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A Bayesian Approach to Reconstruction from 
Incomplete Projections of a Multiple 

Object 3D Domain 
YORAM BRESLER, MEMBER, IEEE, JEFFREY A. FESSLER, AND ALBERT MACOVSKI, FELLOW, IEEE 

Abstract- An estimation approach to three-dimensional reconstruc- 
tion from line integral projections, with incomplete and very noisy data, 
is described. Generalized cylinders parametrized by stochastic dy- 
namic models are used to represent prior knowledge about the prop- 
erties of objects of interest in the probed domain. The object models, 
a statistical measurement model, and the maximum a posteriori prob- 
ability performance criterion are combined to reformulate the recon- 
struction problem as a computationally challenging nonlinear estima- 
tion problem. For computational feasibility, we describe a suboptimal 
hierarchical algorithm whose individual steps are locally optimal, and 
are combined to satisfy a global optimality criterion. The formulation 
and algorithm of this paper are restricted to objects whose center axis 
is a single valued function of a fixed spatial coordinate. Simulation ex- 
amples demonstrate accurate reconstructions with as few as four views 
in a 135" sector, at an average signal-to-noise ratio of 3.3. 

Index Terms-Hierarchical algorithm, nonlinear estimation and de- 
tection, parametric inference, stochastic object modeling, three-di- 
mension tomography with incomplete data. 

I. INTRODUCTION 
HE reconstruction of a multidimensional function T from its line-integral projections is a well studied 

problem, typically arising in the context of determining 
the internal structure of an object from the results of ex- 
ternal probing by electromagnetic or sound waves, or by 
subatomic particles. The problem is usually posed and 
solved in two dimensions, where a cross-section, or a thin 
slice, is reconstructed from its projections. Most often,' 
3D reconstruction is simply obtained by stacking thin re- 
constructed slices. 
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'The 3D (or higher dimensional) version of the problem can be similarly 

formulated and direct 3D inversion algorithms have been derived (e.g., 
[ l ] ) ,  but appear to be rarely used in practice, owing to their increased com- 
plexity, and perhaps also the fact that commercial computerized tomogra- 
phy (CT) machines are geared for slice by slice data acquisition. 

The applications of reconstruction from projections 
arise in diverse disciplines, ranging from medicine to geo- 
physical exploration, and from astronomy to electron mi- 
croscopy (see [2] and, in particular, [3] for extensive lists 
of applications and hundreds of references). Of all the ap- 
plications, the success of CT is largely responsible for 
much of the current interest in a variety of reconstruction 
methods. However, as the applications expand into new 
areas, the situation often arises where the number of 
views, their angular coverage, and the number of rays 
within a view is severely restricted, and the available data 
are corrupted by noise, due to, e.g., time, physical, ge- 
ometrical, or economic constraints in the data acquisition 
[4], [5]. This is almost always the case with 3D recon- 
struction where a complete data set is exceedingly large. 
An attempt to reconstruct the original distribution in this 
so called incomplete datu case results in images that suffer 
from artifacts such as streaking and geometric distortion, 
poor resolution, and high-noise level, due to the ill posed- 
ness of the problem, and in extreme cases, due to the in- 
herent nonuniqueness of the solution [6]. consequently, 
although 3D reconstruction would be an ideal tool in a 
variety of medical [7] and other applications, it is rarely 
attempted in practice with limited data. 

The 2D limited-data reconstruction problem has been 
extensively researched [4], [8], [9] resulting in various 
methods that have varying degree of success in the noise- 
less case, but essentially fail when noise of significant 
level contaminates the data, as is typical in many practical 
applications. The development of effective algorithms for 
the limited-data high-noise case is therefore still an open 
problem. 

While the major emphasis of research in reconstruction 
from projections has been on producing accurate, high 
resolution cross-sectional images, it has been observed [5 ]  
that in many applications the ultimate goal is often far 
more modest. The reconstructed image is postprocessed, 
either visually, or by automated techniques, to extract 
specific information on objects in the probed domain. Ex- 
amples include the detection and localization of organs 
and tumors in the diagnostic interpretation of medical CT 
scans [lo], the detection and tracking of high contrast 
thermal regions in oceans by oceanographic acoustic to- 
mography [ l l ] ,  and the detection and localization of in- 
terior cracks and flaws in materials, in the area of nonde- 
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structive testing. The required information is often quan- 
titative as in the case of imaging the heart ventricles [ 121 , 
and the results are judged by the accuracy at which the 
parameters of interest are estimated, rather than the ac- 
curacy of the reconstruction of the underlying distribu- 
tion. Moreover, the need for postprocessing to outline ob- 
ject boundaries is particularly noteworthy in 3D 
reconstruction [ 131, where a display of an unsegmented 
3D density distribution is not very instructive by itself. 

This paper addresses the 3D reconstruction problem for 
which the ultimate goal is to extract object-related infor- 
mation about the probed volume, and when the number, 
overall view angle, signal-to-noise-ratio (SNR), and sam- 
pling density of the projection measurements are limited 
to the point where current limited-view reconstruction 
techniques essentially fail. We describe an approach [ 141- 
[ 161 which incorporates a priori information in the form 
of stochastic models of three-dimensional “objects’ ’ in 
the probed domain and of the measurement process, in 
order to overcome the inherent underdeterminancy of the 
solution from the data. Stochastic modeling is used in or- 
der to account for the associated uncertainty and in order 
to encompass a large class, i.e., an ensemble, of objects 
rather than a single “nominal” version. In particular, each 
object is represented by a parametrized cross-sectional 
density function, with a stochastic dynamic model for the 
evolution of these parameters along the object. Such a 
model may adequately represent in medical applications 
a variety of “smoothly shaped” anatomical organs, (the 
original motivation for this work has been the 3D recon- 
struction of systems of blood vessels from X-ray images 
[ 171) as well as quite general structures in other applica- 
tion areas, e.g., detection of bubbles in nondestructive 
testing of castings. 

The formulation and algorithm as presented in this pa- 
per are restricted by the object representation and by the 
causal evolution model to objects whose center axis is a 
single valued function of a fixed spatial coordinate. An 
extension of this approach to remove this restriction is 
possible [15] and will be described in a forthcoming pa- 
per. 

Combining the stochastic object model with a model for 
the limited noisy projection measurements, the recon- 
struction problem is reformulated as a challenging nonlin- 
ear state estimation problem where the parametrized ob- 
ject representations are directed estimated from the 
projection data. With a view toward operation with low 
SNR data, we seek an optimum solution, subject to the 
maximum a posteriori probability (MAP) performance 
criterion. That is, we seek object estimates that are glob- 
ally optimal, in the sense that their posterior probability 
conditioned on all the available projection data is maxi- 
mized. Hence, in distinction from conventional slice by 
slice tomographic reconstruction where the projection data 
corresponding to one slice is used only by reconstructing 
that slice, the estimate of any one point of any one of the 
objects, will make optimum use of all available measure- 
ments and prior information. Since the solution of the ex- 

act estimation problem is computationally infeasible, we 
describe a suboptimal hierarchical algorithm, whose in- 
dividual steps are locally optimal, and are combined to 
satisfy a global optimality criterion. In addition to the 
quantitative morphological information provided by the 
algorithm, the results can be used to generate a synthetic 
3D display of the reconstructed object, for visual evalu- 
ation. 

Previous work using a similar philosophy has been lim- 
ited, for the most part, either conceptually or by compu- 
tational feasibility, to a 2D case. Hanson and Wecksung 
[18] have considered the MAP estimation of an object 
drawn from a restricted ensemble of fuzzy annuli. Rossi 
and Willsky [5] proposed a maximum-likelihood (ML) 
detection and estimation approach to limited view 2D 
cross-sectional imaging of an object with a cross-section 
that is functionally known up to a parameter vector of 
small dimensionality. Shmueli er al. [19] use an object 
model similar to ours, although in the narrow context of 
estimating the boundaries of a blood vessel from single 
planar projection of the volume. However, their MAP es- 
timation algorithm is restricted by computational feasibil- 
ity to the circular object cross-section they assume, and 
to a single projection angle, and hence, in a sense, to a 
2D problem. Finally, the approach of Bresler [15, ch. 41 
and Bresler and Macovski [ 161 uses the same object model 
as here, but differs in the choice of optimality criterion, 
in the computational structure, and in domain of appli- 
cability: 1) it uses the minimum mean square error 
(MMSE) rather than the MAP criterion, 2) the algorithm 
is in a single step, approximately optimal and recursive, 
in contrast to the suboptimal hierarchical scheme here, 
and 3) the computational requirements and certain ob- 
servability limitations restrict the algorithm to a domain 
containing few objects. In contrast, the present algorithm 
is designed expressly for the reconstruction of a multiob- 
ject, densely populated domain. 

In the next section, we introduce the statistical models 
for the object and the projection measurement process. In 
Sections I11 and IV, we pose the associated estimation 
problem and describe the algorithm for its solution. In 
Section V, we discuss its computational requirements, and 
then in Section VI, we present simulation results illus- 
trating the method. Section VI1 contains concluding re- 
marks. 

11. STATISTICAL MODELS 
A .  Object Model 

The probed region in 3D space, is the cylinder 

a, = { ( i ,  11, z):E’ + q2 I ( T / 2 f ,  0 I z I L }  

(2.1) 
which is assumed to have a known background density 
fb( 4 ,  7 ,  z ) .  We assume that D C 63’ contains J distinct 
3D objects 0,, j = 1, 2, , J ,  each represented by a 
real functionJ;( E ,  7, z ) , j  = 1 ,2 ,  * * * , J which is defined 
on 9, and its value describes an additive component to 
the density in each point in space, so that the overall den- 
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sity, which we ultimately desire to reconstruct, is given 
by 

J 

f(r, z )  = fh(C z )  + &(c  z ) ,  (2.2) 
J =  1 

where r = ( ,$, 7 ’ represents the 2D location vector in the 
plane. (We use lower and upper case bold-face letters to 
denote vectors and matrices, respectively, and ( ) ’ to de- 
note transposition.) &(,$, 7, z ) ,  has finite support S, = 

{ ( E ,  7, z > : & ( t ,  7, z )  f O } ,  SJ C 9, corresponding to 
the part of cR3 inside the “object boundaries.” 

A subclass of generalized cylinders, (or generalized 
cones) [20] is adopted in this paper as a representation for 
the objects, providing an effective tradeoff between model 
complexity and richness. An object (Fig. 1) is represented 
by a collection of vertically stacked cylindrical sections, 
which we call primitives. All primitives (Fig. 2) have 
equal height, which is scaled to 1 without loss of gener- 
ality, and are each characterized by their cross-sectional 
density in the plane perpendicular to the z axis 

d - fo(r; r )  (2.3) 
where d is the object contrast (determined, e.g., by its 
X-ray linear attenuation coefficient) and fo is a known 
function of r and of a vector of parameters y character- 
izing the shape of the object cross-section at the position 
of the specific primitive. For example, & can be the in- 
dicator function on an elliptical support (assuming a value 
of 1 on its support) whose shape is specified by the pa- 
rameter vector y = [ a ,  p ,  41 ’: a is the radius of the el- 
lipse, defined as the geometrical mean of its major and 
minor semi-axes, p is its axis ratio, and 4 is its orienta- 
tion, measured by the angle between its major axis and 
the ,$ coordinate axis. This example will be used through- 
out the paper, although the algorithm derived here applies 
to an arbitrary known& (e.g., the one shown in Fig. 2). 
For notational compactness, we define the parameter vec- 
tor J? [ y’,  d ] ’, and describe a primitive by its density 
function CYL ( r ,  z ;  r ), 

CYL(r, z ;  I‘) d fo(r; y) I I ( z )  (2.4) 

where 

It follows that CYL, which is uniquely defined by the 
cross-section function fo, is also a known function. Each 
object primitive is centered at a point c ( z )  E CR2 on a 
discrete trajectory c ( z ) ,  z = z l ,  * * , z1 + L. These 
points define the (piecewise linear) center axis of an ob- 
ject of vertical starting position z1 and length L. (Fig. 1 ) .  
The variation of the parameter vector r along the object 
is described by the function r ( z ) ,  which, being constant 
within any one primitive, is understood to depend on the 
integer round(z) that is nearest to z .  Thus, the density 
function of a primitive located at position z along the cen- 
ter axis of the object 0, is CYL [ r  - c , ( z ) ;  J?,(z)] where 

I 
I I, 
1/ 

Fig. 1. Object formed from stacked primitives 

L’ 
Fig. 2. Unit height cylindrical primitive. 

the interpretation of c ( z )  for noninteger values of z is 
analogous to that of T(z) .  Finally, all the parameters of 
this primitive are lumped into the vector xJ ( z )  = [ c,’ ( z ) ,  

Note that since c ( z )  and r ( z )  are (single valued) func- 
tions of z ,  the foregoing representation is restricted to ob- 
jects that do not “wind back” in the z direction, i.e., an 
object whose center axis intersects a horizontal plane at 
more than one point must be excluded. This requirement 
can often be circumvented in practice by a different choice 
of coordinate system, and/or by segmentation of the 
probed domain into a few components. 

Common natural and biological structures are usually 
characterized by smooth surfaces of limited curvature, a 
fact which we attempt to employ. Since, in general, there 
will be significant uncertainty in our prior knowledge of 
the object’s spatial properties, we choose the stochastic 
setting, in which our statements about the smoothness 
properties of the object are probabilistic. An object model 
in this context is a rule that assigns a probability measure 
to the different realizations in the given class defined by 
fo. Objects with occasional regions of high curvature may 
thus be admitted, but a low probability assigned to them. 
Consequently, the class of objects modeled by this ap- 
proach may be quite large, without compromising the use 
of prior information. 

Prior knowledge about the object spatial properties is 
represented by a stochastic dynamic model for the prim- 
itive-to-primitive evolution of the cross-section parame- 
ters., Defining the augmented state vector xJ ( z )  = 

[x,”’ ( z ) ,  & ’ ( z ) ] ’  with xJ”’ augmenting the state to ac- 
commodate higher order models for x, ( z ) ,  we assume 
the following discrete linear state space dynamic stochas- 
tic Markov model for the spatial evolution of x,(z) 

‘;(z)l’ = [ c . $ , ( z ) 7  c T J , ( z ) 7  a J ( z ) >  p J ( z ) >  4 J ( z > >  d , ( z ) l  ” 

xJ(z  + 1) = AxJ(z) + B w , ( z ) ,  

z = ZI,,’ * * 9 z l , J  + ‘J 

E[xJ(zl,J)] = xo cov{x(zl,J)} = & (2’6) 
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where wj ( z )  is a white Gaussian noise vector-sequence of 
unit (identity matrix) covariance, uncorrelated with 
X,(Z~,~) .  In addition, the object starting position z l , j  is an 
unknown parameter, and a model for the object length LJ 
may also be available, for example, the exponential model 

(2.7) 

where 
Quite general structures may be modeled by properly 

choosingfo( ; ), y (  * ), and dynamic model parameters. 
The process noise w , ( z )  and the random initial state 
x, ( zo,,) both represent the uncertainty as to the exact shape 
and position of the jth object: while a “nominal,” deter- 
ministic object is given by the expected value E[x,(z)]  
which is obtained by initializing (2.6) with xo and setting 
w , ( z )  = 0 for all z ,  the actual object is some random 
“variation” on this theme. The greater the noise covari- 
ance BB‘ and the initial state covariance no, the higher 
the probability of objects with large deviations from the 
“nominal” object, and the richer the class of objects 
modeled. 

The selection of model parameters A, B ,  no, xo, and 
is discussed in [16]. In particular, they may be derived 
from a training set by a system identification procedure, 
or postulated to represent a reasonable set of assumptions 
on object boundary curvature. In Section VI, we describe 
one such choice, which we used in our simulation exam- 
ple. 

The different objects will be assumed unrelated, so that 
given that they do not intersect in 3D space, the stochastic 
processes {x,(z), z = zi, , ,  * - * , zi,, + L J } ,  will be as- 
sumed statistically mutually independent for different j = 
1, - * *  , J ,  implying that 

is the expected object length. 

C O V { ~ , ( ~ I , , ) ,  x,(zl,,)Iobject, f~ object, = 41 

E [  w , (  1 ) w,’ ( m )  I object, fl object, = $1 
= O  V i # j  

= 0 V l ,  m. (2.8) 

This will turn out to be a key assumption in deriving an 
efficient computational algorithm. The objects will be fur- 
ther assumed to have identical statistics, and will there- 
fore be modeled by identical state space models. 

Given the representation and model for the objects, the 
jth object can be identified with the set 0, = { z ~ , ~ ,  L,, X,} 

, zl,,  + L,} is its state where X, = { x,(z), z = zl,,, - * 

sequence. It is determined by this data set completely, 
and its 3D density function (with the dependence on 0, 
made explicit) can be immediately recovered from this 
representation as 

a 

Z I  ,+L, 

C C Y L [ r  - c , ( z ) ,  z - lJ; r,(z)]. z ;  0,) = 
IJ=:1,, 

Similarly, the density function f( r ,  z ;  0, : J )  of the whole 
domain is uniquely determined by the entire object data 

, J ,  and is obtained by substi- set O I Y J  = Oj,  j = 1, - - * 

tuting (2.9) into (2.2). Alternative!y, a 3D graphic dis- 
play of the objects, including their relative positions in 
space, can be generated directly from Oi :J. We ultimately 
seek the optimum estimate of this set, which in turn de- 
termines via (2.9) the 3D shapes of the objects. 

G 

B. Measurement Model 
In the two-dimensional cross-sectional ‘.maging prob- 

lem, let f( r )  represent the distribution we desire to re- 
construct. A line inclined at an angle 8 with rtspect to the 
4 axis and passing at the radial distance t fron the origin 
canbe parametrized as Z ( t ,  0 )  = { r : O ’ r  = t ]  vhere 8 is 
the corresponding unit direction-vector 8 A (COS 8 ,  
sin e)’. For a given projection angle 0 ,  the projetion of 
f evaluated at the radial distance t from the origir. is the 
integral 

nm n 

g ( t ,  0)  = 1 f ( r )  6 ( t  - 8 ’ r )  d t  dq = f(r) fr 
-m O’r=r  

(2.10, 

along the line I (  r ,  0 ) .  The projection g ( t ,  0 )  at any value 
of 8 is a 1D function of r (Fig. 3). The mapping off into 
g via (2.10) corresponds to the 2D Radon transformation 
[3] whereas the reconstruction problem of determining the 
distribution f from its projections g involves inverting the 
integral (2. lo), or finding the inverse Radon transform. 

Owing to the linearity of the Radon transform, the pro- 
jection of the domain 9 will be the sum of the individual 
projections of the background and the object superim- 
posed on it, so that the known background contribution 
can be always subtracted off. Consequently, the back- 
ground density&( [, 7,  I) may be set to zero without loss 
of generality. The 3D density function of the domain is 
thus f( 4 ,  7 ,  z ) ,  the same as that of the objects in it. As 
in 3D axial tomography data acquisition, we assume that 
we are given projection data sets of 2D vertically stacked 
thin slices of the domain 9, for z E [0, L] .  Considering 
parallel ray geometry, the 2D projection (2.10) of a slice 
at a given height z through a single primitive located at 
the origin is, according to (2.4), 

n 

= f i g o ( t ,  e ;  7 )  n(z) (2 .11)  

where go is a known function o f t ,  0 ,  and y; for each z ,  it 
is the projection of a unit density object slice with density 
fo( r;  y) ,  located at the origin. For example, when fo is 
the indicator function on an ellipse with parameters y = 
[ a ,  h, 41 ‘, g o ( r ,  0 ;  y )  can be shown [3] to be the half 
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I 
Fig. 3 .  2D projection geometry. 

ellipse, 
/ \  

where II( * ) is defined in (2.5) and where a, and 1, are 
determined by the parameters y of the ellipse and by the 
view angle 8 according to 

a, = a , ( ~ )  = a& 

1, = i,(e) = 2 a 4 ,  

A I  = O . S [ ( p  + l/p) + ( p  - 1/p) COS 2 ( +  - e ) ] .  
The parameters a, and 1, are respectively the horizontal 
and vertical semiaxes of the half-ellipse function (2.12), 
and for a given ellipse. they depend on the view angle. 

Considered as a function o f t ,  z and 8 ,  the function $ ( t ,  
z ,  8; r )  defines the Radon transform of an entire primi- 
tive. The projection of the same primitive located at z = 
1 and horizontal position c is given by 

CYL(r - c ,  z - 1; r) dr 
O’r=t 

= $(f - e k ,  z - 1, 8; r) .  (2.13) 

The projection o f f ( r ,  z ;  O1 J )  is obtained by combining 
(2.4), (2.9), (2.2), and (2.11). By the linearity of the Ra- 
don transform, it follows that the Radon transform of all 
the J objects, with the j th object comprised of LJ primi- 
tives, is given by 

\k(t, z ,  8 ;  0, J )  

J ZI,J +LJ 1 f(r, z ;  01 J )  dr = c c 
O‘r=t  J = 1  ~ J = Z I ,  

- $ [ t  - e ’ c J ( z ) ,  z - iJ, e; r,(z)]. 
(2.14) 

Note that at any z position, \k( e )  consists of the super- 
position of at most J primitives. Neglecting for simplicity 
the effect of a nonzero imaging aperture, which may be 
easily taken into account [ 161, the actual noisy projection 
measurements are given by 

y(t ,  Z ,  e)  = \k(t ,  Z ,  e; 0, J )  + ~ ( t ,  Z,  e)  (2.15) 

where U (  t ,  z ,  6 )  is a white noise zero-mean Gaussian ran- 

additive and Gaussian is accurate in a variety of applica- 
tions; in medical imaging it applies to magnetic resonance 
images where the thermal noise associated with the resis- 
tive loading of the pickup coil dominates [2 11, [22]. Even 
when the true statistics of the noise are Poisson, as in 
X-ray imaging , the Gaussian approximation is usually ad- 
equate. Finally, the algorithm is readily adapted to other 
noise statistics by modifying the likelihood function in 
Step 1 , below. 

To represent the limited data situation, the projection 
data is assumed to be available only at a discrete set 0 E 

{ e,} I= of M (possibly nonuniformly spaced) projection 
angles covering a sector OM - I ?r, at N uniformly 
spaced values o f t  covering the range [ - T/2, T/2],  and 
at L values of z spaced at the primitive height interval of 
1. Consequently, the support set of the available projec- 
tions of the probed region D is 

T 
(t, 8,  z ) :  t = -- + nA, n = 0, - 

2 

e E {ern},=,, z = 1, - * ‘1. 
S, = , N - 1, 

M 
(2.16) 

The interpretation of each projection y (  t, z ,  0,) as a clas- 
sical “X-ray” (radiograph) taken using parallel X-rays 
(Fig. 4), may be useful in visualizing the measurement 
geometry. Each line in a radiograph corresponds to a pro- 
jection in the direction em of a slice of unit thickness. 

C. Summary of Modeling Assumptions 

modeling assumptions. 

i 

For ease of reference we summarize below the key 

1) Known background density. 
2) Objects described by generalized cylinders, with 

finetionally known cross-section. 
3) Center axis of objects is a single valued function of 

a fixed spatial coordinate denoted z .  
4) Evolution of center axis and cross-section parame- 

ters described by linear Gaussian-Markov state-space 
model (2.6) with known parameters. 

5 )  Model for object length possibly available as in 
(2.7), with known parameter E .  

6) Unknown total number J of objects and their z start- 
ing positions and lengths. 

7) Stochastic processes describing distinct objects are 
independent, given that they are nonintersecting . 

8) Measurement data consists of parallel-beam line-in- 
tegral projections in planes perpendicular to the z axis. 

9) The measurements are corrupted by additive white 
Gaussian noise. 

Assumptions 8) and 9) are nonessential: the algorithm 
described in the sequel can be readily adapted to fan-beam 
data and to non-Gaussian noise statistics. Assumption 1) 
can be relaxed by assuming that the background is a 
smooth function of the coordinates, and can be modeled, 
e.g., by polynomials. The algorithm can then be extended 
to estimate on-line the unknown parameters of the back- 

dom field of intensity N o .  The modeling of the noise as ground. Even if Assumption 2) does not hold, a hypoth- 
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Fig 

N 
i 

L 

1. Classical radiograph interpretation of p(  t ,  Om,  z ) .  

esized elliptical cross-section may give an adequate fit to 
a variety of actual cross-sections of natural and man-made 
objects. Finally, simulation experiments with the algo- 
rithm, including those reported in Section IV, suggest that 
it is rather robust to violation of Assumption 4). Further- 
more, as long as the parameters B and no are chosen to 
adequately represent the uncertainty about the exact evo- 
lution of the objects, the algorithm tends to degrade 
gracefully with deviation from modeling assumptions. The 
other assumptions are discussed at length in the text. 

111. THE ESTIMATION PROBLEM 
The estimation problem can be stated as 

given the noisy set of projections ’jj 2 y ( t ,  z ,  e ) ,  ( t ,  
z ,  0 )  E S,, the state space models (2.6)-(2.7), and 
possibly a model cke (2.8) for Lj,  determine optimal 
estimates J and O l , j  of the number of objects and 
their representations, respectively. The latter in- 
cludes ~ the objects’ starting positions and lengths 
{ f l , j ,  L j , j  = 1, - - * , j), and the setX,:j { X , , j  
= 1, e . .  , j 

We follow a Bayesian approach, by choosing the max- 
imum a posteriori probability (MAP) criterion [23] as the 
yiteriop for optimality. That is, we define the estimates 
J and 0, : j  as the solution to 

of their state sequences. 

max P ( J ,  O l : J ( Y )  (3.1) 
J-01 J 

where p ( J ,  O1 : I y ) is the posterior probability of J and 
01:, given that the data 2 was observed. The problem is 
one of joint estimation and detection, since both the num- 
ber and lengths of the objects, as well as their state se- 
quences X j ,  need to be estimated from the measurements. 

An appreciation of the computational requirements in- 
volved is obtained by considering just the estimation of 
the state sequences “Brute force” solution of (3 .1)  
is impractical, in general, owing to the the extremely high 
dimensionality of the search space, and since the criterion 
will be typically multimodal, requiring, in effect, an ex- 
haustive search. Even with the relatively efficient dy- 
namic programming (DP) approach to the problem [19] 
the computational requirements grow exponentially with 
the total dimension of the state of the estimated process. 

The latter is J dim ( x j ) ,  since the problem has to be solved 
jointly for all J objects, whose projections may overlap in 
any one of the available views. Assuming that each state 
component has only q possible transitions (the continu- 
ous-state space must be discretized in order to implement 
the DP algorithm) from one value of z to the next, the 
computational requirements are o ( q  2Jdim(x) ). For a rela- 
tively small example with q = 10, J = 10, and dim ( x j )  
= 8, we obtain O (  flops, indicating the infeasibil- 
ity of this approach. 

IV. A FOUR-STEP ALGORITHM 
In view of the infeasibility of globally optimal detec- 

tiodestirnation of the objects, we propose a suboptimal 
algorithm, producing estimates of the objects’ position and 
shape in four hierarchical steps. First, object primitives 
are detected in 3D space and local maximum likelihood 
estimates of their parameters are obtained. This step re- 
quires a nonlinear search only in CRd’m(X) [ where x is the 
parameter vector of a cylinder-primitive and dim (x) I 
dim (x)]. In this step, massive data reduction is achieved, 
and the problem is converted into a finite combinatorial 
search, to find the optimal way to combine the detected 
primitives into objects. Since this combinatorial problem 
is still too large to be solved directly, additional steps are 
necessary. First, a set of feasible objects is constructed 
by combining individual detected primitives and their pa- 
rameter estimates via causal minimum variance filtering. 
The assignment of detections to each feasible object and 
rejection of infeasible ones, is directed by a sequential 
hypothesis test. Then, a multiple hypothesis test is per- 
formed to determine which particular combination of the 
many feasible objects is most likely to represent the data. 
The number of objects is also determined in this step. The 
last step is again a continuous estimation procedure (in 
contrast to combinatorial optimization): final object esti- 
mates are obtained by linear fixed-interval smoothing of 
the individual objects that were selected in the previous 
step. 

A.  Step 1: Primitive Detection and Estimation 
1) Introduction: We first detect cylinders in each slice 

(normalized to thickness 1) and estimate their local shape 
and position parameters using only the measurements for 
that slice. Hence, the problem reduces to the 2D plane. 
The approach of Rossi and Willsky [5] to the maximum- 
likelihood (ML) estimation of a single elliptical object in 
the plane from its projections does not apply to the mul- 
tiple object case, since the projections of the different 
primitives in the slice may overlap, creating a coupling 
between the different parameter estimates. In fact, esti- 
mation of the parameters of the multiple cylinders whose 
projections are superimposed to produce y ( t ,  z ,  0 )  in 
(2.14), (2.15) is an extension to a higher dimension of a 
well known problem of estimating the parameters of over- 
lapping pulses. For our imaging problem, the latter re- 
stricted 1D version corresponds to the measurement of a 
single slice at a particular projection angle. Such mea- 
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4. 
Fig. 5, Single slice projection geometry with overlapping projections. 

surements are the superposition of several half-ellipse 
pulses of the form (2.12) of unknown position and shape 
parameters as shown in Fig. 5. 

The latter problem of overlapping pulses, which arises, 
e.g., ip radar and in geophysics, has been considered by 
several authors [24]-[29] and solved using suboptimal 
schemes of detection-deconvolution, inverse filtering, 
least squares, approximate maximum likelihood, eigen- 
structure analysis, and the iterative estimate-maximize 
approach. We have chosen to compute maximum-likeli- 
hood estimates using an approach we term alternating 
maximization (AM), which is derived from the “alter- 
nating variable” algorithm of numerical optimization 
[30]. A somewhat different version of the latter algorithm, 
termed alternating projection maximization (APM), has 
been applied to the problem of multiple source localiza- 
tion [3 11 demonstrating remarkable success. Though the 
global estimation problem is solved with the MAP crite- 
rion, for a given slice, there are no priors (except uniform 
distribution over the parameter space), so the maximum 
likelihood criterion is more appropriate. 

2)  Resolution of Superimposed Signals by the AM Al- 
gorithm: To see how the AM algorithm applies to prim- 
itive estimation, we first show in general how it can re- 

of the signals $ ( t ;  a,) from Y where 

T 
, a J ] ,  Y =  y ( t > :  -- 5 t 5 ‘1. @ = [ a l ,  a . .  

2 

(4.3)  

1 2  

The maximum likelihood solution is the set of parameters 
which has the highest probability, i.e., 

BML = arg max L ( @ )  = arg max log py( e ) .  (4.4) 

This solution requires a search over a large parameter 
space, and is computationally infeasible when the number 
of signals and parameters is large. The AM algorithm re- 
duces computation by maximizing over the parameters a, 
of each signal individually while holding the other param- 
eters fixed at their most recently estimated values accord- 
ing to the following iterative procedure 

0 a 

n = 0 ;  
repeat 

f o r j  = 1 to J do 

A ( n + l )  - 
a, 

{ 

(4.5) - arg max L~ (a, 1 by, ) )  ; 
olr 

I 
increment n by 1 ; 

} until parameter change is insignificant. 

where 

9 (4.6) a;,, = [ b ; n + l )  . . . 9 0 f r - l  * ( a + \ )  ? a J + 1 5  A ( n )  . . . , &,)I 
and 

LJ(aJ I ‘;I)) A log py( E a)? ‘ Y J ) )  (4‘7) 

is the conditional log-likelihood of the parameters aJ given 
all the other parameters. This algorithm, which searches 
over a subspace of dimension dim (U,) at a time, is an 
intermediate form between full multidimensional search 
and the ‘‘alternating variable” algorithm [30] which re- 
duces the search to a sequence of 1D searches parallel to 
the coordinate axes in parameter space. The advantage of 
searching over the parameters of one signal at a time is 
that the problem essentially decouples into several single- 
signal problems, as discussed below. 

It is shown in Appendix A that the likelihood in (4.7) 
can be written as 

solve J overlapping signals where J is known. The 1 1 

zero-mean white Gaussian noise: (4 .8 )  

detection problem of estimating J is considered later. 
Consider a measurement of J superimposed signals in 

L,(aj  I ‘ : j ) )  = ( Z y ( t )  ) - - 2 NO 

J where 

Y ( t )  = J =  1 $ ( t i  a,) + + ) ,  (4.1) w-4 = Il$(r; a)/12 (4.9) 

(4.2) 

The goal is to estimate the unknown set of parameters a 
can be thought of as the energy of the signal (terms in- 
dependent of a have been dropped), and the appropriate 
inner product and norm for continuous scalar time func- 

E [ v ( t )  v(s)] = No6( t  - s ) .  
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tions are, respectively, 

T / 2  

( f ( t ) ,  s ( N  = ST12f ( f )  * g ( r )  dt (4.10) 

1 1  f ( t> ( I 2  = ( f( t> 3 f ( t )  ) .  (4.11) 

For discrete measurements, the integral is replaced by a 
summation. The term 

J - 1  J 

z y ( t )  = y ( t )  - C + ( r ;  &:+‘I - C IC/(?; a : )  
I =  I I = J f l  

(4.12) 

is a “cleaned” signal consisting of the original measure- 
ment with the most recently estimated contributions from 
the remaining J - 1 signals (which are held fixed) sub- 
tracted out. If these estimates are correct, the “cleaned” 
signal will be the noise plus the contribution due to the 
signal of interest, i.e., a noisy measurement of a single 
signal, and the estimate in (4.5) will correspond to the 
ML estimate. Not surprisingly, (4.8) coincides with the 
expression [32] for the log-likelihood of the single signal + ( t ,  a]) in white Gaussian noise, when the measurement 
is the “cleaned” signal zJ” ( t ) .  

Since € ( a )  can be precomputed for discretized a ,  the 
only computation in performing the maximization in (4.5) 
are the inner products in (4.8). Thus the AM algorithm is 
considerably more efficient than a full multidimensional 
search. We now apply the AM procedure to the projection 
imaging case and generalize it to handle multiple view 
measurements. 

3) Primitive Estimation by the AM Algorithm: We still 
consider a single slice, so we can assume that z = 0 
w.l.o.g., but now the measurement process consists of the 
M projections: Y = { y ( t ,  e,): -T/2  I t I T/2, m = 
I ; . .  , M 1, so that the ID index set { r 1 of the previous 
subsection is replaced by a 2D index set { t ,  e}.  Owing 
to the independence of the measurements, the results of 
the previous section are applied by simply replacing t with 
the pair ( r ,  e )  and + ( t ;  a] )  with dJ * go(?  - O‘c,, e,,,; y J )  
from (2.11)-(2.13). Thus the parameter set of the jth sig- 
nal is a, = { cJ , -yJ , dJ } . Since there are discrete projection 
angles, the inner product is redefined to be 

M T / 2  

m =  I - T / 2  
( f(t, e ) ,  s ( t ,  0 ) )  = c 5 f ( t ,  6,) - s( t ,  e,,,) dt. 

(4.13) 

It follows that the log-likelihood for the parameters of 
a single signal conditioned on all of the other signals at 
the n + 1 iteration is 

where now there is a “cleaned” signal for each projection 

J 

It is shown in Appendix A that the required maximi- 
zation for (4.5) reduces to 

(4 .17)  

For a given shape parameter -y, the computation of the 
inner product in (4.16) can be interpreted [5]  as a con- 
volution-backprojection (CBP) [2] operation similar to the 
standard operation used in tomographic reconstruction, the 
only difference being that the standard convolution kernel 
is replaced by go( - t ,  8; y). Alternatively, the convolu- 
tion step is interpreted as filtering the ‘cleaned’ measure- 
ment by a filter matched to the known projection go( r ,  0; 
7) of the signal. To see this, we decompose the inner 
product [defined in (4.13)] into the following two steps: 

T I  2 

qs(t)  = 7J7,  0 )  * go(7 - t ,  6 ;  Y) d7 
- T / 2  

= q t ,  e )  * go( -? ,  e ;  7 )  (4.18) 

M 
2 

( z ; ( t ,  e ) ,  go(t - e ’ c ,  e ;  T , ) )  = qs,,,(e;,c). 
m = l  

(4 .19)  

The first, in (4.18), is the convolution, or matched filter- 
ing step, while the second, in (4.191, is the backprojec- 
tion step, in which at each location c ,  the contributions 
from all available views are summed. 

If the shape parameter space is discretized, then a bank 
of matched filters is used, one for each possible parameter 
set, and the maximization performed over all filters. For 
efficient implementation, the shape parameter space is first 
discretized coarsely, and rough estimates made by a search 
over this smaller set. Then the AM algorithm can be ap- 
plied for refinement by iterating over the shape parame- 
ters. 

Since at every iteration of the AM algorithm (4.5)-(4.7) 
we maximize the log-likelihood, it can only increase. Fur- 
thermore, the likelihood is bounded from above by its 
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global maximum corresponding to the ML estimate. Con- 
sequently, the algorithm converges. While the above 
properties are not a sufficient condition to guarantee con- 
vergence to a local maximum,* we have found that for 
discretized parameters, the AM algorithm converges to a 
local maximum within a few iterations. Convergence to 
the ML estimate (i.e., the global maximum) requires that 
the initial estimate be sufficiently close to the ML solu- 
tion. 

4) Initialization: Kwakernaak [29] proposes the fol- 
lowing algorithm for estimating the parameters of super- 
imposed signals: treat the measurements as if there were 
only a single signal, estimate its location and shape using 
a bank of matched filters. Then subtract from the mea- 
surements the estimated contribution due to that signal and 
repeat J times until the last signal is extracted. This pro- 
cedure is identical to a single iteration of the AM algo- 
rithm if the first “estimates” are set to zero. 

In Kwakernaak’s application, the signals are of known 
shape (but unknown amplitude) and he successfully de- 
tects and estimates overlapping signals. However, as 
pointed out in [25] when the signal shapes are unknown: 
“The physical difference between the combination of two 
closely spaced signals and one signal located between 
them may be small, and the introduction of noise can ob- 
scure this difference. . . . The noise energy may be small 
when compared with either signal, but at the same time 
be large when compared with the difference we are trying 
to measure.” We have found experimentally that the es- 
timates can be improved significantly by a few iterations 
of the AM algorithm. Therefore we use Kwakernaak’s al- 
gorithm for initialization and the AM algorithm for re- 
finement. If other initialization procedures are also used, 
e.g., the ML estimates of the preceding slice, the likeli- 
hood of finding the true global maximum will be in- 
creased. 

5) Detection of Primitives: If the number of primitives 
J is unknown, Kwakernaak’s procedure could be repeated 
indefinitely and the likelihood would be monotone in- 
creasing, so Kwakernaak applies an information theoretic 
criterion based on the minimum description length prin- 
ciple [34] to estimate the number of signals. This ap- 
proach has also been used [35] for estimating the number 
of sources sensed by an antennae array. This technique is 
applicable to our problem as well. For simplicity, in the 
sequel we use the following procedure: if J,,, is an a 
priori upper bound on the number of primitives, then the 
estimation procedure is carried out assuming there are J,,, 
primitives. If there are actually J < J,,, primitives in a 
slice, then J,,, - J “false alarms” (corresponding to hy- 
pothesized but nonexistent primitives) will be generated. 
The “cleaned” signal (4.15) for these primitives will just 
be background noise, so their ML estimates will be ran- 
domly distributed over the slice. Objects formed from 

’Ziskind and Wax make this erroneous claim for their APM algorithm 
1311. However, examples have been constructed [33] where the alternating 
variable algorithm converges to a point which is not an extremum. 

such primitives will have very low likelihood, and will 
easily be pruned by the following steps of the hierarchy. 

6) Algorithm Output: At the end of the first step, the 
algorithm produces for each value of z = 1, - - , L a set 
?( z )  = { 3;. ( z )  } 2; of J,,, vectors (referred to in the se- 
quel as “data points”), each describing the estimated pa- 
rameters and location of a detected primitive (i.e., the 
vector x for that primitive) at height z .  The J,,, points are 
assumed to be arbitrarily ordered and sequentially num- 
bered. Thus, 6 ( z )  can be written as 

for some 1 I j I J where a denotes the suboptimal sin- 
gle-slice ML primitive estimate, and v j ( z )  is the associ- 
ated estimation error. Let us define the measurement ma- 
trix H as the matrix that extracts the vector x from the 
augmented state vector x, i.e., 

Hx = x H = [ O l Z ] .  (4.21) 

Then, assuming the estimation error uj ( z )  to be Gaussian 
distributed3 with covariance R and to be uncorrelated be- 
tween data  point^,^ each t ( ~ )  can be considered to pro- 
vide a linear measurement of xj ( z ) ,  corrupted by additive 
white Gaussian noise, for some object j ,  as in 

S ; . ( Z )  = H x j ( z )  + u j (z ) *  (4.22) 

EV,(Z) = O E [ v j ( m )  u ~ ( n ) ]  = 0, 

vk it j o r m  it n. (4.23) 

The system and measurement models described by (2.6) 
and (4.22)-(4.23) seem to be in a classical form to which 
Kalman filtering 1231 may be applied to obtain a minimum 
variance estimate of { xi ( z )  } , thus reconstructing the ob- 
ject. Note, however, that contrary to the classical case, 
the uncertainty in (2.6) and (4.22)-(4.23) is not confined 
to the noises wj and uj; in fact, the association between a 
primitive measurement & ; ( z )  and an object Oj,  is not 
known. Moreover, due to detection errors, “false alarm” 
primitives will be generated that do not correspond to any 
object. The situation is analogous to having a collection 
of beads (detected primitives) in 3-space, some of which 
need to be strung on threads in order to obtain necklaces 
(estimated objects) whose number is not prespecified, sat- 
isfying some global optimality criterion. 

B.  Unsupervised Pattern Recognition Problem 
With the data from the first step available, our recon- 

struction problem can be reformulated as an unsupervised 
pattern recognition problem [37] in which it is necessary 
to estimate from the unclassified set of detected primitives 

’The ML estimator is known to be asymptotically Normal (in fact, Best 
Asymptotically Normal-BAN) [ 3 6 ] .  

41n general, the parameters of different primitives within a slice. which 
are estimated jointly, can be expected to be correlated, except when the 
projections of these primitives do not overlap in any of the given views. 
However, Monte-Carlo simulations show this correlation to be negligible 
even when the object density in the domain is so high that projections of 
each primitive overlap those of another one in two out of four available 
views. 
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both the number of clusters (objects) present, and param- 
eters of individual objects. Although “trajectory” [in the 
broader sense of (2.6)] and measurement models are as- 
sumed known, it is not known which data point corre- 
sponds to which object. 

A problem which is essentially equivalent to ours is that 
of multitarget tracking in a cluttered environment [38], 
which has been studied extensively. In the present case, 
however, the time axis has been replaced by a spatial axis 
z ,  and we are interested in obtaining an optimum 
“smoothing solution,” i .e. ,  one that uses the information 
at all “times” ( z  values) to construct the estimate at any 
given “time.” In what follows, we present an adaptation 
to our problem of a batch type target-tracking technique, 
proposed by Morefield [39], which lends itself to a 
smoothing formulation. 

We begin by introducing some notation and definitions. 
Ordered Detection Set Q is defined as the set of detec- 

tions in the whole domain 33, ordered in lexicographical 
order 

Q { 4 ( 1 ) ,  1 ( 2 ) ,  * . . 9 W)}. (4.24) 

The ith element U ,  of this set corresponds to a detected 
primitive j , ( z ) ,  for some k and z .  The cardinality of this 
set is 1) Q 1) = L * J,,,. 

Object Cluster AJ is the set of data points U ,  correspond- 
ing to detected primitives belonging to a hypothesized ob- 
ject 07, i.e., 

AJ & ( w , : w ,  belongs to 07, i E { 1, 
* * , I l Q l l } ) .  

(4.25) 

Two additional constraints apply to the definition of A’: 
1) it includes at most one data point at any value of z and 
2) the data points in A’ come from a contiguous range of 
z values. We will use L J ( z )  to denote the element of A’ 
corresponding to a primitive detected at position z .  The 
number of primitives in A’ is 

L; A ((Aq I L (4.26) 

corresponding to a hypothesis on the object length. 
Association Hypothesis X is a nonnegative integer J* 

and a complete partitioning of Q into J *  disjoint object 
clusters { AJ,  j = 1, * . * , J*} and a false alarm cluster + consisting of data points rejected from all AJ.  Thus, we 
have 

+ = Q - U;:, AJ (4.27-a) 

A ’ n A J = 4  i # j  (4.27-b) 

x = { J * ,  pqI}  (4.27-c) 

The requirement (4.27-b) that the distinct clusters be 
disjoint, corresponds, of course, to the assumption that 
no two objects occupy the same point in space, or share 
a primitive. The set S of all such valid hypotheses is de- 
fined as 

(4.28) S = { X :  the constraints (4.27) are satisfied}. 

Fig. 6 .  Detected primitives and possible object clusters. 

To illustrate the above definitions, consider the case 
[Fig. 6(a)] when the set of detections consists of six data 
points, 

n = w2, * * , w 6 } .  

Three possible object clusters [Figs. 6(b)-(d)] are 

AI = { U , ,  w3, w ( j ) ,  A’ = {U’, w3, w g ) ,  A’= { *4, W 6 )  

(4.29) 

Two valid association hypothesis and their correspond- 
ing false alarm clusters are x1 = { 2; h2, x3 }, x2 = { 1; 
A’}, 9, = { w l } ,  and +2 = { w l ,  w4, w 6 } .  The corre- 
sponding primitive-to-object associations are shown in 
Figs. 7(a) and (b), respectively. An instance of an invalid 
data partition [Fig. 7(c)], is X3 = { 2; AI, A’}, with A’ 
fl A’ = w3 # 4 ,  in violation of (4.27-b). 

A hypothesis X thus completely specifies the data to 
object association. The choice of X E S, which is an es- 
sential step in solving our problem, can now be formu- 
lated as a multihypothesis test. Here too, we employ the 
MAP criterion 

x = a r g m a x P ( X 1 Q )  (4.30) 

which is known [23] to minimize the associated Bayes 
risk, if errors are equally weighted and correct decisions 
not penalized. By Bayes’ rule, 

X € S  

The a priori association probability P (  X),  will be as- 
sumed constant for simplicity, although models, such as 
(2.8), of a priori information on object size ( i .e . ,  on the 
distribution of L,) and of false alarm distribution could be 
incorporated. The independence of the objects condi- 
tioned on the constraint (4.27-b) [see also (2.8)], and of 
the estimation noise U, together imply independence of the 
clusters A‘ conditioned on a specific association hypothe- 
sis X, so that, by (4.27-a) we obtain the following fac- 
tored form, which is key to the efficient computation of 
the subsequent steps of the algorithm: 

J *  

p ( Q ( X )  = p(AJ(X,  A’ E X ) p ( + \ X ) .  (4.32) 
J =  I 
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C. Step 2:  Feasible Object Construction 
A clustering procedure is implemented in this step to 

detect clusters hJ in Q that are “reasonable” to incorpo- 
rate in an assignment hypothesis X, given the object and 
measurement models (2.6) and (4.22)-(4.23). 

Owing to the mutual independence of the different X J  
conditioned on the hypothesis X, relation (4.35) can be 
rewritten as 

L(  X J )  = log p [  hJ I model (2 .6) ,  (4.22)-(4.23)],  
(b) Hz (c )  HJ 

lnualid HypOthSiSlS Ualld Hypotheslr 

(1) Indicates False Alarm 

Fig. 7 .  Possible object hypotheses. 

Assuming an equal likelihood of false alarms anywhere 
in the volume I/ of the probed domain, we obtain 

(4.33) 

where the number of false alarms is n+ = L J,,, - 

Cj”: Lj* by (4.27-a), and V is in units of the volume of a 
typical primitive. Taking the logarithms of (4.3 1)-(4.33) 
and dropping terms independent of X, we obtain the new 
problem 

where L (  X i )  is the log-likelihood function of X J  deter- 
mined from the object and measurement models 

L(X’)  = logp(X’IX, X’EX). (4.35) 

The computational difficulty in solving (4.34) by direct 
enumeration of the different X in S can be appreciated by 
evaluating the cardinality of S .  Given that there are J,,, 
detections in each slice, 1 1  SI1 is bounded below by the 
number of association hypotheses with exactly J* = J,,, 
objects of identical length LT = L. This number is readily 
evaluated, yielding the following bound: 

(4.36) 

Calculation of the object log-likelihood (4.35) (which in 
itself may be computationally expensive), for 11 S 1 )  hy- 
potheses, becomes infeasible for all but the smallest prob- 
lems. For example, for a modest size problem (like the 
one simulated in Section VI) with J,,, = 5 and L = 100 
we have 1 )  SI) 2 

A key to reducing the computational complexity of 
(4.34) is the observation that different hypotheses X E S 
are often not disjoint, with some objects appearing in more 
than one hypothesis. It is therefore inefficient to first form 
a hypothesis X and then check the feasibility of its ob- 
jects, since the same object Oi E X may appear in another 
hypothesis. Fortunately, the conditional independence of 
the data clusters allows us to decompose (4.34) into a step 
of feasible object construction followed by an integer op- 
timization program, greatly reducing the computations. 

(4.37) 
\ I 

so that L (  X J )  can be evaluated independently of all the 
other entries in X. The cost to be maximized in (4.34) is 
seen therefore to consist of a sum of terms, with each term 
depending only on its corresponding entry hJ in X. While 
complete decoupling of the problem into individual max- 
imizations of each of these terms is impossible due to the 
coupling introduced by (4.27), the following scheme 
achieves partial decoupling. 

If (4.34) is to be maximized, it makes sense to require 
that objects that are candidates for inclusion in X satisfy 

L (  X J )  1 ayL; (4.38) 

for some threshold aL;, which may be a function of the 
object’s length L;”. Relation (4.38) is recognized as a 
likelihood test, rejecting object clusters whose likelihood 
is below some threshold. An object cluster OJ is incor- 
porated into a feasible object set F,  if it passes the hy- 
pothesis test (4.38). Thus, the feasible object set is de- 
fined by 

F = { X J : X J  C Q ,  L ( X J )  2 a.;}. (4.39) 

Only hypotheses X C F formed using the objects in F 
will be considered in the subsequent Bayesian decision 
process, effectively substituting a pruned feasible set F for 
the larger original set S .  The cardinality 1 )  F 11 of this set 
may be, however, significantly larger than the final num- 
ber J* of estimated objects. The threshold aL; is a critical 
design parameter in this procedure, determining a tradeoff 
between the accuracy of the algorithm and the computa- 
tional requirements of the subsequent step: it determines 
the probability that a real object is mistakenly excluded 
from F and only parts of it recovered as smaller objects 
by an iterative post processing step (see below), versus 
the number of objects accepted into F that determine the 
size of the decision problem in the next step. The elimi- 
nation of low probability (infeasible) hypotheses in this 
process contributes to great computational savings. 

Note that conditioned on the hypothesized assignment 
(described by XJ) of detections to thejth object, the mea- 
surement equation in 4.22 becomes 

q z >  = H x , ( z )  + u,(z), (4.40) 

where 3L ( z )  represents the measurement vector at posi- 
tion z associated with the jth object. To construct a fea- 
sible object corresponding to hJ ,  we use the result that the 
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log-likelihood in (4.38) can be conveniently computed in 
terms of the white Gaussian innovation sequence [23] 

6 , ( Z )  = 1’(z) - Hi,(z 

Z = z:,,, . 

q z J z  - 1) = E[x,(z)(X’(z?.  

where the “predicted estimate” 

Z - l ) ,  

* , z:,, + LJ* (4.41) 

) ,  * * * , X’(z - 1)]  

(4 .42)  

is a minimum variance causal estimate of the state se- 
quence x , ( ~ )  of the object, based on “past” measure- 
ments in A / .  Since the model (2.6), (4.40), (4.23) is in 
the form of a classical linear state-space model, the esti- 
mate in (4.42) is sequentially generated by a linear Kal- 
man filter which is applied to the data AJ in an increasing 
z order. For ease of reference, the equations of the Kal- 
man filter [23] have been included in Appendix B. The 
resulting expression (Appendix B) for the log-likelihood 
function (4.33) for the object is given by 

* :, , + L* 

L (  X j )  = tL,* dim [ 6 , ( z ) ]  . log 2n + $ 

.-, , + L* 

* log (R,(z)J + C 6 , ’ ( ~ )  R~’(z) 6 , ( ~ )  
:= : I ,  

(4.43) 

where R,(z) is the innovation covariance, 1 R,(z) I the 
determinant of this covariance, and dim [ 5 1 ( ~ ) ]  is the 
dimension of & , ( z ) .  For models (2.6), (4.40), (4.23) with 
deterministic parameters (disregarding adaptive features 
which may be implemented to adjust model parameters in 
response to data collected), R6 ( z )  is deterministic (and 
may be precomputed), and L; is known for any given A’. 
Except for the first two terms in (4.43), which only shift 
the mean, the likelihood L (  A’) is a sum of quadratic 
forms in the white innovation vectors, and it is therefore 
x 2  distributed with dim [ & , ( z ) ]  L,* degrees of freedom 
[36]. It follows that the threshold aL; is readily set to fix 
the desired level of the test. 

In practice, a feasible object is constructed sequentially 
by scanning the data with a depth first, backtracking 
search procedure. As each data point is added to a feasible 
object, the estimate (4.42) and the innovation (4.41) are 
recursively updated using the Kalman filter. The update 
of the cumulative object likelihood then involves only the 
addition of an extra term to the sums in (4.43). As many 
data points are added to an object as possible, before the 
test (4.38) is violated. When the test is failed, the algo- 
rithm backtracks, and examines another branch of the 
search tree. The final likelihood value associated with 
each feasible object is stored, along with the sequence X J  
of associated detections, for use in the next step of the 
algorithm. 

For computational efficiency, the test (4.38) is pre- 

ceded by coarser tests [39]. In particular, we test a dis- 
tance measure d, between primitives c ! ( ~ )  and c , ( ~  + 
1 ), to determine if they could possibly be assembled into 
a feasible object. d,, can be a function of the the Euclidean 
distance between the locations of the corresponding prim- 
itives, and of their relative orientations. Primitives whose 
distance d ,  is below some threshold are declared adju- 
cent. The threshold is set such that the probability of de- 
tection (i.e., correct decision on adjacency for neighbor- 
ing primitives of an object) is close to unity, effectively 
guaranteeing that no real objects are excluded by this pro- 
cedure. The adjacency relations determined by this coarse 
test, are used to guide the above depth-first search, thereby 
eliminating unnecessary evaluations of (4.43). 

The main advantage of the sequential construction of F 
described above is its relatively low computational cost. 
Note however, that due to the depth-first search, it is 
biased towards long objects. Thus, although parts of a 
feasible object may be themselves feasible objects, they 
will not be produced by the algorithm. This may be jus- 
tified by assumption that if a long object has been declared 
feasible by its likelihood exceeding a certain threshold, 
then the probability is low that its primitives constitute 
several distinct objects. In some cases, this bias must be 
overridden in favor of global optimality, as discussed be- 
low. 

Consider the case where two feasible objects in F share 
one or more primitives. Eventually, only one of these ob- 
jects will be included in the winning association hypoth- 
esis. If some of the primitives of the rejected object are 
not included in any other feasible object, these primitives 
will be declared as false alarms, although in fact they may 
together form a shorter object that would have been ad- 
mitted as feasible, had it been considered in the first place. 
To address this difficulty, the processes of forming the 
feasible objects and choosing an association hypothesis 
are iterated on the data set, with the false alarm data clus- 
ter of one iteration, serving as the data set Q of the next. 
Thus primitives that have been misclassified as false 
alarms can form an object in the subsequent iteration. The 
iteration is stopped when no further change occurs in 9. 

D. Step 3: Discrete Optimization 
A subset { ( X I )  }:I I of F must now be chosen to max- 

imize (4.34) subject to (4.27). This problem can be re- 
formulated as a linear integer optimization problem, by 
adopting the following definitions. Let 5,  be a binary vec- 
tor of length 1 1  Q ( 1  describing an object cluster A’ deter- 
mined in the previous step, by using the following con- 
vention for its lth component: 

1 if U, E X’ 

0 otherwise. 
A,., = (4.44) 

The whole set F = { XJ, j = 1, , / I  F(I } containing 
11 F ( 1  feasible object clusters can be now alternatively de- 
scribed by the l) Q / )  X 1IFII matrix A = [ A , ,  * . . , AilFll], 
constructed from k j  as columns. Let t be a binary vector 

- 
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of length 11 F 1 )  , defined by 

1 if X’ E x 
0 otherwise 

7; = [ (4.45) 

Then r describes a hypothesis X C F, which picks J *  I 
11 F 1 )  objects from F, and (4.27) can be expressed as 

AT I [ l ,  1 ,  * * *  11’ (4.46) 

where the vector inequality is considered satisfied if and 
only if all the components of the vector satisfy the ine- 
quality. Finally, define the cost associated with the choice 
of X’ as 

CJ = L (  X j )  + Lj* - log v, (4.47) 

and the cost vector C = [ C1, CiiFll ] I .  Note that L (  A’) 
has been computed in the previous step in (4.43), for each 
feasible object. 

To illustrate this notation, consider Fig. 7 and the ob- 
ject clusters in (4.29). If F consists only of these three 
clusters, the matrix A is 

while the r vectars corresponding to the association hy- 
potheses XI = { 2; A’, X 3 }  of Fig. 7(a), X2 = [ 1; h 2 }  
of Fig. 7(b), and X3 = { 2; . A 1 ,  h 2 }  of Fig. 7(c) are, 
respectively, 

We also have for these vectors 

so that both r l  and r2 satisfy (4.46), as valid hypotheses 
should, and r3 violates (4.46), as expected of an invalid 
hypothesis. 

Claim: With the above notation, the problem 

max C’r subject to AT 5 [ l ,  1, - - - l ] I  (4.48) 
T € S  

where S‘ = { all binary vectors of length ( 1  F )I }, is equiv- 
alent to the original problem (4.34), (4.38), (4.27), pro- 
vided that all the feasible objects have been included in 
F. 

Proofi Simple substitution of the above definitions 
into (4.34). 

The problem (4.48) is known as the set packing prob- 
lem in 0-1 integer programming (cf. [40]), and special- 
ized efficient algorithms for its solution have been devised 
(e.g., [41, 42]), taking advantage of the typical 
sparseness5 of the matrix A. The performance of these 
algorithms may be significantly improved by preprocess- 
ing of A, to actually decouple (4.48) into a set of smaller 
problems [39]. Algorithms for the solution of the problem 
(4.48) are described in the above references and in the 
extensive general literature on integer programming (e.g., 
1431, [441). 

E. Step 4: Fixed Interval Linear Smoothing 
At the completion of the previous step, an optimum as- 

sociation hypothesis $2 = {j, { } is available, 
specifying the estimated nymber of objects [, their start- 

, J ,  and which ing positions i1,], lengths L,, j = 1, * - - 
detected primitives belong to which object. We wish now 
to determine optimum estimates of the state sequences X, , 
j = 1 , . . .  , J of these objects. 

Given the models (2.6), (4.40), (4.23) and the optimal 
association hypothesis $2, the problem decomposes (once 
again, owing to the conditional independence of the ob- 
jects) into J independent linear Gaussian fixed interval 
smoothing problems* [23], in which it is required to find 
the MAP estimate X, ( z  I i,) of the state X, given all the 
measurements in A’. Under the Gaussian assumption, the 
latter estimate coincides with the minimum mean square 
error estimate of the X,, which is obtained by applying 
the two-pass formula of Rauch, Tung, and Striebel [45] 
(Appendix B), which we have chosen out of the several 
well-known fixed interval smoothing formulae [46], in- 
dividually to the data sets X J  E B. 

A computed covariance of the estimation error is also 
available from the smoothing step, and may be used to 
assess the quality of the estimates. This covariance, how- 
ever, reflects only the uncertainty associated with the 
measurement and process model noises, leaving out the 
uncertainty associated with the Bayesian decision process 
of Steps 2 and 3 .  It should be therefore regarded as a lower 
bound on the actual estimate variance, becoming tighter 
with higher measurement SNR and with better object spa- 
tial separation. 

This step completes the solution of the estimation-de- 
tection/reconstruction problem, and the estimated density 
of the collection of objects in the probed domain is ob- 
tained by substituting XI into (2.9) and (2.2). 

‘A will be typically less than I / J m A x  full: while the length of a column 
of A is 11 C l  11 = L . J,,, the average number-of nonzero entries in it will be 
approximately equal to the average length L of an object; and since L 5 
L ,  it follows that the average density of the matrix is Q ( (  5 I /J,,,,,. 
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V . COMPUTATIONAL REQUIREMENTS 

The set packing problem (4.48) is known to be NP- 
complete [47], and therefore, since it is conjectured that 
no polynomial-time algorithm exists for NP-complete 
problems, the best available upper bound on the compu- 
tation will be exponential in the problem size. Using such 
a bound to predict the computational cost would invari- 
ably suggest that the feasibility of our whole algorithm is 
limited to relatively small problems. 

Fortunately, efficient algorithms (e.g., those mentioned 
above) taking advantage of the typical sparseness of our 
constraint matrix, provide a solution to relatively large 
problems with a reasonable amount of computation, on 
the average (over a wide selection of test problems). Thus, 
we note that in the scheduling of airline crews, the prob- 
lem (4.48) is solved routinely with several hundred con- 
straints and thousands of variables. In the target tracking 
application, a problem with an 80 X 40, 2 percent full A 
matrix required 1.3 s on a CDC 7600 [ 3 9 ] ,  whereas one 
with a 200 X 200, 10 percent full A matrix has been 
solved in less than one second on the average (virtual CPU 
seconds) on an IBM 3033 computer [48], using Toyoda’s 
1491 algorithm to obtain “good” approximate solutions 
to randomly generated sparse test problems. Hence, al- 
though it appears extremely difficult to predict theoreti- 
cally the computational requirements of any of these al- 
gorithms, the reported experience strongly suggests that 
the discrete optimization step can be easily handled by 
modem computers and currently available algorithms, 
even for relatively large problems. 

A detailed evaluation [ 151 of the computational require- 
ments of the other steps of the algorithm reveals that the 
computation is dominated by the first step, of primitive 
estimation. Consequently, we concentrate on this step. 

The dominating computation for primitive estimation is 
the maximization in (4.16). For each choice of c and y, 
the convolution in (4.18) must be performed, and then the 
maximum of the backprojected log-likelihood must be 
found. We first compute the requirements for these two 
procedures, assuming that floating point additions, mul- 
tiplications, and comparisons take approximately the same 
amount of time. These expressions are for the sampled 
measurement case. 

Convolution: For convolving a small symmetric ker- 
nel with large vector, direction convolution is more effi- 
cient than using FET’s. Owing to the symmetry of the 
half-ellipse kernels go, the flop count for a single convo- 
lution is 3 * nkN where nk is the number of samples in an 
average kernel and N is from (2.16). 

Buckprojection: The log-likelihood is maximized on 
a rectangular lattice within a single slice of the probed 
domain (2.1). At each lattice point, we sum the contri- 
butions from each view (4.19) and compare to the current 
maximum. Therefore, the operation count is ( M  + 1 ) 
7r(N/2nS)’  where n, is the sampling interval used for 
coarse sampling. 

each possible radius, orientation, and axis ratio which are 
discretized to n,, n4, and nA sample points, respectively. 
Although inefficient, this will provide an upper bound for 
the computational requirements. For each primitive, and 
for each possible parameter set, we must perform a con- 
volution in each view, and then backproject. The opera- 
tion count is therefore 

Jn,n,nh M3nkN + ( M  + 1 )  - 7r i 
For example, if N = 256, M = 4, J = 10, n, = nd = 

nh = 5 ,  nk = 7, and n, = 2, the operation count is -9  
10’. 

The contribution to the operation count by subsequent 
iterations of the AM algorithm is negligible since these 
require only local searches in position, so the dominant 
O (  N 2 )  term is replaced by a much smaller term. 

A more efficient procedure is to maximize over each 
parameter separately, i.e., first choose an “average” size 
primitive and find the best position, which requires con- 
volution in each view and a backprojection. Then search 
over the orientation, axis ratio, and radius parameters in- 
dividually, with only a local search in position, say in a 
W X W square about the initial estimate. This gives a 
more realistic figure for the operation count: 

+ J ( n ,  + n, + nh)(M3nkW + (A4 + 1 )  W 2 ) .  

For the same example, with W = 10, the operation count 
is now = 1 . lo6. However, this latter procedure may re- 
quire more iterations to achieve the same accuracy. 

The above expressions are counts per slice, so the total 
operation count would then be L times larger. Since each 
slice is processed independently, parallel processing could 
be utilized to increase speed. 

Although the computational requirements of the hier- 
archical algorithm are nontrivial, they are put in perspec- 
tive by considering the alternative dynamic programming 
approach considered in Section 111. We conclude that the 
hierarchical algorithm has a clear computational advan- 
tage (of hundreds of orders of magnitude) in solving mul- 
tiple object problems. 

VI. IMPLEMENTATION A N D  SIMULATION RESULTS 
A simplified version of the above algorithm has been 

implemented and tested on simulated projection images. 
3D objects are generated as explained below, their pro- 
jections are synthesized, and white Gaussian noise is 
added. The current implementation is restricted to primi- 
tives with circular cross-sections of unknown radius and . -  

One search technique is to evaluate the likelihood for contrast. The shape parameter r is therefore just U and d.  
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A .  Object Model 
To demonstrate robustness of the algorithm to devia- 

tions from the Markov state model ( 2 . 6 ) ,  objects were 
generated by using a few hand generated parameter values 
connected smoothly by splines. Two distinct sets of ob- 
jects were generated-a training set and a test set. In the 
estimator, we chose to use first-order Markov models for 
the components of T,(z), and a second-order evolution 
model for c, ( z ) ,  with the discrete second derivative A: ( z )  
4 c ( z  + 1 )  - 2 c ( z )  + c ( z  - 1 )  driven by a white noise 
sequence, whose covariance corresponds to the root mean 
squared (rms) curvature of the center axis. The resulting 
definitions for the state vector and model matrices are 

X , k )  A [ C &  - 1 1 7  C?.J (Z  - 1 1 7  C E . , ( Z L  C?. , (ZL  

A =  

B =  

- 0  0 1 0  - 
0 0 0 1  

- 1  0 2 0  

0 - 1 0 2  

0 

0 

1 0  

0 1  

'0 0 

0 0  

0 .2  0 

0 0 .2  

0 

0.2  0 

, O  0 0 .  

The parameters xo and II of the object model ( 2 . 6 )  and 
the corresponding initial estimate xo and its covariance no 
were set to 0 and 03, respectively, for each of the objects, 
representing a diffuse prior for the object parameters (i.e., 
corresponding to having no prior information about the 
state). The covariances B and R of (2 .6 )  and (4.40) were 
then optimized using the algorithm on the training set of 
objects, and then applied to the test set. Obviously in 
practice it would be better to use a larger training set de- 
rived, e.g., from actual objects. 

B. Measurement Model 
The projections of the objects in a zero-density 

background6 were computed using (2 .12 ) ,  and corrupted 
with pseudorandom white Gaussian noise with variance 
U: = 4. Fig. 8(a) and (b) are two of four noisy projections 
at angles 0", 45", 90", and 135",  discretized to 128 by 

'As would result after subtracting off the contribution of a known back- 
ground density (see Section 11-B), or following a temporal subtraction pro- 
cedure. The latter procedure, which is common practice in medical appli- 
cations. relies on subtracting pairs of projections taken before and after 
administration of a contrast agent into the imaged object. The background 
which is invariant in the two projections is thus cancelled. 

(b) 

Fig. 8. Noisy projection measurement data. (a) 0 = 0". (b) 0 = 90" 

128 pixels. In each projection, the signal-to-noise ratio 
for a given primitive, defined as the ratio of the projection 
height to noise standard deviation, is SNR = 2 a d / a ,  
where a and d are, respectively, the radius and contrast 
of the primitive. For the test objects, the average SNR is 
3 . 3 .  Although the outline of the objects can be visually 
detected in this example, quantitative assessment of the 
cross-section of the objects is very difficult. 

C.  Implementation 
The training set of objects was used to determine the 

error standard deviations of the primitive parameter esti- 
mates obtained in the first step. These are used for the 
measurement model (4.40), (4.23), and were set to 0.7, 
0.5, and 0 .3  for c, a ,  and d ,  respectively. 

The number of primitives per slice is assumed to be 
bounded above by J,,, = 4, so as mentioned previously, 
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Fig. 10. True (solid) versus estimated (dashed) object parameters. 

(b) 
Fig. 9. Outline of reprojection of estimated objects superimposed on pro- 

jections of true objects (shaded). (a) 0 = 0". (b) 0 = 90". 

we estimate 4 primitives per slice, some of which will be 
false alarms. The threshold for sequential hypothesis test- 
ing in the construction of feasible objects was set at the 1 
percent confidence level for the chi-squared distribution, 
i.e., CY in (4.39) was chosen so that the probability of re- 
jecting a correct primitive from an object is less than 1 
percent. Nevertheless, for the examples considered, the 
number of feasible objects in F was small enough that the 
0- 1 integer programming minimization could be per- 
formed by hand. 

The algorithm was implemented without regard to com- 
putational efficiency in C on a SUN 3/50, and took ap- 
proximately 5 min to process the data. The radii were 
coarsely sampled to 1 pixel for initialization, and refined 
to 0.5 pixels by iteration. 

D. Results 
Fig. 9(a) and (b) show two projections of the estimated 

objects superimposed on the (noiseless) projections of the 
actual objects. With a suitable graphics package, a 3D 
display of the estimated objects could be synthesized from 
their complete 3D representation, which is provided by 
the algorithm. The algorithm has tracked the 3-D evolu- 
tion of the objects despite the low SNR and limited num- 
ber of views. Note that the algorithm has successfully 
tracked the narrowing (indicated by the arrow) in the 
longest object, which was difficult to see in the projec- 
tions. Fig. 10 allows a quantitative comparison of the ac- 
tual and estimated object parameters. The smoothed po- 
sition errors are less than a pixel, and the radius errors are 
less than half a pixel. This subpixel accuracy is a desir- 
able feature of the parametric approach. 

VII. CONCLUSIONS 
We have presented an estimation framework for 3D re- 

construction from limited-view noisy projections of a do- 
main containing multiple objects, based on dynamic sto- 
chastic object models. Rather than attempt to reconstruct 
an arbitrary 3D distribution from the insufficient data, 
specific, quantitative information about objects in the 
probed domain is extracted, allowing, if desired, the pro- 
duction of a synthetic 3D display of the objects. The re- 
duction of dimensionality achieved through this formu- 
lation is the key to the effectiveness of the approach with 
limited and noisy projection data: the state sequences that 
need to be determined to completely specify the objects 
have only a small number of degrees of freedom (typically 
in the hundreds), as compared to e.g., lo6 for an arbitrary 
distribution in a 100 X 100 X 100 voxel volume. 

Since the globally optimal solution of the resulting joint 
detection-estimation problem is computationally infeasi- 
ble for all but the smallest problems, a hierarchical struc- 
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ture is used in the algorithm to reduce the computation to 
reasonable amount for moderately sized problems. A di- 
vide and conquer strategy at several levels, extensive data 
reduction at the first step, successive hypothesis pruning, 
and a mix of continuous and combinatorial optimization, 
all contribute to the computational efficiency of the algo- 
rithm. In the process, global optimality of a single step 
procedure is replaced by local optimality of the individual 
steps, and by a scheme to combine the results of these 
steps subject to a global optimality criterion. In general, 
such a decomposition of the problem does not preserve 
global optimality . However, significant reduction in com- 
putation with little loss in performance compared to the 
globally optimal solution can be obtained by judiciously 
choosing decision thresholds in the various steps of the 
algorithm, as described in the paper. This observation is 
supported by simulation results reported elsewhere [50], 
comparing this algorithm with the single-step approxi- 
mately globally optimal algorithm of [ 161. 

The hierarchical divide and conquer structure of our al- 
gorithm is reminiscent of approaches used in artificial in- 
telligence (AI) in general [5 11 and computer vision in par- 
ticular [52]. However, in distinction from most of those 
approaches, which often use ad-hoc criteria and proce- 
dures, our algorithm is characterized by well-defined 
quantitative optimality criteria, and by procedures that are 
either optimal, or represent a well-defined tradeoff be- 
tween computation and optimality . These properties are 
based on a systematic probabilistic framework, in which 
both object and measurement processes are modeled by 
stochastic processes. This pursuit of optimality is moti- 
vated by the adverse conditions under which the algorithm 
has to operate-limited data and poor SNR. While in most 
computer vision applications the aim is to match the per- 
formance of a visual observer, the purpose of our algo- 
rithm is to perform a task of which neither the unaided 
visual observer nor current algorithms are capable-3D 
reconstruction from few projections at low SNR. 

While the theoretical analysis of the performance of this 
algorithm is yet to be addressed, the simulation results are 
very encouraging, demonstrating “reconstructions” of a 
domain containing several objects from only 4 views in a 
135” sector, at signal-to-noise ratios as low as 1.5. 

The formulation and algorithm as presented in this pa- 
per are restricted by the object representation and by the 
causal evolution model to objects whose center axis is a 
single valued function of a fixed spatial coordinate. An 
extension of this approach to remove this restriction is 
possible [15], and will be described in a forthcoming pa- 
per. 

APPENDIX 

A. Likelihoods for the AM Algorithm 

When v ( t )  in (4.1) is Gaussian white noise, the likeli- 
hood in (4.4) can be written, to within terms independent 
of a, as [32] 

where the norm and inner product for scalar time func- 
tions are defined in (4.10) and (4.1 l), respectively. Fix- 
ing qj) as in (4.6) we obtain 

where i$ ( t )  is defined in (4.12). Expanding now the above 
norm and dropping 1 )  z r (  t )  \ I 2  yields (4.8) and (4.9). 

We now derive relations (4.16) and (4.17). Note first 
that by (4.9) we have 

2 
E ( y j )  = dj’ 1 1  go(t, 8; y j )  11 * ( ‘4 .3)  

Substituting into (4.14) we obtain 

Since the log-likelihood in (A.4) is quadratic in the con- 
trast parameter d j ,  its minimization with respect to dj can 
be performed analytically for any values of the other pa- 
rameters. The resulting estimate is 

,. 
d .  = 2 (A.5) 

(zj”(t9 e ) ,  go(t - Q’c, 6 ;  y j > )  

( 1  go(t, 8; yj)(I 
which, at the n + 1 iteration, coincides with (4.17). 

Substituting the last expression into (A.4) yields 

which is the criterion maximized in (4.16). 

B. Optimum Filtering and Smoothing 
Since filtering, likelihood computation, and smoothing 

are applied individually and in identical manner to each 
of the feasible object clusters, we drop in this appendix 
the index j ,  for notational convenience. 

I )  Kalman Filter: Given the state-space model (2.6) 
and measurement (4.40), one version of the Kalman filter 
(KF) algorithm is given by [23] by the equations listed in 
Table I, which are applied recursively for z = $, * * , 

2) Log-Likelihood from Innovations: The innovations 
are obtained from the measurement sequence 
{ A(z)}$+‘*  via (4.41) and the Kalman filter equations. 
It is readily verified that the converse is also true, i.e., 
the measurement sequence reconstructed via the same for- 

z: + L”. 
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TABLE 1 REFERENCES 

mulae from the innovation sequence. The two are there- 
fore statistically equivalent, and the likelihood of the 
measurement sequence can be written in terms of that of 
the innovation sequence as 

. p(6(z) (model  (2.6),  (4.40), (4.23)) 

( B . 1 )  
where the factoring of the likelihood of the innovations 
sequence follows from the whiteness of the innovations. 
Now, since 6 ( z )  - N ( 0 ,  R , ( z ) ) ,  we have 

p(6(z)lmodel (2 .6) ,  (4.40),  (4.23)) 

Combining (B. 1) and (B.2), taking logarithms, and rein- 
serting the dependence on the indexj,  yields (4.43). 

3) Smoothing Formulae: Given measurements as in 
(4.40), (4.23) over the interval z = z ;  * . * z: + L*, the 
fixed interval smoothed estimate of the state is 

i ( z J z ; ”  + L*) 2 E [ x ( z ) (  hJ(z ) ,  z = z ;  * * .  z;” + L * ] ,  

( B . 3  1 
i.e., the estimate at any point is based on data from the 
entire interval. The algorithm we use is based on the 
equations [23], 1451 listed in Table 11, which are propa- 
gated backwards (decreasing z )  from the final conditions 
i ( z 7  + L*lz:’ + L * )  and P ( z :  + L * l z ;  + L*) .  The 
latter quantities, as well as the filtered and smoothed es- 
timates and either covariance, which are used in the 
smoothing algorithm, are obtained from the (forward pass 
of the) Kalman filter. 

The computation of the smoothed error covariance, 
which is not used in the computation of the smoothed es- 
timate, is optional. It may be used to assess the quality of 
the object estimates produced by the algorithm. 
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