify that it 0, then

IGis(A) — Al < |Gra(N) — A, (16)

so the ML-IB algorithm takes larger steps towards the ML estimate than the ML-IA algorithm. Therefore, even though the
convergence is sub-linear when= r, the ML-IB algorithm will converge faster in a sub-linear sense.

In summary, we have shown that under this scalar model, ML-IB usually has faster asymptotic convergence rate than ML-IA,
and always takes larger steps (16). It is difficult to predict what the analogous boundary situations would be in higher dimensions.
The fact that there exists a situation whe(®G) = 1 even in the scalar case suggests that a comprehensive rigorous comparison
of ML-1B and ML-IA will be difficult to obtain.

IV. JOINT ESTIMATION OF o« AND A\

As in [1], the above discussion assumed that the survival probabititiesere known exactly. In practice, one estimates
these survival probabilities from transmission measurements acquired prior to the emission sddéndeabte the transmission
measurement, with realizationg, for the dth detector pair. It is reasonable to assume thatMfy&s have independent Poisson
distributions with meangaq, wheret, is proportional to the transmission scan tfnaad the efficiency of thdth detector pair.

3We cannot apply Theorem 1 to this larger domain sifl¢g andQrp are not differentiable at 0.

“Here, we ignore the statistical uncertainty in the accidental coincidences measurement, the statistical uncertainty in the blank scan, intitire aont
accidental coincidences to the transmission measurements. For a more complete treatment, see [8].
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The ty factors are determined by a “blank scan,” i.e. a transmission scan without the patient in the scanner. The conventional
approach is simply to estimate; by m /¢4, and to “precorrect” the emission measurements. The approach suggested in [8] is to
jointly estimate\ anda from y andm = [m4, ..., mp]’ by maximizing the joint log-likelihood:

L(6) = logg(y, m; A\, @) = log g(y; A, &) + log g(m; o)

D
= " (=9a(0) + yalog(§a(8)) — tacea + malog(tacra)) ,
d=1
wheref = {\, a} andy,(0) = szl agwapAp + r4. It follows that
—~V2L(6) =
w0 0 0 W 0
[0 I}(K(a)—i—[ﬂ diag{m © o} })[O I]’
where
K(0) =

[ diag{y © 9°(8) ® a?} diag{1 -y oroy*0)} }
diag{1 —yor0¢*@)} diag{y 2 4°(0) © (WA)?}
Thus, L(0) is not necessarily strictly concave, and convergence of the two EM algorithms discussed below remains an open
problem.
As in Section I, we again have the option of including or excluding the attenuated emigéfprisom the complete-data
space, leading to two algorithms we denote ML-JA and ML-JB.
For ML-JB, the complete data consists of

d=1,...

X5 = {Nav}, {Ra}, {Ma}}, """

so )
log fi(XB;0) =

D B
> Y (—aawanhs + Naylog(aawas s))
d=1b=1

D D
+ Z —rq+ Ry log Td + Z —tqag + My log(tddd)) .
d=1 d=1

It is easily verified that

O qWapAp
E{Naply,m;0} = ya O
E{Raly,m;0} = yur— s,
4a(0)
E{M4ly,m;0} = mg;
therefore,
Qi(6;0) =

D

A
SN < Gawap Ny + Yo e 10g(adwdb)\b)>
it 9a(0)

D
+Z —Td+ YdTp7 (0 log(rq > + Z —tq@qg + mqlog(tqda)) -
)

Setting the derivatives @ ;5(+, 0) to zero yields the following equatlons for the M-step:

D

O qWapAp
0 = adwdb—i—ydi Ab)
;( 9a(0) /
= QgWapA
0 = waphs + Ya—— /5y > —tqg +mgq/ay,
(- 5a0) ' /

b=1



IEEE Trans. on Nuclear Science, 40(4):1055-61, Aug. 1993
IV JOINT ESTIMATION OF oo AND X\ 8

yielding the pseudo-iteration:

AT = XNo[W(e'oyoy(6))oWa,
o™ = [yog@)oat o (WA) +m|o (WA + ¢,
wheret = [t1,...,tp]’. This set of equations is coupled M™* andai*!, and no analytical solution seems likely. However,

they can form the basis for a GEM algorithm [8, 13].
Fortunately, the equations become uncoupled when using the less parsimonious complete-data space for ML-JA. Let

XA = {{Ndb}v {Rd}v {Md}7 {N:i)b}}’ Z:i::.’::g ’

then

log f3a(X3a;6) = log fi8(X;B;0)

D B
+ Z Z (—(1 - dd)wdbij + N:ijb 10g((1 - @d)wdbj\b)) .
d=1b=1

SinceNy, is independent of the measurements,
E{Ng|y,m; 0} = (1 — aa)wap s,
thus

D B
Q1a(0:0) = QB (6;0) + > D (—(1 - aa)wars
d=1b=1
+(1 — aq)wapXs log((1 — dg)wapAs)) -
Setting the derivatives @4 (-, @) to zero yields the following equations for the M-step:

o
1
Wt

AgWapAp ~
<—5édwdb + yd%/)\b)>

I
WE

(—(1 — dd)wdb + (1 — ozd)wdb)\b/;\b)) ,

Il
_

S
I
= .

OqWELNy , _ )

<_wdb)\b+yd 72(0) /@)

o
=

+

—~

—tqg+ma/aq))

+

M=

(wdbj\b + (1 — ad)wdb)\b/(l - dd)) .

i
1

This set of equations is uncoupled¥i™ anda*!, and yields the ML-JA iteration:
AT = XN -XNo(Wa)o (W)
+ NoWi(aoyoy)) oW1,
and

t = [(WA)oad' oyoyd')+m|oa'™
- (WX e@-a)o@d-ath,
where the latter is an easily solved quadratiaift®. The resulting joint emission/transmission estimation algorithm is only

slightly more computationally expensive per iteration than the ML-IA or ML-IB algorithms of [1], yet it accounts for the statistical
uncertainty in both the emission measurements and the transmission measurements, unlike ML-1A and ML-IB.
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V. DISCUSSION

We have shown that smaller complete-data spaces yield EM algorithms with faster asymptotic convergence. This theoretical
result, combined with the empirical results in [1] suggests strongly that the ML-IB algorithm should be used in practice over the
ML-IA algorithm. The heuristic explanation for this is that the complete-data space for ML-IA includes the attenuated events that
make no contribution to the measurements. Since EM algorithms are notorious for slow convergence, this comparison has practica
importance. Even a small decrease in the root-convergence factor can significantly reduce the required number of iterations.

We have also shown that the story gets more complicated if one wants to jointly estimate both the emission and the transmission
parameters. In this case, although theoretically ML-JB would converge faster than ML-JA, the M-step of ML-JB seems intractable.
We are currently investigating a space-alternating approach that may circumvent this problem [13]. Meanwhile, it appears that the
best strategy is the followingise the smallest complete-data space that results in a tractable maximization step

Several investigators have shown that more appealing images are produced by regularizing the ML estimate by including a
penalty term or Bayesian “prior” [12, 15-18]. In principle, our Theorems 1 and 2 directly generalize to the case where concave
penalties such as those discussed in [18] are added to the likelihood, again supporting the conclusion that smaller complete-
data spaces correspond to faster convergence. There is one important caveat however: except in the trivial case of independel
priors, the maximization steps of penalized EM algorithms become intractable due to the coupling introduced by the penalties.
Consequently, the algorithms for the penalized case are usually of the generalized EM (GEM) type [3,16]. GEM algorithms
only provide an increase i@ (6, Gi) at each iteration, rather than truly maximizi@g Therefore, GEM algorithms do not usually
satisfy condition (ii) of our Theorem 1. They are also usually not globally convergent unless line-searches are employed [18].
These factors inhibit making formal statements about asymptotic convergence rates for penalized likelihood algorithms. We have
implemented penalized-likelihood algorithms based on Hebert's GEM strategy [16] for both the ML-IA and ML-IB complete-
data spaces. We have also implemented both ML-IA and ML-IB with sieve constraints [1, 8, 19]. We found empirically that the
penalized ML-IB algorithm converged substantially more rapidly, in terms of both likelihood increase and apparentimage contrast.
These empirical results are further motivation for using smaller complete-data spaces where possible.
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