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Abstract— This article proposes a millimeter-wave inverse
circular synthetic aperture radar system and a fast time-domain
wavefront reconstruction (TDWR) algorithm for near real-
time, low-cost imaging of packages and concealed objects. An
80-GHz frequency-modulated continuous-wave (FMCW) radar
illuminates targets on a high-speed rotating turntable driven
by a precision motor system. Data are collected over a syn-
thetic circular aperture and processed to form high-resolution
images of targets. To achieve real-time operation, a fast and
accurate time-domain reconstruction and deconvolution imag-
ing algorithm is proposed. The image formation is based on
frequency-domain wavefront reconstruction for circular arrays
that is adapted to FMCW radars by proposing an analogous time-
domain approach. Next, an analytical form for the point spread
function (PSF) of circular synthetic aperture radars (CSARs)
is derived and used to speed up the recursive deconvolution
for improved image quality. The system and reconstruction
algorithm are applied to an experimental setting of detecting a
concealed handgun in a package. Several practical considerations
are discussed to ensure that the reconstruction and deconvo-
lution can be applied successfully in retrieving good quality
images. The experimental datasets and codes are available at
https://adityamuppala.github.io/research/.

Index Terms— Circular synthetic aperture radars (CSARs),
frequency-modulated continuous-wave (FMCW) radars, inverse
synthetic aperture radars (ISARs), millimeter-wave imaging, 3-D
imaging, wavefront reconstruction.

I. INTRODUCTION

IMAGING radars in the millimeter-wave and subterahertz
band have become the technology of choice for concealed

threat identification and standoff weapons detection in the past
two decades [1], [2], [3], [4], [5]. Due to their nonionizing
nature, they are much safer for repeated human exposure
than X-rays. However, to this day, X-ray imaging remains
the dominant technology for detection of weapons and contra-
band in packages and luggage at security checkpoints. X-ray
systems offer high-resolution imaging capability with good
penetration depth, but are limited by their large size and high
cost ($50 000–$200 000). The high cost and size are due to
the extensive shielding infrastructure needed to protect nearby
humans from exposure to ionizing radiation. Therefore, for
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applications where resolution requirements can be relaxed to
ease the cost burden (< $1000), millimeter-wave imaging can
offer a safe and viable alternative. Such a low-cost, moderate-
resolution imaging system can be used for weapons detection
in schools, office building, and public spaces, where the
emphasis is on detecting large weapons, such as handguns and
knives, rather than small blades or contraband. Furthermore,
they can also be used in industrial settings for monitoring
packing efficiency inside boxes, detecting damaged items, and
identifying liquid leaks [6].

Driven by the growth in autonomous driving, millimeter-
wave frequency-modulated continuous-wave (FMCW) radars,
especially in the W -band (75–110 GHz), have become com-
mercially successful and relatively cheap. Due to this, several
moderate- to low-cost imaging systems have been proposed for
concealed threat detection [7], [8]. All of them rely either on
an array, increasing the system cost, or on mechanical raster
scanning, increasing the imaging latency. This article proposes
a system that breaks this tradeoff between system cost and
imaging latency. The idea is to place the object under test
on a precision high-speed turntable and illuminate it with a
W -band FMCW radar system. Since the turntable is driven
by a dc motor in closed loop feedback, the synthetic array
can be formed in a fraction of a second. High-speed data
acquisition can be achieved with a single transceiver, making
the system both fast and low cost. The imaging latency is,
therefore, limited by how fast the data can be processed into
an image.

A circular synthetic aperture radar (CSAR) is known to
capture sufficient information in the object’s phase history to
reconstruct an image [9]. The problem is akin to tomographic
reconstruction, which has been widely studied in the SAR
literature for linear and circular arrays [10], [11]. However,
tomographic formulations of CSAR assume that the phase
front at the target location is approximately planar, to admit
reconstruction based on the inverse Radon transform. That
assumption is valid for reconnaissance or topography mapping
where the targets are far from the radar, but is invalid for
near-zone imaging as in the case of millimeter-wave imaging.

Dropping the plane-wave phase front approximation and
using a spherical phase front model, Soumekh developed a
reconstruction algorithm for pulsed and stepped frequency
CSAR that is fast [i.e., O(N 2(log N )2)] [12]. However,
pulsed and stepped frequency radars are not feasible for
millimeter-wave imaging due to the bandwidth limitations of
the analog-to-digital converters. In case of FMCW radars,
since the target position shows up in both the frequency
and phase of the downconverted IF signal, frequency-domain
wavefront reconstruction cannot be directly applied [13].
The alternative is to use backprojection (or delay-and-sum)
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reconstruction, which is very slow [14]. Here, we develop a
time-domain wavefront reconstruction (TDWR) algorithm for
FMCW inverse CSAR (ICSAR) that can be directly applied to
the sampled time-domain intermediate frequency (IF) signals
without the need for any preprocessing.

Furthermore, Soumekh’s formulation is suitable for recon-
naissance CSAR, where the array radius is much larger than
the distance between the array plane and the target plane, and
the beam area on the ground is very small compared with the
array diameter. For near-zone millimeter-wave imaging, the
radius is small, and the antenna beamwidth is large, causing
the point spread function (PSF) to have undesirable sidelobes.
This “dirty” PSF leads to several image artifacts that reduce
image quality. We provide an extensive treatment of the decon-
volution problem in sparse arrays and, in particular, circular
arrays in [14]. To restore some of the image quality, we use a
well-known recursive deconvolution algorithm called Coherent
CLEAN [15]. Compared with our earlier work in [14], this
article achieves faster deconvolution by deriving an analytical
expression for the ICSAR PSF.

An additional motivation for developing a fast reconstruc-
tion algorithm for ICSAR is in the context of affine synthetic
arrays using a dynamic dual reflector imaging system we
developed in [16]. That system included a synthetic aperture of
concentric circular arrays using a combination of an ellipsoidal
subreflector and a conic main reflector. The synthetic array
takes a CSAR geometry and our previous work relied on a
backprojection algorithm for image reconstruction [3]. The
FMCW-ICSAR reconstruction developed here would improve
the computation speed and overall 3-D imaging time for such
dual-reflector affine synthetic aperture radars.

The main contributions of this article are twofold: first,
in evaluating millimeter-wave ICSAR as a viable solution for
low-cost, high-speed concealed object detection, and second,
in developing a fast ICSAR reconstruction algorithm for
FMCW radars based on a TDWR with fast deconvolution. The
FMCW radar architecture and phase calibration used in this
article are presented in [13] and are not repeated here. The rest
of this article is organized as follows. Section II introduces
the FMCW-ICSAR signal model. Section III develops the
TDWR algorithm. Section IV presents the PSF deconvolution.
Section V concludes with the experimental results.

II. SIGNAL MODEL

Although CSAR and ICSAR have several differences in
their practical implementations, as discussed in Section V, the
resulting array geometries are identical, since they both form
a circular synthetic aperture around the target. Therefore, the
signal model developed here can also be applied to FMCW-
CSAR. Fig. 1 shows a schematic of the ICSAR system.
Consider a circular aperture of radius Rg centered at the origin
and lying in the XY plane. Consider the z = Zc plane to
be the 2-D imaging domain. Let f (x, y) denote the target
reflectivity of a point target located at r⃗ = (x, y, Zc). Let the
antenna location vector be r⃗ ′ = (x ′, y′, 0), which is (Rg, φ

′, 0)
in cylindrical polar coordinates. The FMCW transmitted pulse
in terms of the fast time t is

st (t) = exp
(

− j
(

ωct +
γ t2

2

))
(1)

where t ∈ [−Tp/2, Tp/2], ωc is the center frequency in rad/s,
and γ is the chirp rate [17]. Denoting the azimuthal position

Fig. 1. Schematic of the proposed FMCW-ICSAR system.

of the transceiver (i.e., slow time) to be φ′, the received signal
after two-way propagation to a target point (x, y) at distance
r = ((x − Rg cos φ′)2

+ (y − Rg sin φ′)2
+ Z2

c )
1/2 is given

by [17]

sr (t, φ′) =
1

16π2r2 exp

(
− j

(
ωc

(
t −

2r
c

)
+

γ
(
t −

2r
c

)2

2

))
.

(2)

After dechirping and low-pass filtering, the IF signal, also
known as the beat signal, is an integral of signals reflected
from the imaging domain [9]

sb(t, φ′) =

∫ ∫
f (x, y)

1
16π2r2

· exp
(

− j
(

2γ r
c

t +
2ωcr

c
−

2γ r2

c2

))
dx dy (3)

where (2γ r2/c2) is the residual video phase (RVP). For
short-range FMCW-ICSAR imaging, as in the case of the
system presented in this work, the RVP can be ignored, since
γ r2

≪ c2. If the RVP cannot be ignored, it could be removed
using a dispersive filtering step as described in [13] and [18].
Equation (3) takes the form

sb(t, φ′) =

∫ ∫
f (x, y) g(x, y, φ′, t) dx dy (4)

g(x, y, φ′, t) ≜
1

16π2r2 exp
(

− j
(

2γ r
c

t +
2ωcr

c

))
. (5)

The Green’s function can be simplified by using the follow-
ing substitutions:

Kt ≜
2γ

c
t +

2ωc

c
, x ′

= Rg cos φ′, y′
= Rg sin φ′

(6)

g(x, y, φ′, t) =

exp
(

− j
(

Kt

√
(x − x ′)2

+ (y − y′)2
+ Z2

c

))
16π2

(
(x − x ′)2

+ (y − y′)2
+ Z2

c

)
≜ g̃(x − x ′, y − y′, t). (7)

Substituting (7) in (4) formulates the ICSAR signal model
as the following convolution-like integral:

sb(t, φ′) =

∫ ∫
f (x, y) g̃(x − x ′, y − y′, t) dx dy. (8)

Image formation amounts to inverting the integral in (8) to
obtain f (x, y) from the measured sb(t, φ′).
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III. ICSAR TDWR
The first step is to find the 2-D Fourier transform of the

Green’s function g(x, y, φ′, t). One can approximate it using
the method of stationary phase (MOSP) and space-shifting
properties of the Fourier transform [19], [20]. Although MOSP
is an approximation, the exact same result can also be obtained
analytically [21, Eq.(8.2.25), Volume 2]. The result is given
by

G(kρ, kφ, φ′, t) =
j

8π Kt Zc
exp

(
j
(

Zc

√
K 2

t − k2
ρ

))
· exp

(
− jkρ Rg cos

(
φ′

− kφ

))
(9)

where kρ and kφ denote polar spatial frequency coordinates.
Given the Fourier domain Green’s function, we use the

generalized Parseval’s theorem to develop the image recon-
struction method. This approach is based on Soumekh’s CSAR
reconstruction for stepped frequency and pulsed radars [12].
Applying Parseval’s theorem, (4) takes the form

sb(t, φ′) =
1

4π2

∫ ∫
F(−kx , −ky) G(kx , ky, φ

′, t) dkx dky

(10)

where F(kx , ky) denotes the spectrum of f (x, y).
Since the constant terms do not matter in the reconstruc-

tion, we drop the 4π2 term for ease of notation. Converting
from Cartesian to cylindrical coordinates in Fourier space
(i.e., (kx , ky) → (kρ, kφ)) takes F(−kx , −ky) to F(kρ, kφ±π).
For simplicity, we drop ±π . This rotates the final image by
180◦, which can be compensated at the end

sb(t, φ′) =

∫ ∫
F(kρ, kφ) G(kρ, kφ, φ′, t)kρ dkρ dkφ . (11)

=
j

8π Kt Zc

∫ ∫
F(kρ, kφ) exp

(
j
(

Zc

√
K 2

t − k2
ρ

))
· exp

(
− jkρ Rg cos

(
φ′

− kφ

))
kρ dkρ dkφ . (12)

This equation can be reformulated as a linear shift-varying
system as follows:

sb(t, φ′) =

∫
G0(t, kρ)0(kρ, φ

′)dkρ (13)

where G0 is the unshifted Green’s function [i.e., setting
Rg = 0 in (9)], which leaves 0(kρ, φ

′) to be

0(kρ, φ
′) =

∫
F(kρ, kφ) exp

(
− jkρ Rg cos

(
φ′

− kφ

))
kρ dkφ .

(14)

Equation (13) represents the forward model of wavefront
reconstruction and can be inverted very efficiently by observ-
ing two facts. The first is that (13) is an expression for a linear
shift-varying system with G0(t, kρ) as the impulse response or
kernel. Therefore, its discrete version can simply be written
as a product of two matrices1

Sb[t, φ′
] = G0[t, kρ]0[kρ, φ

′
]. (15)

The second fact is that G0(t, kρ) is a highly oscillatory signal,
from which it can be shown that the set of these signals is
nearly orthogonal. Intuitively, the inner product integral of

1This article uses the notation A[x, y] to represent the sampled 2-D matrix
of a 2-D signal A(x, y).

two highly oscillatory signals is nearly zero, because they do
not share the same stationary phase point unless they are at
the same frequency ([12], Appendix A). Since the amplitude
factor in G0(t, kρ) can be made arbitrary by scaling f (x, y),
it can be chosen, such that each column of G0[t, kρ] has unit
norm. Therefore, the matrix G0[t, kρ] is almost unitary, and
its inverse can be approximated by its conjugate transpose
(G0[t, kρ])

′. Equation (15) can, therefore, be (approximately)
inverted as follows:

0[kρ, φ
′
] = (G0[t, kρ])

′Sb[t, φ′
]. (16)

An alternative approach is to use the truncated singular
value decomposition (T-SVD) and the Moore–Penrose pseu-
doinverse to invert G0[t, kρ] [23]. The truncation tolerance
for the singular values needs some trial and error and can be
obtained by looking at the scree plot. Computationally, this is
no different, since the inverse can be precomputed and stored.
Now, 0[kρ, φ

′
] is known, and the next step is to invert (14)

to obtain F[kρ, kφ]. Since (14) is a 1-D convolution over kφ

of F(kρ, φ
′) with kρ exp(− jkρ Rg cos(φ′)), we deconvolve it

using the following matched filtering approach:

F[kρ, φ
′
] = F−1

φ′

{
Fφ′{0[kρ, φ

′
]}Fφ′{00

∗
[kρ, φ

′
]}
}

(17)

where 0∗

0[kρ, φ
′
] = kρ exp [ jkρ Rg cos (φ′)] and Fφ′ denotes

the 1-D fast Fourier transform (FFT) with respect to the
φ′ dimension. The last step is to reconstruct f (x, y) from
F[kρ, φ

′
], which we accomplish very efficiently using an

inverse nonuniform fast Fourier transform (NUFFT) [24],
[25], [26]. Here, we use the Type-1 (nonuniform to uniform)
NUFFT implemented by the accelerated Gaussian-gridding
approach presented in [27].

We precompute (G0[t, kρ])
′ and Fφ′{0∗

0[kρ, φ
′
]}. Thus, the

reconstruction algorithm simplifies to the matrix multiplication
of (16), two 1-D FFTs, the matrix multiplication of (17),
and a 2-D NUFFT. The overall computation complexity is
O(N 2(log N )2), which is dominated by the final NUFFT
step. This is much faster than backprojection or time-domain
correlation, which have a computation complexity of O(N 4),
demonstrating significant algorithmic gain in computation
time. Later, in Section V, we show that the computational
gain comes at no reduction in image quality compared with
backprojection. One can reconstruct 3-D targets by treating
each cross section (i.e., Zc) separately. On a multicore system,
this can easily be parallelized.

IV. PSF AND DECONVOLUTION

Although it looks like the ICSAR reconstruction reproduces
f (x, y) from Sb[t, φ′

], we are limited by the system’s PSF.
Unlike tomography, here, we are reconstructing f (x, y) from
spherical wave echoes that are sampled in a single plane that is
offset from the plane of f (x, y). For an exact reconstruction of
f (x, y), the sampled echoes would need to form a compact
surface (such as a sphere or closed cylinder) that encloses
f (x, y) [28], [29]. A consequence of sampling only over a
single ring is that the PSF is not a single point and instead
has a main lobe and several side lobes. This nonideal or dirty
PSF needs to be deconvolved from the final reconstructed
image to obtain a clean image. An extensive treatment of the
deconvolution problem for circular and sparse array synthetic
aperture radars can be found in [14].

Recursive deconvolution algorithms, such as Coherent
CLEAN and SATURN, have been shown to be successful in
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deconvolving SAR data provided that the PSF is known [30].
The main drawback of these algorithms is that they are slow.
For stepped frequency and pulsed radars, this is not a major
concern, since imaging times are already severely limited by
the slow data acquisition. However, FMCW ICSAR data can
be acquired in under 1 s, and a fast deconvolution algorithm is
necessary for high-speed system operation. In [14], we show
that the recursive deconvolution algorithms rely on computing
the localized PSF in different regions of the image at each step
of the recursion. Originally, this was done by reconstruction
algorithms, such as backprojection. Here, we derive an ana-
lytical form for the 2-D Fourier transform of the ICSAR PSF
that we used to speed up the imaging time significantly.

A. ICSAR PSF

We start with a point target located at the origin, which will
later be translated using the spatial translation properties of the
Fourier transform. The measured signal from this target (see
Section II) is given by

sb(t, φ′) =

exp
(
− j
(

Kt

√
R2

g + Z2
c

))
16π2

√
R2

g + Z2
c

. (18)

Using the backprojection (or delay-and-sum) reconstruction
equation [14], the PSF for a target at origin is given by

h0(x, y) =

∫ ∫
sb(t, φ′) exp( j Ktr) dt dφ′ (19)

where r = ((x − Rg cos φ′)2
+ (y − Rg sin φ′)2

+ Z2
c )

1/2.
Next, we substitute (18) in (19) and evaluate the inner integral
over time. Recalling that Kt = (2γ /c)t + (2ωc/c) and the
limits of the integral are t ∈ [−Tp/2, Tp/2], we have

h0(x, y) =
jc
2γ

∫
e− jkh(R0−r)

− e− jkl (R0−r)

16π2 R2
0(R0 − r)

dφ′ (20)

where kh and kl are the upper and lower spatial frequency
bounds of Kt and R0 ≜ (R2

g + Z2
c )

1/2. To evaluate (20)
analytically, we take the 2-D Fourier transform on both sides
with respect to x and y. This pulls out the φ′ dependence
in r because of the spatial shifting property of the Fourier
transform. The φ′ integral then results in a Bessel function of
the first kind J0(kρ Rg). The resulting expression is

H0(kx , ky) =
jcJ0(kρ Rg)

16πγ R2
0

· F2D

{
e− jkh(R0−r0) − e− jkl (R0−r0)

R0 − r0

}
(21)

where r0 = (x2
+ y2

+ Z2
c )

1/2. The 2-D Fourier transform
term is similar in form to the Green’s function of (7). There-
fore, it can be evaluated using MOSP [19]. The result is given
by

H0(kx , ky) =
cZc J0(kρ Rg)

8γ R2
0

·

{
khe− j (Zckz

h+kh R0)

kz
h(kh Zc − R0kz

h)
−

kle− j (Zckz
l +kl R0)

kz
l (kl Zc − R0kz

l )

}
(22)

Fig. 2. PSF from wavefront reconstruction. Target distance is 30 cm, and
ICSAR radius is 100 cm with an operating bandwidth from 75.6 to 83.6 GHz.
Intensity scale is in dB.

where kz
l = (4k2

l − k2
x − k2

y)
1/2 and kz

h = (4k2
h − k2

x − k2
y)

1/2.
For the general PSF of a target located at (x ′, y′), we use the
spatial shifting property of the Fourier transform, which gives

H(kx , ky, x ′, y′) =
cZc J0(kρ Rg)

8γ R2
0

exp
(
− jkx x ′

− jky y′
)

·

{
khe− j (Zckz

h+kh R0)

kz
h(kh Zc − R0kz

h)
−

kle− j (Zckz
l +kl R0)

kz
l (kl Zc − R0kz

l )

}
.

(23)

Although an approximation of the above result has been
given in [31], it was developed in the context of determining
the resolution of the main beam and not for deconvolution.
Approximate results, that are only valid close to the main
beam, are not sufficient for deconvolution, since they can
lead to divergence or oscillations when used with iterative
techniques [14]. Fig. 2 shows an image of the PSF magnitude
in dB. In the discrete implementation, one can compute
H(kx , ky, x ′, y′) over the grid points defined by (kρ, φ

′) over
which F[kρ, φ

′
] is defined in (17). This way, one could

subtract the PSF before the last NUFFT step. Instead, we took
the 2-D inverse FFT of (23) and performed the deconvolution
on the reconstructed image. With this approach, care must
be taken in handling the singularities that exist in (23).
Alternatively, the singularities can be avoided by numerically
computing the 2-D FFT in (21). Fig. 3 compares the analytical
PSF and the numerical PSF obtained using TDWR. Despite
the approximations made in the TDWR formulation, there is
remarkable agreement between the two. The only deviation
visible is below −60 dB. This level of accuracy in the PSF
model is necessary for deconvolution.

The analytical form of the PSF provides a considerable
speed benefit when implementing iterative (greedy) deconvo-
lution algorithms, such as CLEAN or SATURN [14], [15],
[30]. For example, in the case of CLEAN, using the analytical
PSF makes the computation time of the deconvolution step
almost as fast as the image reconstruction using TDWR.
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Fig. 3. PSF comparison between the numerical TDWR algorithm and the
analytical expression.

A quantitative discussion on computation time is provided
later in Section V. This provides an order of magnitude
improvement in speed, since, otherwise, each iteration would
take the same amount of time as a single image reconstruction.
Since the basis of most deconvolution algorithms is knowing
the PSF, the analytical form of the PSF developed here can be
used to speed up many other deconvolution algorithms. In this
article, we demonstrate its use with the CLEAN algorithm,
because CLEAN has been shown to work well in the case of
contiguous targets [30].

B. CLEAN Deconvolution
For the sake of completeness, we present the well-known

CLEAN deconvolution algorithm using the wavefront recon-
struction and the analytical PSF developed thus far. Full
treatments of CLEAN can be found in [15], [30], and [14].

1) From the measured data Sb[t, φ′
], form an image

using (16), (17), and the 2-D NUFFT.
2) Find the location (x ′, y′) of the strongest peak from the

absolute value of the complex image | f (x, y)|, and store
the peak’s complex magnitude.

3) Calculate the complex PSF due to this target using (23)
and the 2-D IFFT. Scale it by the complex magnitude
of the peak, and subtract it from the complex image.

4) Repeat steps 2) and 3), and save the location and
complex magnitude of each peak until the residual image
falls below a user defined threshold. Save the residual
image.

5) Reconstruct the image by convolving the saved peaks
with a Gaussian PSF that is devoid of sidelobes and add
back the residual image.

Care must be taken in properly estimating the location of
each peak. TDWR is limited in its final image resolution,
which can miss the actual peak location. Therefore, the final
TDWR image needs to be locally upsampled before perform-
ing peak search. Improperly estimating the peaks can cause
CLEAN to oscillate or diverge with each iteration [14].

A simulation example of a standard 5 × 5 constellation of
point targets is shown in Fig. 4. The deconvolution works very
well, because the PSF of each target does not interact with the
neighboring targets. In other words, the targets are sparsely
populated, and the PSF is localized, making the deconvolution
relatively easy. In cases where the PSF is much more spread
out or if the targets are much closer, more sophisticated
deconvolution algorithms, such as SATURN, are required.
A full treatment of the phenomenology of deconvolution is

Fig. 4. Constellation of 25 points using (a) TDWR and (b) TDWR + CLEAN.

discussed in [14]. In short, the image quality from a dirty PSF
is impacted in four ways as follows: 1) limited dynamic range;
2) image saturation; 3) target breakup; and 4) independent
target correlation. Deconvolution can partially correct for some
of these effects. However, the challenge with deconvolution is
that, the choice of which algorithm to use and what values
are to be chosen for the different hyperparameters depends
strongly on not just the PSF but also the target being imaged.
In this article, we use CLEAN, because, as we will show later
in Section V, the image is dominated by a few scattering phase
centers, and removing them is sufficient to produce a good
quality image of the target.

V. EXPERIMENTAL RESULTS

A. System Considerations and Phenomenology
The signal model and reconstruction developed thus far

have made several simplifying assumptions about the radia-
tion and scattering characteristics of the system [32]. First,
we have assumed omnidirectional radiation from the antennas.
For broad-beam antennas, this approximation does not affect
the reconstruction, since the amplitude variation with angle
is small and does not impact the final image. However,
when the beamwidth is small, it is important to account for
windowing effects of the beam [12]. For our application of
near-zone millimeter-wave imaging, it can be ignored, since
the targets are close by, and the beamwidth is generally large
(≈60◦). We also ignored the RVP and phase nonlinearities
generally associated with millimeter-wave FMCW radars. This
is because phase nonlinearity effects are not significant for
near-field imaging as long as the nonlinearity is not too
unreasonable. If phase nonlinearity is significant, one can use
the phase calibration procedure described in [13] to correct it
before applying TDWR. Next, we have assumed the scattering
characteristics of the target to be well approximated by a
contiguous collection of point targets (i.e., omnidirectional
scatterers), which do not vary over the entire band. Although
this approximation is generally considered to be valid for real-
world targets, it needs to be treated more carefully in the case
of near-field ICSAR.

One main advantage of CSAR or ICSAR is that the target
is illuminated from all azimuthal angles. This allows a rea-
sonably accurate reconstruction under the assumption that all
points on the target are “visible” from all directions, which
is the case in most tomographic reconstruction problems.
In ICSAR, however, if the slant height (Zc) is close to zero, the
radar can only see one side of the target. Therefore, features
on the target that have a monostatic radar cross section (RCS)
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Fig. 5. Point target images as a function of their monostatic RCS patterns. RCS is assumed to follow cosN (φ) pattern with N = 0, 2, 6, and 12.

Fig. 6. Radar cross section and corresponding images of different canonical targets. Elevation angle is 45◦.

with a narrow azimuthal beamwidth will only be illuminated
by a subset of the ICSAR measurements. Examples of such
features include side walls and corners. The resulting response
for these targets will deviate from the ideal azimuthally
symmetric PSF derived earlier. This is demonstrated in Fig. 5,
where the inset red/white circle represents the monostatic RCS
of a point target. In these examples, the RCS is assumed to
take the form cosN (φ) with N = 0, 2, 6, and 12. As the target
response spreads in range, the monostatic RCSs of several
canonical targets are simulated in a full-wave solver (ANSYS
HFSS) and used to generate their corresponding images shown
in Fig. 6. The main difference here is that these “extended”
targets also have a phase associated with their RCS, which has
a significant impact on the reconstructed images. The sphere
has an image that resembles the system’s ideal PSF, since its
RCS is azimuthally symmetric. As this azimuthal symmetry
is lost, the target images start to spread out in the directions
of their RCS beams. As will be shown later, the smearing

out of the PSF, when an ideal point target is replaced with
a real world target, leads to strong speckle artifacts in the
reconstructed image.

Deconvolving such a “nonideal PSF” is much harder, since
it depends on the target’s scattering characteristics and loca-
tion, which are not known a priori. Spatially varying blind
deconvolution algorithms do exist, but they add significant
computational burden due to their recursive nature [33]. A sim-
pler solution is to compromise on the resolution and use a
smaller Rg/Zc ratio. If Rg/Zc is made very small, the reso-
lution of the system is reduced. Therefore, there is a tradeoff
between reconstruction accuracy and resolution. As a general
rule of thumb, we propose Rg/Zc to be between 1 and 4.

Another consideration in ICSAR is the background clutter.
This is one of the main differences between CSAR and
ICSAR. In both cases, leakage between TX and RX will
show up as a strong target at the origin, since it is constant
over slow time. However, in ICSAR, all targets that are not
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Fig. 7. Experimental setup of the ICSAR imaging system prototype.

rotating also have a constant response in slow time and,
therefore, contribute to a strong target that appears at the origin
in the final image. Fortunately, this strong false target has
an ideal PSF, since its backscatter is constant in slow time.
It should be removed using the deconvolution described earlier
in Section IV. Vector background subtraction and time gating
can also be used to reduce the impact of TX–RX leakage and
background clutter.

B. Imaging Results

A custom W -band instrumentation radar is used for the
ICSAR system setup. The bandwidth is 8 GHz from 75.6 to
83.6 GHz with an output power of 15 dBm. Full details of the
system’s architecture and calibration are available in [13] and
are not repeated here in the interest of brevity. For accurate
positioning of the target, a dc motor is connected to a rotation
stage with a worm-gear coupling. The worm gear has a gear
ratio of 180:1, and the dc motor is in closed loop feedback
with an optical encoder. The angular accuracy and resolution
of the positioning system are both less than 0.001◦. The chirp
duration is set to 48 µs with a pulse repetition interval of
50 µs. The rotation speed is set low at around 0.1 Hz due
to the high worm gear ratio. Using a more accurate motor,
the worm gear can be removed, in which case the rotation
frequency can be increased up to 10 Hz. In practice, the
rotation speed would have to be limited to around 1 Hz to
avoid damage to the object being imaged. Data are collected
at every 0.1◦ over 2400 time samples. The synchronization
is done by the optical encoder, which sends a trigger pulse
every 0.1◦ to both the chirp generator and the sampler. This
makes the data acquisition independent from the instantaneous
angular velocity of the motor. Fig. 7 shows the measurement
setup.

To verify the performance of the system, we first reconstruct
images of two canonical targets, a sphere and a dihedral corner
reflector. Fig. 8 shows the reconstructed image of the sphere
and its normalized RCS. There is some fluctuation in the RCS
due to noise and weak reflections from the rotating pedestal.
In this case, the ICSAR radius (Rg) and height (Zc) are 20 and
20 cm, respectively, to keep the elevation angle consistent with
the simulation results shown earlier in Fig. 6. This image also
serves as the experimental PSF of the system, since a sphere

of any radius acts as a point target for a circular aperture
due to the inherent azimuthal symmetry. From the PSF, the
spatial resolution in both X and Y is found to be around
2 mm, which is commensurate with the spatial resolution
of SAR in the near field (i.e., around λ/2). A derivation of
this result is given in [13]. However, as mentioned earlier,
the presence of the large sidelobes reduces the overall image
quality compared with a system with the same resolution but
without any sidelobes. The imaging dynamic range can also
be obtained from the PSF [14]. It is the first sidelobe level
and is equal to −10 dB, giving us an imaging dynamic range
of 10 dB.

Fig. 8 shows the results of the dihedral corner. Note from
the RCS plot that the backscatter has two peaks, one at 270◦

and another at 90◦. This is different than the simulated RCS
in Fig. 6 where only one peak is observed. In the experiment,
the dihedral is sitting on a pedestal, which acts as a ground
plane and creates the second weaker peak at 90◦. The resulting
image is similar to the simulated image of the dihedral with
some differences introduced by the presence of the ground
plane, noise, and background clutter.

Next, we conduct an imaging experiment of a concealed
weapon inside a package. The target used is a 3-D printed
GLOCK-19 replica that is coated with a copper spray and
placed inside a cardboard box. The target is placed on a
foam pedestal attached to the turntable, as shown in Fig. 7.
The ICSAR radius (Rg) and height (Zc) are 92 and 23 cm,
respectively. Fig. 9 shows the reconstructed images using
backprojection, TDWR, and TDWR + CLEAN. The image
intensity is normalized to 1, and the scale is limited to values
between 0.2 and 0.5 to improve the image quality. The total
computed image size is 4096 × 4096 pixels, which covers a
imaging domain of 50 × 50 cm. The images shown in Fig. 9
are cropped to 1000 × 1000 pixels for a closer view of the
targets. The inset image shows a picture of the toy pistol used.
The backprojection image and the TDWR image are remark-
ably identical. This is expected given that the PSF from these
two methods is almost identical (refer to Fig. 3). The wavefront
reconstructed image has several strong scattering points that
dominate the image. The strongest scattering comes from the
dihedral corner that forms between the trigger guard and the
walls surrounding it. Locally, in this region, the image looks
similar to the dihedral corner image of Fig. 8. There is also a
strong scattering point at the origin, which corresponds to the
background clutter and TX–RX leakage. Upon deconvolution,
these scattering points are partially suppressed, and the entire
extent of the target is more clearly visible, as shown in the
TDWR + CLEAN image of Fig. 9. Another significant effect
is the speckle that is caused by the sidelobes of the smeared
out “nonideal PSF.” From the final image, the shape of the
pistol is easily identifiable with the naked eye. Finally, Fig. 10
shows the image of the target (reconstructed using TDWR)
for different values of Zc. When Zc = 23 cm, the target
comes into focus and is clear. For Zc values greater than
23 cm, the target starts to spread out and goes out of focus.
This phenomena arises due to the sparse nature of the CSAR
geometry and is discussed in [9]. One approach to reducing
this range spreading phenomena is to use multiple circular
apertures of different radii as discussed in [3]. This comes at
a higher system cost, but the same TDWR reconstruction can
be used for faster processing.

TDWR and TDWR + CLEAN are implemented on a
standard four-core 8-GHz desktop computer using MATLAB.
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Fig. 8. Experimental imaging results of sphere (left) and dihedral (right) using TDWR.

Fig. 9. Experimental imaging results from backprojection (left), TDWR (center), and TDWR + CLEAN (right). Computation time for TDWR is 8 s and
for TDWR + CLEAN is 15 s.

TABLE I
COMPARISON OF MILLIMETER-WAVE RADAR IMAGING SYSTEMS

The computation time for TDWR is 8 s, and that for
TDWR + CLEAN is 15 s. The estimated imaging time
using backprojection is around 225 h, which is five orders

of magnitude slower than TDWR. This estimate is based
on computing backprojection at a single point. In reality,
backprojection can be limited to just the extent of the target,
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Fig. 10. TDWR images of the pistol for different values of Zc .

in which case the imaging time comes down to around 22 h,
which is still four orders of magnitude slower than TDWR.
The total data collection time and image processing time
for the proposed prototype are around 25 s. With a faster
motor and an FPGA, this total time can be brought down to
under 1 s, which is comparable to current X-ray screening
devices, thus making it a very fast and low-cost solution
for package screening and concealed object imaging. Table I
provides a comparison of different millimeter-wave imaging
systems. The codes and associated datasets are available at
https://adityamuppala.github.io/research/.

VI. CONCLUSION

This article presents millimeter-wave FMCW ICSAR as
a practical and low-cost solution for high-speed imaging of
concealed objects and packages. This is done by developing a
fast time-domain imaging algorithm for FMCW-ICSAR based
on wavefront reconstruction. Due to geometry constraints, the
PSF is shown to have large sidelobes, which need to be
removed. Deconvolution using recursive algorithms is pro-
posed as a solution. To this effect, an analytical form for the
PSF is derived and shown to have excellent agreement with
the numerically computed PSF.

The imaging system is implemented using a W -band
FMCW instrumentation radar with an operating bandwidth
of 8 GHz. System-level considerations are discussed, and the
implemented ICSAR prototype is used to image a concealed
toy handgun inside a package at a standoff distance of around
1 m. A good quality image is obtained after wavefront
reconstruction and deconvolution in which the gun is clearly
identifiable. The total data acquisition time is around 10 s,
and the reconstruction time on a standard desktop computer
is around 15 s. The speed improvement compared with back-
projection is around four orders of magnitude with almost no
loss in image quality, which is verified by comparing the PSF
from both these approaches.
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