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Convergent Complex Quasi-Newton Proximal
Methods for Gradient-Driven Denoisers in
Compressed Sensing MRI Reconstruction
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Abstract—In compressed sensing (CS) MRI, model-based meth-
ods are pivotal to achieving accurate reconstruction. One of the
main challenges in model-based methods is finding an effective
prior to describe the statistical distribution of the target image.
Plug-and-Play (PnP) and REgularization by Denoising (RED) are
two general frameworks that use denoisers as the prior. While
PnP/RED methods with convolutional neural network (CNN) based
denoisers outperform classical hand-crafted priors in CS MRI,
their convergence theory relies on assumptions that do not hold
for practical CNN models. The recently developed gradient-driven
denoisers offer a framework that bridges the gap between practical
performance and theoretical guarantees. However, the numerical
solvers for the associated minimization problem remain slow for CS
MRI reconstruction. This paper proposes a complex quasi-Newton
proximal method that achieves faster convergence than existing
approaches. To address the complex domain in CS MRI, we propose
a modified Hessian estimation method that guarantees Hermitian
positive definiteness. Furthermore, we provide a rigorous conver-
gence analysis of the proposed method for nonconvex settings.
Numerical experiments on both Cartesian and non-Cartesian sam-
pling trajectories demonstrate the effectiveness and efficiency of
our approach.

Index Terms—CS MRI, gradient-driven denoiser, second-order,
convergence, complex domain, spiral and radial acquisitions.
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I. INTRODUCTION

AGNETIC resonance imaging (MRI) is a non-invasive
M imaging technique that generates images of the internal
structures of the body [1]. MRI is widely used in clinical settings
for disease diagnosis, treatment guidance, and functional and
advanced imaging, among other applications [2]. In practice,
MRI scanners acquire k-space data, which are the Fourier com-
ponents of the desired images. The acquisition procedure is
slow, leading to patient discomfort, increased motion artifacts,
reduced clinical efficiency, and other issues. To accelerate the
acquisition, modern MRI scanners use multiple coils (paral-
lel imaging) to acquire less Fourier components. The parallel
imaging technique incorporates additional spatial information
that can help significantly reduce MRI acquisition time [3], [4].
Moreover, by combining with compressed sensing (CS) [5], one
can acquire even fewer Fourier components, further accelerating
the acquisition process. However, the reconstruction in CS MRI
requires iterative solvers for the following composite minimiza-
tion problem:

[Ax —y[|3+2 f(x), (1)

| —
h(x)

| =

x" = arg min F(x) =
g min F(x)

where A € CME*N denotes the forward model specifying the
mapping from the image x € C* to the k-space datay € CM L,
and f(x) refers to the regularizer describing the prior informa-
tion about x. In practice, we have M < N due to downsampling.
The trade-off parameter A > 0 balances the data-fidelity term
h(x) and the regularizer f(x). Here C' > 1 denotes the number
of coils. The system matrix A is a stack of submatrices A, such
that A = [Ay; Ay; -+ ; Ac]. The submatrices A . are defined as
A, € CM*N = PFS, where P is the downsampling pattern,
F defines the (non-uniform) Fourier transform, and S, denotes
the coil sensitivity map for cth coil, which is patient specific.
The data fidelity term h(x) enhances the data consistency.
Since the k-space data is highly downsampled, the regular-
izer f(x) is required to stabilize the solution. The choice of
f can significantly affect the reconstruction quality. Classical
hand-crafted regularizers have proven effective for MRI recon-
struction including wavelets [6], [7], total variation (TV) [8], a
combination of wavelet and TV [5], [9], dictionary learning [ 10],
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(b) Knee

(a) Brain

Fig. 1. Magnitude of the complex-valued ground-truth images.

[11], and low-rank methods [12], to name a few. See [13], [14
for a review of various choices for f.

Over the past decade, deep learning (DL) has attracted sig-
nificant attention for MRI reconstruction because of its superior
performance [15]. Unlike hand-crafted regularizers, DL learns
complex image priors directly from large amounts of data. The
promising DL-based methods for MRI reconstruction include
end-to-end learning frameworks [16] and physics-informed deep
unrolling methods [17], [18], [19], [20], [21]. More recently,
generative models have emerged as powerful tools for learning
priors in MRI reconstruction, gaining substantial interest [22],
[23].

An alternative framework to DL is Plug-and-Play
(PnP)/REgularization by Denoising (RED) [24], [25], which
leverages the most effective denoisers, such as BM3D [26] or
DnCNN [27], achieving outstanding performance in various
imaging tasks [28], [29], [30], [31], [32], [33]. Compared
to the end-to-end and unrolling DL approaches, which are
typically designed for a predefined imaging task and rely on
training with massive amounts of data, PnP/RED can be easily
adapted to specific applications without requiring retraining.
This capability is especially advantageous for addressing CS
MRI problems, where sampling patterns, coil sensitivity maps,
and image resolutions can vary greatly between scans. Detailed
discussions about using PnP for MRI reconstruction are found
in [34]. The following subsections first introduce background on
PnP/RED priors and related theoretical work. We then discuss
the gradient-driven denoisers framework and the associated
minimization problem.

—_—

A. Inverse Problems With PnP/RED Priors

Proximal algorithms [35] are a class of iterative methods
for solving (1). At kth iteration, the proximal gradient method
(PGM) is expressed as

Xpt1 = proxixf(xk — aVh(xg)), (2)
where a € R, o > 0 is the stepsize, VA(-) denotes the gradient

of h(-), and prox¥¥ £(°) denotes the weighted proximal mapping
(WPM) defined as

1
prox ¥, () £ arg min 7 x — 3 +arf(x). )
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(a) Spiral (b) Radial

(c) Cartesian Sampling Mask

Fig. 2. The spiral (a) and radial (b) sampling trajectories and the Cartesian
sampling mask (c) used in the experiments.

where W € CV*N W = 0 is a Hermitian positive definite
matrix and ||x[|3;, = x""Wx. Here, H denotes the Hermitian
transpose operator. Clearly, prox?, f() represents the classical
proximal operator [35]. Since prox, () can be interpreted
as a denoiser, the PnP-ISTA algorithm simply replaces the
proximal operator with an arbitrary denoisier D(+). In practice,
the sequence {x; } generated by PnP-ISTA generally converges
slowly. To address this issue, Pendu et al. [36] introduced a pre-
conditioned PnP-ADMM algorithm that uses a diagonal matrix
as the preconditioner. More recently, Hong et al. [37] presented
a provably convergent preconditioned PnP framework that sup-
ports general preconditioners and demonstrates fast convergence
in CS MRI reconstruction.

An alternative to PnP, RED [25], [38], [39] introduces an
explicit regularization term based on a denoiser, i.e., f(x) =
1xT[x — D(x)]. Here, T denotes the transpose operator. Ro-
mano et al. [25] demonstrated that if the denoiser satisfies the
local homogeneity property, the gradient of f(x) in RED can
be expressed as x — D(x). Since f(x) in RED is differentiable,
various iterative methods, such as gradient descent, proximal
methods, and quasi-Newton methods, can be applied to solve
RED, provided that h(x) is also differentiable. To accelerate
convergence in RED, several techniques have been adopted,
such as vector extrapolation [38], fast proximal methods [39],
and weighted proximal methods [40], among others.

While PnP/RED has demonstrated significant empirical suc-
cess, theoretical research on its convergence continues to be an
active area of study, see [25], [31], [39], [41], [42], [43], [44],
[45], [46], [47], [48], [49], [50]. These studies assume either
that the denoiser approximates the MAP or MMSE estimator,
that ||D(x) — x|| is upper bounded, or that it is nonexpansive,
satisfying

[D(x1) — D(x2)[| < [[x1 —x2]. )
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Fig. 4. Comparison of different methods with spiral acquisition on the brain

image fore = 4 x 1073. (a), (b): cost values versus iteration and wall time; (c),
(d): PSNR values versus iteration and wall time.

However, it is known that if the Jacobian of such estimators is
well-defined, it must be symmetric [39], [51], [52]. However,
RED/PnP frequently achieves state-of-the-art performance with
denoisers that do not satisfy this condition, such as Convolu-
tional Neural Network (CNN) based denoisers. So RED/PnP
cannot be explained as an optimization-based solver. Although
optimization-free explanations for RED and PnP exist, under-
standing their behaviors and characterizing their solutions re-
mains challenging. Moreover, most commonly used denoisers
do not satisfy (4). Another approach [43], [53], [54] is to train
a denoiser by incorporating a regularization term in training to
constrain its Lipschitz constant. However, this approach remains
an open challenge, as there is currently no practical way to
strictly guarantee that the trained denoiser is nonexpansive [55],
[56].

B. Inverse Problems With Gradient-Driven Denoisers
To address the aforementioned challenges and bridge the gap
between theoretical assumptions and practical performance in

The neural network architecture used for the energy function fg(x), based on [57]. The convolutional kernel size is 3 x 3 with stride 1.

PnP/RED, recent works [57], [58], [59], [60] have proposed
constructing gradient-driven denoisers. In this framework, the
denoiser is given by the difference between the noisy image x
and the gradient of a scalar-valued function fg(x), i.e.,

Do(x) = x — Vi fo(x). (5)

In practice, fg(x) is constructed with a scalar-output CNN
and trained so that x — Vx fo(x) serves as a denoiser. Here
6 denotes the trained network parameters. In medical imaging
reconstruction, interpretability, reliability, and provable numer-
ical algorithms are crucial, as the reconstructed images are
commonly used for disease diagnosis. Therefore, it is essential
to understand how the underlying algorithms function. The use
of gradient-driven denoisers for CS MRI reconstruction enables
the integration of deep learning techniques while maintaining
interpretability and reliability. Specifically, we aim to solve the
following optimization problem to recover the latent image:

|Ax —y|3+Afo(x),  (6)

DN | =

x" = argmin F(x) =
xeC

|

h(x)

where C is a closed convex set of C™V. For notational simplicity,
we ignore 0 in fg(x) and simply write f(x) hereafter. Similarly,
we use V f(x) to denote Vx f(x). Once the trade-off parameter
A is chosen, we fix it throughout the minimization. Therefore,
we absorb A into f hereafter and write f(x) instead of A f(x).

Although both f(x) and h(x) are differentiable, f(x) may
be nonconvex. Therefore, the underlying numerical algorithms
for solving (6) should be theoretically sound and applicable to
nonconvex settings. Cohen et al. [57] employed the projected
gradient method with a line search strategy to solve (6) and es-
tablished its convergence under the assumption that the gradient
of f(x) is Lipschitz continuous. Hurault et al. [58] applied the
proximal gradient method, where at the kth iteration, Xz is
updated as follows:

@)

X1 = Proxg, o, (Xk — arV f(xk)),

where oy, represents the stepsize and ¢ (x) denotes the charac-
teristic function such that

0,
+00,

ifxeC,
otherwise.

®)

Lc (X) =
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Similar to [57], the convergence is established under the same
assumption and o is determined using a line search strategy.
Note that both methods were tested on image deblurring and
super-resolution tasks in the real domain. A direct extension
of these methods to CS MRI reconstruction requires hundreds
of iterations to converge, limiting their practical applicability.
Therefore, improving the convergence speed is essential for CS
MRI reconstruction with gradient-driven denoisers.

Alternatively, Tan et al. [61] adopted the method proposed
in [62] to solve the following problem, instead of (6), by ex-
ploiting second-order information:

i )+ 4 (/D) = D60 - xI3). @)

f)

where D(x) = x — V f(x) denotes the denoiser. Their algo-
rithmic routine, dubbed PnP-LBFGS, treats D(x) as a proximal
mapping of A f (x). However, PnP-LBFGS requires the Lipschitz
constant of V f to be upper bounded by one, which is challenging
to guarantee in practice. Furthermore, Tan et al. only considered
image deblurring and super-resolution problems for real-valued
images, and it remains unclear how convex constraints could be
incorporated into their framework.

C. Contributions and Roadmap

Motivated by recent work demonstrating the potential advan-
tages of using second-order information for acceleration in many
applications [9], [40], [63], [64], [65], [66], [67], [68], [69],
[70], we propose a complex quasi-Newton proximal method
(CQNPM) that incorporates additional Hessian information at
each iteration to accelerate the convergence of solving (7).
In contrast to [9], we estimate the Hessian matrix of f(x)
rather than that of h(x). Although f(x) is differentiable, it is
nonconvex and x is complex, which introduces new challenges
in estimating a Hermitian positive definite Hessian matrix. To
address these challenges, we develop an approach that enforces
the estimated Hessian matrix to be Hermitian positive definite.

The main contributions of this paper are summarized as
follows:

e We extend the gradient-driven denoisers to complex-
valued CS MRI reconstruction. Moreover, we propose a
complex quasi-Newton proximal approach to efficiently
solve the associated minimization problem.

® We propose a modified Hessian estimation method that
enforces a Hermitian positive definite Hessian matrix.
Moreover, we provide a rigorous convergence analysis of
the proposed approach under the nonconvex settings.

® We extensively validate the performance of our method us-
ing both Cartesian and non-Cartesian sampling trajectories
on brain and knee images.

The rest of this paper is organized as follows. Section II
introduces our proposed method and explains how to estimate a
Hermitian positive definite Hessian matrix. In addition, Section
III provides a rigorous convergence analysis. Finally, Section IV
presents numerical experiments that study the performance of
our method and validate the theoretical analysis. Supplementary
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Algorithm 1: Complex Quasi-Newton Proximal Method
(CQNPM).

Initialization: x; and stepsize ay, > 0

Iteration:

l:fork=1,2,... do

2:  Set Hj, and By, using Algorithm 2

3: Xp4+1 < prOXaB:h+LC (Xk — O Hka(Xk))

4: end for

material is also provided, including the validation of Assumption
1, a comparison with PnP-LBFGS, and additional experimental
results.

II. PROPOSED METHOD

This section first introduces our approach for addressing (6).
We then describe how to estimate a Hermitian positive definite
Hessian matrix. Finally, we present an efficient strategy for
solving the associated WPM.

Given an estimated Hessian matrix By, at the kth iteration,
we update the next iterate by solving a WPM, i.e.,

Xpt1 = proxS:hﬂC (xr — ar HiV f(xx)), (10)
where H;, = B;l. Unlike the usual PGM in (2) that uses the
proximal mapping of the regularizer, the WPM in (10) uses
the proximal mapping of the data term h plus the characteristic
function in (8). Algorithm 1 summarizes the proposed method.

To compute a Hermitian positive definite approximation to the
Hessian matrix, we introduce a modified memory-efficient self-
scaling Hermitian rank-1 method (MMESHR1) that extends the
method proposed in [37], [71], [72], [73]. Algorithm 2 presents
the detailed steps of MMESHR1. The operator R(-) in Algorithm
2 denotes an operation that extracts the real part. Without the
operator R(-), Algorithm 2 reduces to the Hessian approximation
method proposed in [9]. For the problems in [9], we estimated the
Hessian matrix for h(x) so that (my,, s is guaranteed to be real
for all iterations. However, (my,s;) becomes complex in our
problem setting, leading to a non-Hermitian Hessian approxima-
tion. Let By, denote the approximate Hessian matrix obtained us-
ing the approach proposed in [9]. To obtain a Hermitian positive
definite Hessian approximation, we seek a By, that is the nearest
Hermitian approximation to By, in terms of Frobenius norm
minimization, resultingin By, = (B, + BI,;I) /2.In practice, this
step is equivalent to applying %(-) at steps 2, 3, and 4 in Algo-
rithm 2. Lemma 4 shows that the approximate Hessian matrices
generated by Algorithm 2 are always Hermitian positive definite,
even if f is nonconvex.

Computing the WPM in (10) is equivalent to solving the
following minimization problem:

al"gI)};lei(I:le()_() = % (H)‘( — wkH]QBk + ak”Ai — sz) ,
(11
where wy, = x; — o, HipV f(x). Since the cost function in
(11) is differentiable and strongly convex, we apply the accel-
erated projection method with fixed momentum to solve it [74],
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Algorithm 2: Modified Memory Efficient Self-Scaling Her-
mitian Rank-1 Method.
Initialization: x;, 1, X, Vf(x_1), Vf(xx),d = 1078,
0, € (0, 1), and 65 € (1, OO)
1: Set sp, < x, — x5_1 and
my, < (Vf(xk) = V f(xp-1))
2: Compute 3 such that

ming{ﬁ S [0, 1]‘V;f = fBs, + (1 — ﬁ)mk}

satisfiesf; < %(<<ss:7’s‘;’;‘>)and%gs’ck’:;’”ﬁ» < 0y
((sk, V)

_ \/( (Sk,Sk) )2 ~ (sk,SK)
R((sk,VE)) (VE,VE)
Dk R((Sk — Tk VE, Vi)

tif pr < 6f|sk — TV ||| V| then
u, <0
else
Ui < S — TkVk
:end if
: p? — T,fpk + Tkul,fuk
:Return: H;, < 7.1y +
e
i

(13)

(Sk,Sk)

: Compute 73, <

—_

ukug

Pk

— SO0V ®IOUL A W

—_

and

Bk<—Tl;11N—

[75]. To avoid using a line search or computing the exact Lip-
schitz constant, which would increase the computational cost,
we instead estimate an upper bound. The Hessian matrix of the
cost function in (11) is By + azATA. Clearly, we have the
following relations

fimin(Br + ATA)

" 2 Mmin(BkJ) + Hmin (AHA)’
Mmax(Bk +A A) <

Mmax(Bk) + MmaX(AHA)? (12)
where fimin(-) and fimax(-) denote the smallest and largest
eigenvalues, respectively. Let L o denote the largest eigenvalue
of A% A In CS MRI, the kspace data is under-sampled so that the
smallest eigenvalue of A™ A is zero. Using the relations in (12)
and By = 7, 'In — (uiull)/(pP) (cf. Algorithm 2), the largest
and smallest eigenvalues of By, + o, AT A are upper and lower
bounded by Ly =7, ' +axLa and oy = 7, ' — ullu,/pB,
respectively, where Lemma 4 shows that o5, > 0. Algorithm 3
describes the accelerated projection method with fixed momen-
tum for solving (11).

III. CONVERGENCE ANALYSIS

This section provides the convergence analysis of Algorithm 1
for solving (6). Before presenting the convergence results, we
first introduce two assumptions and then provide four lemmas
that simplify presenting the convergence proof.

Assumption 1 (L-Smooth regularizer): We assume the gra-
dient of f(x) is L-Lipschitz continuous, meaning that for all
X1, Xo € CN, there exists a positive constant L such that the
following inequality holds:

[Vf(x1) = Vf(x2)|| < Llx1 — xaf|. (14)

Algorithm 3: Accelerated Projection Method with Fixed
Momentum for Computing the WPM.

Initialization: X, = xy, z; = X}, tolerance € = 1076,
stepsize L% and K = I;—: where Ly, (respectively, o)
denotes the upper (respectively, lower) bound of the
largest (respectively, smallest) eignenvalue of
By + ax APA

Iteration:

l:fori=1,2,... do
20 Ry prox}c (z; — L%VGk(zi))

3: if”iprl 7)7(1'“ S ¢ then

4: break

5: else

6:  Zip1 ¢ Xip1 F %(iﬂ-l - X;)
7: end if

8: end for

Assumption 2 (Constrained proximal Polyak-Lojasiewicz in-
equality [73], [76]): Define

Sh(i7xagaw7a) = §R{<g7>_( - X)} + i”i - X”%V

Th(%) — h(x), (1

and

2
Dg(x7ng7 Oé) é - minSh()_c,x, gaw7 a>7

« xeC

(16)

where W € CV*N W = 0 is a Hermitian positive definite
matrix, h was defined in (6) and « is a positive constant. If there
exists a positive constant ~ such that the following inequality
holds:

DZ(X,Vf(X),IN,a) > 2V(F(X) - F*)v vx eC, (17)

then we say F'(x) satisfies the constrained proximal Polyak-
Lojasiewicz inequality. F™* denotes the optimal value of (6).

Assumption 1 is a moderate assumption and is commonly
used in convergence analysis for differentiable functions,
see [57], [58]. We analysed the validity of Assumption 1 for
the used network architecture (see Fig. 3), along with empirical
validation in the supplementary material. Assumption 2 covers
certain nonconvex properties of F'(x) and is commonly used
in nonconvex analysis [76]. Next we introduce Lemmas 1 to 4
which are useful for the following convergence proofs.

Lemma 1 (Majorizer of f): Let f: CN — (—00, 00| be an
L-smooth function (L > 0). Then forany x;, x, € CV, wehave

f(x2) < f(x1) + R{Vf(x1),x2 —x1)} + §||X1 — 23
(18)
Lemma 2: For any fixed W &€ CN*N W = 0and a > 0,
we have the following inequality

D (x, V(x). W.a) > |61, (x)[[3y. VxeC,

L(x —xT) with

X" 2 argmin Sy (%, x, V/(x), W, a). (19)
xXe
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iter. = 50 GD
7

Fig. 5.
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First row: the reconstructed brain images of each method at 50 and 100th iterations with spiral acquisition. The PSNR values are labeled at the left bottom

corner of each image. Second row: the associated error maps (x5) of the reconstructed images.

102 e 6D [ .
A A
w i, PG (4}
+ N - =.= APG f.\
LN, LN N
Ep . \_\ ...... me CQNPM RO
T L e N LR =
I 10 i AR i i,
= 1 '\,\ 1 N,
o \ ~s \ SVl
hy N T e T o R LT
1074 & | | | = | |
30 60 90 120 0 15 30 45
Iteration Wall Time (Seconds)
(a) (b)
4 To--d--=d-=-24 [ _I--=-- [pp——
P R L P R
P R L N A P T
’ PR - 5 L _
_ 1 L ] RNt
% 35 * 3 ! 2T
= 1 ’ 1 o
o~ L P L A
Z L U TL L o, —
N 4y
I - i -
L’ 3 l.'.l
W K
20 f- | | | = | | =
0 30 60 90 120 0 15 30 45
Iteration Wall Time (Seconds)
(©) (d)
Fig. 6. Comparison of different methods with radial acquisition on the knee

image for e = 8 x 107°. (a), (b): cost values versus iteration and wall time; (c),
(d): PSNR values versus iteration and wall time.

Lemma 3: For any fixed W € C NxN W » 0, a differen-
tiable function f and a convex function h, DS (x, V f(x), W, @)
satisfies the following inequality for Vag > ao > 0:

DS (x,Vf(x),W,as) > DS (x, VI(x), W,a1).  (20)
Lemma 4 (Bounded Hessian): The approximate Hessian ma-
trices generated by Algorithm 2 satisfy the following inequality

ﬂIjBk jﬁIa

where 0 < 1 <7 < o0.

The proof of Lemma 1 is similar to the one in the real-valued
case [74]. The only difference is the use of R{(V f(x1),x2 —
x1) } instead of (V f(x1), X2 — x1) to account for the complex
domain. Therefore, we omit the proof here for brevity. Appen-
dices A to C give the proofs of Lemmas 2 to 4. With these in

place, we are able to derive our main convergence results in
Theorem 1.
Theorem 1 (Convergence results): Applying Algorithm 1 to
solve (6), we can establish the following convergence results:
® Let ap < %, and define Ax £ ming<x ||Xp+1 — Xk |3
Under Assumption 1, by running Algorithm 1 K iterations
to solve (6), we have

2 (F(x1) — F*)

Ag <
K > LK )

where F* denotes the minimum of (6) and x; is the initial
iterate.

* Let a; < min{Z, %} Under Assumptions 1 and 2, we
have the following convergence rate bound for the cost
value

F(Xk+1)—F*§ (1—'

where o, = ming{ay}.

e Let ap < % Choose k € {1,..., K — 1} uniformly at
random. Then under Assumptions 1 and 2, we have the
following convergence rate bound in expectation

E [F(X}C) _F*] < n(F(Xl) - F )
VOmin K

Appendix D presents the proof. The first part of Theorem 1
shows that Ax — 0 as K — oo. Combining with the summa-
tion in (26) implies convergence to a fixed point. The second part
establishes that the cost function sequence converges linearly
to the minimal cost value. The third part demonstrates that
if one selects a random iterate, then the cost value converges
sublinearly in expectation. In this paper, we simply choose the
last iterate as the output. However, Section IV-A discusses the
third term experimentally to validate our analysis. Note that
Assumption 2 is a special case of the Kurdyka-Lojasiewicz
(KL) inequality with exponent 1/2 [77]. While our analysis
establishes convergence rate under the PL inequality, it could
potentially be extended to the more general KL inequality,
see [78]. Moreover, if the Dennis-Moré condition [79] holds,
one can expect a superlinear convergence rate. However, a full
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study of this direction is beyond the scope of the present paper
and is left for future work.

IV. NUMERICAL EXPERIMENTS

This section investigates the performance of the proposed
method for CS MRI reconstruction using spiral, radial, and
Cartesian k-space sampling patterns. We first describe the ex-
perimental and algorithmic settings. Then, we present the re-
construction results and experimentally demonstrate the con-
vergence of the proposed method, validating our theoretical
analysis.

Experimental Settings: We evaluated the performance of the
proposed method using brain and knee MRI datasets. For the
brain images, we used the dataset from [17], which consists
of 360 images for training and 164 images for testing. For
knee images, we employed the NYU fastMRI [80] multi-coil
knee dataset. The ESPIRIT algorithm [81] was first applied
to reconstruct complex-valued images from multi-coil k-space
data. All brain and knee images were cropped and resized to a
resolution of 256 x 256 and normalized such that their maxi-
mum magnitude is one. We employed the network architecture
proposed in [57] to construct f(x). Unlike [57], we included bias
terms in the network, as this provided improved performance
in our experiments. For completeness, Fig. 3 presents the used
network architecture. The number of layers is set to six, which is
identical to that in [57]. Noisy images were generated by adding
independent and identically distributed (i.i.d.) Gaussian noise
with a variance of 1/255. The network was trained to enforce
x — Vf(x) to be a denoiser and V f(x) was computed with
PyTorch’s autograd function, i.e., torch.autograd.grad.
The training process used the mean squared error as the loss
function, with a batch size of 64. Optimization was performed
using the ADAM algorithm [82] with a learning rate 103
over a total of 18,000 iterations. Additionally, we halved the
learning rate at each 4,000 iterations. Although we trained
distinct denoisers for brain and knee images, the same denoiser
was employed across different sampling acquisitions. Note that
training denoisers on larger datasets may lead to improved
denoisers and then better reconstruction. However, the main
focus of this paper is to investigate numerical efficiency of
gradient-driven denoisers based CS MRI reconstruction with
convergence guarantees. Thus, we leave the exploration of this
direction to future work.

To evaluate reconstruction performance, we selected 6 brain
and 6 knee images from the test datasets as the ground-truth.
Fig. 1 presents the magnitudes of two of these twelve complex-
valued ground truth images. Due to space limitations, the re-
maining ten brain and knee ground-truth images are presented
in the supplementary material. For the spiral trajectory, we used
6 interleaves, 1688 readout points, and 32 coils, whereas the
radial trajectory involved 55 spokes with golden-angle rotation,
1024 readout points, and 32 coils. Fig. 2 illustrates the sampling
trajectories and mask used in our experiments. To generate the
k-space data, we first applied the forward model with the cor-
responding trajectories and sensitivity maps to the ground-truth
images. We then added complex i.i.d. Gaussian noise with zero
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mean and a variance of 104, resulting in noisy measurements
with an input SNR of approximately 21dB. In the reconstruction
step, we used coil compression [83] to reduce the 32 coils to
12 virtual coils in order to reduce computational complexity.
Sections IV-A to IV-C specifically analyze one brain and one
knee test image acquired using the spiral, radial, and Cartesian
sampling trajectories. Additional results on other test images are
provided in the supplementary material. All experiments were
implemented using PyTorch and executed on an NVIDIA A100
GPU.

Algorithmic Settings: We primarily compared our method
with the projected gradient descent method (dubbed GD) [57]
and the proximal gradient method (dubbed PG) [58], as both
methods also come with convergence guarantees, similar to ours.
In addition, we compared with the accelerated proximal gradient
method (dubbed APG) [84] that also provides convergence
guarantees for solving nonconvex problems such as (6). Since
we normalized the maximum magnitude of all images to one, we
set C = {x | ||x]|~c < 1} and all methods used this constraint.
Although such a constraint is not needed in practical CS MRI
reconstruction, we considered it here primarily to test the ap-
plicability of CQNPM to constrained problems. Following [85],
which was also adopted in PnP-LBFGS, we attempted to train a
network to meet the requirements of PnP-LBFGS for CS MRI re-
construction. However, we observed that PnP-LBFGS diverged.
Therefore, we compared our method against PnP-LBFGS on the
image deblurring problem using the same experimental setup
in their open-source code. The results, provided in the supple-
mentary material, show that our method converged faster than
PnP-LBFGS in terms of PSNR with respect to both iterations
and wall time.

For plots involving F™*, we ran APG for 500 iterations and
set F'* = F(x500). The stepsize «y in Algorithm 1 is set to
be one which we found it works well for our experimental
settings. Alternatively, one can choose «j with a backtrack-
ing line search strategy to satisfy (22). Algorithm 2 used 6§ =
1078,6; = 2 x 107% 65 = 200. The parameter & is commonly
used in quasi-Newton methods to guard numerical stability when
v and s are closely related. Parameters ¢; and 6, control
the Hermitian positive definiteness of the estimated Hessian
matrices but still allow greater flexibility of estimation. In view
of the proof in Lemma 4, we have ﬁIN <H; =< (%)IN. So
0, and 65 should be positive, with 6, chosen small and 65 chosen
large. In Algorithm 3, we always used the previous iterate as the
new initial value. Therefore, we found that setting the maximum
number of iterations to 15 and ¢ = 10~% worked well in practice.

A. Spiral Acquisition Reconstruction

Fig. 4 presents the cost and PSNR values of each method
with respect to the number of iterations and wall time for
the reconstruction with spiral acquisition on the brain image.
Fig.s 4(a) and (c) show that our method converges faster than
the others, reaching a lower cost value and higher PSNR at the
same number of iterations. Moreover, we observed that APG is
faster than PG, and PG is faster than GD in terms of the number
of iterations, which aligns with our expectations. From Figs. 4(b)
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Fig. 7.

First row: the reconstructed knee images of each method at 50 and 100th iterations with radial acquisition. The PSNR values are labeled at the left bottom

corner of each image. Second row: the associated error maps (x5) of the reconstructed images.

and (d), we saw that our method is also the fastest algorithm in
terms of wall time. Moreover, we observed that GD becomes
faster than PG in terms of wall time because PG needs to solve
a proximal mapping requiring to execute Ax multiple times.
However, APG is still faster than GD even it also requires to
solve a proximal mapping.

Fig. 5 shows the reconstructed images at the 50th and 100th
iterations. Our method recovered significantly clearer images
than other methods at the same number of iterations. Moreover,
the corresponding error maps clearly show that our method
yielded small reconstruction errors. The supplementary material
presents the reconstruction results of the knee image using the
same spiral acquisition, as well as results for other additional test
images, where similar trends were observed across all methods.

B. Radial Acquisition Reconstruction

Fig. 6 summarizes the cost and PSNR values of each approach
with respect to the number of iterations and wall time for the
reconstruction with radial acquisition on the knee image. It is
apparent that the performance trends here are consistent with
those observed in the reconstruction with spiral acquisition on
the brain image. Fig. 7 presents the reconstructed images and
error maps of each method at the 50 and 100th iterations. It is
evident that our method outperformed other methods. The sup-
plementary material summarizes the results of other additional
test images, where similar trends were observed.

C. Cartesian Acquisition Reconstruction

Fig. 8 shows the cost and PSNR values of each method
with respect to the number of iterations and wall time for the
reconstruction with Cartesian acquisition on the brain image.
It is evident that similar trends were identified. Moreover, we
observed that the difference between GD and PG in terms of
wall time was smaller than in the cases of spiral and radial
acquisitions. This is because computing Ax is less expensive
in this case than in the non-Cartesian acquisitions, resulting
in a more efficient evaluation of the proximal mapping. Fig. 9
shows the reconstructed images and error maps at the 50 and
100th iterations. There is no doubt that our method yielded a
clearer image than the others. The supplementary material shows

I
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Fig. 8. Comparison of different methods with Cartesian acquisition on the
brain image for € = 9 x 10~%. (a), (b): cost values versus iteration and wall
time; (c), (d): PSNR values versus iteration and wall time.

additional experimental results of five other brain images, where
similar trends were obtained.

D. Convergence Validation

We studied the convergence properties of our method ex-
perimentally. Let F(xy) = ||xx — Xx+1]|3. Fig. 10 shows the
cost values and the normalized difference E(xy)/FE(x;) of
our method with spiral acquisition on all brain test images. As
expected, the cost values converged to a constant for all test
images, and E(xj)/F(x1) — 0, consistent with our theoreti-
cal analysis. Fig. 11 presents the expected cost values versus
iteration, estimated using the Monte Carlo method with 1000
samples. We observed that the expected cost values decreased
similarly to Fig. 10(a), though slightly more slowly, aligning
well with our theoretical results.
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Fig. 9.

First row: the reconstructed brain images of each method at 50 and 100th iterations with Cartesian acquisition. The PSNR values are labeled at the left

bottom corner of each image. Second row: the associated error maps (x5) of the reconstructed images.
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Fig. 10.  Averaged cost values (a) and E(xy)/E(x1) (b) versus iteration for

the proposed method. The shaded region of each curve represents the range of
the cost values and F (X ) across six brain test images with spiral acquisition.
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Fig. 11. Averaged expected cost values versus iteration for the proposed

method. The shaded region of each curve represents the range of expected cost
values across six brain test images with spiral acquisition. The cost values were
estimated using the Monte Carlo method with 1000 samples.

E. Comparison With the Preconditioned PnP Approach

We studied the difference between using gradient-driven
denoisers and classical CNN-based denoisers within the PnP
framework. Specifically, we adopted the preconditioned PnP
method (P?nP) [37], as it generally outperforms the classical
PnP-ISTA method. Fig. 12 reports the PSNR values versus
iterations for CQNPM and P?nP under spiral (respectively,

4 === R + S pp—— g ———
- _-
’ e -
’ -
s PRt I VR
g ! RN s (b |
~ 1 ’\" ! 4
28 i =11y
& 1/ - - = CQNPM 28 .
v i
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20 | | —20 |- | | -
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(@) (b)
Fig. 12.  Comparison of the preconditioned PnP ((P2PnP)) method. (a) PSNR

values versus iteration for spiral acquisition with the brain image; (b) PSNR
values versus iteration for radial acquisition with the knee image.

radial) acquisition for the brain (respectively, knee) image. We
observed that CQNPM converged faster than P?nP and consis-
tently achieved higher PSNR values, illustrating that the use
of gradient-driven denoisers does not sacrifice reconstruction
performance.

V. CONCLUSION AND FUTURE WORK

Compared to the PnP/RED framework with convolutional
neural network based denoisers, the gradient-driven denoisers
offer a much stronger theoretical foundation, as its required
assumption (i.e., Lipschitz continuity of f(x)) is easier to satisfy
in practice— an important advantage for medical imaging
applications. We applied the gradient-driven denoisers to CS
MRI reconstruction and thoroughly evaluated its performance
on spiral, radial, and Cartesian acquisitions. In addition, we
proposed a complex quasi-Newton proximal method (CQNPM)
to efficiently solve the associated minimization problem with
convergence guarantee under nonconvex settings. We exten-
sively compared our method with existing algorithms, and the
experimental results demonstrate both the efficiency of our
approach and the accuracy of the underlying theoretical analysis.
Although we consider h(x) = 3|[Ax — y/||3 in this paper, the
algorithm presented is applicable to any h that is convex and
smooth (Lipschitz gradient). Furthermore, our theoretical results
require only the convexity of h, so the approach also generalizes
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to non-smooth and convex h by modifying the weighted prox-
imal mapping at step 3 in Algorithm 1 appropriately. Code to
reproduce the results in the paper is available at https://github.
com/hongtao-argmin/ CQNPM-GDD-CS-MRI-Reco.

While the proposed CQNPM accelerates convergence in
gradient-driven denoisers based CS MRI reconstruction, several
limitations remain. In the following, we outline these limitations
and discuss possible directions for improvement:

® Accurate Hermitian positive definite Hessian Approxima-
tion: In this work, we employed Algorithm 2 to estimate a
Hermitian positive definite Hessian matrix, but we always
reinitialized the Hessian at each step. In the real-valued
setting, BFGS updating typically provides more accurate
Hessian approximations compared to the scheme in Al-
gorithm 2. Therefore, extending BFGS to our problem—
while ensuring that the Hessian matrix remains Hermitian
positive definite when f is nonconvex—could potentially
yield a faster algorithm.

® Assumptions for convergence: The convergence rate of our
method depends on the proximal PL inequality. However,
verifying this condition for complex, high-capacity neural
network—based denoisers remains challenging in practice.
Extending the analysis to the more general KL inequality,
or alternatively designing convex networks [86] that still
achieve comparable performance, would be promising di-
rections for future research.

e FExtension to 3D and dynamic MRI reconstruction: This
work focuses on 2D multi-coil CS MRI reconstruction.
Extending CQNPM to 3D or dynamic MRI reconstruc-
tion would be an interesting future direction. However,
training effective gradient-driven denoisers for such high-
dimensional problems remains a significant challenge that
must be addressed.

APPENDIX
A. Proof of Lemma 2

Since W > 0 and h(x) is convex, S,(X,x,g, W, «) is
strongly convex. Through the optimality condition of (19), we
have the following inequality

R { <g + éW(:’cJr

By using the convexity of h (.e.,
R{(Vh(x),x — X)}), we reach

—x) +Vh(x),x—x+>} >0,vx € C.

h(x) — h(x) >

1
R{(gx—x")} > —|x" —xlly + h(x") = h(x). @D
From (16) and (19), we have
Di(x,8,W,a) = —28,(x",x,8,W,q)
= IR{(gx—-x")} - &lIxt —xliy

,i(h(er) _
A
197

h(x))
— x|

w )Ry

v
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where the first ine?uahty and last equality come from (21) and
the definition of g w (%)

B. Proof of Lemma 3

Let vy > a9 > 0 and X5 = Z—j‘)‘q + ‘“a;lo‘zx with X1,X5 €
C. Since h(x) is convex, we get

h(xs) < %h(il) + s

- (65] (651 h(X)
and then
a(h(X2) —

By using a1 (X2 — x) = aa(X3
we have

h(x) < as(h(x1) — h(x)).

— x) and the above inequality,

2 2
_7Sh()_(1a X, 8, Wa Oél) < _7Sh()_<2a X, g, W7 a?)'
Qa1 Q2

Minimizing both sides of the above inequalities and using the
definition of DS (x, g, W, o), we get the desired result

Dg(x7 g, Wa al) < D%(Xv g, W7 052)'

C. Proof of Lemma 4

To prove the bound on By, we first establish the bound
on H; because Bj = H;l. Define ay = (sg,sk), br =
R{(sk,Vk)}, ¢k = (Vk, V). Then we have

by, b; by

HEr=1—4/1- —k <

ar agck ~ agck’

resulting in 7, < 2£. The last inequality follows from the
Cauchy—Schwarz mequallty, which leads to b2 < aycy. The

lower bound can be derived through

af
o, T
by
2¢
In summary, we have ? <7 < b’“ . Next, we derive an up-

per bound for ufluy. Using the deﬁnltlon of ug, we have the
following inequalities

H _ (SKk—TkVE,Sk—TkVk)
WU = Pk
< lse—mevels
= 5|\Vk|\z
_ % 27'kbk +T
1 /% /Llek
S o Ck b ¢, — 6bk

The first inequality comes from step 5 in A]gorithm 2. The
second inequality derived from the fact that ;& < 74 < b’f
resulting in — % + 77 < 0. The last 1nequa11ty is the result
of b% < apcCk.

With these, we have %IN <H; =< (b’“ + 52 )In. From

(13), we know > 1 and Ck < @ for all k. Therefore, Hy, is
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always bounded by ﬁIN < H; < (%O;S)IN. Since Hy, is both
lower and upper bounded, we know that there exist constants
7n>n>0suchthatnI < B, =71

D. Proof of Theorem 1

Using Lemma 1, we have

J(xpg1) < f(xe) + RV (XR), Xpy1 — X))}

L
+ §||Xk+1 —xill3
< f(xk) + h(xk) — h(Xpy1)

+ mei?Sh(v,xk, V(%K) B, ag)

—xx||3 — [xk+1 — Xk B,

" LH 1

—|Ix —
g 1Tkt 200k
< F(xg) + (Hleigsh(ka,Vf(Xk),Bk,Oék))

L n
# (5 = o= ) o =l ),

The second inequality comes from the definition of S, and the

update rule for x 1. The third inequality is the result of Lemma
4. Letting oy, < % and moving h(xy41) to the left side, we get

F(xpq1) < F(xx) + (r‘{leigsh(v,Xk,Vf(xk),Bk,ak)>

L n
+ 3 %a, 1 Xkt1 — %13

< F(xz) — ?’“Dg(xk, Vf(xk), B, ar). (22)
Rearranging (22), we have
%Di(xk, Vf(xp), Br,an) < F(xp) — F(xpi1).  (23)
Invoking Lemmas 2 and 4, we get
Df, (xk, V f (1), Biy k) > %kaﬂ —xill3 @24
Substituting (24) into (23), we have
L xiir = xi2 < Flxi) — Flxin). (25)

QOék
Summing up the above inequality from & = 1 to K, we reach

K

n
D = lxke = xill3 < F(xa) — F(xk
1 20ék

) < F(xy1)— F".
(26)

Denote by amax = maxg{ay}, amin = ming{ag}, and Ax =
ming< g || Xg+1 — Xk 3. Since ay < 2L we have oy = %
Invoking the definition of Ag, the value of a,y, and using
(26), we obtain
2(F(x1)— F¥)

LK '

Clearly, A i approaches zero as K — oo.

Ar <
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Now, we show the convergence of cost values with additional
Assumption 2. Invoking Lemmas 3 and 4, we have the following
inequalities

DY (x1, V f(xx), By, )

v

1
:chl <Xk7 vf(xk)y]:a 0;7]6)

al’ll'}x >
n

27

— 3

%

%D}CL <X1c7vf(xk)

Combining the above inequality with (23), we obtain

%D}CL (kavf(xk)vlv af;ax> < F(Xk) F(xk+1)' (28)

By using (17), we get

V Qimin

= (F(xx) —

F*) < F(xg) = F* = (F(xp41) = F7).

Rearranging the above inequality, we reach

V Olmin %
F(xpq1) — F* < (1 - 77) (F(xg)— F). (29)
By letting aj, < min{Z, 7}, we have (1
applying (29) recursively, we obtain

- ”O‘“““) > (. Then

F(xpp1) — F" < <1Im77mm>k (F(x1) = F7).

Now we show another formulation of convergence by uniformly
sampling the output. Summing up (23) from k£ = 1 to K, we get

K
kZ DS (xp, VI (xk), B, ) < - F(xx)
=1
S F(Xl) — F*
(30)
By uniformly sampling one of the previous iterates at K — 1th
iteration as the output x;/, we have

E |:D£L (Xk/,Vf(Xk/),I, O;j):l

DC(Xk7 vf(xk)a Ia %)

* Dy,
:Z iR

_ iwﬁ;’,(xmwk),m,ak)
— K )

€29
k=1

where the inequality comes from (27). Summing up (23) from
k =1 to K, we obtain

Z%Dg X]g,Vf(Xk),Bk,Oék;) < F(Xl)_F(XK-‘rl)

S F(Xl) F*.
Together with (31), we get

[6%%%

E[Dhm Vi) 12| < )

21 (F(x1) — F~
OZmin[( .
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By invoking (17), we get the desired result

n(FGa) ~ F)

E[F(x) — F* <
[F'(xk) ] < o K

Clearly, F'(x}/) converges to F™* in expectation as K — oo.
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