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Abstract

Purpose: The aim of this study was to develop a reconstruction method that

more fully models the signals and reconstructs gradient echo (GRE) images

without sacrificing the signal to noise ratio and spatial resolution, compared to

conventional gridding and model-based image reconstruction method.

Methods: By modeling the trajectories for every spoke and simplifying the sce-

nario to only echo-in and echo-out mixture, the approach explicitly models

the overlapping echoes. After modeling the overlapping echoes with two sys-

tem matrices, we use the conjugate gradient algorithm (CG-SENSE) with the

nonuniform FFT (NUFFT) to optimize the image reconstruction cost function.

Results: The proposedmethod is demonstrated in phantoms and in-vivo volun-

teer experiments for three-dimensional, high-resolution T2*-weighted imaging

and functional MRI tasks. Compared to the gridding method, the high reso-

lution protocol exhibits improved spatial resolution and reduced signal loss as

a result of less intra-voxel dephasing. The fMRI task shows that the proposed

model-based method produced images with reduced artifacts and blurring as

well as more stable and prominent time courses.

Conclusion:The proposedmodel-based reconstruction results shows improved

spatial resolution and reduced artifacts. The fMRI task shows improved

time series and activation map due to the reduced overlapping echoes and

under-sampling artifacts.
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1 INTRODUCTION

Functional MRI (fMRI) has evolved into the dominant

tool for noninvasive imaging of human brain activity.

However, the loud acoustic noise in MRI still remains a

problem. For example, acoustic noise can cause discom-

fort and anxiety in patients,1 especially for certain groups

of individuals like children or patients with dementia.

Furthermore, acoustic noise is an additional confounding

sensory stimulus,2-4 and can impact the blood-oxygen

level dependent (BOLD) response as a function of both

its loudness5 and duration.6 There are several ways7 that

acoustic noise can impact fMRI tasks and degrade mea-

sured task signals. First, acoustic noise from the scanner

stimulates the auditory pathway (including the auditory

cortex), reducing sensitivity to experimental stimuli.8 Sec-

ond, successfully processing degraded stimuli may require

additional executive processes9 (such as verbal working
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memory or performance monitoring). Finally, scanner

noise may cause participant discomfort and increase

attentional demands, even for nonauditory tasks.

Although there are many sources of acoustic noise

such as gradient coils, radiofrequency (RF) pulses, cryo-

genic pumps, and air circulating systems, the main acous-

tic noise comes from Lorentz forces caused by rapidly

changing currents in themagnetic field gradient coils used

primarily for spatial localization.10 Acoustic noise levels

can be reduced by hardware modifications, such as gradi-

ent designs and shielding,11 quiet scanningmode provided

by the vendors,12 and pulse sequence design.13

Looping-star14 is a silent MRI pulse sequence that

has been used for quantitative susceptibility mapping,

T2*-weighted imaging and fMRI.15 It uses multiple RF

pulses and slowly varying gradients so the acoustic noise

is greatly reduced compared to the standard EPI method.

This property makes it well suited for cases where low

acoustic noise is required, such as pediatric MRI16 and

auditory fMRI tasks.17 On the other hand, using mul-

tiple RF pulses with repeating slowly varying gradients

can complicate k-space trajectories and make the recon-

struction problem harder. The problem that leads to

the most artifact is called the overlapping-echo effect,

caused by signals from multiple excitation pulses being

simultaneously present while looping through k-space

locations.

Multiple methods have been proposed to reduce the

overlapping echo artifacts. The first method14 assumes

that the echo-out and echo-in signal dominates the

acquired signal at the beginning and the end of the sam-

pling period, thus separating the overlapping echoes at the

cost of lower signal-to-noise-ratio (SNR) and spatial res-

olution. The second method, RF-phase cycling, requires

an additional scan with � RF phase change and then

separates the overlapping echoes by doing a linear combi-

nation of signals from these two scans. This method can

increase the SNR by a
√
2 at the cost of doubled scan time.

The third method,18 coherence-resolved looping-star, uses

half as many RF pulses with increased time intervals to

separate the echoes. It can be viewed as the same as

the standard windowing method, but starting with fewer

spokes and a higher resolution input. This method has

half as many spokes as the original looping star, so it

needs a longer scan time for structural MRI and has worse

temporal resolution in fMRI tasks when matching the

overall undersampling factor. None of the previous meth-

ods can separate the overlapping echoes without sacrific-

ing scan time, spatial resolution, or SNR. In this paper,

we propose a model-based reconstruction approach19

that can theoretically resolve the overlapping echoes

and maintain the resolution without increasing the scan

time, building on our preliminary work in Reference 20.

Along with the model-based reconstruction method, we

used three-dimensional (3D) golden-angle-based k-space

trajectories21,22 for more uniform k-space coverage and

reduced under-sampling artifacts.

There are a few reasons to expect that model-based

reconstruction can perform better in looping-star MRI.

First, the model-based reconstruction method uses more

high-frequency data that is filtered out in the gridding

reconstruction. Therefore, the image spatial resolution is

improved, which can reduce signal loss in T2*-weighted

imaging. Secondly, bymodeling both echo-in and echo-out

signals, the overlapping echoes are mostly resolved,

whereas the griddingmethodneglects either the echo-in or

echo-out signal. Thirdly, model-based reconstruction nat-

urally uses the sensitivity maps for SENSE parallel imag-

ing reconstruction,23 reducing undersampling artifacts.

Lastly, applying an appropriate regularizer can reduce

image noise and improve image quality.

2 METHODS

2.1 Looping-star physical parameters

The looping-star sequence was developed to acquire

T∗
2-weighted gradient-echo imaging data while maintain-

ing its quiet performance. We used TOPPE24 to separately

generate excitation and acquisition modules and then

combined those modules to form the pulse sequence. Our

implementation can be easily extended to other variants of

looping star by editing or adding modules. Figure 1 illus-

trates the pulse sequence diagram for looping-star fMRI

and the corresponding k-space trajectory. During the first

half of the sequence, the radial spokes are excited using a

burst of short hard RF pulses25 with a slowly changing gra-

dient to control the direction of the trajectory. During this

part, one can acquire a free-induction-decay (FID) image

at echo time (TE) ≈ 0, though we did not use the FID

data for the current work. The second half of the sequence

applies the same gradient again but without RF pulses to

create the gradient echo (GRE) signal used to produce a

GRE image at TE = 27.67 ms, which is expected to give

sufficient functional BOLD contrast at 3T. Each RF sub-

pulse produces a low-frequency line thorough the center

of k-space; the collection encodes a disk in 3D k-space,

and this gradient encoding can be repeated additional

times for multiple GRE echoes. We generate the full 3D

trajectory by rotating the two-dimensional (2D) k-space

trajectories.
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(A)

(B) (C) (D)

F IGURE 1 (A) A pulse sequence for a two-dimensional (2D) plane of the three-dimensional (3D) acquisition with one

excitation/free-induction-decay (FID) module and one gradient echo (GRE)/data acquisition module (ramp-up and ramp-down gradient are

required by TOPPE), themax slew rate for all modules (including ramps) is 5 mT/m/ms; (B) Illustration of overlapping echoes in GREmodule:

the echo-out signal from purple radiofrequency (RF) pulse overlaps the echo-in signal from orange RF pulse in time; (C) 2D GRE k-space

trajectory: an odd number of spokes generates more evenly distributed spokes; (D) 3D k-space trajectory using 3D generalized golden-angle.

2.2 Acquisition method

We designed several protocols for different needs includ-

ing a hi-res protocol for structural imaging, and mid-res

and low-res protocols for fMRI studies.

For structural imaging, we use 12 RF pulses with

2.24 ms readout per RF pulse to achieve about 1.25 mm

isotropic resolution,whichwe call the high-resolution pro-

tocol. Two GRE echoes are collected to acquire images

with TE = 27.67ms and TE = 54.55ms. For multiple GRE

echoes, we define a separate forward model for each echo

and reconstruct each echo independently. For fMRI stud-

ies, we designed two protocols with different spatial and

temporal resolution. We found that an odd number of RF

pulses produced more uniform 2D k-space coverage in

the highly undersampled fMRI cases, so we used 23 RF

pulses with 1.12 ms readout per RF pulse in mid-res pro-

tocol to achieve 3-mm isotropic spatial resolution and 3.6s

temporal resolution, and 31 RF pulses with 0.84ms read-

out per RF pulse for low-resolution protocol to achieve

3.75-mm isotropic spatial resolution and 1.8-s temporal

resolution. The RF pulse interval and gradient waveforms

were adjusted such that the echo time is approximately

27.67 ms for both protocols. To produce an excitation pro-

file that is as uniform as possible, we used a series of very

short 12 �s RF pulses with near maximum magnitude in

the excitation module with a flip angle of 3◦.

For all protocols, we first designed a 2D sinusoidal

gradient with acquisition dwell time of 4 �s, a maximum

gradient amplitude of 5 mT/m and maximum slew rate of

1 mT/m/ms in terms of the root sum of square of x and y

axes. Then in 3D, to achievemore uniform k-space spokes,

we adopted the 3D golden-angle-based rotation26 by gen-

erating a series of azimuth and polar angles with small

increment. The 2D k-space trajectories were rotated along

x axis by the azimuth angle and along the z axis by polar

angle. We used 4800 3D rotations in hi-res protocol, 64

and 32 3D rotations for each time frame in mid-res and

low-res fMRI protocols, respectively. The structural and

fMRI protocols are tested in phantom and in vivo studies.

Because TOPPE currently requires the gradient of each

module to start and end at zero, we used ramp-up and

ramp-down gradients before and after the excitation and

acquisition module to accommodate this constraint. The

max slew rate of the ramp up and ramp down gradient was

set to 5 mT/m/ms.

Sensitivity maps were estimated from a 2-min 3D GRE

pulse sequence with 3-mm isotropic spatial resolution.

2.3 Signal models in looping-star

In model-based reconstruction,19 we approximate

the object magnetization f (r⃗)using a finite series
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expansion as follows

f (r⃗) =

N−1∑

n=0

fn b(r⃗ − r⃗n), (1)

where b(⋅) denotes the object basis function, typically a

voxel indicator function, r⃗n denotes the center of nth trans-

lated basis function, and N is the number of parameters

(voxels).

In looping-star fMRI, assuming we have Nrf RF pulses

in one cycle of FID and following GRE, there will be up to

Nrf k-space trajectories, each corresponding to a previously

applied RF pulse. Therefore, the GRE signal sampled at

any time t is a superposition ofNrf k-space samples located

on corresponding trajectories.

The corresponding signal equation for the ith spoke

(i = 1, … ,Nrf) and �th receiver coil (� = 1, … , J) is

given by19

si�(t) = ∫ c�(r⃗)f (r⃗)

(
Nrf∑

l=1

e−z(r⃗)(t+(i−l)Δt) e−�2�k⃗l(t+(i−l)Δt)⋅r⃗

)
dr⃗,

(2)

where a continuous time index t is the time for the ith

spoke starting from the end of the ith RF pulse, c�(r⃗)

is the sensitivity map of �th receiver coil, f (r⃗) is the

unknown continuous complex transverse magnetization,

z(r⃗) ≜ 1∕T∗
2
(r⃗) + �Δ�0(r⃗) is the “rate map,” Δt is the time

interval between adjacent RF pulses, (i − l)Δt is the time

between the ith and lth RF pulse, and k⃗l(t) is the k-space

trajectory for the lth RF pulse at time t.

Each l represents a RF pulse that contributes to the sig-

nal. When l = i, the corresponding k-space trajectory k⃗i(t)

moves from the center k-space to outer k-space, which is

called echo-out trajectory, and when l = i + 1, the corre-

sponding k-space trajectory k⃗i+1(t − Δt) moves from the

outer k-space to center k-space, which is called echo-in

trajectory.

After space discretization27 using (1), we approximate

(2) by

si�(t) =

Nrf∑

l=1

B(k⃗l(t + (i − l)Δt))

N−1∑

n=0

c�(r⃗n)f (r⃗n) e
−z(r⃗n)(t+(i−l)Δt) e−�2�k⃗l(t+(i−l)Δt)⋅r⃗n , (3)

where B(k⃗(⋅)) denotes the spectrum of the object basis

function b(⋅).

We express the noisy measured signals for ith spoke

and �th coil in matrix-vector form as follows

si� =

(
Nrf∑

l=1

Ail

)
C�f + �i� ∈ C

M , (4)

where f = (f1, … , fN) is the vector of parameters (voxel val-

ues) we hope to estimate from the measurement s, C� ∈

CN×N is the diagonal sensitivity map matrix, and each

element of the matrix Ail ∈ CM×N is given by

ailmn = B(k⃗l(tm + (i − l)Δt))

e−z(r⃗n)(tm+(i−l)Δt) e−�2�k⃗l(tm+(i−l)Δt)⋅r⃗n , (5)

where i is the spoke index, � is the coil index, l is the RF

pulse index, m is the index for a discrete time point in

k-space, and n is the index for discrete image grid.

Stacking up all J measurement vectors and sensitivity

mapmatrices from all coils and defining the systemmatrix

for the ith echo to beAi =
∑Nrf

l=1
Ail ∈ CM×N yields the linear

model

si = (IJ ⊗ Ai) Cf + �i, (6)

where M is the number of samples per spoke, C =

[C1; … ;CJ] ∈ C(JN)×N , IJ is a J × J identity matrix, and⊗

denotes the Kronecker product.

To perfectly model all the spokes, the optimal signal

model would take all those k-space locations into account.

However, modeling all the spokes would require approx-

imately 512 cubic spatial resolution and in practice is

computationally infeasible, especially in fMRI scans with

many time frames. Our implementation simplifies the sig-

nal model to include only signals from echo-in spokes and

echo-out spokes. Specifically, we simplify (6) to

si = (IJ ⊗ Ãi) Cf + �i, (7)

where we use the two-term approximation Ãi =∑
l∈{i,i+1} Ail. Here l = i + 1 corresponds to the echo-in

spoke and l = i corresponds to the echo-out spoke.

Two special cases are the first and last spokes, where an

FID overlaps with a first GRE or an recalled GRE overlaps

with a later gradient recalled echo, which are problematic

due to the unknownT∗
2map anddisparate signal strengths.

These cases are eliminated from the system model by

setting i = 1, ...,Nrf − 1.

2.4 Model-based reconstruction

With above discrete system matrix, we use the conjugate

gradient method to optimize the following cost function

f̂ = arg min
f

‖s − ACf‖22 + �R(f), (8)

where s = [s1; … ; sNrf
] is the vertically stacked signal,A =

[(I⊗ Ã1); … ; (I⊗ ÃNrf
)] is the stacked systemmatrix, and

R(f) = ||Df ||2
2
is a 3D roughness regularizer using quadratic
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1st-order finite differences with 26 neighbors. We use

CG-SENSE23 with 30 iterations to optimize (8).

2.5 k-space filtering and object basis
spectrum

For gridding reconstruction of all protocols, a hard cut-off

was used to truncate the k-space data with a k-space win-

dow at 50% (unless specified otherwise) to reduce the

overlapping echo artifact.15

Formodel-based reconstruction, instead of filtering out

the mixed signals, we model the echo-in and echo-out

mixture using an object basis function whose spectrum

B(k) is Fermi shaped with a cutoff frequency around 90%.

We use this 90% cutoff frequency because the magnitude

of low-frequency components near the k-space origin is

much larger than the magnitude of the high-frequency

components; therefore when these two signals are super-

imposed, it is very difficult to recover the high-frequency

components accurately. The Fermi filters must be applied

to each subsystem matrix Ail individually before matrix

combination because the echo-in and echo-out signals

need to be filtered in “opposite” directions. One cannot

apply two different filters to the data.

The exact shape of the spectrum of object basis func-

tion B(k) depends on the pulse sequence parameters, such

as the spatial resolution and number of spokes. Empiri-

cally, we chose a 90% cutoff frequency to reduce the mix-

ture of center k-space signals and high-frequency signals

coming from the echo-in and echo-out spokes, respec-

tively. We then chose the transition band to reduce the

ringing artifact that would be caused by a hard cutoff.

2.6 Implementation and reproducible
research

We used TOPPE24 to program the looping-star pulse

sequence on a GE UHP 3.0T scanner with a Nova Medical

32-channel Rx head coil.

We compared the proposed model-based reconstruc-

tion using echo-in and echo-out system matrices (MB-2

in figures below) to a simpler model-based reconstruc-

tion method that used a single echo-out system matrix,

A1 (MB-1 in figures below) and a gridding method that

used a density compensation function and a gridding

over-sampling factor of 2. Then we applied sensitivity map

based complex coil combination to construct the final

images. We tested the structural MRI protocol on three

subjects and variants of the fMRI protocol on four subjects.

Subjects gave informed consent under IRB approval from

the University of Michigan.

For model-based reconstruction, we used the Matlab

toolbox MIRT28 to build the NUFFT-based system matrix

and optimize the cost function.

3 RESULTS

We demonstrated proposed model-based reconstruction

approach on phantom and in vivo scans.

3.1 Overlapping echo artifacts
demonstration

Figure 2 illustrates the resultant effect for overlap of the

echo-in and echo-out spokes in the gridding reconstruc-

tion. For k-space filter with a threshold of 0.5, there is little

artifact, but resolution is lowered by roughly a factor or two

in all three directions. For higher cutoffs, there is a trade-

off between spatial resolution and artifact resulting from

misassigned spatial frequency components.

3.2 Phantom experiments

Figure 3 shows the reconstruction for structured phantom

using a high-resolution looping-star protocol. We compare

the standard GRE reconstruction results to looping-star

reconstruction using gridding, model-based reconstruc-

tion without modeling overlapping signal (MB-1), and

model-based method with overlapping signal modeling

(MB-2).MB-2 significantly improved the spatial resolution

by modeling the high-frequency components in sampled

signals compared to the gridding method. Signal loss near

the phantom-air edges is also recovered due to the spatial

resolution improvement.

3.3 In vivo experiments

The proposed method reduced the overlapping echo arti-

facts and improved the spatial-temporal resolution in both

structural and functional MRI, compared to the conven-

tional gridding method.

3.3.1 Structural MRI

Figure 4 shows the reconstruction for a human brain

scan in a representative subject using the high-resolution

protocol (1.25-mm isotropic). The structural MRI results

using hi-res protocol for the other two subjects are shown

in Figure S1 to further support the increased spatial
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F IGURE 2 Overlapping echo artifact from the conventional gridding methods. As the k-space cut-off increases, the overlapping echo

artifact can significantly degrade the image quality.

(A) (B) (C) (D)

F IGURE 3 High-resolution looping-star reconstruction in phantom study. (A) standard T∗
2-weighted gradient echo (GRE) (scan time:

21 min); (B) Gridding reconstruction with density compensation function; (C) MB-1 without overlapping echo modeling; (D) MB-2 with

overlapping echo modeling. For (B), (C), (D), all use the same k-space data with scan time of about 7 min. (D) shows similar spatial

resolution (slightly reduced due to voxel indicator function and spherical acquisition pattern) to the standard GRE, and improved image

quality compared to (B) and (C) in terms of sharper edges (red zoom-in box) and recovered signal loss (green zoom-in box). (A) Standard

GRE; (B) gridding; (C) MB-1; (D) MB-2.

(A) (B) (C) (D)

F IGURE 4 High-resolution looping star reconstruction for a representative subject. MB-2 provided improved spatial resolution and

recovered signal loss, particularly in the inferior slices for echo 2, compared to gridding reconstruction. (A) Gridding (echo 1); (B) MB-1 (echo

2); (C) Gridding (echo 1); (D) MB-2 (echo 2).

resolution compared to the gridding method. For the grid-

ding method, overlapping echo artifact was reduced by

truncating the k-space, which also reduced the spatial

resolution. The proposed MB-2 shows increased spatial

resolution, reduced overlapping echo artifacts as well as

improved image quality, compared to the griddingmethod.
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(A) (B) (C)

F IGURE 5 Functional MRI (fMRI) task result. First row: time course from the voxel with the highest correlation coefficient. With the

improved spatial resolution, time course in MB-2 shows larger signal change due to the reduced partial volume effect. Second row: sagittal

activation map for visual tasks (two consecutive slices). Although the undersampling artifact (20× undersampled) dominates the artifacts

here, MB-2 reconstruction still shows slightly improved spatial resolution. With gridding method, activation map is smoothed and potentially

showing false positives. Third row: Axial activation map for finger-tapping tasks (two consecutive slices). (A) Gridding with k = 0.5kmax; (B)

gridding with k = 0.8kmax; (C) MB-2.

Besides the sharper images, the signal loss around frontal

sinuses and ear canals is recovered due to the smaller

voxel size. Due to almost halved spatial resolution, the

gridding method has a 4× lower (better) undersampling

rate than the MB-2 method. MB-2 method has higher

undersampling rate and thus potentially more affected by

the undersampling artifact even with Model-based recon-

structionmethod. The reconstructions fromother two sub-

jects in Figure S1 support that MB-2 improves the spatial

resolution by almost a factor of 2 and the circular ringing

artifacts in the top right slices of subject 1might have come

from motion or other factors.

3.3.2 Functional MRI

We demonstrated application of the proposed methods to

fMRI by doing finger-tapping and visual fMRI tasks. In

the fMRI study, healthy participants watched a flashing

checkerboard for multiple cycles (20 s on and 20 s off),

and were required to tap their fingers while the checker-

board was on. Figure 5 shows the activation map and time

course for the finger-tapping test in a typical subject. The

proposedMB-2 reconstructionmethod showed higher cor-

relation and less noise on the activation map as compared

to griddingmethod. Its time course also bettermatches the

task reference and is less noisy.

4 DISCUSSION

Compared to the standard GRE method, the biggest

disadvantage of looping-star is the low SNR that lim-

its its spatial and temporal resolution. By exploiting

the high-frequency k-space information, the proposed

method can resolve the overlapping echoes and use

about twice as many signal samples for reconstruction,

which also improves the SNR by a factor of nearly
√
2.

However, since the high-frequency signal values are

mixed with the low-frequency signals, which have a

much larger magnitude, it is difficult to accurately

estimate the highest-frequency components. To overcome

this problem, we used a object basis spectrum based

on a Fermi function that effectively leads to a slight
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truncation of the high-frequency components (≈90%) at

the end of the echo-in and echo-out spokes acquisition.

This approach reduced the image distortion coming from

the mis-estimation of the highest-frequency signals.

One other reconstruction method RF-cycling14 leads

to reduced temporal resolution. Another appraoch is

coherence-resolved looping-star,18 which removes most

of the overlapping echo artifacts by pushing further in

k-space before the next RF pulse is applied. This by done

by increasing the gradient strength for a fixed number of

RF pulses, thus increasing acquisition bandwidth, result-

ing in reduced SNR. Alternatively, the coherence-resolved

approach can be implemented by reducing the number

of RF pulses, which can maintain the SNR, but increases

undersampling artifact by reducing the number of spokes.

In all of these approaches, there is a loss of image quality,

SNR or temporal resolution.

For the excitation process, considering the typical T1

value of the gray matter and 23 RF pulse of 3◦ flip

angle and using small tip angle approximation, the Mz

of the last RF pulse was indeed about 3.2% decreased

compared to the first RF pulse for gray matter. There-

fore, we neglected the impact of the Mz decrease in our

signal model. RF-induced echo splitting and resulting

higher-order echoes (spin-echoes, stimulated echoes, etc)

are neglected, again, because of the low flip angles.14 In

addition, the higher-order echoes are also not re-phased in

the gradient-echo module due to the continuously chang-

ing gradient fields.

We used 3D golden-angle-based sampling trajectories

to achieve more uniformly distributed spokes. The perfor-

mance of randomly rotated spokes highly depends on the

random seed, so the image quality in each frame of fMRI

studies would differ significantly if different sampling pat-

terns for each frame were used. Accordingly, we repeated

the a single 3D pattern for all fMRI temporal frames.

One potential issue with the proposed approach is

whether poor conditioning could lead to noise amplifi-

cation in the reconstruction. To examine this issue, we

generated SDmaps, estimated from 20 realizations of addi-

tive complex white Gaussian noise to the measured signal

in the fMRI protocol. The SD maps in Figure S2 show

that the model using echo-in and echo-out system matri-

ces have nearly identical reconstruction noise relative to

the model using echo-in system matrix only, indicating

that using echo-in and echo-out system matrices does not

worsen the conditioning or the noise amplification for the

regularization parameters used in this work.

The traditional gridding method either suffers from

low-spatial resolution and reduced signal change due to

partial volume effects by truncating too much (trunca-

tion to 0.5kmax), or suffers from overlapping echo artifacts

and more noise by truncating too little. The proposed

MB-2method resolves the overlapping echoes and showed

improved spatial resolution (about 1.8× expected relative

to the lower resolution gridding), larger signal change,

and better activation compared to previous methods. The

longer effective readouts forMB-2 can improve the SNR by

a factor of
√
1.8, thus leading to a net SNR reduction of

√
1.8

1.83

compared to the gridding method, where the 1.83 comes

from the reduced 3D voxel size. Still, the fMRI results did

not appear to be limited by thermal noise. Quantifying

spatial resolution and SNR will be part of our future work.

There are several other directions for improving

image quality and SNR in future work. These include

shaped RF pulses to reduced hard pulse shading across

the field of view and variable flip angels schemes to

maximize signal strength and uniformity. We will also

consider approaches to optimize the sampling pattern

using learning-based method to further reduce image

artifacts and increase image qualities.29 For multi-echo

looping-star, learning-based networks can provide fast and

accurate quantitative T∗
2 mapping.

30 We will also further

explore the possibility of using spatial-temporal recon-

struction model in looping-star.31

5 CONCLUSION

We proposed a novel model-based reconstruction method

to resolve the overlapping echo challenge in looping-star

pulse sequences. We also used a 3D golden-angle based

sampling pattern andmid-resolution fMRI protocol to fur-

ther improve the image quality in the fMRI studies. By

exploiting the high-frequency k-space information, the

proposed approach was able to recover high-resolution

images and reduce the artifacts compared to previous

methods, while preserving the temporal resolution in

fMRI.
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Section S.1 Object basis function

Section S.2 Spatial resolution

Figure S1.High-resolution looping star reconstruction for

two additional subjects. The proposedMB-2 approach pro-

vided improved spatial resolution and recovered signal loss

in multiple areas compared to gridding reconstruction.

Figure S2. Reconstruction and variance maps. (A) shows

the high-resolution reconstruction for references. (B) and

(C) are the SDmaps using echo-out systemmatrix only and

both echo-in and echo-out system matrices respectively.

(D) and (E) are corresponding histogram of these four

slices. We generated SD maps, estimated from 20 realiza-

tionsof additive complex white Gaussian noise to the mea-

sured signal in the fMRI protocol. Themodel using echo-in

and echo-out systemmatrices have nearly identical recon-

struction noise relative to the model using echo-in system

matrix only, indicating that using echo-in and echo-out

system matrices does not worsen the conditioning or the
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noise amplification for the regularization parameters used

in this work.

Figure S3. FWHM of PSF over iterations andMB-2 recon-

struction at different iteration. (A) shows the FWHM of

PSF over CG-iterations. The FWHM of PSF is computed

by reconstructing the k-space data of a Kronecker impulse

function. The PSF gradually converged after 50 iterations.

(B) shows the MB-2 reconstructions of the same subject

at iteration 30 and 100 with zero initialization. Though

the PSF still decreases after 30 iterations, the change in

the reconstructed images is nonvisible, so for most of the

results shown in the paper, we stopped at 30 iteration to

save compute time. The FWHM of PSF using gridding

method is measured to be 3.59 pixels for comparison. (C)

compares the PSF from the center slice of the subject. The

curve shows the radial FWHM of all direction and the

overall FWHM is the averaged value.
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S.1 Object basis function
The Fermi filters must be applied to each sub-system matrix individually before matrix combination because the echo-in and
echo-out signals need to be filtered in ‘opposite’ directions. One cannot apply two different filters directly to the data.

The exact shape of the spectrum of object basis function B(k) depends on the pulse sequence parameters, such as the
spatial resolution and number of spokes. Empirically, we chose a 90% cutoff frequency to reduce the mixture of center k-space
signals and high-frequency signals coming from the echo-in and echo-out spokes respectively. We then chose the transition
band to reduce the ringing artifact that would be caused by a hard cutoff.

S.2 Spatial resolution
The actual spatial resolution in reconstructed images is related to the regularization parameters when using roughness and
many other regularizers. Therefore, regularization parameters need to be chosen carefully here as one of the main goals for
using model-based reconstruction is to improve spatial resolution.

Here we empirically chose the regularization factors such that undersampling artifact can be mitigated while preserving
most of the spatial resolution. We report the full width at half maximum (FWHM) values and corresponding regularization
factors here to help understand the relationship between spatial resolution and regularization factors. Fig. S3 shows the
FWHM of the point spread function (PSF) over iterations and the reconstructed images at 30 and 100 iterations. The
FWHM of MB-2 method is about 2.5 pixels at 50 iteration and the FWHM of gridding method is about 3.6 pixels.

1



Figure S1: Hi-resolution looping star reconstruction for two additional subjects. The proposed MB-2 approach provided
improved spatial resolution and recovered signal loss in multiple areas compared to gridding reconstruction.

2



Figure S2: Reconstruction and variance maps. (a) shows the hi-resolution reconstruction for references. (b) and (c) are the
standard deviation maps using echo-out system matrix only and both echo-in and echo-out system matrices respectively. (d)
and (e) are corresponding histogram of these 4 slices. We generated standard deviation maps, estimated from 20 realizations
of additive complex white Gaussian noise to the measured signal in the fMRI protocol. The model using echo-in and
echo-out system matrices have nearly identical reconstruction noise relative to the model using echo-in system matrix only,
indicating that using echo-in and echo-out system matrices does not worsen the conditioning or the noise amplification for
the regularization parameters used in this work.
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(a) FWHM of PSF over iterations

(b) MB-2 reconstruction at different iteration
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(c) PSF comparison between gridding and MB-2

Figure S3: FWHM of PSF over iterations and MB-2 reconstruction at different iteration. (a) shows the FWHM of PSF over
CG-iterations. The FWHM of PSF is computed by reconstructing the k-space data of a Kronecker impulse function. The
PSF gradually converged after 50 iterations. (b) shows the MB-2 reconstructions of the same subject at iteration 30 and
100 with zero initialization. Though the PSF still decreases after 30 iterations, the change in the reconstructed images is
non-visible, so for most of the results shown in the paper, we stopped at 30 iteration to save compute time. The FWHM of
PSF using gridding method is measured to be 3.59 pixels for comparison. (c) compares the PSF from the center slice of the
subject. The curve shows the radial FWHM of all direction and the overall FWHM is the averaged value.
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