Convergent Complex Quasi-Newton Proximal Methods for Gradient-Driven Denoisers in Compressed Sensing MRI Reconstruction

Tao Hong , *Member, IEEE*, Zhaoyi Xu, Se Young Chun, *Member, IEEE*, Luis Hernandez-Garcia, and Jeffrey A. Fessler, *Fellow, IEEE*

Abstract—In compressed sensing (CS) MRI, model-based methods are pivotal to achieving accurate reconstruction. One of the main challenges in model-based methods is finding an effective prior to describe the statistical distribution of the target image. Plug-and-Play (PnP) and REgularization by Denoising (RED) are two general frameworks that use denoisers as the prior. While PnP/RED methods with convolutional neural network (CNN) based denoisers outperform classical hand-crafted priors in CS MRI, their convergence theory relies on assumptions that do not hold for practical CNN models. The recently developed gradient-driven denoisers offer a framework that bridges the gap between practical performance and theoretical guarantees. However, the numerical solvers for the associated minimization problem remain slow for CS MRI reconstruction. This paper proposes a complex quasi-Newton proximal method that achieves faster convergence than existing approaches. To address the complex domain in CS MRI, we propose a modified Hessian estimation method that guarantees Hermitian positive definiteness. Furthermore, we provide a rigorous convergence analysis of the proposed method for nonconvex settings. Numerical experiments on both Cartesian and non-Cartesian sampling trajectories demonstrate the effectiveness and efficiency of our approach.

Index Terms—CS MRI, gradient-driven denoiser, second-order, convergence, complex domain, spiral and radial acquisitions.

Received 8 May 2025; revised 30 August 2025; accepted 16 October 2025. Date of publication 23 October 2025; date of current version 6 November 2025. The work of Tao Hong was supported by NIH under Grant R01NS112233. The work of Se Young Chun was supported in part by IITP funded by Korea Government (MSIT) under Grant RS-2021-II211343, Artificial Intelligence Graduate School Program (Seoul National University), and in part by NRF funded by Korea Government (MSIT) under Grant RS-2025-02263628. The work of Luis Hernandez-Garcia was supported by NIH under Grant R01NS112233. The work of Jeffrey A. Fessler was supported by NIH under Grant R01EB035618 and Grant R21EB034344. The associate editor coordinating the review of this article and approving it for publication was Dr. Greg Ongie. (Corresponding author: Tao Hong.)

Tao Hong is with the Department of Radiology, University of Michigan, Ann Arbor, MI 48109 USA. He is now with the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712 USA (e-mail: tao.hong@austin.utexas.edu).

Zhaoyi Xu is with the Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA (e-mail: zhaoyix@umich.edu).

Se Young Chun is with the Department of ECE, INMC & IPAI, SNU, Seoul 08826, South Korea (e-mail: sychun@snu.ac.kr).

Luis Hernandez-Garcia is with the Department of Radiology, University of Michigan, Ann Arbor, MI 48109 USA (e-mail: hernan@umich.edu).

Jeffrey A. Fessler is with the EECS Department, University of Michigan, Ann Arbor, MI 48109 USA (e-mail: fessler@umich.edu).

This article has supplementary downloadable material available at https://doi.org/10.1109/TCI.2025.3625052, provided by the authors.

Digital Object Identifier 10.1109/TCI.2025.3625052

I. INTRODUCTION

AGNETIC resonance imaging (MRI) is a non-invasive imaging technique that generates images of the internal structures of the body [1]. MRI is widely used in clinical settings for disease diagnosis, treatment guidance, and functional and advanced imaging, among other applications [2]. In practice, MRI scanners acquire k-space data, which are the Fourier components of the desired images. The acquisition procedure is slow, leading to patient discomfort, increased motion artifacts, reduced clinical efficiency, and other issues. To accelerate the acquisition, modern MRI scanners use multiple coils (parallel imaging) to acquire less Fourier components. The parallel imaging technique incorporates additional spatial information that can help significantly reduce MRI acquisition time [3], [4]. Moreover, by combining with compressed sensing (CS) [5], one can acquire even fewer Fourier components, further accelerating the acquisition process. However, the reconstruction in CS MRI requires iterative solvers for the following composite minimization problem:

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{C}^N} F(\mathbf{x}) \equiv \underbrace{\frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2}_{h(\mathbf{x})} + \lambda f(\mathbf{x}), \quad (1)$$

where $\mathbf{A} \in \mathbb{C}^{MC \times N}$ denotes the forward model specifying the mapping from the image $\mathbf{x} \in \mathbb{C}^N$ to the k-space data $\mathbf{y} \in \mathbb{C}^{ML}$, and $f(\mathbf{x})$ refers to the regularizer describing the prior information about \mathbf{x} . In practice, we have $M \ll N$ due to downsampling. The trade-off parameter $\lambda > 0$ balances the data-fidelity term $h(\mathbf{x})$ and the regularizer $f(\mathbf{x})$. Here C > 1 denotes the number of coils. The system matrix \mathbf{A} is a stack of submatrices \mathbf{A}_c such that $\mathbf{A} = [\mathbf{A}_1; \mathbf{A}_2; \cdots; \mathbf{A}_C]$. The submatrices \mathbf{A}_c are defined as $\mathbf{A}_c \in \mathbb{C}^{M \times N} = \mathbf{PFS}_c$ where \mathbf{P} is the downsampling pattern, \mathbf{F} defines the (non-uniform) Fourier transform, and \mathbf{S}_c denotes the coil sensitivity map for cth coil, which is patient specific.

The data fidelity term $h(\mathbf{x})$ enhances the data consistency. Since the k-space data is highly downsampled, the regularizer $f(\mathbf{x})$ is required to stabilize the solution. The choice of f can significantly affect the reconstruction quality. Classical hand-crafted regularizers have proven effective for MRI reconstruction including wavelets [6], [7], total variation (TV) [8], a combination of wavelet and TV [5], [9], dictionary learning [10],

2333-9403 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

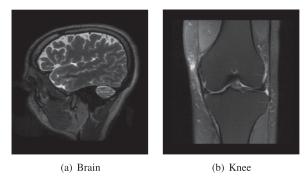


Fig. 1. Magnitude of the complex-valued ground-truth images.

[11], and low-rank methods [12], to name a few. See [13], [14] for a review of various choices for f.

Over the past decade, deep learning (DL) has attracted significant attention for MRI reconstruction because of its superior performance [15]. Unlike hand-crafted regularizers, DL learns complex image priors directly from large amounts of data. The promising DL-based methods for MRI reconstruction include end-to-end learning frameworks [16] and physics-informed deep unrolling methods [17], [18], [19], [20], [21]. More recently, generative models have emerged as powerful tools for learning priors in MRI reconstruction, gaining substantial interest [22], [23].

An alternative framework to DL is Plug-and-Play (PnP)/REgularization by Denoising (RED) [24], [25], which leverages the most effective denoisers, such as BM3D [26] or DnCNN [27], achieving outstanding performance in various imaging tasks [28], [29], [30], [31], [32], [33]. Compared to the end-to-end and unrolling DL approaches, which are typically designed for a predefined imaging task and rely on training with massive amounts of data, PnP/RED can be easily adapted to specific applications without requiring retraining. This capability is especially advantageous for addressing CS MRI problems, where sampling patterns, coil sensitivity maps, and image resolutions can vary greatly between scans. Detailed discussions about using PnP for MRI reconstruction are found in [34]. The following subsections first introduce background on PnP/RED priors and related theoretical work. We then discuss the gradient-driven denoisers framework and the associated minimization problem.

A. Inverse Problems With PnP/RED Priors

Proximal algorithms [35] are a class of iterative methods for solving (1). At kth iteration, the proximal gradient method (PGM) is expressed as

$$\mathbf{x}_{k+1} = \operatorname{prox}_{\alpha\lambda f}^{\mathbf{I}}(\mathbf{x}_k - \alpha\nabla h(\mathbf{x}_k)), \tag{2}$$

where $\alpha \in \mathbb{R}$, $\alpha > 0$ is the stepsize, $\nabla h(\cdot)$ denotes the gradient of $h(\cdot)$, and $\operatorname{prox}_{\alpha\lambda f}^{\mathbf{W}}(\cdot)$ denotes the weighted proximal mapping (WPM) defined as

$$\operatorname{prox}_{\alpha\lambda f}^{\mathbf{W}}(\cdot) \triangleq \arg\min_{\mathbf{x} \in \mathbb{C}^{N}} \frac{1}{2} \|\mathbf{x} - \cdot\|_{\mathbf{W}}^{2} + \alpha\lambda f(\mathbf{x}), \quad (3)$$

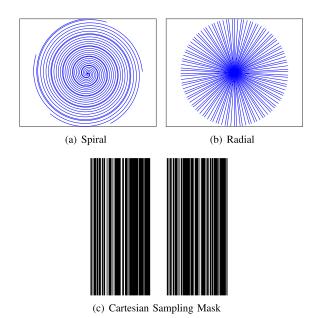


Fig. 2. The spiral (a) and radial (b) sampling trajectories and the Cartesian sampling mask (c) used in the experiments.

where $\mathbf{W} \in \mathbb{C}^{N \times N}, \mathbf{W} \succ 0$ is a Hermitian positive definite matrix and $\|\mathbf{x}\|_{\mathbf{W}}^2 = \mathbf{x}^H \mathbf{W} \mathbf{x}$. Here, H denotes the Hermitian transpose operator. Clearly, $\operatorname{prox}_{\alpha\lambda f}^{\mathbf{I}}(\cdot)$ represents the classical proximal operator [35]. Since $\operatorname{prox}_{\alpha\lambda f}^{\mathbf{I}}(\cdot)$ can be interpreted as a denoiser, the PnP-ISTA algorithm simply replaces the proximal operator with an arbitrary denoisier $\mathbf{D}(\cdot)$. In practice, the sequence $\{\mathbf{x}_k\}$ generated by PnP-ISTA generally converges slowly. To address this issue, Pendu et al. [36] introduced a preconditioned PnP-ADMM algorithm that uses a diagonal matrix as the preconditioner. More recently, Hong et al. [37] presented a provably convergent preconditioned PnP framework that supports general preconditioners and demonstrates fast convergence in CS MRI reconstruction.

An alternative to PnP, RED [25], [38], [39] introduces an explicit regularization term based on a denoiser, i.e., $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathrm{T}}[\mathbf{x} - \mathbf{D}(\mathbf{x})]$. Here, T denotes the transpose operator. Romano et al. [25] demonstrated that if the denoiser satisfies the local homogeneity property, the gradient of $f(\mathbf{x})$ in RED can be expressed as $\mathbf{x} - \mathbf{D}(\mathbf{x})$. Since $f(\mathbf{x})$ in RED is differentiable, various iterative methods, such as gradient descent, proximal methods, and quasi-Newton methods, can be applied to solve RED, provided that $h(\mathbf{x})$ is also differentiable. To accelerate convergence in RED, several techniques have been adopted, such as vector extrapolation [38], fast proximal methods [39], and weighted proximal methods [40], among others.

While PnP/RED has demonstrated significant empirical success, theoretical research on its convergence continues to be an active area of study, see [25], [31], [39], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50]. These studies assume either that the denoiser approximates the MAP or MMSE estimator, that $\|\mathbf{D}(\mathbf{x}) - \mathbf{x}\|$ is upper bounded, or that it is nonexpansive, satisfying

$$\|\mathbf{D}(\mathbf{x}_1) - \mathbf{D}(\mathbf{x}_2)\| \le \|\mathbf{x}_1 - \mathbf{x}_2\|.$$
 (4)

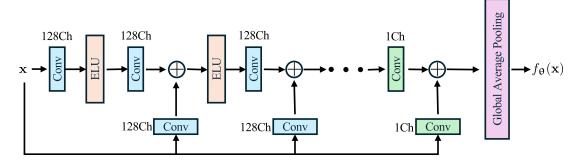


Fig. 3. The neural network architecture used for the energy function $f_{\theta}(\mathbf{x})$, based on [57]. The convolutional kernel size is 3×3 with stride 1.

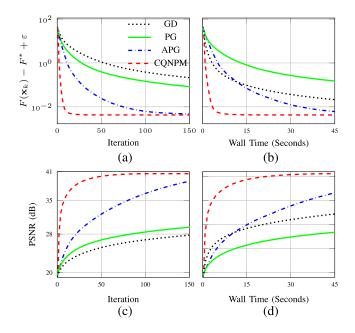


Fig. 4. Comparison of different methods with spiral acquisition on the brain image for $\varepsilon=4\times 10^{-3}$. (a), (b): cost values versus iteration and wall time; (c), (d): PSNR values versus iteration and wall time.

However, it is known that if the Jacobian of such estimators is well-defined, it must be symmetric [39], [51], [52]. However, RED/PnP frequently achieves state-of-the-art performance with denoisers that do not satisfy this condition, such as Convolutional Neural Network (CNN) based denoisers. So RED/PnP cannot be explained as an optimization-based solver. Although optimization-free explanations for RED and PnP exist, understanding their behaviors and characterizing their solutions remains challenging. Moreover, most commonly used denoisers do not satisfy (4). Another approach [43], [53], [54] is to train a denoiser by incorporating a regularization term in training to constrain its Lipschitz constant. However, this approach remains an open challenge, as there is currently no practical way to strictly guarantee that the trained denoiser is nonexpansive [55], [56].

B. Inverse Problems With Gradient-Driven Denoisers

To address the aforementioned challenges and bridge the gap between theoretical assumptions and practical performance in PnP/RED, recent works [57], [58], [59], [60] have proposed constructing gradient-driven denoisers. In this framework, the denoiser is given by the difference between the noisy image x and the gradient of a scalar-valued function $f_{\theta}(x)$, i.e.,

$$\mathbf{D}_{\theta}(\mathbf{x}) \equiv \mathbf{x} - \nabla_{\mathbf{x}} f_{\theta}(\mathbf{x}). \tag{5}$$

In practice, $f_{\theta}(\mathbf{x})$ is constructed with a scalar-output CNN and trained so that $\mathbf{x} - \nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})$ serves as a denoiser. Here θ denotes the trained network parameters. In medical imaging reconstruction, interpretability, reliability, and provable numerical algorithms are crucial, as the reconstructed images are commonly used for disease diagnosis. Therefore, it is essential to understand how the underlying algorithms function. The use of gradient-driven denoisers for CS MRI reconstruction enables the integration of deep learning techniques while maintaining interpretability and reliability. Specifically, we aim to solve the following optimization problem to recover the latent image:

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathcal{C}} F(\mathbf{x}) \equiv \underbrace{\frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2}_{h(\mathbf{x})} + \lambda f_{\theta}(\mathbf{x}), \quad (6)$$

where C is a closed convex set of \mathbb{C}^N . For notational simplicity, we ignore θ in $f_{\theta}(\mathbf{x})$ and simply write $f(\mathbf{x})$ hereafter. Similarly, we use $\nabla f(\mathbf{x})$ to denote $\nabla_{\mathbf{x}} f(\mathbf{x})$. Once the trade-off parameter λ is chosen, we fix it throughout the minimization. Therefore, we absorb λ into f hereafter and write $f(\mathbf{x})$ instead of $\lambda f(\mathbf{x})$.

Although both $f(\mathbf{x})$ and $h(\mathbf{x})$ are differentiable, $f(\mathbf{x})$ may be nonconvex. Therefore, the underlying numerical algorithms for solving (6) should be theoretically sound and applicable to nonconvex settings. Cohen et al. [57] employed the projected gradient method with a line search strategy to solve (6) and established its convergence under the assumption that the gradient of $f(\mathbf{x})$ is Lipschitz continuous. Hurault et al. [58] applied the proximal gradient method, where at the kth iteration, \mathbf{x}_{k+1} is updated as follows:

$$\mathbf{x}_{k+1} = \operatorname{prox}_{\alpha_k h + \nu}^{\mathbf{I}} (\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)), \tag{7}$$

where α_k represents the stepsize and $\iota_{\mathcal{C}}(\mathbf{x})$ denotes the characteristic function such that

$$\iota_{\mathcal{C}}(\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{x} \in \mathcal{C}, \\ +\infty, & \text{otherwise.} \end{cases}$$
 (8)

Similar to [57], the convergence is established under the same assumption and α_k is determined using a line search strategy. Note that both methods were tested on image deblurring and super-resolution tasks in the *real* domain. A direct extension of these methods to CS MRI reconstruction requires hundreds of iterations to converge, limiting their practical applicability. Therefore, improving the convergence speed is essential for CS MRI reconstruction with gradient-driven denoisers.

Alternatively, Tan et al. [61] adopted the method proposed in [62] to solve the following problem, instead of (6), by exploiting second-order information:

$$\min_{\mathbf{x} \in \mathbb{R}^N} h(\mathbf{x}) + \lambda \underbrace{\left(f(\mathbf{D}^{-1}(\mathbf{x})) - \frac{1}{2} \|\mathbf{D}^{-1}(\mathbf{x}) - \mathbf{x}\|_2^2 \right)}_{\bar{f}(\mathbf{x})}, \quad (9)$$

where $\mathbf{D}(\mathbf{x}) = \mathbf{x} - \nabla f(\mathbf{x})$ denotes the denoiser. Their algorithmic routine, dubbed PnP-LBFGS, treats $\mathbf{D}(\mathbf{x})$ as a proximal mapping of $\lambda \bar{f}(\mathbf{x})$. However, PnP-LBFGS requires the Lipschitz constant of ∇f to be upper bounded by one, which is challenging to guarantee in practice. Furthermore, Tan et al. only considered image deblurring and super-resolution problems for *real-valued* images, and it remains unclear how convex constraints could be incorporated into their framework.

C. Contributions and Roadmap

Motivated by recent work demonstrating the potential advantages of using second-order information for acceleration in many applications [9], [40], [63], [64], [65], [66], [67], [68], [69], [70], we propose a *complex* quasi-Newton proximal method (CQNPM) that incorporates additional Hessian information at each iteration to accelerate the convergence of solving (7). In contrast to [9], we estimate the Hessian matrix of $f(\mathbf{x})$ rather than that of $h(\mathbf{x})$. Although $f(\mathbf{x})$ is differentiable, it is nonconvex and \mathbf{x} is *complex*, which introduces new challenges in estimating a Hermitian positive definite Hessian matrix. To address these challenges, we develop an approach that enforces the estimated Hessian matrix to be Hermitian positive definite.

The main contributions of this paper are summarized as follows:

- We extend the gradient-driven denoisers to complexvalued CS MRI reconstruction. Moreover, we propose a complex quasi-Newton proximal approach to efficiently solve the associated minimization problem.
- We propose a modified Hessian estimation method that enforces a Hermitian positive definite Hessian matrix.
 Moreover, we provide a rigorous convergence analysis of the proposed approach under the nonconvex settings.
- We extensively validate the performance of our method using both Cartesian and non-Cartesian sampling trajectories on brain and knee images.

The rest of this paper is organized as follows. Section II introduces our proposed method and explains how to estimate a Hermitian positive definite Hessian matrix. In addition, Section III provides a rigorous convergence analysis. Finally, Section IV presents numerical experiments that study the performance of our method and validate the theoretical analysis. Supplementary

Algorithm 1: Complex Quasi-Newton Proximal Method (CQNPM).

```
Initialization: \mathbf{x}_1 and stepsize \alpha_k > 0

Iteration:

1: for k = 1, 2, \dots do

2: Set \mathbf{H}_k and \mathbf{B}_k using Algorithm 2

3: \mathbf{x}_{k+1} \leftarrow \operatorname{prox}_{\alpha_k}^{\mathbf{B}_k} h_{+\iota_{\mathcal{C}}}(\mathbf{x}_k - \alpha_k \mathbf{H}_k \nabla f(\mathbf{x}_k))

4: end for
```

material is also provided, including the validation of Assumption 1, a comparison with PnP-LBFGS, and additional experimental results.

II. PROPOSED METHOD

This section first introduces our approach for addressing (6). We then describe how to estimate a Hermitian positive definite Hessian matrix. Finally, we present an efficient strategy for solving the associated WPM.

Given an estimated Hessian matrix \mathbf{B}_k , at the kth iteration, we update the next iterate by solving a WPM, i.e.,

$$\mathbf{x}_{k+1} = \operatorname{prox}_{\alpha_k h + \iota_{\mathcal{C}}}^{\mathbf{B}_k} (\mathbf{x}_k - \alpha_k \mathbf{H}_k \nabla f(\mathbf{x}_k)), \tag{10}$$

where $\mathbf{H}_k = \mathbf{B}_k^{-1}$. Unlike the usual PGM in (2) that uses the proximal mapping of the *regularizer*, the WPM in (10) uses the proximal mapping of the *data term h* plus the characteristic function in (8). Algorithm 1 summarizes the proposed method.

To compute a Hermitian positive definite approximation to the Hessian matrix, we introduce a modified memory-efficient selfscaling Hermitian rank-1 method (MMESHR1) that extends the method proposed in [37], [71], [72], [73]. Algorithm 2 presents the detailed steps of MMESHR1. The operator $\Re(\cdot)$ in Algorithm 2 denotes an operation that extracts the real part. Without the operator $\Re(\cdot)$, Algorithm 2 reduces to the Hessian approximation method proposed in [9]. For the problems in [9], we estimated the Hessian matrix for $h(\mathbf{x})$ so that $\langle \mathbf{m}_k, \mathbf{s}_k \rangle$ is guaranteed to be real for all iterations. However, $\langle \mathbf{m}_k, \mathbf{s}_k \rangle$ becomes complex in our problem setting, leading to a non-Hermitian Hessian approximation. Let \mathbf{B}_k denote the approximate Hessian matrix obtained using the approach proposed in [9]. To obtain a Hermitian positive definite Hessian approximation, we seek a \mathbf{B}_k that is the nearest Hermitian approximation to \mathbf{B}_k in terms of Frobenius norm minimization, resulting in $\mathbf{B}_k = (\bar{\mathbf{B}}_k + \bar{\mathbf{B}}_k^{\mathrm{H}})/2$. In practice, this step is equivalent to applying $\Re(\cdot)$ at steps 2, 3, and 4 in Algorithm 2. Lemma 4 shows that the approximate Hessian matrices generated by Algorithm 2 are always Hermitian positive definite, even if f is nonconvex.

Computing the WPM in (10) is equivalent to solving the following minimization problem:

$$\arg\min_{\bar{\mathbf{x}}\in\mathcal{C}} G_k(\bar{\mathbf{x}}) \equiv \frac{1}{2} \left(\left\| \bar{\mathbf{x}} - \mathbf{w}_k \right\|_{\mathbf{B}_k}^2 + \alpha_k \left\| \mathbf{A}\bar{\mathbf{x}} - \mathbf{y} \right\|_2^2 \right), \tag{11}$$

where $\mathbf{w}_k = \mathbf{x}_k - \alpha_k \mathbf{H}_k \nabla f(\mathbf{x}_k)$. Since the cost function in (11) is differentiable and strongly convex, we apply the accelerated projection method with fixed momentum to solve it [74],

Algorithm 2: Modified Memory Efficient Self-Scaling Hermitian Rank-1 Method.

Initialization:
$$\mathbf{x}_{k-1}, \mathbf{x}_k, \nabla f(\mathbf{x}_{k-1}), \nabla f(\mathbf{x}_k), \delta = 10^{-8}, \quad \theta_1 \in (0,1), \text{ and } \theta_2 \in (1,\infty)$$

1: Set $\mathbf{s}_k \leftarrow \mathbf{x}_k - \mathbf{x}_{k-1}$ and $\mathbf{m}_k \leftarrow (\nabla f(\mathbf{x}_k) - \nabla f(\mathbf{x}_{k-1}))$

2: Compute β such that
$$\min_{\beta} \{\beta \in [0,1] | \mathbf{v}_k = \beta \mathbf{s}_k + (1-\beta) \mathbf{m}_k \}$$
 satisfies $\theta_1 \leq \frac{\Re(\langle \mathbf{s}_k, \mathbf{v}_k \rangle)}{\langle \mathbf{s}_k, \mathbf{s}_k \rangle} \text{ and } \frac{\langle \mathbf{v}_k, \mathbf{v}_k \rangle}{\Re(\langle \mathbf{s}_k, \mathbf{v}_k \rangle)} \leq \theta_2$

3: Compute $\tau_k \leftarrow \frac{\langle \mathbf{s}_k, \mathbf{s}_k \rangle}{\Re(\langle \mathbf{s}_k, \mathbf{v}_k \rangle)} - \sqrt{(\frac{\langle \mathbf{s}_k, \mathbf{s}_k \rangle}{\Re(\langle \mathbf{s}_k, \mathbf{v}_k \rangle)})^2 - \frac{\langle \mathbf{s}_k, \mathbf{s}_k \rangle}{\langle \mathbf{v}_k, \mathbf{v}_k \rangle}}$

4: $\rho_k \leftarrow \Re(\langle \mathbf{s}_k - \tau_k \mathbf{v}_k, \mathbf{v}_k \rangle)$

5: if $\rho_k \leq \delta \|\mathbf{s}_k - \tau_k \mathbf{v}_k \| \|\mathbf{v}_k \|$ then

6: $\mathbf{u}_k \leftarrow \mathbf{0}$

7: else

8: $\mathbf{u}_k \leftarrow \mathbf{s}_k - \tau_k \mathbf{v}_k$

9: end if

10: $\rho_k^{\mathbf{B}} \leftarrow \tau_k^2 \rho_k + \tau_k \mathbf{u}_k^{\mathbf{H}} \mathbf{u}_k$

11: Return: $\mathbf{H}_k \leftarrow \tau_k \mathbf{I}_N + \frac{\mathbf{u}_k \mathbf{u}_k^{\mathbf{H}}}{\rho_k}$ and

 $\mathbf{B}_k \leftarrow \tau_k^{-1} \mathbf{I}_N - \frac{\mathbf{u}_k \mathbf{u}_k^{\mathbf{H}}}{\rho_k^{\mathbf{B}}}$

[75]. To avoid using a line search or computing the exact Lipschitz constant, which would increase the computational cost, we instead estimate an upper bound. The Hessian matrix of the cost function in (11) is $\mathbf{B}_k + \alpha_k \mathbf{A}^H \mathbf{A}$. Clearly, we have the following relations

$$\mu_{\min}(\mathbf{B}_k + \mathbf{A}^{\mathrm{H}}\mathbf{A}) \geq \mu_{\min}(\mathbf{B}_k) + \mu_{\min}(\mathbf{A}^{\mathrm{H}}\mathbf{A}), \mu_{\max}(\mathbf{B}_k + \mathbf{A}^{\mathrm{H}}\mathbf{A}) \leq \mu_{\max}(\mathbf{B}_k) + \mu_{\max}(\mathbf{A}^{\mathrm{H}}\mathbf{A}),$$
(12)

where $\mu_{\min}(\cdot)$ and $\mu_{\max}(\cdot)$ denote the smallest and largest eigenvalues, respectively. Let $L_{\mathbf{A}}$ denote the largest eigenvalue of $\mathbf{A}^H\mathbf{A}$. In CS MRI, the kspace data is under-sampled so that the smallest eigenvalue of $\mathbf{A}^H\mathbf{A}$ is zero. Using the relations in (12) and $\mathbf{B}_k = \tau_k^{-1}\mathbf{I}_N - (\mathbf{u}_k\mathbf{u}_k^H)/(\rho_k^B)$ (cf. Algorithm 2), the largest and smallest eigenvalues of $\mathbf{B}_k + \alpha_k\mathbf{A}^H\mathbf{A}$ are upper and lower bounded by $L_k = \tau_k^{-1} + \alpha_kL_{\mathbf{A}}$ and $\sigma_k = \tau_k^{-1} - \mathbf{u}_k^H\mathbf{u}_k/\rho_k^B$, respectively, where Lemma 4 shows that $\sigma_k > 0$. Algorithm 3 describes the accelerated projection method with fixed momentum for solving (11).

III. CONVERGENCE ANALYSIS

This section provides the convergence analysis of Algorithm 1 for solving (6). Before presenting the convergence results, we first introduce two assumptions and then provide four lemmas that simplify presenting the convergence proof.

Assumption 1 (L-Smooth regularizer): We assume the gradient of $f(\mathbf{x})$ is L-Lipschitz continuous, meaning that for all $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{C}^N$, there exists a positive constant L such that the following inequality holds:

$$\|\nabla f(\mathbf{x}_1) - \nabla f(\mathbf{x}_2)\| \le L \|\mathbf{x}_1 - \mathbf{x}_2\|. \tag{14}$$

Algorithm 3: Accelerated Projection Method with Fixed Momentum for Computing the WPM.

Initialization: $\bar{\mathbf{x}}_1 = \mathbf{x}_k$, $\mathbf{z}_1 = \mathbf{x}_k$, tolerance $\epsilon = 10^{-6}$, stepsize $\frac{1}{L_k}$ and $\kappa_k = \frac{L_k}{\sigma_k}$ where L_k (respectively, σ_k) denotes the upper (respectively, lower) bound of the largest (respectively, smallest) eignenvalue of

$$\mathbf{B}_k + \alpha_k \mathbf{A}^{\mathrm{H}} \mathbf{A}$$

Iteration:

$$\begin{array}{ll} 1: \textbf{for } i=1,2,\dots \, \textbf{do} \\ 2: & \bar{\mathbf{x}}_{i+1} \leftarrow \operatorname{prox}_{\iota_{\mathcal{C}}}^{\mathbf{I}}(\mathbf{z}_i - \frac{1}{L_k} \nabla G_k(\mathbf{z}_i)) \\ 3: & \textbf{if } \|\bar{\mathbf{x}}_{i+1} - \bar{\mathbf{x}}_i\| \leq \epsilon \, \textbf{then} \\ 4: & \text{break} \\ 5: & \textbf{else} \\ 6: & \mathbf{z}_{i+1} \leftarrow \bar{\mathbf{x}}_{i+1} + \frac{\sqrt{\kappa_k} - 1}{\sqrt{\kappa_i + 1}} (\bar{\mathbf{x}}_{i+1} - \bar{\mathbf{x}}_i) \\ \end{array}$$

8: **end for**

Assumption 2 (Constrained proximal Polyak-Łojasiewicz inequality [73], [76]): Define

$$S_h(\bar{\mathbf{x}}, \mathbf{x}, \mathbf{g}, \mathbf{W}, \alpha) \triangleq \Re \left\{ \langle \mathbf{g}, \bar{\mathbf{x}} - \mathbf{x} \rangle \right\} + \frac{1}{2\alpha} ||\bar{\mathbf{x}} - \mathbf{x}||_{\mathbf{W}}^2 + h(\bar{\mathbf{x}}) - h(\mathbf{x}),$$
(15)

and

$$\mathcal{D}_{h}^{\mathcal{C}}(\mathbf{x}, \mathbf{g}, \mathbf{W}, \alpha) \triangleq -\frac{2}{\alpha} \min_{\bar{\mathbf{x}} \in \mathcal{C}} \mathcal{S}_{h}(\bar{\mathbf{x}}, \mathbf{x}, \mathbf{g}, \mathbf{W}, \alpha),$$
(16)

where $\mathbf{W} \in \mathbb{C}^{N \times N}$, $\mathbf{W} \succ 0$ is a Hermitian positive definite matrix, h was defined in (6) and α is a positive constant. If there exists a positive constant ν such that the following inequality holds:

$$\mathcal{D}_h^{\mathcal{C}}(\mathbf{x}, \nabla f(\mathbf{x}), \mathbf{I}_N, \alpha) \ge 2\nu(F(\mathbf{x}) - F^*), \ \forall \mathbf{x} \in \mathcal{C},$$
 (17)

then we say $F(\mathbf{x})$ satisfies the constrained proximal Polyak-Lojasiewicz inequality. F^* denotes the optimal value of (6).

Assumption 1 is a moderate assumption and is commonly used in convergence analysis for differentiable functions, see [57], [58]. We analysed the validity of Assumption 1 for the used network architecture (see Fig. 3), along with empirical validation in the supplementary material. Assumption 2 covers certain nonconvex properties of $F(\mathbf{x})$ and is commonly used in nonconvex analysis [76]. Next we introduce Lemmas 1 to 4 which are useful for the following convergence proofs.

Lemma 1 (Majorizer of f): Let $f: \mathbb{C}^N \to (-\infty, \infty]$ be an L-smooth function (L > 0). Then for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{C}^N$, we have

$$f(\mathbf{x}_2) \le f(\mathbf{x}_1) + \Re\left\{\left\langle \nabla f(\mathbf{x}_1), \mathbf{x}_2 - \mathbf{x}_1\right\rangle\right\} + \frac{L}{2} \|\mathbf{x}_1 - \mathbf{x}_2\|_2^2.$$
(18)

Lemma 2: For any fixed $\mathbf{W} \in \mathbb{C}^{N \times N}$, $\mathbf{W} \succ 0$ and $\alpha > 0$, we have the following inequality

$$\mathcal{D}_h^{\mathcal{C}}(\mathbf{x}, \nabla f(\mathbf{x}), \mathbf{W}, \alpha) \ge \|\mathcal{G}_{\frac{1}{\alpha}, \mathbf{W}}^{f, h}(\mathbf{x})\|_{\mathbf{W}}^2, \quad \forall \mathbf{x} \in \mathcal{C},$$

where
$$\mathcal{G}_{\frac{1}{\alpha},\mathbf{W}}^{f,h}(\mathbf{x}) \triangleq \frac{1}{\alpha}(\mathbf{x} - \bar{\mathbf{x}}^+)$$
 with

$$\bar{\mathbf{x}}^{+} \triangleq \arg\min_{\bar{\mathbf{x}} \in \mathcal{C}} \mathcal{S}_{h}(\bar{\mathbf{x}}, \mathbf{x}, \nabla f(\mathbf{x}), \mathbf{W}, \alpha).$$
 (19)

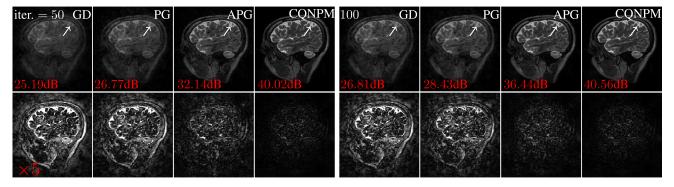


Fig. 5. First row: the reconstructed brain images of each method at 50 and 100th iterations with spiral acquisition. The PSNR values are labeled at the left bottom corner of each image. Second row: the associated error maps (×5) of the reconstructed images.

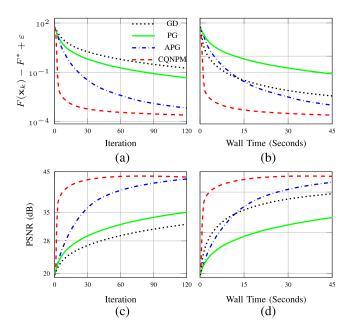


Fig. 6. Comparison of different methods with radial acquisition on the knee image for $\varepsilon = 8 \times 10^{-5}$. (a), (b): cost values versus iteration and wall time; (c), (d): PSNR values versus iteration and wall time.

Lemma 3: For any fixed $\mathbf{W} \in \mathbb{C}^{N \times N}, \mathbf{W} \succ 0$, a differentiable function f and a convex function h, $\mathcal{D}_h^{\mathcal{C}}(\mathbf{x}, \nabla f(\mathbf{x}), \mathbf{W}, \alpha)$ satisfies the following inequality for $\forall \alpha_1 \geq \alpha_2 > 0$:

$$\mathcal{D}_{b}^{\mathcal{C}}(\mathbf{x}, \nabla f(\mathbf{x}), \mathbf{W}, \alpha_{2}) > \mathcal{D}_{b}^{\mathcal{C}}(\mathbf{x}, \nabla f(\mathbf{x}), \mathbf{W}, \alpha_{1}). \tag{20}$$

Lemma 4 (Bounded Hessian): The approximate Hessian matrices generated by Algorithm 2 satisfy the following inequality

$$\eta \mathbf{I} \leq \mathbf{B}_k \leq \overline{\eta} \mathbf{I},$$

where $0 < \eta < \overline{\eta} < \infty$.

The proof of Lemma 1 is similar to the one in the real-valued case [74]. The only difference is the use of $\Re\{\langle \nabla f(\mathbf{x}_1), \mathbf{x}_2 - \mathbf{x}_2 \rangle\}$ $|\mathbf{x}_1\rangle$ instead of $\langle \nabla f(\mathbf{x}_1), \mathbf{x}_2 - \mathbf{x}_1 \rangle$ to account for the complex domain. Therefore, we omit the proof here for brevity. Appendices A to C give the proofs of Lemmas 2 to 4. With these in place, we are able to derive our main convergence results in Theorem 1.

Theorem 1 (Convergence results): Applying Algorithm 1 to solve (6), we can establish the following convergence results:

• Let $\alpha_k \leq \frac{\eta}{L}$, and define $\Delta_K \triangleq \min_{k \leq K} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2$. Under Assumption 1, by running Algorithm 1 K iterations to solve (6), we have

$$\Delta_K \le \frac{2\left(F(\mathbf{x}_1) - F^*\right)}{LK},$$

where F^* denotes the minimum of (6) and \mathbf{x}_1 is the initial

• Let $\alpha_k \leq \min\{\frac{\overline{\eta}}{\mu}, \frac{\eta}{\overline{L}}\}$. Under Assumptions 1 and 2, we have the following convergence rate bound for the cost

$$F(\mathbf{x}_{k+1}) - F^* \le \left(1 - \frac{\nu \, \alpha_{\min}}{\overline{\eta}}\right)^k \, \left(F(\mathbf{x}_1) - F^*\right),$$

where $\alpha_{\min} = \min_k \{\alpha_k\}$. • Let $\alpha_k \leq \frac{\eta}{L}$. Choose $k \in \{1, \dots, K-1\}$ uniformly at random. Then under Assumptions 1 and 2, we have the following convergence rate bound in expectation

$$\mathbb{E}\left[F(\mathbf{x}_k) - F^*\right] \le \frac{\overline{\eta}\left(F(\mathbf{x}_1) - F^*\right)}{\nu \alpha_{\min} K}.$$

Appendix D presents the proof. The first part of Theorem 1 shows that $\Delta_K \to 0$ as $K \to \infty$. Combining with the summation in (26) implies convergence to a fixed point. The second part establishes that the cost function sequence converges linearly to the minimal cost value. The third part demonstrates that if one selects a random iterate, then the cost value converges sublinearly in expectation. In this paper, we simply choose the last iterate as the output. However, Section IV-A discusses the third term experimentally to validate our analysis. Note that Assumption 2 is a special case of the Kurdyka-Łojasiewicz (KL) inequality with exponent 1/2 [77]. While our analysis establishes convergence rate under the PL inequality, it could potentially be extended to the more general KL inequality, see [78]. Moreover, if the Dennis-Moré condition [79] holds, one can expect a superlinear convergence rate. However, a full study of this direction is beyond the scope of the present paper and is left for future work.

IV. NUMERICAL EXPERIMENTS

This section investigates the performance of the proposed method for CS MRI reconstruction using spiral, radial, and Cartesian k-space sampling patterns. We first describe the experimental and algorithmic settings. Then, we present the reconstruction results and experimentally demonstrate the convergence of the proposed method, validating our theoretical analysis.

Experimental Settings: We evaluated the performance of the proposed method using brain and knee MRI datasets. For the brain images, we used the dataset from [17], which consists of 360 images for training and 164 images for testing. For knee images, we employed the NYU fastMRI [80] multi-coil knee dataset. The ESPIRiT algorithm [81] was first applied to reconstruct complex-valued images from multi-coil k-space data. All brain and knee images were cropped and resized to a resolution of 256×256 and normalized such that their maximum magnitude is one. We employed the network architecture proposed in [57] to construct $f(\mathbf{x})$. Unlike [57], we included bias terms in the network, as this provided improved performance in our experiments. For completeness, Fig. 3 presents the used network architecture. The number of layers is set to six, which is identical to that in [57]. Noisy images were generated by adding independent and identically distributed (i.i.d.) Gaussian noise with a variance of 1/255. The network was trained to enforce $\mathbf{x} - \nabla f(\mathbf{x})$ to be a denoiser and $\nabla f(\mathbf{x})$ was computed with PyTorch's autograd function, i.e., torch.autograd.grad. The training process used the mean squared error as the loss function, with a batch size of 64. Optimization was performed using the ADAM algorithm [82] with a learning rate 10^{-3} over a total of 18,000 iterations. Additionally, we halved the learning rate at each 4,000 iterations. Although we trained distinct denoisers for brain and knee images, the same denoiser was employed across different sampling acquisitions. Note that training denoisers on larger datasets may lead to improved denoisers and then better reconstruction. However, the main focus of this paper is to investigate numerical efficiency of gradient-driven denoisers based CS MRI reconstruction with convergence guarantees. Thus, we leave the exploration of this direction to future work.

To evaluate reconstruction performance, we selected 6 brain and 6 knee images from the test datasets as the ground-truth. Fig. 1 presents the magnitudes of two of these twelve complex-valued ground truth images. Due to space limitations, the remaining ten brain and knee ground-truth images are presented in the supplementary material. For the spiral trajectory, we used 6 interleaves, 1688 readout points, and 32 coils, whereas the radial trajectory involved 55 spokes with golden-angle rotation, 1024 readout points, and 32 coils. Fig. 2 illustrates the sampling trajectories and mask used in our experiments. To generate the k-space data, we first applied the forward model with the corresponding trajectories and sensitivity maps to the ground-truth images. We then added complex i.i.d. Gaussian noise with zero

mean and a variance of 10^{-4} , resulting in noisy measurements with an input SNR of approximately 21dB. In the reconstruction step, we used coil compression [83] to reduce the 32 coils to 12 virtual coils in order to reduce computational complexity. Sections IV-A to IV-C specifically analyze one brain and one knee test image acquired using the spiral, radial, and Cartesian sampling trajectories. Additional results on other test images are provided in the supplementary material. All experiments were implemented using PyTorch and executed on an NVIDIA A100 GPU.

Algorithmic Settings: We primarily compared our method with the projected gradient descent method (dubbed GD) [57] and the proximal gradient method (dubbed PG) [58], as both methods also come with convergence guarantees, similar to ours. In addition, we compared with the accelerated proximal gradient method (dubbed APG) [84] that also provides convergence guarantees for solving nonconvex problems such as (6). Since we normalized the maximum magnitude of all images to one, we set $C = \{\mathbf{x} \mid ||\mathbf{x}||_{\infty} \leq 1\}$ and all methods used this constraint. Although such a constraint is not needed in practical CS MRI reconstruction, we considered it here primarily to test the applicability of CONPM to constrained problems. Following [85], which was also adopted in PnP-LBFGS, we attempted to train a network to meet the requirements of PnP-LBFGS for CS MRI reconstruction. However, we observed that PnP-LBFGS diverged. Therefore, we compared our method against PnP-LBFGS on the image deblurring problem using the same experimental setup in their open-source code. The results, provided in the supplementary material, show that our method converged faster than PnP-LBFGS in terms of PSNR with respect to both iterations and wall time.

For plots involving F^* , we ran APG for 500 iterations and set $F^* = F(\mathbf{x}_{500})$. The stepsize α_k in Algorithm 1 is set to be one which we found it works well for our experimental settings. Alternatively, one can choose α_k with a backtracking line search strategy to satisfy (22). Algorithm 2 used $\delta = 10^{-8}$, $\theta_1 = 2 \times 10^{-6}$, $\theta_2 = 200$. The parameter δ is commonly used in quasi-Newton methods to guard numerical stability when \mathbf{v}_k and \mathbf{s}_k are closely related. Parameters θ_1 and θ_2 control the Hermitian positive definiteness of the estimated Hessian matrices but still allow greater flexibility of estimation. In view of the proof in Lemma 4, we have $\frac{1}{2\theta_2}\mathbf{I}_N \preceq \mathbf{H}_k \preceq (\frac{1+\delta}{\delta\theta_1})\mathbf{I}_N$. So θ_1 and θ_2 should be positive, with θ_1 chosen small and θ_2 chosen large. In Algorithm 3, we always used the previous iterate as the new initial value. Therefore, we found that setting the maximum number of iterations to 15 and $\varepsilon = 10^{-6}$ worked well in practice.

A. Spiral Acquisition Reconstruction

Fig. 4 presents the cost and PSNR values of each method with respect to the number of iterations and wall time for the reconstruction with spiral acquisition on the brain image. Fig.s 4(a) and (c) show that our method converges faster than the others, reaching a lower cost value and higher PSNR at the same number of iterations. Moreover, we observed that APG is faster than PG, and PG is faster than GD in terms of the number of iterations, which aligns with our expectations. From Figs. 4(b)

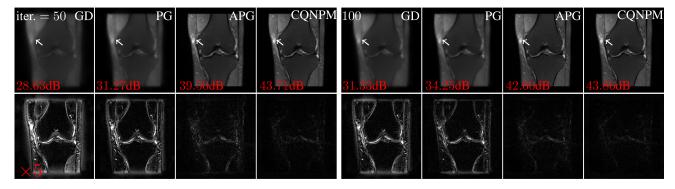


Fig. 7. First row: the reconstructed knee images of each method at 50 and 100th iterations with radial acquisition. The PSNR values are labeled at the left bottom corner of each image. Second row: the associated error maps (×5) of the reconstructed images.

and (d), we saw that our method is also the fastest algorithm in terms of wall time. Moreover, we observed that GD becomes faster than PG in terms of wall time because PG needs to solve a proximal mapping requiring to execute **Ax** multiple times. However, APG is still faster than GD even it also requires to solve a proximal mapping.

Fig. 5 shows the reconstructed images at the 50th and 100th iterations. Our method recovered significantly clearer images than other methods at the same number of iterations. Moreover, the corresponding error maps clearly show that our method yielded small reconstruction errors. The supplementary material presents the reconstruction results of the knee image using the same spiral acquisition, as well as results for other additional test images, where similar trends were observed across all methods.

B. Radial Acquisition Reconstruction

Fig. 6 summarizes the cost and PSNR values of each approach with respect to the number of iterations and wall time for the reconstruction with radial acquisition on the knee image. It is apparent that the performance trends here are consistent with those observed in the reconstruction with spiral acquisition on the brain image. Fig. 7 presents the reconstructed images and error maps of each method at the 50 and 100th iterations. It is evident that our method outperformed other methods. The supplementary material summarizes the results of other additional test images, where similar trends were observed.

C. Cartesian Acquisition Reconstruction

Fig. 8 shows the cost and PSNR values of each method with respect to the number of iterations and wall time for the reconstruction with Cartesian acquisition on the brain image. It is evident that similar trends were identified. Moreover, we observed that the difference between GD and PG in terms of wall time was smaller than in the cases of spiral and radial acquisitions. This is because computing $\mathbf{A}\mathbf{x}$ is less expensive in this case than in the non-Cartesian acquisitions, resulting in a more efficient evaluation of the proximal mapping. Fig. 9 shows the reconstructed images and error maps at the 50 and 100th iterations. There is no doubt that our method yielded a clearer image than the others. The supplementary material shows

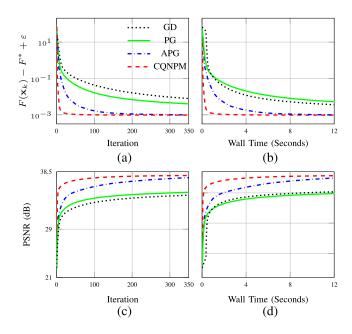


Fig. 8. Comparison of different methods with Cartesian acquisition on the brain image for $\varepsilon=9\times 10^{-4}$. (a), (b): cost values versus iteration and wall time; (c), (d): PSNR values versus iteration and wall time.

additional experimental results of five other brain images, where similar trends were obtained.

D. Convergence Validation

We studied the convergence properties of our method experimentally. Let $E(\mathbf{x}_k) = \|\mathbf{x}_k - \mathbf{x}_{k+1}\|_2^2$. Fig. 10 shows the cost values and the normalized difference $E(\mathbf{x}_k)/E(\mathbf{x}_1)$ of our method with spiral acquisition on all brain test images. As expected, the cost values converged to a constant for all test images, and $E(\mathbf{x}_k)/E(\mathbf{x}_1) \to 0$, consistent with our theoretical analysis. Fig. 11 presents the expected cost values versus iteration, estimated using the Monte Carlo method with 1000 samples. We observed that the expected cost values decreased similarly to Fig. 10(a), though slightly more slowly, aligning well with our theoretical results.

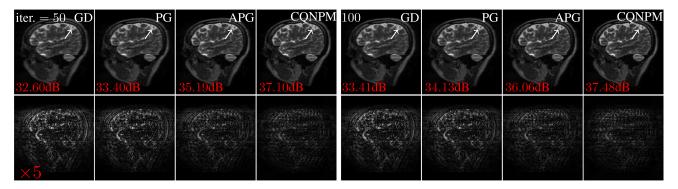


Fig. 9. First row: the reconstructed brain images of each method at 50 and 100th iterations with Cartesian acquisition. The PSNR values are labeled at the left bottom corner of each image. Second row: the associated error maps $(\times 5)$ of the reconstructed images.

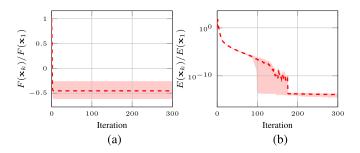


Fig. 10. Averaged cost values (a) and $E(\mathbf{x}_k)/E(\mathbf{x}_1)$ (b) versus iteration for the proposed method. The shaded region of each curve represents the range of the cost values and $E(\mathbf{x}_k)$ across six brain test images with spiral acquisition.

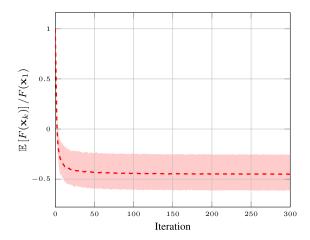


Fig. 11. Averaged expected cost values versus iteration for the proposed method. The shaded region of each curve represents the range of expected cost values across six brain test images with spiral acquisition. The cost values were estimated using the Monte Carlo method with 1000 samples.

E. Comparison With the Preconditioned PnP Approach

We studied the difference between using gradient-driven denoisers and classical CNN-based denoisers within the PnP framework. Specifically, we adopted the preconditioned PnP method (P²nP) [37], as it generally outperforms the classical PnP-ISTA method. Fig. 12 reports the PSNR values versus iterations for CQNPM and P²nP under spiral (respectively,

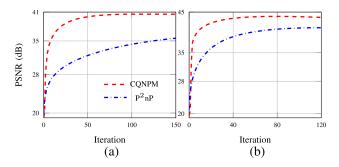


Fig. 12. Comparison of the preconditioned PnP $((P^2PnP))$ method. (a) PSNR values versus iteration for spiral acquisition with the brain image; (b) PSNR values versus iteration for radial acquisition with the knee image.

radial) acquisition for the brain (respectively, knee) image. We observed that CQNPM converged faster than P²nP and consistently achieved higher PSNR values, illustrating that the use of gradient-driven denoisers does not sacrifice reconstruction performance.

V. CONCLUSION AND FUTURE WORK

Compared to the PnP/RED framework with convolutional neural network based denoisers, the gradient-driven denoisers offer a much stronger theoretical foundation, as its required assumption (i.e., Lipschitz continuity of $f(\mathbf{x})$) is easier to satisfy in practice— an important advantage for medical imaging applications. We applied the gradient-driven denoisers to CS MRI reconstruction and thoroughly evaluated its performance on spiral, radial, and Cartesian acquisitions. In addition, we proposed a complex quasi-Newton proximal method (CQNPM) to efficiently solve the associated minimization problem with convergence guarantee under nonconvex settings. We extensively compared our method with existing algorithms, and the experimental results demonstrate both the efficiency of our approach and the accuracy of the underlying theoretical analysis. Although we consider $h(\mathbf{x}) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{y}||_2^2$ in this paper, the algorithm presented is applicable to any h that is convex and smooth (Lipschitz gradient). Furthermore, our theoretical results require only the convexity of h, so the approach also generalizes

to non-smooth and convex h by modifying the weighted proximal mapping at step 3 in Algorithm 1 appropriately. Code to reproduce the results in the paper is available at https://github.com/hongtao-argmin/CQNPM-GDD-CS-MRI-Reco.

While the proposed CQNPM accelerates convergence in gradient-driven denoisers based CS MRI reconstruction, several limitations remain. In the following, we outline these limitations and discuss possible directions for improvement:

- Accurate Hermitian positive definite Hessian Approximation: In this work, we employed Algorithm 2 to estimate a Hermitian positive definite Hessian matrix, but we always reinitialized the Hessian at each step. In the real-valued setting, BFGS updating typically provides more accurate Hessian approximations compared to the scheme in Algorithm 2. Therefore, extending BFGS to our problem—while ensuring that the Hessian matrix remains Hermitian positive definite when f is nonconvex—could potentially yield a faster algorithm.
- Assumptions for convergence: The convergence rate of our method depends on the proximal PL inequality. However, verifying this condition for complex, high-capacity neural network—based denoisers remains challenging in practice. Extending the analysis to the more general KL inequality, or alternatively designing convex networks [86] that still achieve comparable performance, would be promising directions for future research.
- Extension to 3D and dynamic MRI reconstruction: This
 work focuses on 2D multi-coil CS MRI reconstruction.
 Extending CQNPM to 3D or dynamic MRI reconstruction would be an interesting future direction. However,
 training effective gradient-driven denoisers for such highdimensional problems remains a significant challenge that
 must be addressed.

APPENDIX

A. Proof of Lemma 2

Since $\mathbf{W} \succ 0$ and $h(\mathbf{x})$ is convex, $S_h(\bar{\mathbf{x}}, \mathbf{x}, \mathbf{g}, \mathbf{W}, \alpha)$ is strongly convex. Through the optimality condition of (19), we have the following inequality

$$\Re\left\{\left\langle \mathbf{g} + \frac{1}{\alpha}\mathbf{W}(\bar{\mathbf{x}}^+ - \mathbf{x}) + \nabla h(\bar{\mathbf{x}}), \mathbf{x} - \bar{\mathbf{x}}^+ \right\rangle\right\} \ge 0, \forall \mathbf{x} \in \mathcal{C}.$$

By using the convexity of h (i.e., $h(\mathbf{x}) - h(\bar{\mathbf{x}}) \ge \Re\{\langle \nabla h(\bar{\mathbf{x}}), \mathbf{x} - \bar{\mathbf{x}} \rangle\}$), we reach

$$\Re\left\{\left\langle \mathbf{g}, \mathbf{x} - \bar{\mathbf{x}}^{+}\right\rangle\right\} \ge \frac{1}{\alpha} \|\bar{\mathbf{x}}^{+} - \mathbf{x}\|_{\mathbf{W}}^{2} + h(\mathbf{x}^{+}) - h(\mathbf{x}). \quad (21)$$

From (16) and (19), we have

$$\mathcal{D}_{h}^{\mathcal{C}}(\mathbf{x}, \mathbf{g}, \mathbf{W}, \alpha) = -\frac{2}{\alpha} \mathcal{S}_{h}(\bar{\mathbf{x}}^{+}, \mathbf{x}, \mathbf{g}, \mathbf{W}, \alpha)$$

$$= \frac{2}{\alpha} \Re \left\{ \langle \mathbf{g}, \mathbf{x} - \bar{\mathbf{x}}^{+} \rangle \right\} - \frac{1}{\alpha^{2}} ||\bar{\mathbf{x}}^{+} - \mathbf{x}||_{\mathbf{W}}^{2}$$

$$-\frac{2}{\alpha} (h(\bar{\mathbf{x}}^{+}) - h(\mathbf{x}))$$

$$\geq \frac{1}{\alpha^{2}} ||\bar{\mathbf{x}}^{+} - \mathbf{x}||_{\mathbf{W}}^{2}$$

$$= ||\mathcal{G}_{1}^{f,h}(\mathbf{w})||_{\mathbf{W}}^{2},$$

where the first inequality and last equality come from (21) and the definition of $\mathcal{G}_{\frac{1}{\alpha},\mathbf{W}}^{f,h}(\mathbf{x})$.

B. Proof of Lemma 3

Let $\alpha_1 \geq \alpha_2 > 0$ and $\bar{\mathbf{x}}_2 = \frac{\alpha_2}{\alpha_1} \bar{\mathbf{x}}_1 + \frac{\alpha_1 - \alpha_2}{\alpha_1} \mathbf{x}$ with $\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2 \in \mathcal{C}$. Since $h(\mathbf{x})$ is convex, we get

$$h(\bar{\mathbf{x}}_2) \le \frac{\alpha_2}{\alpha_1} h(\bar{\mathbf{x}}_1) + \frac{\alpha_1 - \alpha_2}{\alpha_1} h(\mathbf{x})$$

and then

$$\alpha_1(h(\bar{\mathbf{x}}_2) - h(\mathbf{x})) \le \alpha_2(h(\bar{\mathbf{x}}_1) - h(\mathbf{x})).$$

By using $\alpha_1(\bar{\mathbf{x}}_2 - \mathbf{x}) = \alpha_2(\bar{\mathbf{x}}_1 - \mathbf{x})$ and the above inequality, we have

$$-\frac{2}{\alpha_1}\mathcal{S}_h(\bar{\mathbf{x}}_1, \mathbf{x}, \mathbf{g}, \mathbf{W}, \alpha_1) \leq -\frac{2}{\alpha_2}\mathcal{S}_h(\bar{\mathbf{x}}_2, \mathbf{x}, \mathbf{g}, \mathbf{W}, \alpha_2).$$

Minimizing both sides of the above inequalities and using the definition of $\mathcal{D}_{h}^{\mathcal{C}}(\mathbf{x}, \mathbf{g}, \mathbf{W}, \alpha)$, we get the desired result

$$\mathcal{D}_h^{\mathcal{C}}(\mathbf{x}, \mathbf{g}, \mathbf{W}, \alpha_1) \leq \mathcal{D}_h^{\mathcal{C}}(\mathbf{x}, \mathbf{g}, \mathbf{W}, \alpha_2).$$

C. Proof of Lemma 4

To prove the bound on \mathbf{B}_k , we first establish the bound on \mathbf{H}_k because $\mathbf{B}_k = \mathbf{H}_k^{-1}$. Define $a_k = \langle \mathbf{s}_k, \mathbf{s}_k \rangle$, $b_k = \Re\{\langle \mathbf{s}_k, \mathbf{v}_k \rangle\}$, $c_k = \langle \mathbf{v}_k, \mathbf{v}_k \rangle$. Then we have

$$\frac{b_k}{a_k} \tau_k = 1 - \sqrt{1 - \frac{b_k^2}{a_k c_k}} \le \frac{b_k^2}{a_k c_k},$$

resulting in $\tau_k \leq \frac{b_k}{c_k}$. The last inequality follows from the Cauchy–Schwarz inequality, which leads to $b_k^2 \leq a_k c_k$. The lower bound can be derived through

$$\tau_k = \frac{a_k}{b_k} - \sqrt{\left(\frac{a_k}{b_k}\right)^2 - \frac{a_k}{c_k}} = \frac{\frac{a_k}{c_k}}{\frac{a_k}{b_k} + \sqrt{\left(\frac{a_k}{b_k}\right)^2 - \frac{a_k}{c_k}}}$$

$$> \frac{b_k}{2c_k}.$$

In summary, we have $\frac{b_k}{2c_k} \le \tau_k \le \frac{b_k}{c_k}$. Next, we derive an upper bound for $\mathbf{u}_k^H \mathbf{u}_k$. Using the definition of \mathbf{u}_k , we have the following inequalities

$$\begin{array}{lll} \mathbf{u}_k^{\mathrm{H}} \mathbf{u}_k & = & \frac{\langle \mathbf{s}_k - \tau_k \mathbf{v}_k, \mathbf{s}_k - \tau_k \mathbf{v}_k \rangle}{\rho_k} \\ & \leq & \frac{\|\mathbf{s}_k - \tau_k \mathbf{v}_k\|_2}{\delta \|\mathbf{v}_k\|_2} \\ & = & \frac{1}{\delta} \sqrt{\frac{a_k}{c_k}} - \frac{2\tau_k b_k}{c_k} + \tau_k^2 \\ & \leq & \frac{1}{\delta} \sqrt{\frac{a_k}{c_k}} = \frac{1}{\delta} \sqrt{\frac{a_k}{b_k} \frac{b_k}{c_k}} \leq \frac{a_k}{\delta b_k}. \end{array}$$

The first inequality comes from step 5 in Algorithm 2. The second inequality derived from the fact that $\frac{b_k}{2c_k} \leq \tau_k \leq \frac{b_k}{c_k}$ resulting in $-\frac{2\tau_k b_k}{c_k} + \tau_k^2 < 0$. The last inequality is the result of $b_k^2 \leq a_k c_k$.

of $b_k^2 \le a_k c_k$. With these, we have $\frac{b_k}{2c_k} \mathbf{I}_N \le \mathbf{H}_k \le (\frac{b_k}{c_k} + \frac{a_k}{\delta b_k}) \mathbf{I}_N$. From (13), we know $\frac{b_k}{a_k} \ge \theta_1$ and $\frac{c_k}{b_k} \le \theta_2$ for all k. Therefore, \mathbf{H}_k is always bounded by $\frac{1}{2\theta_2}\mathbf{I}_N \preceq \mathbf{H}_k \preceq (\frac{1+\delta}{\delta\theta_1})\mathbf{I}_N$. Since \mathbf{H}_k is both lower and upper bounded, we know that there exist constants $\overline{\eta} > \eta > 0$ such that $\eta \mathbf{I} \preceq \mathbf{B}_k \preceq \overline{\eta} \mathbf{I}$.

D. Proof of Theorem 1

Using Lemma 1, we have

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_{k}) + \Re \left\{ \langle \nabla f(\mathbf{x}_{k}), \mathbf{x}_{k+1} - \mathbf{x}_{k} \rangle \right\}$$

$$+ \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_{k}\|_{2}^{2}$$

$$\leq f(\mathbf{x}_{k}) + h(\mathbf{x}_{k}) - h(\mathbf{x}_{k+1})$$

$$+ \min_{\mathbf{v} \in \mathcal{C}} \mathcal{S}_{h}(\mathbf{v}, \mathbf{x}_{k}, \nabla f(\mathbf{x}_{k}), \mathbf{B}_{k}, \alpha_{k})$$

$$+ \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_{k}\|_{2}^{2} - \frac{1}{2\alpha_{k}} \|\mathbf{x}_{k+1} - \mathbf{x}_{k}\|_{\mathbf{B}_{k}}^{2}$$

$$\leq F(\mathbf{x}_{k}) + \left(\min_{\mathbf{v} \in \mathcal{C}} \mathcal{S}_{h}(\mathbf{v}, \mathbf{x}_{k}, \nabla f(\mathbf{x}_{k}), \mathbf{B}_{k}, \alpha_{k})\right)$$

$$+ \left(\frac{L}{2} - \frac{\eta}{2\alpha_{k}}\right) \|\mathbf{x}_{k+1} - \mathbf{x}_{k}\|_{2}^{2} - h(\mathbf{x}_{k+1}).$$

The second inequality comes from the definition of S_h and the update rule for \mathbf{x}_{k+1} . The third inequality is the result of Lemma 4. Letting $\alpha_k \leq \frac{\eta}{L}$ and moving $h(\mathbf{x}_{k+1})$ to the left side, we get

$$F(\mathbf{x}_{k+1}) \leq F(\mathbf{x}_k) + \left(\min_{\mathbf{v} \in \mathcal{C}} \mathcal{S}_h(\mathbf{v}, \mathbf{x}_k, \nabla f(\mathbf{x}_k), \mathbf{B}_k, \alpha_k)\right)$$

$$+ \left(\frac{L}{2} - \frac{\underline{\eta}}{2\alpha_k}\right) \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2$$

$$\leq F(\mathbf{x}_k) - \frac{\alpha_k}{2} \mathcal{D}_h^{\mathcal{C}}(\mathbf{x}_k, \nabla f(\mathbf{x}_k), \mathbf{B}_k, \alpha_k).$$
 (22)

Rearranging (22), we have

$$\frac{\alpha_k}{2} \mathcal{D}_h^{\mathcal{C}}(\mathbf{x}_k, \nabla f(\mathbf{x}_k), \mathbf{B}_k, \alpha_k) \le F(\mathbf{x}_k) - F(\mathbf{x}_{k+1}).$$
 (23)

Invoking Lemmas 2 and 4, we get

$$\mathcal{D}_{h}^{\mathcal{C}}(\mathbf{x}_{k}, \nabla f(\mathbf{x}_{k}), \mathbf{B}_{k}, \alpha_{k}) \ge \frac{\underline{\eta}}{\alpha_{k}^{2}} \|\mathbf{x}_{k+1} - \mathbf{x}_{k}\|_{2}^{2}.$$
 (24)

Substituting (24) into (23), we have

$$\frac{\underline{\eta}}{2\alpha_k} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 \le F(\mathbf{x}_k) - F(\mathbf{x}_{k+1}). \tag{25}$$

Summing up the above inequality from k = 1 to K, we reach

$$\sum_{k=1}^{K} \frac{\eta}{2\alpha_k} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 \le F(\mathbf{x}_1) - F(\mathbf{x}_K) \le F(\mathbf{x}_1) - F^*.$$

Denote by $\alpha_{\max} = \max_k \{\alpha_k\}$, $\alpha_{\min} = \min_k \{\alpha_k\}$, and $\Delta_K = \min_{k \leq K} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2$. Since $\alpha_k \leq \frac{\eta}{L}$, we have $\alpha_{\max} = \frac{\eta}{L}$. Invoking the definition of Δ_K , the value of α_{\max} , and using (26), we obtain

$$\Delta_K \le \frac{2\left(F(\mathbf{x}_1) - F^*\right)}{I K}.$$

Clearly, Δ_K approaches zero as $K \to \infty$.

Now, we show the convergence of cost values with additional Assumption 2. Invoking Lemmas 3 and 4, we have the following inequalities

$$\mathcal{D}_{h}^{\mathcal{C}}(\mathbf{x}_{k}, \nabla f(\mathbf{x}_{k}), \mathbf{B}_{k}, \alpha_{k}) \geq \frac{1}{\overline{\eta}} \mathcal{D}_{h}^{\mathcal{C}}\left(\mathbf{x}_{k}, \nabla f(\mathbf{x}_{k}), \mathbf{I}, \frac{\alpha_{k}}{\overline{\eta}}\right)$$

$$\geq \frac{1}{\overline{\eta}} \mathcal{D}_{h}^{\mathcal{C}}\left(\mathbf{x}_{k}, \nabla f(\mathbf{x}_{k}), \mathbf{I}, \frac{\alpha_{\max}}{\overline{\eta}}\right).$$
(27)

Combining the above inequality with (23), we obtain

$$\frac{\alpha_k}{2\overline{\eta}} \mathcal{D}_h^{\mathcal{C}} \left(\mathbf{x}_k, \nabla f(\mathbf{x}_k), \mathbf{I}, \frac{\alpha_{\text{max}}}{\overline{\eta}} \right) \le F(\mathbf{x}_k) - F(\mathbf{x}_{k+1}). \quad (28)$$

By using (17), we get

$$\frac{\nu \alpha_{\min}}{\overline{\eta}} \left(F(\mathbf{x}_k) - F^* \right) \le F(\mathbf{x}_k) - F^* - \left(F(\mathbf{x}_{k+1}) - F^* \right).$$

Rearranging the above inequality, we reach

$$F(\mathbf{x}_{k+1}) - F^* \le \left(1 - \frac{\nu \,\alpha_{\min}}{\overline{\eta}}\right) \left(F(\mathbf{x}_k) - F^*\right). \tag{29}$$

By letting $\alpha_k \leq \min\{\frac{\overline{\eta}}{\nu}, \frac{\eta}{\overline{L}}\}$, we have $(1 - \frac{\nu \alpha_{\min}}{\overline{\eta}}) > 0$. Then applying (29) recursively, we obtain

$$F(\mathbf{x}_{k+1}) - F^* \le \left(1 - \frac{\nu \, \alpha_{\min}}{\overline{\eta}}\right)^k \, \left(F(\mathbf{x}_1) - F^*\right).$$

Now we show another formulation of convergence by uniformly sampling the output. Summing up (23) from k = 1 to K, we get

$$\sum_{k=1}^{K} \frac{\alpha_k}{2} \mathcal{D}_h^{\mathcal{C}}(\mathbf{x}_k, \nabla f(\mathbf{x}_k), \mathbf{B}_k, \alpha_k) \leq F(\mathbf{x}_1) - F(\mathbf{x}_K)$$

$$\leq F(\mathbf{x}_1) - F^*$$
(30)

By uniformly sampling one of the previous iterates at K-1th iteration as the output $\mathbf{x}_{k'}$, we have

$$\mathbb{E}\left[D_{h}^{\mathcal{C}}\left(\mathbf{x}_{k'}, \nabla f(\mathbf{x}_{k'}), \mathbf{I}, \frac{\alpha_{k'}}{\overline{\eta}}\right)\right]$$

$$= \sum_{k=1}^{K} \frac{\mathcal{D}_{h}^{\mathcal{C}}(\mathbf{x}_{k}, \nabla f(\mathbf{x}_{k}), \mathbf{I}, \frac{\alpha_{k}}{\overline{\eta}})}{K}$$

$$\leq \sum_{k=1}^{K} \frac{\overline{\eta} \mathcal{D}_{h}^{\mathcal{C}}(\mathbf{x}_{k}, \nabla f(\mathbf{x}_{k}), \mathbf{B}_{k}, \alpha_{k})}{K}, \tag{31}$$

where the inequality comes from (27). Summing up (23) from k=1 to K, we obtain

$$\sum_{k=1}^{K} \frac{\alpha_k}{2} \mathcal{D}_h^{\mathcal{C}}(\mathbf{x}_k, \nabla f(\mathbf{x}_k), \mathbf{B}_k, \alpha_k) \leq F(\mathbf{x}_1) - F(\mathbf{x}_{K+1})$$

$$\leq F(\mathbf{x}_1) - F^*.$$

Together with (31), we get

$$\mathbb{E}\left[D_h^{\mathcal{C}}(\mathbf{x}_{k'}, \nabla f(\mathbf{x}_{k'}), \mathbf{I}, \frac{\alpha_{k'}}{\overline{\eta}})\right] \leq \frac{2\overline{\eta}\left(F(\mathbf{x}_1) - F^*\right)}{\alpha_{\min}K}.$$

By invoking (17), we get the desired result

$$\mathbb{E}\left[F(\mathbf{x}_{k'}) - F^*\right] \leq \frac{\overline{\eta}\left(F(\mathbf{x}_1) - F^*\right)}{\nu \alpha_{\min} K}.$$

Clearly, $F(\mathbf{x}_{k'})$ converges to F^* in expectation as $K \to \infty$.

REFERENCES

- Z.-P. Liang and P. C. Lauterbur, Principles of Magnetic Resonance Imaging, Bellingham, WA, USA: SPIE, 2000.
- [2] M. A. Brown and R. C. Semelka, MRI: Basic Principles and Applications, Hoboken, NJ, USA: Wiley, 2011.
- [3] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, "SENSE: Sensitivity encoding for fast MRI," *Magn. Reson. Med.*, vol. 42, no. 5, pp. 952–962, 1999.
- [4] M. A. Griswold et al., "Generalized autocalibrating partially parallel acquisitions (GRAPPA)," Magn. Reson. Med., vol. 47, no. 6, pp. 1202–1210, 2002.
- [5] M. Lustig, D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," *Magn. Reson. Med.*, vol. 58, no. 6, pp. 1182–1195, 2007.
- [6] M. Guerquin-Kern, M. Haberlin, K. P. Pruessmann, and M. Unser, "A fast wavelet-based reconstruction method for magnetic resonance imaging," *IEEE Trans. Med. Imag.*, vol. 30, no. 9, pp. 1649–1660, Sep. 2011.
- [7] M. V. Zibetti, E. S. Helou, R. R. Regatte, and G. T. Herman, "Monotone FISTA with variable acceleration for compressed sensing magnetic resonance imaging," *IEEE Trans. Comput. Imag.*, vol. 5, no. 1, pp. 109–119, Mar. 2019.
- [8] L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," *Phys. D: Nonlinear Phenomena*, vol. 60, no. 1-4, pp. 259–268, 1992.
- [9] T. Hong, L. Hernandez-Garcia, and J. A. Fessler, "A complex quasi-newton proximal method for image reconstruction in compressed sensing MRI," *IEEE Trans. Comput. Imag.*, vol. 10, pp. 372–384, 2024.
- [10] M. Aharon, M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," *IEEE Trans. Signal Process.*, vol. 54, no. 11, pp. 4311–4322, Nov. 2006.
- [11] S. Ravishankar and Y. Bresler, "MR image reconstruction from highly undersampled k-space data by dictionary learning," *IEEE Trans. Med. Imag.*, vol. 30, no. 5, pp. 1028–1041, May 2011.
- [12] W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang, "Compressive sensing via nonlocal low-rank regularization," *IEEE Trans. Image Process.*, vol. 23, no. 8, pp. 3618–3632, Aug. 2014.
- [13] J. A. Fessler, "Model-based image reconstruction for MRI," *IEEE Signal Process. Mag.*, vol. 27, no. 4, pp. 81–89, Jul. 2010.
- [14] J. A. Fessler, "Optimization methods for magnetic resonance image reconstruction: Key models and optimization algorithms," *IEEE Signal Process. Mag.*, vol. 37, no. 1, pp. 33–40, Jan. 2020.
- [15] R. Heckel, M. Jacob, A. Chaudhari, O. Perlman, and E. Shimron, "Deep learning for accelerated and robust MRI reconstruction," *Magn. Reson. Mater. Phys. Biol. Med.*, vol. 37, no. 3, pp. 335–368, 2024.
- [16] S. Wang et al., "Accelerating magnetic resonance imaging via deep learning," in *Proc. IEEE 13th Int. Symp. Biomed. Imag.*, 2016, pp. 514–517.
- [17] H. K. Aggarwal, M. P. Mani, and M. Jacob, "MoDL: Model-based deep learning architecture for inverse problems," *IEEE Trans. Med. Imag.*, vol. 38, no. 2, pp. 394–405, Feb. 2019.
- [18] D. Gilton, G. Ongie, and R. Willett, "Deep equilibrium architectures for inverse problems in imaging," *IEEE Trans. Comput. Imag.*, vol. 7, pp. 1123–1133, 2021.
- [19] Z. Ramzi, G. Chaithya, J.-L. Starck, and P. Ciuciu, "NC-PDNet: A density-compensated unrolled network for 2D and 3D non-cartesian MRI reconstruction," *IEEE Trans. Med. Imag.*, vol. 41, no. 7, pp. 1625–1638, Jul. 2022.
- [20] Z. Wang et al., "One for multiple: Physics-informed synthetic data boosts generalizable deep learning for fast MRI reconstruction," *Med. Image Anal.*, 2025, Art. no. 103616.
- [21] B. Shi, Y. Wang, and D. Li, "Provable general bounded denoisers for snapshot compressive imaging with convergence guarantee," *IEEE Trans. Comput. Imag.*, vol. 9, pp. 55–69, 2023.
- [22] Y. Song, L. Shen, L. Xing, and S. Ermon, "Solving inverse problems in medical imaging with score-based generative models," in *Proc. Int. Conf. Learn. Representations*, 2021.
- [23] H. Chung and J. C. Ye, "Score-based diffusion models for accelerated MRI," Med. Image Anal., vol. 80, 2022, Art. no. 102479.

- [24] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, "Plug-and-play priors for model based reconstruction," in *Proc. IEEE Glob. Conf. Signal Inf. Process.*, 2013, pp. 945–948.
- [25] Y. Romano, M. Elad, and P. Milanfar, "The little engine that could: Regularization by denoising (RED)," SIAM J. Imag. Sci., vol. 10, no. 4, pp. 1804–1844, 2017.
- [26] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering," *IEEE Trans. Image Process.*, vol. 16, no. 8, pp. 2080–2095, Aug. 2007.
- [27] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *IEEE Trans. Image Process.*, vol. 26, no. 7, pp. 3142–3155, Jul., 2017.
- [28] S. Sreehari et al., "Plug-and-play priors for bright field electron tomography and sparse interpolation," *IEEE Trans. Comput. Imag.*, vol. 2, no. 4, pp. 408–423, Dec. 2016.
- [29] S. Ono, "Primal-dual plug-and-play image restoration," *IEEE Signal Process. Lett.*, vol. 24, no. 8, pp. 1108–1112, Aug. 2017.
- [30] T. Meinhardt, M. Moeller, C. Hazirbas, and D. Cremers, "Learning proximal operators: Using denoising networks for regularizing inverse imaging problems," in *Proc. IEEE Int. Conf. Comput. Vis.*, Venice, Italy, Oct. 2017, pp. 1799–1808.
- [31] G. T. Buzzard, S. H. Chan, S. Sreehari, and C. A. Bouman, "Plug-and-play unplugged: Optimization free reconstruction using consensus equilibrium," SIAM J. Imag. Sci., vol. 11, no. 3, pp. 2001–2020, 2018.
- [32] B. Shi, Q. Lian, and H. Chang, "Deep prior-based sparse representation model for diffraction imaging: A plug-and-play method," *Signal Process.*, vol. 168, 2020, Art. no. 107350.
- [33] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, "Plugand-play image restoration with deep denoiser prior," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 44, no. 10, pp. 6360–6376, Oct. 2022.
- [34] R. Ahmad et al., "Plug-and-play methods for magnetic resonance imaging: Using denoisers for image recovery," *IEEE Signal Process. Mag.*, vol. 37, no. 1, pp. 105–116, Jan. 2020.
- [35] N. Parikh et al., "Proximal algorithms," Found. Trends Optim., vol. 1, no. 3, pp. 127–239, 2014.
- [36] M. L. Pendu and C. Guillemot, "Preconditioned plug-and-play ADMM with locally adjustable denoiser for image restoration," SIAM J. Imag. Sci., vol. 16, no. 1, pp. 393–422, 2023.
- [37] T. Hong, X. Xu, J. Hu, and J. A. Fessler, "Provable preconditioned plugand-play approach for compressed sensing MRI reconstruction," *IEEE Trans. Comput. Imag.*, vol. 10, pp. 1476–1488, 2024.
- [38] T. Hong, Y. Romano, and M. Elad, "Acceleration of RED via vector extrapolation," J. Vis. Commun. Image Representation, vol. 63, 2019, Art. no. 102575.
- [39] E. T. Reehorst and P. Schniter, "Regularization by denoising: Clarifications and new interpretations," *IEEE Trans. Comput. Imag.*, vol. 5, no. 1, pp. 52–67, Mar. 2019.
- [40] T. Hong, I. Yavneh, and M. Zibulevsky, "Solving RED with weighted proximal methods," *IEEE Signal Process. Lett.*, vol. 27, pp. 501–505, 2020.
- [41] S. H. Chan, X. Wang, and O. A. Elgendy, "Plug-and-play ADMM for image restoration: Fixed-point convergence and applications," *IEEE Trans. Comput. Imag.*, vol. 3, no. 1, pp. 84–98, Mar. 2017.
- [42] Y. Sun, B. Wohlberg, and U. S. Kamilov, "An online plug-and-play algorithm for regularized image reconstruction," *IEEE Trans. Comput. Imag.*, vol. 5, no. 3, pp. 395–408, Sep. 2019.
- [43] E. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, and W. Yin, "Plug-and-play methods provably converge with properly trained denoisers," in *Proc. Int. Conf. Mach. Learn.*, 2019, pp. 5546–5557.
- [44] X. Xu, Y. Sun, J. Liu, B. Wohlberg, and U. S. Kamilov, "Provable convergence of plug-and-play priors with MMSE denoisers," *IEEE Signal Process. Lett.*, vol. 27, pp. 1280–1284, 2020.
- [45] B. Shi and D. Li, "Provably bounded dynamic sparsifying transform network for compressive imaging," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 36, no. 8, pp. 15255–15267, Aug. 2025.
- [46] R. G. Gavaskar, C. D. Athalye, and K. N. Chaudhury, "On plug-and-play regularization using linear denoisers," *IEEE Trans. Image Process.*, vol. 30, pp. 4802–4813, 2021.
- [47] Y. Sun, Z. Wu, X. Xu, B. Wohlberg, and U. S. Kamilov, "Scalable plugand-play ADMM with convergence guarantees," *IEEE Trans. Comput. Imag.*, vol. 7, pp. 849–863, 2021.
- [48] J. Liu, S. Asif, B. Wohlberg, and U. Kamilov, "Recovery analysis for plug-and-play priors using the restricted eigenvalue condition," in *Proc. Adv. Neural Inf. Process. Syst.*, 2021, vol. 34, pp. 5921–5933.

- [49] R. Cohen, M. Elad, and P. Milanfar, "Regularization by denoising via fixed-point projection (RED-PRO)," SIAM J. Imag. Sci., vol. 14, no. 3, pp. 1374–1406, 2021.
- [50] U. S. Kamilov, C. A. Bouman, G. T. Buzzard, and B. Wohlberg, "Plug-and-play methods for integrating physical and learned models in computational imaging: Theory, algorithms, and applications," *IEEE Signal Process. Mag.*, vol. 40, no. 1, pp. 85–97, Jan. 2023.
- [51] R. Gribonval and M. Nikolova, "A characterization of proximity operators," J. Math. Imag. Vis., vol. 62, no. 6, pp. 773–789, 2020.
- [52] R. Gribonval and M. Nikolova, "On Bayesian estimation and proximity operators," Appl. Comput. Harmon. Anal., vol. 50, pp. 49–72, 2021.
- [53] M. Terris, A. Repetti, J.-C. Pesquet, and Y. Wiaux, "Building firmly nonexpansive convolutional neural networks," in *Proc. IEEE Int. Conf. Acoust.*, Speech Signal Process., 2020, pp. 8658–8662.
- [54] A. Pramanik, M. B. Zimmerman, and M. Jacob, "Memory-efficient model-based deep learning with convergence and robustness guarantees," *IEEE Trans. Comput. Imag.*, vol. 9, pp. 260–275, 2023.
- [55] S. Aziznejad, H. Gupta, J. Campos, and M. Unser, "Deep neural networks with trainable activations and controlled Lipschitz constant," *IEEE Trans. Signal Process.*, vol. 68, pp. 4688–4699, 2020.
- [56] K. Bredies, J. Chirinos-Rodriguez, and E. Naldi, "Learning firmly nonexpansive operators," 2024, arXiv:2407.14156.
- [57] R. Cohen, Y. Blau, D. Freedman, and E. Rivlin, "It has potential: Gradient-driven denoisers for convergent solutions to inverse problems," in *Proc. Adv. Neural Inf. Process. Syst.*, 2021, vol. 34, pp. 18152–18164.
- [58] S. Hurault, A. Leclaire, and N. Papadakis, "Gradient step denoiser for convergent plug-and-play," in *Proc. Int. Conf. Learn. Representations*, 2022
- [59] Z. Fang, S. Buchanan, and J. Sulam, "What's in a prior? Learned proximal networks for inverse problems," in *Proc. Int. Conf. Learn. Representations*, 2024.
- [60] S. Chaudhari, S. Pranav, and J. M. F. Moura, "Gradient networks," *IEEE Trans. Signal Process.*, vol. 73, pp. 324–339, 2025.
- [61] H. Y. Tan, S. Mukherjee, J. Tang, and C.-B. Schönlieb, "Provably convergent plug-and-play quasi-newton methods," SIAM J. Imag. Sci., vol. 17, no. 2, pp. 785–819, 2024.
- [62] L. Stella, A. Themelis, and P. Patrinos, "Forward-backward quasi-Newton methods for nonsmooth optimization problems," *Comput. Optim. Appl.*, vol. 67, no. 3, pp. 443–487, 2017.
- [63] M. Schmidt, E. Berg, M. Friedlander, and K. Murphy, "Optimizing costly functions with simple constraints: A limited-memory projected quasinewton algorithm," in *Proc. 12th Int. Conf. Artif. Intell. Statist.*, 2009, pp. 456–463.
- [64] J. D. Lee, Y. Sun, and M. A. Saunders, "Proximal newton-type methods for minimizing composite functions," SIAM J. Optim., vol. 24, no. 3, pp. 1420–1443, 2014.
- [65] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, "Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function," *J. Optim. Theory Appl.*, vol. 162, no. 1, pp. 107–132, 2014.
- [66] S. Bonettini, I. Loris, F. Porta, and M. Prato, "Variable metric inexact line-search-based methods for nonsmooth optimization," *SIAM J. Optim.*, vol. 26, no. 2, pp. 891–921, 2016.
- [67] S. Karimi and S. Vavasis, "IMRO: A proximal quasi-newton method for solving ℓ₁-regularized least squares problems," SIAM J. Optim., vol. 27, no. 2, pp. 583–615, 2017.
- [68] S. Becker, J. Fadili, and P. Ochs, "On quasi-Newton forward-backward splitting: Proximal calculus and convergence," SIAM J. Optim., vol. 29, no. 4, pp. 2445–2481, 2019.
- [69] A. Repetti and Y. Wiaux, "Variable metric forward-backward algorithm for composite minimization problems," SIAM J. Optim., vol. 31, no. 2, pp. 1215–1241, 2021.
- [70] M. Zhang and S. Li, "A proximal stochastic quasi-newton algorithm with dynamical sampling and stochastic line search," J. Sci. Comput., vol. 102, no. 1, pp. 1–36, 2025.
- [71] M. Osborne and L. Sun, "A new approach to symmetric rank-one updating," IMA J. Numer. Anal., vol. 19, no. 4, pp. 497–507, 1999.
- [72] F. Curtis, "A self-correcting variable-metric algorithm for stochastic optimization," in *Proc. Int. Conf. Mach. Learn.*, 2016, pp. 632–641.
- [73] X. Wang, X. Wang, and Y.-X. Yuan, "Stochastic proximal quasi-newton methods for non-convex composite optimization," *Optim. Methods Softw.*, vol. 34, no. 5, pp. 922–948, 2019.
- [74] Y. Nesterov, Lectures on Convex Optimization. Berlin, Germany: Springer, 2018.

- [75] T. Hong and I. Yavneh, "On adapting Nesterov's scheme to accelerate iterative methods for linear problems," *Numer. Linear Algebra Appl.*, vol. 29, no. 2, 2022, Art. no. e2417.
- [76] H. Karimi, J. Nutini, and M. Schmidt, "Linear convergence of gradient and proximal-gradient methods under the polyak-lojasiewicz condition," in *Proc. Mach. Learn. Knowl. Discov. Databases: Eur. Conf.*, Riva del Garda, Italy, Sep. 2016, pp. 795–811.
- [77] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, "Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality," *Math. Operations Res.*, vol. 35, no. 2, pp. 438–457, 2010.
- [78] T. Hong, U. Villa, and J. A. Fessler, "A convergent generalized Krylov subspace method for compressed sensing MRI reconstruction with gradient-driven denoisers," 2025, arXiv:2508.11219.
- [79] J. E. Dennis Jr and J. J. Moré, "Quasi-Newton methods, motivation and theory," SIAM Rev., vol. 19, no. 1, pp. 46–89, 1977.
- [80] J. Zbontar et al., "fastMRI: An open dataset and benchmarks for accelerated MRI," 2018, arXiv:1811.08839.
- [81] M. Uecker et al., "ESPIRiT—An eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA," Magn. Reson. Med., vol. 71, no. 3, pp. 990–1001, 2014.
- [82] D. Kingma and J. Ba, "Adam: A method for stochastic optimization," in Proc. Int. Conf. Learn. Representations, 2015.
- [83] T. Zhang, J. M. Pauly, S. S. Vasanawala, and M. Lustig, "Coil compression for accelerated imaging with Cartesian sampling," *Magn. Reson. Med.*, vol. 69, no. 2, pp. 571–582, 2013.
- [84] H. Li and Z. Lin, "Accelerated proximal gradient methods for nonconvex programming," in *Proc. 29th Int. Conf. Neural Inf. Process. Syst.*, 2015, pp. 379–387.
- [85] S. Hurault, A. Leclaire, and N. Papadakis, "Proximal denoiser for convergent plug-and-play optimization with nonconvex regularization," in *Proc. Int. Conf. Mach. Learn.*, 2022, pp. 9483–9505.
- [86] B. Amos, L. Xu, and J. Z. Kolter, "Input convex neural networks," in *Proc. Int. Conf. Mach. Learn.*, 2017, pp. 146–155.

Tao Hong (Member, IEEE) received the Ph.D. degree from the Henry and Marilyn Taub Faculty of Computer Science, Technion Israel Institute of Technology, Haifa, Israel, in 2021. He was a Postdoctoral Fellow with the University of Michigan, Ann Arbor, MI, USA. He is currently a Postdoctoral Fellow with the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA. His main research interests include numerical optimization, computational imaging, and reliable AI. He is particularly focused on designing

efficient and provable computational methods to address the challenges arising in scientific computing, signal processing, machine learning, and computational imaging, and on building reliable AI models for imaging science.

Zhaoyi Xu received the B.Eng. degree from the Hong Kong University of Science and Technology, Hong Kong, in 2019, and the M.A.Sc. degree in mechanical engineering from the University of Toronto, Toronto, ON, Canada, in 2021. She is currently working toward the Ph.D. degree with the University of Michigan, Ann Arbor, MI, USA, where she specializes in the interdisciplinary integration of developmental cell biology and engineering. Her research focuses on cell mechanobiology and organoid development, utilizing advanced engineering and computational approaches

to model early human developmental processes.

Se Young Chun (Member, IEEE) received the B.S.E. degree in electrical engineering from Seoul National University, Seoul, South Korea, in 1999, and the Ph.D. degree in electrical engineering: systems from the University of Michigan, Ann Arbor, MI, USA, in 2009. He was a Research Fellow with Harvard Medical School and also a Research Fellow with the University of Michigan. He was with the Ulsan National Institute of Science and Technology from 2013 to 2021 as an Assistant / Associate Professor with the Department of Electrical Engineering / AI.

Since 2021, he has been with the Department of Electrical and Computer Engineering and the Interdisciplinary Program in AI, Seoul National University, as an Associate Professor. He is currently a Full Professor. His research interests include computational imaging algorithms, generative diffusion models, multimodal foundation models for applications in medical and industrial imaging, computer vision and robotics. He is the Senior Area Editor of IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING and an Associate Editor of IEEE TRANSACTIONS ON IMAGE PROCESSING. He has been a member of IEEE Bio Imaging and Signal Processing Technical Committee and an IEEE Biometrics Council Representative of IEEE Vehicular Technology Society, since 2023. He was the recipient of the 2015 Bruce Hasegawa Young Investigator Medical Imaging Science Award from the IEEE Nuclear and Plasma Sciences Society.

Luis Hernandez-Garcia received the master's and Ph.D. degrees in biomedical engineering with the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. He has been involved in Blood Oxygenation Level Dependent and Arterial Spin Labeling, Functional MRI research for a number of years. He has been developing ASL methods for quantitatively imaging cerebral perfusion. Perfusion is an indicator of brain function and therefore a very valuable tool, not just for the clinician, but also for the neuroscientist and psychologist. He has worked on

the design and analysis of transcranial magnetic stimulation (TMS) devices, and is also active in the development of focused ultrasound neuromodulation technology. He has collaborated tightly with research groups in psychology and neurology in the study of attention, memory, pain and depression. He is currently working on kinetic models for quantifying the ASL signal, and techniques that will improve the SNR and temporal resolution of perfusion measurements. He is also working on developing methods for non-invasive brain stimulation techniques. His research focuses on developing and integrating techniques for the study of brain function.

Jeff Fessler (Fellow, IEEE) received the B.S.E.E. degree from Purdue University, West Lafayette, IN, USA, in 1985, the M.S.E.E. degree from Stanford University, Stanford, CA, USA, in 1986, the M.S. degree in statistics and the Ph.D. degree in electrical engineering from Stanford University, in 1989 and 1990, respectively. From 1985 to 1988, he was a National Science Foundation Graduate Fellow with Stanford He has been with the University of Michigan since then. From 1991 to 1992, he was a Department of Energy Alexander Hollaender Post-Doctoral

Fellow in the Division of Nuclear Medicine. From 1993 to 1995, he was an Assistant Professor in Nuclear Medicine and the Bioengineering Program. He is currently the William L. Root Distinguished University Professor of EECS with the University of Michigan, Ann Arbor, MI, USA. He is also a Professor with the Departments of Electrical Engineering and Computer Science, Radiology, and Biomedical Engineering. His research focuses on statistical aspects of imaging problems, and he has supervised doctoral research in PET, SPECT, X-ray CT, MRI, and optical imaging problems. He became a Fellow of the IEEE in 2006, for contributions to the theory and practice of image reconstruction. He was the recipient of the Francois Erbsmann Award for his IPMI93 Presentation, Edward Hoffman Medical Imaging Scientist Award in 2013, and an IEEE EMBS Technical Achievement Award in 2016. He was also the recipient of the 2023 Steven S. Attwood Award, the highest honor awarded to a faculty member by the College of Engineering. He was an Associate Editor for IEEE TRANSACTIONS ON MEDICAL IMAGING, IEEE SIGNAL PROCESSING LETTERS, IEEE TRANSACTIONS ON IMAGE PROCESSING, IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING (T-CI), SIAM Journal on Imaging Science, and as a Senior AE for T-CI. He has Chaired the IEEE T-MI Steering Committee and the ISBI Steering Committee. He was the Co-Chair of the 1997 SPIE Conference on Image Reconstruction and Restoration, Technical Program Co-Chair of the 2002 IEEE International Symposium on Biomedical Imaging(ISBI), and General Chair of ISBI 2007.