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Abstract
The conventional method for tomographic image reconstruction, convolution backprojection (CBP), attempts

to reduce the effects of measurement noise by radial smoothing with a spatially-invariant filter. Spatially-invariant
smoothing is suboptimal when the measurement statistics are nonstationary, and often leads to a choice between
oversmoothing or streak artifacts. In this paper, we describe a nonstationary sinogram smoothing method that ac-
counts for the relative variances between different detector measurements and for the finite width of tomographic
detectors. The method is based on an information-weighted smoothing spline, where the weights are determined
from the calibration factors and from the measurements themselves. This weighting diminishes the influence of high
variance measurements, such as detectors with relatively poor efficiency, which is shown to reduce streak artifacts.
Simulations of emission and transmission tomography applications demonstrate qualitatively improved image noise
structure and quantitative improvements in the tradeoffs between bias and variance.

I. INTRODUCTION

The CBP method for tomographic reconstruction is derived from a mathematical idealization of tomographic imag-
ing without consideration of statistical measurement errors. This idealization leads to the well-known ramp filter [1],
whose frequency response has the unfortunate effect of amplifying high-frequency measurement noise. The conven-
tional approach to reducing the effects of measurement noise is to apodize the ramp filter with a window function that
attenuates the high frequencies [1]. This windowing is equivalent to radially smoothing the projection measurements
with aspatially-invariantlow-pass filter. In high resolution tomographs, such as positron emission tomography (PET)
systems based on block detectors, large variations in detector efficiency lead to nonstationary variances. The equality
of Poisson mean and variance also leads to an object-dependent variance nonuniformity. Spatially-invariant smoothing
is suboptimal when the measurement statistics are nonstationary, since it treats all measurements equally. In this paper,
we describe an information-weighted spline smoothing approach that accounts for the relative variances of different
detectors.

When applying spatially-invariant filters to projection data with nonuniform variance, one faces two unattractive
alternatives: oversmooth most of the measurements so as to minimize the noise due to the more variable data, or
undersmooth the more variable data. The latter option often leads to streak artifacts in the reconstructed images, due
to the backprojection of noise that has been amplified by the ramp filter. (See Fig. 8 for an example.) To remove
these streak artifacts after reconstruction, Abidi and Davis [2] proposed a filtering method based on transforming the
reconstructed images from rectangular to polar coordinates. Sauer and Liu [3] describe a related method for images
composed of objects with known location, extent, and density. A fundamental difference between these approaches
and the spline method described below is that we perform nonstationary smoothing of the projection databeforeramp-
filtering and backprojecting. This approach has the advantage of “nipping in the bud” potential streaks before they are
created. It is also computationally less demanding since only one-dimensional operations are required.

The method we describe is not optimal; a more principled approach to remedying the statistical shortcomings of
CBP is iterative image reconstruction based on statistical models. In fact, our motivation for this study developed
from experiences with penalized weighted least-squares reconstruction [4]. In that work we have compared regularized
least-squares reconstruction with and without information weighting. The noise properties of information-weighted
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reconstructed images appeared superior to those of CBP, but the noise properties of unweighted reconstructions were
no better than those of CBP [4]. This suggests that accounting for the measurement statistics, or in particular the second
moments of those statistics, is central to the improvements in iterative methods. The spline method described below is
an attempt to capture part of the benefits of statistical modeling in a non-iterative algorithm.

Since computational considerations seem to still inhibit routine use of fully iterative methods, several investigators
have turned to partially iterative methods in which the projection measurements are first iteratively “restored” in sino-
gram space, and then CBP is applied to form the image [5–7]. These methods are particularly useful for systems with
spatially-variant detector response. Such restoration will require at least a partial deconvolution of the system response,
which leads to noise amplification. In this paper we focus on applications with poor measurement statistics, for which
noise amplification will generally be unacceptable. Therefore, our goal is somewhat more modest than attempting
to restore lost frequency components. We will accept reconstructed images whose resolution is somewhat below the
intrinsic system resolution, but as the image resolution decreases, the aim is to achieve greater variance reductions than
are yielded by ordinary CBP.

Section 2 describes the theory of the method, and the nonstationary characteristics of the method are illustrated in
Section 3. Section 4 summarizes the simulation results. Section 5 outlines some future directions for this study. The
details of the computation of the spline coefficients are described in the Appendix.
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Figure 1: Idealized 2D projection geometry showing the ideal responselφ(τ) and blurred responsepφ(τ) to a point
source as a function of angleφ and radial positionτ .

II. T HEORY

A. Projection Model

Let g(x1, x2) denote the object distribution being imaged, restricted to two dimensions for simplicity. The ideal
line-integral projection of this object at an angleφ and radial offsetτ is given by

lφ(τ) =

∫
g(τ cos φ− t sinφ, τ sinφ+ t cos φ) dt,

as shown in Fig. 1. Assume that the tomographic system has a detector response that is approximately depth indepen-
dent, and for the remainder drop the dependence onφ. The mean response of theith detector pair is approximately:

pi = Lil

where
Lil =

∫
hi(τ)l(τ) dτ (1)

andhi(τ) is the line response of the detector pair.



IPMI 1993, p. 372-86. This is an approximate reprint.
II THEORY 3

Actual detector measurements will fluctuate around the ideal valuepi according to a statistical model that depends
on the imaging modality. For PET, an approximate model for the number of coincidences measured by theith detector
pair is:

yi ∼ Poisson {cipi} ,

whereci is product of the effects of attenuation, detector efficiency, scan time, and deadtime losses. We refer to{ci} as
“calibration factors” since they are determined through normalization scans, blank scans, transmission scans, etc. For
simplicity we assume theci’s are known1. For transmission tomography, an approximate model is:

yi ∼ Poisson {ci exp(−pi)} ,

whereci is calibrated by a blank scan and is also assumed known. The next section describes a method for estimating
l(τ) from the measurements{yi}. After estimatingl− φ for each projection angleφ, we then apply ramp-filtered CBP
to reconstruct an estimate of the imageg.

B. Objective Function

In the interest of simplicity, we seek a quadratic objective function, so the first step is to transform and precorrect
the measurements. For emission tomography, letzi = yi/ci be the corrected sinogram measurement. Thenzi is an
unbiased estimate ofpi, and the variance ofzi is σ2i = pi/ci. Note that ifci is small, then the variance ofzi can be
very large. For transmission scans, letzi = log(ci)− log(yi+1/4), thenzi is a nearly unbiased estimate ofpi, and the
variance ofzi is approximatelyσ2i = e

pi/ci. Again, if ci is small (or ifpi is large), then the variance ofzi can be large.
The statistical dependence of the measurement variance on both the calibration factors{ci} and the projections{pi} is
disregarded by conventional linear smoothing methods.

We would like to recoverl(τ) from {zi}. Since direct deconvolution would be amplify the noise, we include a
smoothness constraints. Such smoothness constraints were also used by Hutchinset al.[8,9], although without variance
weighting.

Smoothing splines are naturally suited to problems with second-order statistics and smoothness constraints. There-
fore, we propose estimatingl(τ) using the the following penalized least-squares objective function:

l̂ = arg min
l∈Cm

n∑
i=1

(
1

wi

)2
(zi − Lil)

2 + β

∫
|∂ml(τ)/∂τm|2 dτ, (2)

whereCm is the class of functions on[τ l1, τ
r
n] whosemth derivatives are square integrable. This objective trades off

smoothness (measured by a squared derivative) and a weighted agreement with the measurements. The smoothing
parameterβ controls that tradeoff, and is analogous to the cutoff frequency of a CBP filter. In fact, one can show that if
the weights{wi} are identical, and the system is radially-invariant, then this generalize spline smoothing corresponds
to a Wiener filter with Butterworth regularization of order2m and half-power frequency that is a function ofβ [10].
In the tomographic applications of interest, the weights{wi} will be nonuniform, so the “impulse response” of the
smoothing spline will be spatially variant, as illustrated in the next section.

Ideally, we would like to havew2i = σ
2
i , in which casew−2i corresponds to the Fisher information forzi. In practice,

the variances{σ2i } of {zi} are not known exactly, so we base the weights{w2i } on estimates of the variance computed
from the measured data and the calibration factors. For emission tomography, an unbiased variance estimate is given
by σ̂2i = yi/c

2
i . Since this estimate may be unreliable for smallyi, a sensible weighting isw−2i = c2i /max{yi,K},

for someK > 0. For transmission tomography, a Taylor’s expansion [11] gives the following variance estimate:
1/σ̂2i = yi. For robustness to small projection measurements, we use the following weights:w−2i = max{yi,K}.
These data-based weightings introduce a slight nonlinearity into the estimation. If one desired linearity, for example
in order to apply a generalization of Huesman’s ROI formulae [12], then one could use weights determined only from
the relative calibration factors{ci}, and from the projection of a “prototypical object” such as a uniform disk. For
very noisy data, one could conceivably improve on this weighting scheme by applying iteratively reweighted least-
squares [13].

1Since we are interested primarily in the second-order statistics, the effects of accidental coincidences, scatter subtraction, noisy blank scans,
etc. could all easily be incorporated into this framework as well.
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As described in the Appendix, it follows from the Euler-Lagrange formulae for the variational problem (2) that
its minimizer is a spline of order2m. The spline has an even order because of our use of the integral modelpi =∫ τri
τ li
p(τ) dτ in (1). In the nonparametric regression literature, a point-sample modelpi = p(τi) is more conventional

(although see [14] for an exception). The point-sample model results in odd order splines, such as the popular cubic
spline form = 2. The integral approach more naturally captures the finite width of tomographic detectors.

As outlined in the Appendix, the coefficients of the smoothing spline are easily computed noniteratively using fast
banded-matrix operations [15]. The computation generally increases withm, so we focus our attention on the casem =
1. Despite this restriction, the simulations described in Section 4 demonstrate that the smoothing spline outperforms
Butterworth filters over a range of cutoff frequencies and orders.

The spline approach has two side benefits. In principle, one could replace the conventional linear interpolation
associated with pixel-driven backprojection with exact interpolations ofp(τ) computed from the spline coefficients.
However, in high noise applications in which significant smoothing will be required, a linear interpolator will often
suffice. More importantly, the spline approach directly accommodates unevenly spaced detector samples. This is
desirable for circular PET systems and many nonstandard tomographic systems [16]. It is perhaps worth emphasizing
in this context that we arenot simply performing spline interpolation. The function that minimizes (2) will in general
not pass through any of the measurements, except in the limit asβ → 0.
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Figure 2: Kernel response functions for two sets of weights. The solid lines represent the case when all weights are
unity. The open circles represent the case when all weights are unity exceptw−220 = 0.2. Note diminished response to
the more variable detector.

III. SPATIALLY VARIANT RESPONSEKERNEL

Although information-weighted spline smoothing is nonlinear and nonstationary, the nonlinearity enters only through
the dependence of the weights on the measurements. It follows from the derivation in the appendix that givenβ and the
diagonal weight matrixW , the estimate ofp(τ) given the measurement vectory = [y1, . . . , yn]′ is a linear function:

p̂(τ) =< k(τ ;β,W ),y >,

where< ·, · > denotes the standard inner product, and the kernel functionk() is a vector in<n for eachτ . Therefore,
by fixing the weights and examiningk(τ ;β,W ) for variousτ , one can obtain some insight into the nonstationarity
behavior.

Figure 2 illustrates two cases: 1) where the weights are all unity, and 2) where one weight is 20% of the others.
Except near the edges, the response for uniform weights is nearly spatially invariant. In the second case the response is
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nonstationary, since the contribution of the relatively more variable measurement is consistently diminished. In actual
practice, when each measurement has its own weight, the kernel response will be even more variable than those in
Fig. 2, with each kernel tailored to the variances of the neighboring detectors. This tailored response is the essence of
our approach.

IV. SIMULATION

Both ordinary CBP and information-weighted spline smoothing include parameters that control the tradeoff between
contrast and noise, or equivalently bias and variance. These parameters also influence the noise correlation structure.
Therefore, a meaningful comparison requires examining both methods over a range of the parameters. In this section,
we present simulation results that make qualitative and quantitative comparisons of the methods.

A. Emission reconstruction - qualitative

To illustrate the drawbacks of conventional CBP and the potential advantages of using nonstationary smoothing, we
performed the preliminary comparison summarized in Figures 3 through 8. The brain-sized software phantom shown
in Fig. 3 was forward projected including the effects of attenuation and nonuniform detector efficiency, and pseudo-
random Poisson noise (600,000 counts) was added. The sinogram dimensions were 90 bins by 100 angles, with a 3mm
bin spacing. Figure 3 also shows an unwindowed ramp-filtered CBP reconstructed image, which displays severe streak
artifacts due to variations in detector efficiency. The reconstructed images shown in Figs. 4 and 5 were computed using
CBP with a 3rd order Butterworth apodizing window for various cutoff frequencies. The streak artifacts persist even
when one uses a low cutoff frequency.

Figures 6 and 7 show images that were reconstructed using ramp-filtered CBP of sinograms that were smoothed using
the proposed information-weighted spline smoothing method. The streak artifacts appear to be virtually eliminated
without loss of resolution. The noise structure in these images is markedly different than the Butterworth-apodized
reconstructions, but whether this noise structure actually improves any visual clinical task is an open question.

The origin of the streak artifacts is apparent from examining Fig. 8, which displays the ramp-filtered ideal sinogram,
a Butterworth-apodized ramp-filtered sinogram, and a spline-smoothed ramp-filtered sinogram. The bright noise spikes
in the Butterworth-apodized ramp-filtered sinogram are due to a few detectors with relatively poor efficiency (small
ci), and consequently poor precision. These spikes produce streaks when back-projected. The spline approach uses
the information in the normalization scan to diminish the effects of poor detectors by weighting each measurement
appropriately. Since the influence of relatively poor detectors is reduced, the streaks are diminished.

B. Transmission reconstruction - quantitative

To corroborate the above qualitative comparison, we performed the following comparison of bias and variance in a
PET transmission simulation based on the attenuation distribution shown in Fig. 9. The attenuation coefficient of the
two squares is twice that of the elliptical background. Although this distribution is non-biological, the total attenuation
is approximately that of a human thorax. It was chosen so that the small square could be used to examine contrast and
noise, and the large square could be used to assess the spatial distribution of variance.

The calibration factorsci were drawn from a log-normal distribution with variance 0.3, which was based on an
empirical fit to the distribution of detector efficiencies of an ECAT 931. Using those calibration factors, 50 Poisson
realizations of transmission scans were generated, each having a mean total of 1M events. The sinogram size was
128 bins by 128 angles, and the image size was 128 by 64 pixels. Each of the 50 realizations was reconstructed
by Butterworth-apodized ramp-filtered CBP for several orders and cutoff frequencies, and by spline-smoothed ramp-
filtered CBP for several values ofβ. Typical reconstructions are shown in Fig. 9.

Figure 10 shows standard-deviation images for typical Butterworth and spline based reconstructions. Interestingly,
the variance of the spline-based estimate is fairly uniform, while the variance of the Butterworth-based estimate is
strongly correlated with the object density. We hypothesize that information-weighting acts as a “pre-whitening”
transformation, thereby making the the variance more uniform.

We have examined the bias-variance tradeoff as a function of smoothing parameterβ and Butterworth order and
cutoff frequency for several regions of interest (ROI). Since the bias of a point source is directly related to resolution,
we focus on the small 3x3 square on the left of Fig. 9. For each reconstructed image, we applied the following mask
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centered on the small square:
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whereµbackground is the attenuation coefficient in the background. Using this mask, the computed value will decrease
from 1 to 0 as the resolution decreases. The variance of this value is directly related to the image variance as well.
Figure 11 shows a plot of the bias versus variance for this feature of interest for both spline smoothing and 1st and 9th
order Butterworth filters. (The curves for Butterworth filters with orders higher than 2 were all indistinguishable.) Not
surprisingly, at the extremes of very high variance or very large bias, there is less difference between the methods. In
the typical operating range of moderate biases, the variance of the spline smoothing approach is significantly less than
that of conventional Butterworth filtering. Other features such as the contrast at the edges of the larger square showed
similar trends.

For this study, the ramp-filtered or Butterworth-apodized CBP required approximately 3 seconds per slice on a
Kubota Pacific Titan 3000 computer. The spline smoothing computation increased the computing time per slice by less
than 1 second.

V. DISCUSSION

We have described an information-weighting spline smoothing method that accounts for the relative variance of
each detector measurement, in contrast to conventional CBP. The weighting diminishes the influence of relatively poor
detectors, resulting in reduced streak artifacts and an improved bias-variance tradeoff in the examples studied thus far.

This preliminary study leaves open several questions that could be investigated further. A comparison to iterative
methods is in order, since most iterative methods can incorporate nonnegativity constraints and spatially-variant de-
tector response. Such a comparison would be particularly meaningful if both methods were also compared to lower
bounds. We are currently investigating an approach for computing bounds that is practical for tomography [17]. Fur-
thermore, comparisons of bias and variance only explore one dimension of an estimator’s statistics. Since our images
suggest that the noise structure of ordinary CBP and spline-smoothing CBP are different, the noise autocorrelations
should be examined and compared.

There is also a message in this work for investigators studying iterative algorithms:realistic computer simulations
should include nonuniform detector efficiencies.A few investigators have reported only small improvements using
iterative reconstruction when compared to CBP in spatially invariant systems. Some of those conclusions might have
been different if nonuniform detector efficiencies had been included.

There are a plethora of reconstruction algorithms available; where does this method fit in? For applications where the
system has stationary noise, such as in “projection-reconstruction” magnetic resonance imaging, information-weighted
spline smoothing will probably not be beneficial. Since no attempt is made to deconvolve a spatially-variant system
response, we would expect that regularized iterative algorithms should outperform the spline method for systems with
spatially-variant detector response. However, for spatially-invariant systems, it should be possible to narrow the perfor-
mance difference by following the spline smoothing with a Metz-type filter that boosts some of the attenuated midrange
spatial frequencies.

In conclusion, we expect that this method will be most appropriate for systems that have nearly spatially-invariant
point responses but have nonstationary variances. Single photon emission tomography (SPECT) and X-ray transmis-
sion tomography exhibit nonstationary object-dependent measurement variances; in PET, as the detector crystal sizes
continue to shrink in the quest for higher resolution, the detector efficiencies will become increasingly nonuniform. In
such cases, information-weighted spline smoothing is a noniterative method that accounts for that nonuniformity.

VI. A PPENDIX: SPLINE CALCULATIONS

In this appendix, we show that the solution to the minimization problem posed in (2) is a spline composed of
polynomials of order at most2m, and then describe the banded matrices that are used to compute the polynomial
coefficients.
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We first describe the objective function slightly more precisely. In low-count transmission applications it is possible
to have detector measurements with zero information, in which case the corresponding weightwi would need to be in-
finite. Using a heuristically determined “large”wi could lead to numerical instabilities, so a more appropriate approach
is simply to discard the measurements with zero information. Letn denote the number of measurements with nonzero
information, and permute the measurements so that the firstn are those measurements. Then the objective function of
interest is:

Φ(f) =
n∑
i=1

(
1

wi

)2(
zi −

∫ τri
τ li

f(τ) dτ

)2
+ β

∫
|∂mf(τ)/∂τm|2 dτ. (3)

In the following, we assume the measurement intervals[τ li , τ
r
i ) do not overlap (τ ri ≤ τ

l
i+1), but they are allowed

to be non-adjacent, i.e. when (τ ri < τ
l
i+1), which adjacency accommodates discarded measurements having zero

information.
By setting the Euler-Lagrange formula for the variational problem (3) to zero, one can show that:

f̂ (2m)(τ) = (−1)mβ−1
n∑
i=1

(
1

wi

)2(
zi −

∫ τri
τ li

f̂(t) dt

)
Ii(τ), (4)

whereIi(τ) is one forτ ∈ [τ li , τ
r
i ) and zero elsewhere. Therefore,f̂ is a polynomial of order2m on the measurement

intervals[τ li , τ
r
i ), and is a polynomial of order2m− 1 in the gaps[τ ri , τ

l
i+1) between intervals (if any).

In the remainder, we focus our attention on the casem = 1, in which case the spline is quadratic on the measurement
intervals and linear in the gaps. There are a multitude of potential parameterizations for this spline; for simplicity, we
adopt the following piecewise-polynomials:

f̂(t) =

{
ai/hi + bi(τ −mi) + ci((τ − τ li )

2/2− h2i /6), τ ∈ [τ
l
i , τ
r
i )

Ai +Bi(τ − τ li ) τ ∈ [τ li , τ
l
i+1)

, (5)

wherehi = τ ri − τ
l
i is the interval width, andmi = (τ li + τ

r
i )/2 is the interval midpoint. The parameterization (5) is

convenient because ∫ τri
τ li

f̂(τ) dτ = ai.

This parameterization has3n+2(n− 1) unknown coefficients. The Euler equation (4) provides4(n− 1) continuity
conditions, and end conditions give 2 more constraints. This leavesn degrees of freedom that are determined from the
nmeasurements{zi}, as described below. For tomography, a natural end condition is thatf̂ is a constant outside of the
measurement interval, which implies thatb1 = 0 andbn + cnhn = 0. Continuity off̂ at the right and left sides of each
interval implies respectively that:

ai/hi + bihi/2 + cih
2
i /3 = Ai

and
Ai +Bigi = ai+1/hi+1 − bi+1hi+1/2− ci+1h

2
i+1/6.

Continuity of the derivative of̂f at the right and left sides of each interval implies respectively that:

bi + cihi = Bi and Bi = bi+1.

Each of these equalities holds fori = 1, . . . , n. Combining these equations to eliminateAi andBi yields

ci = (bi+1 − bi)/hi, i = 1, . . . , n− 1,

and
Qa = Tb,
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wherea = [a1, . . . , an]′, b = [b2, . . . , bn]′,

Q =



−1 1

. . . . . .
−1 1





h−11

. . .
h−1n




andT is ann − 1 × n − 1 symmetric banded matrix whoseith diagonal element is(hi + hi+1)/3 + τ li+1 − τ
r
i , and

whose first upper diagonal is given byh2/6, . . . , hn−1/6. One can also show that∫
|∂f̂(τ)/∂τ |2 dτ = b′Tb.

Substituting these relationships into (3), our goal is to minimize

(z − a)′W−1(z − a) + βb′Tb

whereW is diagonal with elements{w2i }, subject to the constraintQa = Tb. This constrained minimization is easily
performed using a trick due to Reinsch [18], giving the following expression for the spline coefficients:

â = z − βWQ′b̂,

where
(T + βQWQ′)b̂ = Qy.

This latter system of equations is solved using a Cholesky decomposition for banded matrices [15], which requires
onlyO(n) operations. Having solved for the coefficients of the piecewise-polynomial representation off̂ , one can then
evaluatef̂ at any pointτ using (5).
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Figure 3: Left: ideal emission distribution. Right: ramp-filtered CBP reconstruction from 600K event scan.
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Figure 4: 3rd order Butterworth apodization with cutoff frequency 100% of Nyquist (left) and 70% of Nyquist (right).

Figure 5: As above but with cutoff frequency 50% of Nyquist (left) and 30% of Nyquist (right). Note that even with a
cutoff frequency of .15 cycles per detector, there are still prominent streak artifacts.

Figure 6: Ramp-filtered CBP reconstruction after information-weighted spline smoothing of the sinogram. Left:β =
e−10, right: β = e−8.

Figure 7: As above but with larger smoothing parameters: left:β = e−6, right: β = e−5. Note the absence of streak
artifacts and the different noise structure.
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Figure 8: Ramp-filtered sinograms immediately prior to backprojection. Left: ramp-filtered ideal noiseless sinogram,
middle: Butterworth-apodized ramp-filtered noisy sinogram, right: spline-smoothed ramp-filtered noisy sinogram. The
bright spikes in the middle sinogram are created when the ramp filter amplifies high-variance noise in poor efficiency
detectors.

Figure 9: Typical attenuation image reconstructions, left: 3rd order Butterworth with cutoff frequency 40% of Nyquist,
right: spline-smoothed withβ = e2.

Figure 10: Pixel-by-pixel standard deviation images, left: 3rd order Butterworth with cutoff frequency 60% of Nyquist,
right: spline-smoothed withβ = e1. The variance of the spline-smoothed estimate is more uniform than the Butter-
worth estimates.
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Figure 11: Plot of bias versus standard deviation in estimating the contrast of the small ROI (see text). B1 and B9 are
respectively with 1st and 9th order Butterworth filters of various cutoff frequencies. QS is with spline-smoothing with
m = 1 and variousβ. The dotted lines represent contours of constant RMS error; closer to the lower right hand corner
means lower RMS error.
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