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Abstract
As investigators consider more comprehensive measurement models for emission tomography, there will be more choices for

the complete-data spaces of the associated expectation-maximization (EM) algorithms for maximum-likelihood (ML) estimation.
In this paper, we show that EM algorithms based on smaller complete-data spaces will typically converge faster. We discuss
two practical applications of these concepts: (i) the ML-IA and ML-IB image reconstruction algorithms of Politte and Snyder [1]
which are based on measurement models that account for attenuation and accidental coincidences in positron-emission tomography
(PET), and (ii) the problem of simultaneous estimation of emission and transmission parameters. Although the PET applications
may often violate the necessary regularity conditions, our analysis predicts heuristically that the ML-IB algorithm, which has a
smaller complete-data space, should converge faster than ML-IA. This is corroborated by the empirical findings in [1].

I. I NTRODUCTION

The ML criterion for tomographic image reconstruction has received considerable attention since Shepp and Vardi [2] introduced
an EM algorithm for computing ML estimates. Although the medical imaging community often refers to “the” ML-EM algorithm,
there are in fact a multitude of feasible EM algorithms, each based on a different complete-data space. A useful complete-data
space supplements the observed measurements in a way that facilitates parameter estimation [3]. Although only one complete-data
space has been suggested for PET under the simple measurement model used in the early papers [2,4], there will be more choices as
investigators consider more comprehensive measurement models, such as those accounting for photon attenuation [5], accidental
coincidences [1], deadtime, and scatter [6,7]. This paper illustrates the importance of parsimony in choosing complete-data spaces,
and some of the tradeoffs that result.

Accurate quantification of radiotracer activity using PET must include corrections for the effects of attenuation and accidental
coincidences. Recently, Politte and Snyder proposed two ML-EM algorithms for PET image reconstruction that directly incor-
porate the effects of known attenuation and accidental coincidences into the statistical measurement model [1]. The algorithms
are based on two different complete-data spaces, one of which is a subset of the other. They observed in experiments that the
algorithm based on the smaller complete-data space converged faster. In this paper we corroborate their observations by proving
that smaller complete-data spaces yield EM algorithms with faster asymptotic convergence rates.

The measurement models used in [1] assumed exact knowledge of the survival probabilities, the probability that both photons of
a positron-produced pair escape unattenuated. In practice, one must obtain these factors experimentally, typically by a transmission
scan that precedes the radiotracer injection. As mentioned in [1], a more accurate approach would account for the statistical
uncertainties in both the emission data and the transmission measurements. An iterative method for simultaneously estimating
the emission intensities and the survival probabilities has been recently proposed by Clinthorneet al. [8]. In this paper, we
present two algorithms for joint emission/transmission estimation based on generalizations of the two complete-data spaces in [1].
We demonstrate that although the smaller complete-data space may provide a faster algorithm in theory, in practice the larger
complete-data space leads to an EM algorithm with an easier maximization step. Such tradeoffs have been observed in other EM
applications [3], but they may be particularly important to future investigations of PET reconstruction methods because of the
large dimensions of the parameter spaces.

In Section II, we briefly review the EM algorithm, and prove that smaller complete-data spaces result in faster convergence.
This is applied to PET in Section III. In Section IV we analyze the joint emission/transmission estimation method for PET.

II. T HEORY

A. EM algorithm

We observey, a realization of a random vectorY having known densityg(y;θ), with the goal of computing the ML estimate
of θ. In many problems, including emission tomography, the measurements are “incomplete” in the sense that several components
of θ may contribute to each component ofY . In such problems one can often postulate a “complete data” random vectorX that
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is more naturally related to the parameter vectorθ, and is related to the observed measurements by a many-to-one mappingY =
h(X). The densityf(x;θ) of the complete dataX must be consistent with the incomplete dataY in that:

g(y;θ) =

∫
{x:y=h(x)}

f(x;θ) dx.

Let
Q(θ̄;θ)

4
= E

{
log f(X; θ̄) |Y = y;θ

}
(1)

=

∫
log f(x; θ̄) f(x|Y = y;θ) dx

= H(θ̄;θ) + L(θ̄), (2)

where

H(θ̄;θ)
4
= E

{
log f(X|Y = y; θ̄) |Y = y;θ

}
,

L(θ)
4
= log g(y;θ).

The EM algorithm for ML estimation [3], calls for iterating over the following steps:
E-step:

ComputeQ(θ;θi),

M-step:
θi+1 = argmax

θ
Q(θ;θi),

whereθi denotes the parameter estimate after theith iteration. Note that by Jensen’s inequality [3]:

H(θ̄;θ) ≤ H(θ;θ) ∀θ̄,

so the EM algorithm produces a likelihood sequenceL(θi) that is monotonically increasing. The basic idea is to computeQ,
the conditional expectation of the complete data given the most recent parameter estimate, and then to maximize the parameter’s
likelihood as if one had observed the complete data [3]. The EM algorithm is most useful when the complete-data space is chosen
such thatQ(θ;θi) can be maximized analytically for the M-step, although other approaches are possible [9].

B. EM convergence rate

Several investigators have observed empirically that larger complete-data spaces correspond to slower EM convergence [3, pp.
25,34]. In this section we formally establish a version of this result. For our purposes, asymptotic convergence rate is defined by
the following well known result [10, p. 301].

Linear Convergence Theorem:If (i) G : D ∈ <n → <n has a fixed pointθ? ∈ D+ = int(D), (ii) G is Fréchet differentiable at
θ?, and (iii) ρ(∇1G(θ?)) < 1, whereρ() denotes spectral radius1, then the root-convergence factor [10, p. 288]R1 atθ? for the
iterative processθi+1 = G(θi) is given byR1(G,θ

?) = ρ(∇1G(θ?)).

This leads to the following definition of convergence rate for EM algorithms corresponding to strictly concave likelihood func-
tions [3].

Theorem 1:Let θi+1 = G(θi) define the iterations for an EM algorithm such that (i)G andθ? satisfy conditions (i) and (ii)
of the Linear Convergence Theorem, (ii)G is defined by solving the system of equations∇10Q(θ̄;θ)|¯θ=G(θ)) = 0, and (iii)

L
4
= −∇2L(θ?) is positive definite, then the root-convergence factor atθ? for the EM iterationG is

R1 = ρ
(
I −Q−1L

)
< 1, (3)

whereI is then× n identity matrix andQ
4
= −∇20Q(θ?;θ?).

Proof:H
4
= −∇20H(θ?;θ?) is nonnegative definite since it is a (conditional) Fisher information matrix [11, p. 126]. From (2),

Q =H +L, so by (iii),Q is positive definite and therefore invertible. From (ii) we see that∇10Q(G(θ);θ) = 0, which can be
differentiated again to yield∇20Q(G(θ);θ)∇1G(θ) +∇11Q(G(θ);θ) = 0. Therefore,

∇1G(θ?) = −(∇20Q(θ?;θ?))−1∇11Q(θ?;θ?),
1The(n,m) element of thedim(θ) by dim(θ) matrix∇1G is ∂/∂θmGn(θ). In general, thedim(θ) by dim(θ)matrix∇ijF (θ̄; θ) denotes the matrix of

partials∂i+jF (θ̄; θ)/∂θ̄i∂θj .
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sinceG(θ?) = θ? by (i). But it is well known [3] that forθ ∈ D+

∇11Q(θ;θ) = ∇11H(θ;θ) = −∇20H(θ;θ)

= ∇2L(θ)−∇20Q(θ;θ).

The theorem then follows from combining the two equations above and the Linear Convergence Theorem, providedρ
(
I −Q−1L

)
<

1. To prove this, we parallel an argument of Green [12]. Ifα is an eigenvalue ofI −Q−1L, then|I −Q−1L− αI | = 0, hence
|(1 − α)Q − L| = 0. SinceQ = H + L, |(1 − α)H − αL| = 0. Thus, by assumption (iii), we must haveα ∈ [0, 1), hence
ρ
(
I −Q−1L

)
< 1. 2

SinceQ =H +L, whereH is a conditional Fisher information matrix, one sees from (3) that if a larger complete-data space
has more Fisher information, then the corresponding root-convergence factor will be larger, and the asymptotic convergence rate
will be slower. This is the idea behind the next lemma and theorem, the main results of this section.

Lemma 1:If (i) QB =H +L, whereH is symmetric nonnegative definite andL is symmetric positive definite, and (ii)QA =
QB +N whereN is symmetric nonnegative definite, thenρB ≤ ρA, whereρA = ρ

(
I −Q−1A L

)
andρB = ρ

(
I −Q−1B L

)
.

Furthermore, ifN is symmetric positive definite, thenρB < ρA.
Proof: Again we borrow from Green [12]. By the arguments in Theorem 1,0 ≤ ρA < 1 and0 ≤ ρB < 1. SinceρB =

ρ
(
I −Q−1B L

)
, ∃u 6= 0 s.t.(I −Q−1B L)u = ρBu, so(1− ρB)QBu −Lu = 0. By (ii), (1 − ρB)QAu −Lu = (1 − ρB)Nu,

so (1 − ρB)Q
1
2

Au − Q
− 12
A Lu = (1 − ρB)Q

− 12
A Nu. Definingv = Q

1
2

Au, it follows that (1 − ρB)v′v − v′Q
− 12
A LQ

− 12
A v =

(1−ρB)v′Q
− 12
A NQ

− 12
A v ≥ 0, if N is nonnegative definite. Hence,v′[I−Q

− 12
A LQ

− 12
A ]v ≥ ρBv

′v, soρ(I−Q
− 12
A LQ

− 12
A ) ≥ ρB.

But ρ(I −Q
− 12
A LQ

− 12
A ) = ρ(I −Q

−1
A L) = ρA, soρA ≥ ρB. The case whenN is positive definite is similar. 2

Theorem 2:If (i) GA andGB are two EM algorithms that satisfy the conditions of Theorem 1 and that correspond to complete-
data spacesXA andXB respectively, (ii)XB is a subset ofXA, i.e.,XA = [X

′
B,X

′
◦]
′, (iii) fA(xA|y;θ) = fA([xB,x◦]|y;θ) =

fB(xB|y;θ)f◦(x◦|y;θ), and (iv)f◦(x◦|y;θ) = f◦(x◦;θ), i.e.,X◦ is extraneous complete-data, then algorithmB converges
faster than algorithmA asymptotically at a common fixed pointθ?.

Proof: By integrating (iii) and using (iv), one sees thatfA(xA;θ) = fA([xB,x◦];θ) = fB(xB;θ)f◦(x◦;θ). LetQA andQB
denote theQ function (1) forXA andXB respectively, then

QA(θ̄;θ) =

∫
log fA(xA; θ̄) fA(xA|y;θ) dxA

=

∫
log fA([xB,x◦]; θ̄) fA([xB,x◦]|y;θ) dxB dx◦

=

∫
log(fB(xB; θ̄)f◦(x◦; θ̄)) fB(xB|y;θ)f◦(x◦|y;θ) dxB dx◦

=

∫
log fB(xB; θ̄) fB(xB|y;θ) dxB

+

∫
log f◦(x◦; θ̄) f◦(x◦;θ) dx◦

= QB(θ̄;θ) + E{log f◦(X◦; θ̄);θ}.

Therefore,
−∇20QA(θ;θ) = −∇

20QB(θ;θ) + J◦(θ),

whereJ◦(θ) is the Fisher information matrix for the extraneous complete dataX◦ atθ. The conclusion then follows from Lemma
1 and Theorem 1. 2

In summary, Theorem 2 shows that a complete-data space with extraneous variables will lead to an EM algorithm with slower
convergence2. Our derivation of this theorem relies on several assumptions, including convergence to an interior point, and strict
concavity of the likelihood. The applicability of these assumptions in the PET context is discussed in the next section.

2We have since shown in [13] that Theorem 2 is true under considerably less restrictive conditions than (ii)-(iv), but this version is sufficient for thepurposes of
this paper.
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III. PET RECONSTRUCTION

A. Two complete-data spaces

In this section, we briefly review the two PET reconstruction algorithms investigated in [1], and then discuss their convergence
rates. For simplicity, we assume that the object is discretized intoB voxels, and denote the radioactivity in thebth voxel byλb.
PET measurements are acquired usingD detector pairs, with the number of counts recorded by thedth pair denotedYd. The
iterative algorithms attempt to estimateλ = [λ1, . . . , λB]′ (corresponding to the parameterθ in the preceding section) from a
realizationy of Y = [Y1, . . . , YD]′. The parameter domain isD = {λ : λb ≥ 0, b = 1, . . . , B}.

Letpdb denote the point-spread function of the system, normalized so that
∑D
d=1 pdb = 1. Letqb denote the detection probability

for an unattenuated event originating in voxelb, andαd denote the survival probability, assumed known here, for a photon pair
emitted towards thedth detector pair. Thenαdwdb is the probability that an event in voxelb is detected by thedth detector pair,
wherewdb = pdbqb. LetNdb denote the number of events from voxelb contributing to detector paird; theNdb’s have independent
Poisson distributions with meansαdwdbλb. LetRd denote the number of accidental coincidences counted by detector paird; the
Rd’s have independent Poisson distributions with meanrd, assumed known. The total counts in thedth detector pair is then

Yd =
B∑
b=1

Ndb +Rd, d = 1, . . . , D. (4)

The two EM algorithms described in [1] were called ML-IA and ML-IB. The complete-data space for ML-IB is

XIB = {{Ndb}, {Rd}},
d = 1, . . . , D
b = 1, . . . , B

.

Under the distributions given above,

log fIB(X IB; λ̄) =

D∑
d=1

(−rd +Rd log(rd))

+

D∑
d=1

B∑
b=1

(
−αdwdbλ̄b +Ndb log(αdwdbλ̄b)

)
. (5)

It follows from (4) that [1]

E{Ndb|y;λ} = yd
αdwdbλb

ŷd(λ)
(6)

E{Rd|y;λ} = yd
rd

ŷd(λ)
, (7)

where

ŷd(λ) =

B∑
b=1

αdwdbλb + rd. (8)

Combining equations (5)-(7) and (1) yields

QIB(λ̄;λ) =

D∑
d=1

(
−rd + yd

rd

ŷd(λ)
log(rd)

)

+

D∑
d=1

B∑
b=1

(
−αdwdbλ̄b + yd

αdwdbλb

ŷd(λ)
log(αdwdbλ̄b)

)
. (9)

MaximizingQIB(λ̄;λ) overλ̄ yields the ML-IB iterationλi+1 = GIB(λ
i), where

GIB(λ)
4
= λ� [W ′(α� y � ŷ(λ))]� [W ′α],

α = [α1, . . . , αD]
′, ŷ(λ) = [ŷ1(λ), . . . , ŷD(λ)]′,W = {wdb}, andr = [r1, . . . , rD]′. The symbols� and� denote component-

wise multiplication and division respectively.
The complete-data spaceX IA for ML-IA is

XIA = {{Ndb}, {Rd}, {N
◦
db}},

d = 1, . . . , D
b = 1, . . . , B

,
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which includes not only the components ofXIB, but also the attenuated countsN◦db. These have independent Poisson distributions
with mean(1 − αd)wdbλb. Thus,

log fIA(XIA; λ̄) = log fIB(X IB; λ̄) + log f◦(N
◦; λ̄), (10)

where
log f◦(N

◦; λ̄) =

D∑
d=1

B∑
b=1

(
−(1− αd)wdbλ̄b +N

◦
db log((1− αd)wdbλ̄b)

)
. (11)

SinceN◦db makesno contributionto the measurementsY ,

E{N◦db|y;λ} = (1 − αd)wdbλb. (12)

Combining equations (10)-(12) and (1) yields

QIA(λ̄;λ) = QIB(λ̄;λ) +

D∑
d=1

B∑
b=1

(
−(1− αd)wdbλ̄b

+ (1− αd)wdbλb log((1 − αd)wdbλ̄b)
)
.

MaximizingQIA(λ̄;λ) overλ̄ yields the ML-IA iterationλi+1 = GIA(λ
i), where

GIA(λ)
4
= λ− λ� (W ′α)� (W ′1)

+ λ� [W ′(α� y � ŷ(λ))]� [W ′1].

The vector1 is theD × 1 vector of 1’s.
Note that the fixed point(s) ofGIA andGIB are identical, and if there were no attenuation, i.e.α = 1, then the two algorithms

would be identical.

B. Convergence rates

Since the complete-data spaceXIA contains the attenuated eventsN◦db that do not contribute to the measurements, conditions
(ii)-(iv) of Theorem 2 are satisfied. Before invoking Theorem 2 to conclude that ML-IB is faster, we must verify condition (i) of
Theorem 2, including strict concavity, convergence of the algorithms, and convergence to an interior point. Under the assumption
of strict concavity, discussed further below, one can apply the same arguments as in the appendix of [4] to show that ML-IA
and ML-IB converge globally to the same estimate. (Strict concavity is a sufficient condition for convergence, but it may not be
necessary.) From (4) and (8),

L(λ) = log g(y;λ) =

D∑
d=1

(−ŷd(λ) + yd log(ŷd(λ))) , (13)

so the Hessian of the likelihood is
∇2L(λ) = −W ′ diag

{
y � ŷ2(λ)�α2

}
W . (14)

For strict concavity it is sufficient to haveαdyd > 0, ∀d, providedW has full column rank. In the presence of accidental
coincidences, all PET detectors record nonzero coincidences with very high probability. For an appropriate sampling scheme and
a well-designed PET system,W should have full column rank. IfW is not full rank, such as when “too many” pixels are used,
then the ML estimate is not unique, and the likelihood criterion is inappropriate. In such cases a penalized likelihood estimate is
preferable, as we discuss in Section V. We conclude then, that if theW is full rank, and if the ML estimate is strictly positive, then
the ML-IB algorithm converges faster than ML-IA.

Unfortunately, in most cases the ML estimate in PET will have components that are zero [14], i.e., not in the interior ofD.
Strictly speaking, the above analysis is inconclusive for such examples. How likely is it that ML-IB, with its smaller complete-
data space, would converge slower than ML-IA simply because some of the components converge to zero? In the next section we
explore this question by considering a one-dimensional analogue.
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C. Scalar example

One can obtain some insight into the convergence behavior of these two algorithms by considering the following scalar version
of the problem. Suppose the measurement model is:

y ∼ Poisson(aλ+ r)

where the attenuationa ∈ (0, 1) and the accidental coincidence rater ≥ 0 are known. In this case, the ML estimate for emission
rateλ overD = {λ : λ ≥ 0} is given by:

λ̂ = max

{
0,
y − r

a

}
,

a truncated subtraction. The ML-IA and ML-IB algorithms are given respectively by the maps

GIA(λ) = (1 − a)λ+ λa
y

aλ+ r

and
GIB(λ) = λ

y

aλ+ r
.

Note that in the absence of attenuation (a = 1), the two algorithms are identical. One can also verify that both algorithms are
globally convergent ifλ0 > 0. Differentiating:

d

dλ
GIA(λ) = (1− a) +

ayr

(aλ+ r)2

d

dλ
GIB(λ) =

yr

(aλ+ r)2
,

so in particular

ρB =
d

dλ
GIB(λ)|λ̂ = min

{
r

y
,
y

r

}

ρA =
d

dλ
GIA(λ)|λ̂ = 1− a+ a

d

dλ
GIB(λ)|λ̂

= 1 + a(ρB − 1) ≥ ρB, (15)

showing that the root-convergence factor for ML-IB is smaller than that of ML-IA. Does ML-IB converge faster? There are three
cases to consider.
Case 1: Ify > r, then both estimates converge toλ̂ > 0, at asymptotic rates governed by the Linear Convergence Theorem, so
by (15), ML-IB converges faster.
Case 2: Ify ≤ r, then both estimates converge toλ̂ = 0, on the boundary ofD, so at first it seems that the Linear Convergence
Theorem does not apply. However, ifr > 0 then we can actually make the object domain slightly larger, say:D− = {λ : λ ≥
− 1
2r/a}, sinceGIA andGIB are both differentiable onD−. Directly applying3 the Linear Convergence Theorem toGIA andGIB

using (15) shows that ify < r, then ML-IB converges faster than ML-IA even though the ML estimate is 0!
Case 3: Ify = r, thenρA = ρB = 1, so the asymptotic convergence rate is not well defined by the Linear Convergence Theorem.
However, sincey is an integer number of counts, andr is a real number, the outcomey = r seems rather unlikely in practice. For
a non-asymptotic comparison, one can verify that ifλ > 0, then

|GIB(λ)− λ̂| ≤ |GIA(λ)− λ̂|, (16)

so the ML-IB algorithm takes larger steps towards the ML estimate than the ML-IA algorithm. Therefore, even though the
convergence is sub-linear wheny = r, the ML-IB algorithm will converge faster in a sub-linear sense.

In summary, we have shown that under this scalar model, ML-IB usually has faster asymptotic convergence rate than ML-IA,
and always takes larger steps (16). It is difficult to predict what the analogous boundary situations would be in higher dimensions.
The fact that there exists a situation whereρ(∇G) = 1 even in the scalar case suggests that a comprehensive rigorous comparison
of ML-IB and ML-IA will be difficult to obtain.

IV. JOINT ESTIMATION OFα AND λ

As in [1], the above discussion assumed that the survival probabilitiesαd were known exactly. In practice, one estimates
these survival probabilities from transmission measurements acquired prior to the emission scan. LetMd denote the transmission
measurement, with realizationmd, for thedth detector pair. It is reasonable to assume that theMd’s have independent Poisson
distributions with meantdαd, wheretd is proportional to the transmission scan time4 and the efficiency of thedth detector pair.

3We cannot apply Theorem 1 to this larger domain sinceQIA andQIB are not differentiable at 0.
4Here, we ignore the statistical uncertainty in the accidental coincidences measurement, the statistical uncertainty in the blank scan, and the contribution of

accidental coincidences to the transmission measurements. For a more complete treatment, see [8].
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The td factors are determined by a “blank scan,” i.e. a transmission scan without the patient in the scanner. The conventional
approach is simply to estimateαd bymd/td, and to “precorrect” the emission measurements. The approach suggested in [8] is to
jointly estimateλ andα from y andm = [m1, . . . ,mD]′ by maximizing the joint log-likelihood:

L(θ) = log g(y,m;λ,α) = log g(y;λ,α) + log g(m;α)

=

D∑
d=1

(−ŷd(θ) + yd log(ŷd(θ))− tdαd +md log(tdαd)) ,

whereθ = {λ,α} andŷd(θ) =
∑B
b=1 αdwdbλb + rd. It follows that

−∇2L(θ) =[
W ′ 0
0 I

](
K(θ) +

[
0 0
0 diag

{
m�α2

} ])[ W 0
0 I

]
,

where
K(θ) =[

diag
{
y � ŷ2(θ)�α2

}
diag
{
1− y � r � ŷ2(θ)

}
diag
{
1− y � r � ŷ2(θ)

}
diag
{
y � ŷ2(θ)� (Wλ)2

}
]
.

Thus,L(θ) is not necessarily strictly concave, and convergence of the two EM algorithms discussed below remains an open
problem.

As in Section III, we again have the option of including or excluding the attenuated emissionsN◦db from the complete-data
space, leading to two algorithms we denote ML-JA and ML-JB.

For ML-JB, the complete data consists of

XJB = {{Ndb}, {Rd}, {Md}},
d = 1, . . . , D
b = 1, . . . , B

,

so
log fJB(XJB; θ̄) =

D∑
d=1

B∑
b=1

(
−ᾱdwdbλ̄b +Ndb log(ᾱdwdbλ̄b)

)

+

D∑
d=1

(−rd +Rd log(rd)) +
D∑
d=1

(−tdᾱd +Md log(tdᾱd)) .

It is easily verified that

E{Ndb|y,m;θ} = yd
αdwdbλb

ŷd(θ)
,

E{Rd|y,m;θ} = yd
rd

ŷd(θ)
,

E{Md|y,m;θ} = md;

therefore,
QJB(θ̄;θ) =

D∑
d=1

B∑
b=1

(
−ᾱdwdbλ̄b + yd

αdwdbλb

ŷd(θ)
log(ᾱdwdbλ̄b)

)

+

D∑
d=1

(
−rd + yd

rd

ŷd(θ)
log(rd)

)
+

D∑
d=1

(−tdᾱd +md log(tdᾱd)) .

Setting the derivatives ofQJB(·,θ) to zero yields the following equations for the M-step:

0 =

D∑
d=1

(
−ᾱdwdb + yd

αdwdbλb

ŷd(θ)
/λ̄b

)
,

0 =

B∑
b=1

(
−wdbλ̄b + yd

αdwdbλb

ŷd(θ)
/ᾱd

)
− td +md/ᾱd,
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yielding the pseudo-iteration:

λi+1 = λi � [W ′(αi � y � ŷ(θi))]� [W ′αi+1],

αi+1 = [y � ŷ(θi)�αi � (Wλi) +m]� [Wλi+1 + t],

wheret = [t1, . . . , tD]′. This set of equations is coupled inλi+1 andαi+1, and no analytical solution seems likely. However,
they can form the basis for a GEM algorithm [8,13].

Fortunately, the equations become uncoupled when using the less parsimonious complete-data space for ML-JA. Let

XJA = {{Ndb}, {Rd}, {Md}, {N
◦
db}},

d = 1, . . . , D
b = 1, . . . , B

,

then
log fJA(XJA; θ̄) = log fJB(XJB; θ̄)

+
D∑
d=1

B∑
b=1

(
−(1− ᾱd)wdbλ̄b +N

◦
db log((1 − ᾱd)wdbλ̄b)

)
.

SinceN◦db is independent of the measurements,

E{N◦db|y,m;θ} = (1 − αd)wdbλb,

thus

QJA(θ̄;θ) = QJB(θ̄;θ) +

D∑
d=1

B∑
b=1

(
−(1− ᾱd)wdbλ̄b

+(1− αd)wdbλb log((1 − ᾱd)wdbλ̄b)
)
.

Setting the derivatives ofQJA(·,θ) to zero yields the following equations for the M-step:

0 =
D∑
d=1

(
−ᾱdwdb + yd

αdwdbλb

ŷd(θ)
/λ̄b)

)

+
D∑
d=1

(
−(1− ᾱd)wdb + (1− αd)wdbλb/λ̄b)

)
,

0 =

B∑
b=1

(
−wdbλ̄b + yd

αdwdbλb

ŷd(θ)
/ᾱd)

)

+(−td +md/ᾱd))

+

B∑
b=1

(
wdbλ̄b + (1− αd)wdbλb/(1− ᾱd)

)
.

This set of equations is uncoupled inλi+1 andαi+1, and yields the ML-JA iteration:

λi+1 = λi − λi � (W ′αi)� (W ′1)

+ λi � [W ′(αi � y � ŷ(θi))]� [W ′1],

and

t = [(Wλi)�αi � y � ŷ(θi) +m]�αi+1

− [(Wλi)� (1−αi)]� (1−αi+1),

where the latter is an easily solved quadratic inαi+1. The resulting joint emission/transmission estimation algorithm is only
slightly more computationally expensive per iteration than the ML-IA or ML-IB algorithms of [1], yet it accounts for the statistical
uncertainty in both the emission measurements and the transmission measurements, unlike ML-IA and ML-IB.
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V. DISCUSSION

We have shown that smaller complete-data spaces yield EM algorithms with faster asymptotic convergence. This theoretical
result, combined with the empirical results in [1] suggests strongly that the ML-IB algorithm should be used in practice over the
ML-IA algorithm. The heuristic explanation for this is that the complete-data space for ML-IA includes the attenuated events that
make no contribution to the measurements. Since EM algorithms are notorious for slow convergence, this comparison has practical
importance. Even a small decrease in the root-convergence factor can significantly reduce the required number of iterations.

We have also shown that the story gets more complicated if one wants to jointly estimate both the emission and the transmission
parameters. In this case, although theoretically ML-JB would converge faster than ML-JA, the M-step of ML-JB seems intractable.
We are currently investigating a space-alternating approach that may circumvent this problem [13]. Meanwhile, it appears that the
best strategy is the following:use the smallest complete-data space that results in a tractable maximization step.

Several investigators have shown that more appealing images are produced by regularizing the ML estimate by including a
penalty term or Bayesian “prior” [12, 15–18]. In principle, our Theorems 1 and 2 directly generalize to the case where concave
penalties such as those discussed in [18] are added to the likelihood, again supporting the conclusion that smaller complete-
data spaces correspond to faster convergence. There is one important caveat however: except in the trivial case of independent
priors, the maximization steps of penalized EM algorithms become intractable due to the coupling introduced by the penalties.
Consequently, the algorithms for the penalized case are usually of the generalized EM (GEM) type [3, 16]. GEM algorithms
only provide an increase inQ(θ,θi) at each iteration, rather than truly maximizingQ. Therefore, GEM algorithms do not usually
satisfy condition (ii) of our Theorem 1. They are also usually not globally convergent unless line-searches are employed [18].
These factors inhibit making formal statements about asymptotic convergence rates for penalized likelihood algorithms. We have
implemented penalized-likelihood algorithms based on Hebert’s GEM strategy [16] for both the ML-IA and ML-IB complete-
data spaces. We have also implemented both ML-IA and ML-IB with sieve constraints [1, 8, 19]. We found empirically that the
penalized ML-IB algorithm converged substantially more rapidly, in terms of both likelihood increase and apparent image contrast.
These empirical results are further motivation for using smaller complete-data spaces where possible.
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