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A Complex Quasi-Newton Proximal Method for
Image Reconstruction in Compressed Sensing MRI

Tao Hong , Luis Hernandez-Garcia , and Jeffrey A. Fessler , Fellow, IEEE

Abstract—Model-based methods are widely used for recon-
struction in compressed sensing (CS) magnetic resonance imag-
ing (MRI), using regularizers to describe the images of interest.
The reconstruction process is equivalent to solving a composite
optimization problem. Accelerated proximal methods (APMs) are
very popular approaches for such problems. This paper proposes a
complex quasi-Newton proximal method (CQNPM) for the wavelet
and total variation based CS MRI reconstruction. Compared with
APMs, CQNPM requires fewer iterations to converge but needs
to compute a more challenging proximal mapping called weighted
proximal mapping (WPM). To make CQNPM more practical, we
propose efficient methods to solve the related WPM. Numerical ex-
periments on reconstructing non-Cartesian MRI data demonstrate
the effectiveness and efficiency of CQNPM.

Index Terms—Compressed sensing, magnetic resonance imaging
(MRI), non-Cartesian trajectory, second-order, sparsity, total
variation, wavelets.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) scanners acquire
samples of the Fourier transform (known as k-space data)

of the image of interest. However, MRI is slow since the speed
of acquiring k-space data is limited by many constraints, e.g.,
hardware, physics, and physiology etc. Improving the acquisi-
tion speed is crucial for many MRI applications. Lustig et al. [1]
proposed a technique called compressed sensing (CS) MRI that
improves the imaging speed significantly. CS MRI allows one
to get an image of interest from undersampling data by solving
the following composite optimization problem:

x∗ = arg min
x∈CN

1

2
‖Ax− y‖22︸ ︷︷ ︸

f(x)

+ λh(x), (1)

where A ∈ CML×N denotes the forward model describing a
mapping from the latent image x to the acquired k-space data
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y ∈ CML, h(x) is the regularizer that provides some prior
assumptions about x, L ≥ 1 denotes the number of coils, and
λ > 0 is a tradeoff parameter to balance f(x) and h(x). We
note that A consists of L different submatrices Al = ΦFSl ∈
CM×N for l = 1, 2, . . . , L, where Φ denotes the downsampling
mask, F represents the nonuniform fast Fourier transform that
depends on the sampling trajectory, and Sl is a diagonal matrix
involving the sensitivity map for the lth coil which differs for
each scan.

Sparsity plays a key role in the success of CS MRI. In
general, MR images are not sparse but they can be sparsely
represented under some transforms, e.g., total variation (TV) [1],
wavelets [2], and transform-learning [3] etc. Recently, more
advanced priors or frameworks were introduced for CS MRI
reconstruction, such as low-rank [4], plug and play [5], [6],
model-based deep learning [7], score-based generative mod-
els [8], to name a few. Although deep learning based recon-
struction methods have shown better performance than classical
priors like TV and wavelet when trained with sufficient data, Gu
et al. [9] recently found that suitably trained wavelet regularizers
can also achieve comparable performance, demonstrating the
power of the classical regularizers. Following Lustig et al. work
in [1], we consider both wavelet and TV regularizers for CS
MRI reconstruction, i.e., we address the following composite
minimization problem for image reconstruction in CS MRI:

x∗=arg min
x∈CN

1

2
‖Ax− y‖22+λ [α‖Tx‖1 + (1− α)TV(x)] ,

(2)

where T and ‖ · ‖1 denote a general wavelet transform and
�1 norm, TV(·) represents the TV function (see definition in
Section II-B), and α ∈ [0, 1] is used to balance the wavelet
and TV terms. For α = 1 (respectively, α = 0), (2) becomes
the wavelet (respectively, TV) based CS MRI reconstruction.
Since �1 and TV functions are nonsmooth, accelerated proximal
methods (APMs) [10], which have the optimal convergence rate
O(1/k2) where k is the number of iterations, are very popular
algorithms for (2). In [11], Beck et al. proposed a fast iterative
shrinkage-thresholding algorithm (FISTA) (a specific type of
APMs) for wavelet-based image reconstruction and showed a
closed-form solution for the related proximal mapping [10].
Beck et al. [12] extended FISTA to solve TV-based image
reconstruction and suggested a fast dual gradient descent method
to compute the proximal mapping. Primal-dual methods [13]
are also appealing methods for composite problems. The work
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in [14] showed that primal-dual methods can also achieve the op-
timal convergence rate and showed their connection to proximal
methods. However, primal-dual methods have to tune parame-
ters that affect the practical convergence rates and such tuning
is nontrivial. For a review of different variants of primal-dual
methods, see [15]. For more optimization methods and the use
of different regularizers for reconstruction in CS MRI, see [16].

Modern MR images are typically acquired using multiple re-
ceiver coils and non-Cartesian trajectories, resulting in an expen-
sive forward process from the image to the k-space domains and
ill-conditioned or under-determined A [16]. An ill-conditioned
A can lead to slow reconstruction [17]. To accelerate the re-
covery process, some preconditioning techniques have been
introduced. In [18], Ong et al. proposed a diagonal matrix D̃
as a preconditioner such that they solved the following problem
instead of (1):

x∗ = arg min
x∈CN

1

2
‖D̃ 1

2 (Ax− y) ‖22 + λh(x). (3)

Recently, Iyer et al. [17] developed more effective polynomial
preconditioners than D̃, based on Chebyshev polynomials. Al-
though [17] showed promising results for practical reconstruc-
tion, adding such a preconditioner changes the incoherence ofA,
which breaks the original theoretical guarantee. For α ∈ (0, 1),
both wavelet and TV are used as regularizers. When we have two
nonsmooth terms, the alternating direction method of multipliers
(ADMM) [19] is one of the appealing approaches. However,
ADMM only provides linear convergence rate O(1/k) [20] and
the computation in each iteration is high because we need to
solve a least square problem. In [21], [22], [23], the authors
proposed several preconditioning methods to solve the least
square problem quickly, which reduces the computation time
of the whole reconstruction significantly.

Similar to the quasi-Newton methods for smooth
minimization problems [24], the authors in [25], [26] developed
quasi-Newton proximal methods (QNPMs) that use
second-order information for solving composite problems when
x ∈ RN . Compared with APMs, QNPMs need fewer iterations
to converge which is appealing for problems when computing the
gradient ∇f(x) is expensive. Indeed, the authors in [27], [28],
[29] applied QNPMs to solving the RED model and the TV based
inverse-scattering and X-ray reconstruction and observed faster
convergence than APMs. However, QNPMs require computing
a weighted proximal mapping (WPM), defined in (6), that needs
more computation than computing proximal mapping in APMs.
So often QNPMs are impractical for many real applications.
To compute the WPM, Kadu et al. [28] applied primal-dual
methods. Alternatively, Ge et al. [29] treated the WPM as a TV
based image deblurring problem and computed the WPM with
APMs [12]. Those methods require inner and outer (i.e., two
layers) iterations to compute the WPM, making them inefficient.
Similar to QNPMs, the variable metric operator splitting meth-
ods (VMOSMs) [30] introduce new metrics to accelerate the
proximal methods. For a discussion of the differences between
QNPMs and VMOSMs, see the prior work section in [26].

The primary contribution of this paper lies in two significant
advancements. Firstly, we expand QNPMs to address (1) for

complexx (Recall that reconstructed MRI images are inherently
complex [31] and in some applications the image phase itself is
useful, e.g., high-field MRI [32] and quantitative susceptibility
mapping [33]). This is achieved by introducing a symmetric
rank-1 method in the complex plane to approximate the Hes-
sian matrix of f(x), which we called complex quasi-Newton
proximal methods (CQNPMs). Secondly, we propose efficient
approaches to compute the WPM. Notably, the computational
needs of CQNPMs align closely with the proximal mapping
in APMs for wavelet and/or TV-based reconstructions. Our
numerical experiments on wavelet and TV based CS MRI re-
construction show that CQNPMs converge faster than APMs in
terms of iterations and CPU time, demonstrating the potential
advantage of CQNPMs for practical applications.

The rest of this paper is organized as follows. Section II first
defines some notation and then reviews the formulation of the
discretized TV function and the definition of WPM. Section III
derives our algorithm. Section IV reports numerical experiments
on the wavelet and TV based CS MRI reconstruction. Section V
presents some conclusions and future work.

II. PRELIMINARIES

This section first defines some notation that simplifies the
following discussion and then describes the discretized TV
functions. Finally, we define the WPM that generalizes the
well-known proximal mapping.

A. Notation
� Denote by X ∈ CI×J the matrix form of x ∈ CN with

relation x = vec(X) and X = mat(x) where vec(·) de-
notes a column-stacking operator andmat(·) is an operator
to reshape a vector to its matrix form.

� The (i, j)th (respectively, nth) element of a matrix X ∈
CI×J (respectively, vector x ∈ CN ) is represented as Xi,j

(respectively, xn).
� P1 denotes the set of matrix-pairs (P ,Q) where P ∈
C(I−1)×J and Q ∈ CI×(J−1) satisfy

|Pi,j |2 + |Qi,j |2 ≤ 1, i = 1, . . . , I − 1, j = 1, . . . , J − 1,

|Pi,J | ≤ 1, i = 1, . . . , I − 1,

|QI,j | ≤ 1, J = 1, . . . , J − 1.

� P2 is the set of matrix-pairs (P ,Q) where P ∈ C(I−1)×J

and Q ∈ CI×(J−1) satisfy |Pi,j | ≤ 1, |Qi,j | ≤ 1, ∀i, j.
� Z is the set of vectors z ∈ CN such that |zn| ≤ 1, ∀n.
� L : C(I−1)×J × CI×(J−1) → CI×J denotes a linear oper-

ator that satisfies

L(P ,Q)i,j = Pi,j +Qi,j − Pi−1,j −Qi,j−1, ∀i, j,
where we assume that P0,j = PI,j = Qi,0 = Qi,J =
0, ∀i, j.

� The adjoint operator of L : CI×J → C(I−1)×J ×
CI×(J−1) is

LT(X) = (P ,Q),
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where P ∈ C(I−1)×J and Q ∈ CI×(J−1) are the matrix
pairs that satisfy

Pi,j = Xi,j −Xi+1,j , i = 1, . . . , I − 1, j = 1, . . . , J,

Qi,j = Xi,j −Xi,j+1, i = 1, . . . , I, j = 1, . . . , J − 1.

B. Discretized Total Variation

Assuming zero Neumann boundary conditions for an image
X ∈ CI×J , i.e.,

XI+1,j −XI,j = 0, ∀j andXi,J+1 −Xi,J = 0, ∀i,
the isotropic and anisotropic TV functions are defined as follows

TViso(X)=

I−1∑
i=1

J−1∑
j=1

√
(Xi,j −Xi+1,j)

2+(Xi,j −Xi,j+1)
2

+

I−1∑
i=1

|Xi,J −Xi+1,J |+
J−1∑
j=1

|XI,j −XI,j+1| ,

(4)

and

TV�1(X) =

I−1∑
i=1

J−1∑
j=1

{|Xi,j −Xi+1,j |+ |Xi,j −Xi,j+1|}

+

I−1∑
i=1

|Xi,J −Xi+1,J |+
J−1∑
j=1

|XI,j −XI,j+1| ,

(5)

respectively. Hereafter, we use TV(x) to represent either
TViso(X) or TV�1(X).

C. Weighted Proximal Mapping

Given a proper closed convex function h(x) and a Hermitian
positive definite matrix W 
 0 :∈ CN×N , the WPM associated
to h is defined as

proxWh (x) = argmin
u

(
h(u) +

1

2
‖u− x‖2W

)
, (6)

where ‖ · ‖W denotes the W -norm defined by ‖q‖W =√
qHWq. Here H denotes Hermitian transpose. Clearly, (6)

simplifies to the proximal mapping for W = IN where IN
represents the identity matrix. Since h(u) + 1

2‖u− x‖2W is
strongly convex, proxWh (x) exists and is unique for x ∈ domh
so that the WPM is well defined.

III. COMPLEX QUASI-NEWTON PROXIMAL METHODS

This section first describes a complex quasi-Newton proxi-
mal method (CQNPM) for solving (1) with regularizer h(x) =
α‖Tx‖1 + (1− α)TV(x) and α ∈ [0, 1]. Here, we consider
T ∈ CÑ×N to be a wavelet transform. Then, we propose effi-
cient methods to compute the related WPM. Moreover, to avoid
applying wavelet transforms when computing the WPM for
α ∈ [0, 1), we propose a partial smooth approach. Our numerical

Algorithm 1: Proposed Complex Quasi-Newton Proximal
Method.

Initialization: x1.
Iteration:
1: for k = 1, 2, . . . do
2: pick the step-size ak and the weighting Bk.
3: xk+1 ← proxBk

akλh(xk − akB
−1
k ∇xf(xk)).

4: end for

experiments show that such a partial smooth strategy recovers
the desired images with less computation.

At kth iteration, CQNPM solves (7) for xk+1,

xk+1= arg min
x∈CN

f(xk)+〈∇f(xk),x−xk〉+ 1

2ak
‖x−xk‖2Bk

+ λh(x)

= proxBk

akλh(xk − akB
−1
k ∇xf(xk)), (7)

where ak is the step-size and Bk ∈ CN×N is a Hermitian
symmetric positive definite matrix. For clarity, we present the
detailed steps of CQNPM in Algorithm 1. Note that Algorithm 1
would be identical to the proximal methods [10] if one chose
Bk = IN . In [30], [34], the authors suggested using a diago-
nal matrix Bk for their application. However, building such a
diagonal matrix is nontrivial and its effectiveness is problem
dependent. In this paper, we choose Bk to be a more accurate
approximation of the Hessian of f(x). Specifically, we selectBk

based on the Symmetric Rank-1 (SR1) method [24], a popular
method used in quasi-Newton methods for approximatnig a Hes-
sian matrix. Following the derivation of SR1 for real variables,
we derive a complex plane SR1 that is similar to the real one.
Algorithm 2 presents the implementation details of SR1 in the
complex plane. We found that using γ > 1 is crucial to ensure
that Bk is Hermitian positive definite in our setting because
otherwise 〈mk −H0sk, sk〉 can become negative, causing Bk

to turn indefinite. In our numerical experiments, we found that
a fixed γ > 1 worked well.

A. Compute Weighted Proximal Mapping

The dominant computation in Algorithm 1 is computing the
WPM at Step 3 which could be as hard as solving (1) for a
general Bk. However, we find one can compute proxBk

akλh(·) as
easily as the case when Bk = IN by using the structure of Bk.

To compute the WPM proxBk

λ̄h
(vk) at kth iteration, we need

to solve the following problem

min
x∈CN

‖x− vk‖2Bk
+ 2λ̄ [α‖Tx‖1 + (1− α)TV(x)] , (8)

where vk = xk − akB
−1
k ∇xf(xk) and λ̄ = akλ. A difficulty

of (8) is the nonsmoothness of ‖ · ‖1 and TV(·). To address this
difficulty, we consider a dual approach for (8) that is similar to
Chambolle’s approach for TV-based image reconstruction [35].
Our method only uses one inner iteration to compute the WPM,
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Algorithm 2: SR1 Updating.

Initialization: γ > 1, δ = 10−8, Ξ > 0 a fixed real scalar,
xk, xk−1,∇f(xk), and ∇f(xk−1).

1: if k = 1 then
2: Bk ← ΞI .
3: else
4: Set sk ← xk − xk−1 and

mk ← ∇f(xk)−∇f(xk−1).
5: Compute τk ← γ

‖mk‖22
〈sk,mk〉 . % 〈a, b〉 = bHa

6: if τ < 0 then
7: Bk ← ΞI .
8: else
9: H0 ← τkI .

10: uk ←mk −H0sk.
11: if | 〈uk, sk〉 | ≤ δ‖sk‖2‖uk‖2 then
12: uk ← 0.
13: end if
14: Bk ←H0 +

uku
H
k

〈mk−H0sk,sk〉 .
15: end if
16: end if
17: Return: Bk

and the related gradient is computed easily. Proposition 1 de-
scribes the dual problem of (8) and the relation between the
primal and dual optimal solutions.

Proposition 1: Let

(z∗,P ∗,Q∗) = argmin
z∈Z

(P ,Q)∈P

‖wk(z,P ,Q)‖2Bk
(9)

where wk(z,P ,Q)=vk − λ̄B−1k (αT Hz + (1− α)vec(L(P ,
Q))) and P = P1 or P2 depending on which TV is used. Then
the optimal solution of (8) is given by xk+1 = wk(z

∗,P ∗,Q∗).
Proof: See Section A. �
Using Proposition 1, we can apply the FISTA [11], [36] to

solve (9) for computing proxBk

λ̄h
since (9) is convex and con-

tinuously differentiable. Lemma 1 specifies the corresponding
gradient and Lipschitz constant of (9).

Lemma 1: The gradient of (19) is

−2λ̄
[

αT

(1− α)LT

]
wk(z,P ,Q) (10)

and the corresponding Lipschitz constant is

Lc = 2σminλ̄
2(α2‖T ‖2 + 8(1− α)2)

where σmin is the smallest eigenvalue of Bk.
Proof: See Section B. �
According to the formulation of Bk proposed in Algorithm 2,

we can obtain σmin easily through 1

σmin =

⎧⎨
⎩

Ξ if τ < 0,
τ if 〈mk −H0sk, sk〉 > 0,

τ + uHu
〈mk−H0sk,sk〉 if 〈mk −H0sk, sk〉 < 0.

1We note that 〈mk −H0sk,sk〉 is real in our setting, see Observation I.

Algorithm 3: FISTA for Solving (19).

Initialization: Bk, vk, λ̄ > 0, α ∈ [0, 1], Lipschitz
constant Lc, maximal iteration Max_Iter, tolerance
ε > 0, and initial values z1,P1,Q1.
Iteration:

1: t1 ← 1.
2: (z̄1, P̄1, Q̄1)← (z1,P1,Q1).
3: for s = 1, 2, . . . ,Max_Iter do
4: Compute w̄ ← wk(z̄s, P̄s, Q̄s).
5: if α �= 0 then
6: zs+1 ← ProjZ(z̄s +

2λ̄α
Lc

T w̄).
7: else
8: Set zs+1 empty.
9: end if

10: if α �= 1 then
11: (Ps+1,Qs+1)←

ProjP((P̄s, Q̄s) +
2λ̄(1−α)

Lc
LTw̄).

12: else
13: Set Ps+1 and Qs+1 empty.
14: end if
15: if ‖(zs+1 − zs,Ps+1 − Ps,Qs+1 −Qs)‖ ≤ ε then
16: break.
17: end if

18: ts+1 ← 1+
√

1+4t2s
2 .

19: (z̄s+1, P̄s+1, Q̄s+1)←
ts+1+ts−1

ts+1
(zs+1,Ps+1,Qs+1)

− ts−1
ts+1

(zs,Ps,Qs).

20: ts ← ts+1.
21: end for

The value of ‖T ‖ depends on the choice of wavelets which can
be computed in advance, so the computational cost of obtaining
the Lipschitz constant of (19) is cheap. For completeness, Algo-
rithm 3 presents the implementation details of FISTA for solving
(19). We terminate Algorithm 3 when it reaches a maximal
number of iterations or a given accuracy tolerance. The initial
value (z1,P1,Q1) in Algorithm 3 uses the final solution of the
previous iteration.

Remark 1: Compared with APMs for addressing (1), the addi-
tional cost of CQNPM is applyingB−1k in computing vk andwk

in Algorithms 1 and 3. This inversion can be computed cheaply
through the Woodbury matrix identity. Moreover, computing the
projectors ProjZ(·) and ProjP(·) is also cheap and identical to
the one shown in [12], so we omit the details here. The step-size
ak in Algorithm 1 can be simply set to be 1.

B. Compute the Weighted Proximal Mapping When α = 1

For α = 1, running Algorithm 3 to compute the WPM would
be inefficient since we would have to apply wavelet transform
many times at each outer iteration. However, ifT is left invertible
that T HT = IN , we can solve the following problem instead of
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(2) to avoid using Algorithm 3 to compute the WPM:

x̄∗ = argmin
x̄∈CÑ

1

2
‖AT Hx̄− y‖22︸ ︷︷ ︸

f(x̄)

+λ‖x̄‖1. (11)

Then the recovered image is x∗ = T Hx̄∗. Now the correspond-
ing WPM becomes

proxBk

λ̄‖·‖1(vk) = argmin
x̄∈CÑ

‖x̄− vk‖2Bk
+ 2λ̄‖x̄‖1. (12)

Note that (2) and (11) represent the analysis-based and
synthetic-based priors, respectively. For a detailed discussion
of their relations and equivalence, see [37].

Let W ∈ CÑ×Ñ := D ± uuH where D ∈ RÑ×Ñ is a diag-
onal matrix and u ∈ CÑ . Becker et al. proposed the following
theorem that relates proxWλh (x) and proxDλh(x).

Theorem 1 (Theorem 3.4, [26]2): LetW = D ± uuH. Then,

proxWλh (x) = proxDλh(x∓D−1uβ∗),

where β∗ ∈ C is the unique zero of the following nonlinear
equation

J(β) : uH (
x− proxDλh(x∓D−1uβ)

)
+ β.

Using the notation in Algorithm 2, we have the following
observation:

Observation I: τ and 〈mk −H0sk, sk〉 in Algorithm 2 are
real.

Proof: Note that f(x) = 1
2‖Ax− y‖22. Then we havemk =

AHAsk, so 〈sk,mk〉 is real. �
Since 〈mk −H0sk, sk〉 is real, we rewrite Bk as

Bk = H0 + sgn (〈mk −H0sk, sk〉) ũkũ
H
k , (13)

where ũk = uk√
〈mk−H0sk,sk〉

and sgn(·) denotes the sign func-

tion such that Bk holds the same structure as W in Theorem 1.
So, instead of solving (12) directly, we first solve J(β) = 0 and
then use Theorem 1 to obtain proxBk

λ̄‖·‖1(vk). In this paper, we

solve J(β) = 0 using “SciPy” library in Python.

C. Partial Smoothing

For α ∈ (0, 1), Algorithm 3 still requires applying many
wavelet transforms, which can dominate the computational cost.
An alternative way is to use the idea proposed in [38] where one
partially smooths the objective and then applies Algorithm 1.
For comparison purposes, we apply Algorithm 1 to the following
problem

min
x∈CN

1

2
‖Ax− y‖22 + λα · Sη (‖Tx‖1)︸ ︷︷ ︸

f(x)

+ λ(1− α)TV(x)︸ ︷︷ ︸
h(x)

,

(14)

such that each outer iteration needs only two wavelet trans-
forms. For the comparisons in this paper, we used Sη(‖x‖1) =∑N

n=1

√
x2
n + η with η > 0 so that f(x) in (14) is differen-

tiable. Our numerical experiments compare the performance

2The theorem is proved in real plane but it is also valid in complex plane.

Fig. 1. Magnitude of the complex-valued ground truth images.

Fig. 2. Non-Cartesian MRI trajectories used in this paper.

Fig. 3. Cost values versus iteration (top) and CPU time (bottom) of the
brain image with regularizer h(x) = ‖Tx‖1 and λ = 5× 10−4 for a left
invertible wavelet transform T with 5 levels. Acquisition: radial trajectory with
96 projections, 512 readout points, and 12 coils.

of such a partial smoothing approach to methods based on the
original cost function for image reconstruction in CS MRI.3

IV. NUMERICAL EXPERIMENTS

This section studies the performance of our algorithm for
image reconstruction in CS MRI with non-Cartesian sampling
trajectories. Specifically, we consider the radial and spiral trajec-
tories. Moreover, we also study the robustness of our algorithm to
the choice of γ and Max_Iter in Algorithms 2 and 3, respectively.

3One could instead partially smooth the TV regularizer. However, in our
settings, we found that smoothing ‖Tx‖1 led to better qualifty than TV
smoothing.
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Fig. 4. First row: the ground truth image and PSNR values versus CPU time; second to third row: the reconstructed brain images at 3, 10, 13, and 16th iteration
with Fig. 3 setting; fourth row: the zoomed-in regions and the corresponding error maps (×5) of the 16th iteration reconstructed images.

Fig. 5. Cost values versus iteration (top) and CPU time (bottom) of the
brain image with regularizer h(x) = α‖Tx‖1 + (1− α)TV(x) and same
acquisition as Fig. 3. The parameters were λ = 6× 10−4 and α = 1

6 .

Similar to [1], we focus on wavelet and TV regularizers. We first
present our experimental and algorithmic settings and then show
our reconstruction results.

Experimental Settings: We took complex k-space data from
the brain and knee training datasets (one each) in the NYU
fastMRI dataset [39] to generate the simulated k-space data. We
applied the ESPIRiT algorithm [40] to recover the complex im-
ages and then cropped the images to size 256× 256 to define the
ground-truth images, with maximum magnitude scaled to one.
Fig. 1 shows the magnitude of the complex-valued ground-truth
images. Following [17], we used 32 interleaves, 1688 readout
points, and 12-coils (respectively, 96 radial projections, 512
readout points, and 12 coils) for the spiral (respectively, radial)
trajectory to define the forward model A. Fig. 2 presents the
used trajectories in this paper. For clarity, we plot only every 4th
sample of the trajectories. Applying the used forward model
to the ground truth image generated the noiseless multi-coil
k-space data. We added complex i.i.d Gaussian noise with mean

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 09,2024 at 04:39:24 UTC from IEEE Xplore.  Restrictions apply. 



378 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 10, 2024

Fig. 6. First row: the ground truth image and PSNR values versus CPU time; second to sixth row: the reconstructed brain images at 3, 10, 13, and 16th iteration
with Fig. 5 setting and the zoomed-in regions of the 16th iteration reconstruction. We did not show the reconstructed image of ADMM since it yielded a much
lower PSNR than other methods.
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Fig. 7. Influence of γ on the convergence of CQNPM. Test on the brain image
with wavelet and TV regularizers and radial acquisition. We set Max_Iter = 20.

Fig. 8. Influence of Max_Iter on the convergence of CQNPM. Test on the
same problem as Fig. 7 with γ = 1.7.

Fig. 9. Cost values versus iteration (top) and CPU time (bottom) of the knee
image with same regularizer as Fig. 5 but with spiral acquisition: 32 intervals,
1688 readout points, and 12 coils. The parameters λ and α were 10−3 and 1

2 .

zero and variance 10−2 to all coils to form the measurements, y.
The data input SNR was below 7 dB. We also studied a higher
data input SNR case of around 30 dB. Our implementation used
Python programming language with SigPy library [41]. The
reconstructions ran on a workstation with 2.3 GHz AMD EPYC
7402. Our code is available on https://github.com/hongtao-
argmin/CQNPCS_MRIReco. The supplementary material pro-
vides additional experimental results and a comparison with a
Plug-and-Play reconstruction method using BM3D and a deep
denoiser [42].

Algorithmic Settings: For APM, we precomputed the Lips-
chitz constant for all experiments. For CQNPM, we set ak = 1
and γ = 1.7. Denote by S-APM (respectively, S-CQNPM) when

APM (respectively, CQNPM) is used to solve (14). We chose
the step-size in S-APM using a backtracking strategy [43].
Moreover, we also compared our method with primal-dual (PD)
methods [44]. The tradeoff parameters λ and α were chosen
to reach the highest peak signal-to-noise ratio (PSNR) when
running enough iterations of APM. We set η = 10−5 in our
experiments. The maximal number of iterations and tolerance
in Algorithm 3 are set to be 20 and 10−6 for both CQNPM and
APM.

A. Radial Acquisition MRI Reconstruction

Figs. 3 and 4 show the performance of Algorithm 1 for
the wavelet based reconstruction of the brain image and the
comparison with APM [11] and PD [44]. Here, we used Theo-
rem 1 to compute the WPM. Clearly, CQNPM converged faster
than APM and PD in terms of iterations. Compared with the
cost of computing the proximal mapping, the additional cost
of computing WPM with our method is insignificant. Figs. 3
and 4 show that the computational costs of CQNPM and APM
per iteration are similar. The comparison of PSNR versus CPU
time in Fig. 4 also shows that CQNPM reached a higher PSNR
with less CPU time, illustrating the fast convergence of CQNPM.
The reconstructed images at 3, 10, 13, and 16th iteration illus-
trate that CQNPM yielded a clearer image than APM for the
same number of iterations. Since PD led to a much lower PSNR
than APM, we do not present the reconstructed images of PD.
Similar observations apply to the knee image and the related
results are provided in the supplemental material.

We also studied the performance of our algorithm when using
both wavelet and TV regularizers. Here, we used Algorithm 3 to
compute the the proximal mapping and WPM. Since ADMM
is a classical method for (2) with h(x) = α‖Tx‖1 + (1−
α)TV(x), we include a comparison with ADMM. Moreover,
we also studied the performance of the partial smoothing tech-
nique. Although PD does not require any inner iteration, unlike
ADMM, APM, and our method, our method is still faster than
PD in terms of iterations and CPU time.

Figs. 5 and 6 present the results for the reconstruction of the
brain image. CQNPM reduced the cost faster than APM in terms
of iterations and CPU time. Although we solved (14) instead
of (2) for the partial smoothing method, the cost is still com-
puted with (2). Surprisingly, in this setting, we see that, for the
cost values versus iterations, S-APM (respectively, S-CQNPM)
converged similar to APM (respectively, CQNPM) in terms of
iterations. However, from the cost values versus CPU time plot,
S-CQNPM converged faster than CQNPM, as expected since the
partial smoothing method requires only two wavelet transforms
per outer iteration. However, S-APM converged slower than
APM in terms of CPU time because S-APM requires applying a
line search to choose the step-size, increasing the computational
cost. Although CQNPM/S-CQNPM require an iterative method
to solve the WPM, Section IV-D demonstrated that the WPM
can be solved inexactly, and the computation for solving the
WPM is relatively inexpensive compared to executing Ax in
CS MRI reconstruction. Thus, CQNPM/S-CQNPM converged
faster than ADMM/PD both in terms of iteration numbers and
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Fig. 10. First row: the ground truth image and PSNR values versus CPU time; second to sixth row: the reconstructed knee images at 3, 10, 13, and 16th iteration
with Fig. 9 setting. We did not show the reconstructed image of ADMM since it yielded a much lower PSNR than other methods. The seventh and eighth rows
represent the zoomed-in regions and the corresponding error maps (×5) of the 16th itertion reconstructed images with PD → APM → S-APM → CQNPM →
S-CQNPM.

in CPU time. Note that ADMM requires solving a least-squares
problem at each iteration, which involves applying Ax multiple
times, leading to significantly slower convergence in terms of
CPU time.

The PSNR versus CPU time plot in Fig. 6 also demonstrates
the fast convergence of CQNPM and S-CQNPM. Compared
with the previous experiments that only used a wavelet regu-
larizer, we see an improved PSNR here, confirming the benefit
of using both wavelet and TV regularizers. The reconstructed

images at 3, 10, 13, and 16th iteration for each method 4

illustrate that the partial smoothing method works as well as the
nonsmoothing one. In summary, the proposed method converged
faster than other methods in terms of iterations and CPU time,
and S-CQNPM is the best algorithm for (2) in this setting. We

4We do not show the reconstructed image of ADMM since it yielded a much
lower PSNR than other methods.
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Fig. 11. First row: the ground truth image and PSNR values versus CPU time; second to sixth row: the reconstructed brain images at 3, 10, 13, and 16th iteration
with spiral acquisition and h(x) = α‖Tx‖1 + (1− α)TV(x) and the zoomed-in regions of the 16th iteration reconstruction. The parameters were λ = 4× 10−5
and α = 3

4 .

also tested our algorithm on the knee image and provided the
results in the supplementary material.

B. Spiral Acquisition MRI Reconstruction

This part studies the reconstruction with spiral acquisition that
used 32 interleaves, 1688 readout points, and 12 coils. Figs. 9
and 10 show the results of the knee image with wavelet and
TV regularizers. The trends are similar to the radial acquisition
case. Note that CQNPM reduced the cost values faster than

S-CQNPM in terms of iterations and CPU time in this setting.
However, S-CQNPM reached a higher PSNR than CQNPM with
same CPU time. We provided the reconstruction of the brain and
knee images with wavelet regularizer and the brain image with
wavelet and TV regularizers in the supplementary material.

C. The Choice of γ

We tried several different γ values to study how γ af-
fects the convergence of CQNPM. We reconstructed the brain
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image with wavelet and TV regularizers and radial acqui-
sition. Fig. 7 presents the results that show that CQNPM
is quite robust to different γ values, and γ = 1.7 worked
slightly better than the others. So we simply set γ = 1.7 for all
experiments.

D. The Choice of Max_Iter in Algorithm 3

Following the setting used in Section IV-C, we studied how
the choice of Max_Iter in Algorithm 3 affects the converge
of CQNPM. Fig. 8 presents the cost values versus iteration
with different values of Max_Iter. Clearly we see that CQNPM
is quite robust to the choice of Max_Iter. However, a small
Max_Iter (e.g., Max_Iter = 10) can slightly increase the cost
and Max_Iter = 20, 50 converged faster than other vaules. In
our experiments, we found that Max_Iter= 20 is sufficient.

E. Reconstruction With High Data Input SNR

This part studies the reconstruction for complex additive
Gaussian noise with mean zero and lower variance 4× 10−5,
yielding around 30 dB data input SNR. Fig. 11 displays
the reconstructed results using spiral acquisition and h(x) =
α‖Tx‖1 + (1− α)TV(x). The reconstructed images are much
clearer than those in the low data input SNR cases. Moreover,
the convergence trends of different algorithms are similar to
those observed in low data input SNR reconstructions. The
supplementary material provides the reconstructed results of the
knee image that align with the observations made from the brain
image presented here.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes complex quasi-Newton proximal meth-
ods for solving (2) that led to faster convergence than APMs. By
using the structure of Bk, we develop efficient approaches for
computing the WPM by considering wavelet and TV regulariz-
ers. Compared with computing the proximal mapping in APMs,
i.e., Bk = IN , the increased computational cost in computing
the WPM is insignificant, as illustrated by our comparisons
in terms of CPU time. CQNPM is appealing for large-scale
problems because CQNPM requires fewer iterations than APMs
to converge, reducing the times of computing ∇f(x) that it is
expensive in large-scale settings. Interestingly, in our setting,
we found the partial smoothing method worked pretty well when
both wavelet and TV regularizers are used. So the partial smooth-
ing approach may be a good method for solving problems with
two nonsmooth terms. To adapt CQNPM to other regularizers,
one must find an efficient approach to address the WPM for the
chosen regularizer to preserve the computational efficiency.

Clearly, Bk plays an important role in our algorithm and a
more accurate Bk can accelerate the convergence further. Since
the Hessian matrix in CS MRI is known, i.e., AHA, we plan to
learn a fixed weighting B to approximate AHA accurately for
future work. However,B must be easy to invert so thatB should
have some special structures, e.g., B = D ±UUH, and finding
such a B should be computationally cheap since A is different
from each acquisition because the sensitivity mapping is patient

dependent. Moreover, with such a fixed B, we can adopt the
accelerated manner used in APMs for Algorithm 1 and obtain
an even faster algorithm than the one presented here.

APPENDIX A
PROOF OF PROPOSITION 1

Similar to [12] for the real case, one can prove the following
relations for complex numbers x, y ∈ C√
|x|2 + |y|2 = max

p1,p2∈C
{� (p∗1x+ p∗2y) : |p1|2 + |p2|2 ≤ 1

}
|x| = max

p∈C
{� (p∗x) : |p| ≤ 1}

where ∗ denotes the conjugate operator and �(·) represents
an operator to take the real part. With these relations and the
definition of TV functions, we can rewrite TV(x) and ‖Tx‖1
as

TV(x) = max
(P ,Q)∈P

�
{
vec (L (P ,Q))H x

}
,

‖Tx‖1 = max
z∈Z
�{

zHTx
}
,

where P = P1 (respectively, P2) for TViso (respectively, TV�1 ).
Hence, we represent (8) as

min
x∈CN

max
z∈Z

(P ,Q)∈P

‖x− vk‖2Bk
+ 2λ̄g(x, z,P ,Q), (15)

where

g(x, z,P ,Q)=�
{
α 〈Tx, z〉+ (1− α)vec (L (P ,Q))H x

}
.

Reorganizing (15), we get

min
x∈CN

max
z∈Z,

(P ,Q)∈P

‖x−wk(z,P ,Q)‖2Bk
− ‖wk(z,P ,Q)‖2Bk

,

(16)

where

wk(z,P ,Q)=vk − λ̄B−1k

(
αT Hz+(1− α)vec (L(P ,Q))

)
.

Since (16) is convex in x and concave in (z,P ,Q), we inter-
change the minimum and maximum and then get

max
z∈Z

(P ,Q)∈P

min
x∈CN

‖x−wk(z,P ,Q)‖2Bk
− ‖wk(z,P ,Q)‖2Bk

.

(17)

Note that x only appears in the first term of (17) so that the
optimal solution of the minimum part is

x∗ = wk(z,P ,Q). (18)

Substituting (18) into (17), we get the following dual problem
that contains only unknown dual variables (z,P ,Q)

(z∗,P ∗,Q∗) = argmin
z∈Z,

(P ,Q)∈P

‖wk(z,P ,Q)‖2Bk
. (19)

After solving (19), the primal variable update is xk+1 =
wk(z

∗,P ∗,Q∗). This completes the proof.
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APPENDIX B
PROOF OF LEMMA 1

Denote by h(z,P ,Q) � ‖wk(z,P ,Q)‖2Bk
. Applying the

chain rule, we get

∇h(z,P ,Q) = −2λ̄
[

αT

(1− α)LT

]
wk(z,P ,Q).

Now, we compute the Lipschitz constant of h(z,P ,Q). For
every two pairs of (z1,P1,Q1) and (z2,P2,Q2), we have

‖∇h(z1,P1,Q1)−∇h(z2,P2,Q2)‖

= 2λ̄2

∥∥∥∥
[

αT

(1− α)LT

]
B−1k

[
αT H (1− α)L

]

[(z1,P1,Q1)− (z2,P2,Q2)]

∥∥∥∥
≤ 2λ̄2

∥∥∥α2T HT + (1− α)2LTL
∥∥∥∥∥∥B−1k

∥∥∥
∥∥∥ [(z1,P1,Q1)− (z2,P2,Q2)]

∥∥∥
≤ 2λ̄2(α2‖T ‖2 + (1− α)2‖L‖2)σmin

‖[(z1,P1,Q1)− (z2,P2,Q2)]‖ ,
where σmin is the smallest eigenvalue of Bk. With the proof
of [12, Lemma 4.2], we know ‖L‖ = √8 such that the Lip-
schitz constant of h(z,P ,Q) is Lc = 2σminλ̄

2(α2‖T ‖2 +
8(1− α)2). This completes the proof.
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