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Transform (NUFFT)
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Abstract—There is growing interest in learning Fourier domain
sampling strategies (particularly for magnetic resonance imaging,
MRI) using optimization approaches. For non-Cartesian sampling,
the system models typically involve non-uniform fast Fourier trans-
form (NUFFT) operations. Commonly used NUFFT algorithms
contain frequency domain interpolation, which is not differentiable
with respect to the sampling pattern, complicating the use of
gradient methods. This paper describes an efficient and accurate
approach for computing approximate gradients involving NUFFTs.
Multiple numerical experiments validate the improved accuracy
and efficiency of the proposed approximation. As an application
to computational imaging, the NUFFT Jacobians were used to
optimize non-Cartesian MRI sampling trajectories via data-driven
stochastic optimization. Specifically, the sampling patterns were
learned with respect to various model-based image reconstruction
(MBIR) algorithms. The proposed approach enables sampling op-
timization for image sizes that are infeasible with standard auto-
differentiation methods due to memory limits. The synergistic ac-
quisition and reconstruction design leads to remarkably improved
image quality. In fact, we show that model-based image recon-
struction methods with suitably optimized imaging parameters can
perform nearly as well as CNN-based methods.

Index Terms—NUFFT, auto-differentiation, MRI k-space
trajectory, accelerated MRI, data-driven optimization, machine
learning.

I. INTRODUCTION

THERE are several computational imaging modalities
where the raw measurements can be modeled as samples of

the imaged object’s spectrum, where those samples need not lie
on the Cartesian grid, including radar [1], diffraction ultrasound
tomography [2], parallel-beam tomography [3], and MRI [4],
[5]. Image reconstruction methods for such modalities may
use non-uniform fast Fourier transform (NUFFT) operations to
accelerate computation [6], [7]. The quality of the reconstructed
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image depends both on the image reconstruction method and on
the characteristics of the frequency domain sampling pattern.

MRI has particular flexibility in designing frequency domain
sampling patterns. Many MR sampling patterns are discrete
subsets of the Cartesian grid, and the corresponding optimiza-
tion/learning strategies include greedy algorithms [8], [9], [10],
reparameterization [11], [12], [13], [14], [15], Bayesian opti-
mization [16], [17], and system matrix analysis [18], [19], [20],
[21]. The other type is non-Cartesian sampling, which uses a
collection of continuous functions in k-space. Several studies
applied gradient methods to optimize non-Cartesian sampling
trajectories [22], [23], [24], [25], and it is also possible to use
derivative-free optimization algorithms in certain applications
[26]. This paper develops efficient tools for applying gradient
methods to non-Cartesian sampling pattern optimization.

Some data-driven optimization methods for non-Cartesian
sampling solve an optimization problem involving both for-
ward system models and image reconstruction methods [22],
[23], [24]. The forward models and reconstruction methods
both depend on NUFFT operations. In principle, the Fourier
transform operation is a continuous function of the k-space
sample locations and thus should be applicable to gradient-based
optimization methods. In practice, the NUFFT operations is an
approximation to the non-uniform discrete Fourier transform
(NUDFT, operations) and that approximation often is imple-
mented using non-differentiable lookup table operations or other
interpolation techniques [27], [28]. Such approximations are suf-
ficient for image reconstruction (forward mode), but have prob-
lematic efficiency and accuracy if one attempts to use standard
auto-differentiation tools for gradient-based optimization. Stan-
dard auto-differentiation methods using subgradients can lead
to incorrect NUFFT Jacobians. They also require prohibitively
large amounts of memory for back-propagation through certain
algorithm stages such as conjugate gradient (CG) steps that
involve NUFFT operations.

This paper proposes an efficient approach that replaces
memory-intensive and inaccurate auto-differentiation steps with
fast Jacobian approximations that are themselves based on
NUFFT operations. The proposed approach requires substan-
tially less memory for iterative updates like CG steps.

As a direct application, we used the proposed Jacobian to learn
MRI sampling trajectories via stochastic optimization. By ap-
plying the forward system model and subsequent reconstruction,
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reconstructed images were simulated from reference images in
the training set. The similarity between simulated and reference
images was the metric for updating the sampling trajectory. We
used model-based reconstruction methods, such as regularized
least-squares and compressed sensing. In comparison with pre-
vious works using reconstruction neural networks (NN) [22],
[24], such model-based reconstruction methods can be more
robust and require less training data.

In addition to simple NUFFT-based sensing matrices, we also
considered several scenarios in MR sampling and reconstruc-
tion, including the multi-coil (sensitivity-encoded) imaging [29]
system models that account forB0 field inhomogeneity [30]. The
derivation also includes fast Jacobian approximations for Gram
and “data consistency” operations commonly used in iterative
reconstruction methods.

Jacobians with respect to the non-Cartesian sampling pattern
are also relevant for tomographic image reconstruction problems
with unknown view angles (like cryo-EM) where the view angles
must be estimated [31].

The remainder of this paper is organized as follows. Section II
derives the efficient Jacobian approximations. Section III details
how to optimize MRI sampling patterns using learning-based
methods. Section IV provides empirical validation of the ap-
proach, showing the efficacy and accuracy of the proposed ap-
proach. The appendix includes an error analysis of the proposed
method.

The methods in this paper were used to assist the design of
k-space sampling for a CNN-based reconstruction approach in
our previous work [24]. This paper derives the theory in detail
and considers k-space sampling optimization for general model-
based reconstruction methods. Preliminary results were shown
in an earlier short conference abstract [32].

II. JACOBIAN EXPRESSIONS

This section derives the key Jacobian expressions and their
efficient approximations based on NUFFT operations. These
approximations enable the applications that follow.

A. Lemmas

We denote matrices, vectors and scalars by A, a and a,
respectively. A′, AT and A∗ denote the Hermitian transpose,
the transpose and the complex conjugate of A, respectively.

Consider a scalar function f(z), z = x+ yı ∈ C, x, y ∈ R.
Following the conventions in Wirtinger calculus [33, p. 67], the
differential operators are defined as

∂

∂z
=

1

2

∂

∂x
− ı

2

∂

∂y
,

∂

∂z∗
=

1

2

∂

∂x
+

ı

2

∂

∂y
.

A function f is complex differentiable or holomorphic iff ∂f
∂z∗ =

0 (Cauchy–Riemann equation) [33, p. 66]. In the context of
optimization, a cost function L (usually a real scalar) is not
holomorphic w.r.t. complex variables. A common approach
(as adopted by PyTorch and TensorFlow) regards the real and
imaginary components of a complex variable as two real-valued
variables, and updates them separately, similar to the real-valued
calculus [34]. For example, the nth gradient descent step uses

the update

zn+1 = zn − α

(
∂L

∂x
+ ı

∂L

∂y

)
= zn − 2α

∂L

∂z∗ ,

where α ∈ R+ denotes the step size. The chain rule still applies
to calculating ∂L

∂z∗ [35] [33, p. 68]; for s = f(z):

∂L

∂z∗ =

(
∂L

∂s∗

)∗
∂s

∂z∗ +
∂L

∂s∗

(
∂s

∂z

)∗
. (1)

For Jacobian matrices, we follow the “numerator-layout” no-
tation [36]. For example, the derivative of an m-element column
vector y w.r.t. an n-element vector x is an m× n matrix:

∂y

∂x
�

⎡
⎢⎢⎢⎢⎣

∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xn
∂y2

∂x1

∂y2

∂x2
· · · ∂y2

∂xn

...
...

. . .
...

∂ym

∂x1

∂ym

∂x2
· · · ∂ym

∂xn

⎤
⎥⎥⎥⎥⎦ . (2)

However, this convention does not handle scenarios such as the
derivatives of the elements of one matrix w.r.t. the elements of
another matrix. Thus, we adopt a natural extension by using the
vec (vectorization) operation. Specifically, for a M ×N matrix
A that is a function of aP ×QmatrixB, we write the derivative
as a MN × PQ matrix by applying (2) to the vectorization of
each matrix

DB A = DB A(B) � ∂ vec(A)

∂ vec(B)
. (3)

The following equalities are useful in our derivations. (Equal-
ities involving products all assume the sizes are compatible.) For
A ∈ C

K×L, B ∈ C
L×M , C ∈ C

M×N :

vec(ABC) = (IN ⊗AB) vec(C)

= (CTBT ⊗ IK) vec(A). (P1)

In general:

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (P2)

For A ∈ C
K×L, B ∈ C

M×N :

A⊗B=(IK ⊗B)(A⊗ IN )=(A⊗ IM )(IL ⊗B). (P3)

For A ∈ C
M×N , x ∈ C

N :

DA (Ax) = xT ⊗ IM , DA∗ (Ax) = 0 (P4).

For an invertible matrix A:

A ∈ C
N×N ⇒ DA A−1 = −(AT )−1 ⊗A−1,

DA∗ A−1 = 0. (P5)

The chain rule still holds for the extended Jacobian formulation.
Suppose F : CK×L → C

M×N and G : CM×N → C
P×Q are

both holomorphic. For X ∈ C
K×L, the Jacobian of the com-

posite function is:

DX G(F (X))︸ ︷︷ ︸
PQ×KL

= DY G(Y )|Y =F (X)︸ ︷︷ ︸
PQ×MN

DX F (X)︸ ︷︷ ︸
MN×KL

DX∗ G(F (X)) = 0. (P6)
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Equalities (P1)–(P3) are common matrix vectorization proper-
ties. See [37, Ch. 9] for (P4), [35] for (P5) and (P6).

B. System Model

Consider the (single-coil, initially) MRI measurement model
for non-Cartesian sampling based on the NUDFT [5]:

y = Ax+ ε,

where y ∈ C
M denotes the measured k-space data, x ∈ C

N de-
notes the unknown image to be reconstructed, and A ∈ C

M×N

denotes the system matrix or encoding matrix, whereA = A(ω)
has elements

aij = e−ı�ωi·�rj , i = 1, . . . ,M, j = 1, . . . , N (4)

for �ωi ∈ RD and �rj ∈ RD where D ∈ {1, 2, 3 . . .} denotes the
image dimension, and where

ω = [ω[1] ω[2] . . .ω[D]]

is the M ×D matrix consisting of all the k-space sampling
locations andω[d] ∈ RM denotes its dth column. (For simplicity
here, we ignore other physical effects like field inhomogeneity
and relaxation that are sometimes included in the forward model
in MRI [5].) The center locations of voxels {�rj} usually lie on a
Cartesian grid, but the k-space sample locations ω in principle
can be arbitrary subject to the Nyquist constraint.

Typically A is approximated by a NUFFT [6]. Usually, the
NUFFT operator involves frequency-domain interpolation op-
erations that are often non-differentiable. One previous trajec-
tory optimization approach that used auto-differentiation [22]
replaced the non-differentiable lookup table with a bilinear
interpolator. Bilinear interpolation is differentiable everywhere
except at the sample locations. Auto-differentiation of bilinear
interpolation involves differentiating some floor and ceil-
ing operations and those derivatives are defined to be zero
in popular deep learning frameworks such as PyTorch and
TensorFlow, leading to suboptimal sub-gradient calculations.
Nearest-neighbor interpolation has even worse properties for
auto-differentiation because its derivative is zero almost every-
where, leading to a completely vanishing gradient.

In the following derivations, we investigate a different ap-
proach where we analyze the Jacobians w.r.t. ω and x using
the NUDFT expression (4). Then for efficient implementation,
we replace the NUDFT operations within the Jacobians with
NUFFT approximations. This approach enables faster compu-
tation and requires substantially less memory.

C. Forward Operator

We first focus on the forward operationA(ω)x and determine
Jacobian matrices with respect tox andω. TheM ×N Jacobian
matrix of the forward linear operation with respect to x is

∂Ax

∂x
= A,

∂Ax

∂x∗ = 0.

For the dth column of the spectrum sampling pattern ω, the
Jacobian has elements[

∂Ax

∂ω[d]

]
il

=
∂[Ax]i

∂ω
[d]
l

=
∂

∂ω
[d]
l

N∑
j=1

e−ı�ωi·�rjxj

=

{
−ı
∑N

j=1 e
−ı�ωi·�rjxjr

[d]
j , i = l

0, otherwise,

for i, l = 1, . . . ,M . The above summation is the product of the
ith row of−ıAwithx� r[d]. Thus theM ×M Jacobian matrix
for the partial derivatives of Ax w.r.t. ω[d] is:

∂Ax

∂ω[d]
= −ı diag

{
A(x� r[d])

}
. (5)

Consequently, the Jacobian calculation should applyA to vector
x� r[d] once. In the above derivation, A is a NUDFT operator.
In the practical implementation, we use a NUFFT to approximate
A, both for the forward model and for the Jacobian calculation.

D. Adjoint Operator

Derivations of the Jacobians for the adjoint operationA′(ω)y
follow a similar approach. For y:

∂A′y
∂y

= A′,
∂A′y
∂y∗ = 0.

For the dth column of ω, the N ×M Jacobian matrix has
elements:[

∂A′y
∂ω[d]

]
jl

=
∂[A′y]j
∂ω

[d]
l

=
∂
∑M

i=1 e
ı�ωi·�rjyi

∂ω
[d]
l

= ıeı�ωi·�rjyir
[d]
j .

Thus the Jacobian matrix is

∂A′y
∂ω[d]

= ı diag
{
r[d]
}
A′diag{y} . (6)

E. Gram Matrix

The product A′(ω)A(ω)x of the Gram matrix of the
NUDFT with a vector also arises in optimization steps and
requires appropriate Jacobian matrices. For x:

∂A′Ax

∂x
= A′A,

∂A′Ax

∂x∗ = 0.

The (k, j)th element of the N ×N matrix containing the partial
derivatives of the Gram matrix w.r.t. ω[d]

l is[
∂A′A

∂ω
[d]
l

]
k,j

=
∂

∂ω
[d]
l

M∑
i=1

e−ı�ωi·(�rj−�rk)

= −ı (r
[d]
j − r

[d]
k ) e−ı�ωl·(�rj−�rk)

= −ı (r
[d]
j − r

[d]
k ) a∗lkalj . (7)

In matrix form:

∂A′A

∂ω
[d]
l

= ı diag
{
r[d]
}
A′ele′lA− ıA′ele′lAdiag

{
r[d]
}
.

(8)
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When multiplying the Jacobian with a vector x:

∂A′A

∂ω
[d]
l

x = ı diag
{
r[d]
}
al(a

′
lx)− ıala

′
ldiag

{
r[d]
}
x

= ı (a′
lx)(r

[d] � al)− ı(a′
l(x� r[d]))al, (9)

where al = A′el denotes the lth column of A′.
Consider the extended Jacobian expression:

D
ω

[d]
l

A′A = vec

(
∂A′A

∂ω
[d]
l

)
.

Multiplying by x yields:

∂A′A

∂ω
[d]
l

x = vec

(
∂A′A

∂ω
[d]
l

x

)

= (xT ⊗ IN ) vec

(
∂A′A

∂ω
[d]
l

)
(use P1)

= (xT ⊗ IN )
(
D

ω
[d]
l

A′A
)

= (DA′A A′Ax)
(
D

ω
[d]
l

A′A
)

(use P4)

= D
ω

[d]
l

A′Ax. (use P6)

Concatenating (9) by columns leads to the matrix[
∂A′A

∂ω
[d]
1

. . .
∂A′A

∂ω
[d]
M

]
x = −ıA′diag

{
A(x� r[d])

}
+ ı diag

{
r[d]
}
A′diag{Ax} . (10)

Alternatively, we can express the extended Jacobian as[
∂A′A

∂ω
[d]
1

. . .
∂A′A

∂ω
[d]
M

]
x

= (xT ⊗ In) (Dω[d] A′A)

= (DA′A A′Ax) (Dω[d] A′A)

= Dω[d] A′Ax. (11)

Again we use NUFFT operations to efficiently approximate (11).

F. Inverse of Positive Semidefinite (PSD) Matrix

Image reconstruction methods based on algorithms like the
augmented Lagrangian approach [38] use “data consistency”
steps [39], [40], [41] that often involve least-squares problems
with solutions in the following form:

(A′A+ λI)−1x,

for some vector x ∈ CN , or

(A′A+ λT ′T )−1x, (12)

where T denotes a linear regularization operator that is inde-
pendent of ω. In both cases, λ > 0 and the null spaces of T
and A are disjoint, so the Hessian matrix is invertible. A few
iterations of a CG method usually suffices to efficiently compute

the approximate product of such a matrix inverse with a vector.
The direct inverse is impractical for large-scale problems like
MRI. Following [39], we treat CG as solving the above equations
accurately, in order that we can derive efficient approximations
as follows. Otherwise, attempting to auto-differentiate through
a finite number of CG iterations would require large amounts of
memory. Here we derive the corresponding Jacobian matrices
for the exact inverse to (12) and then apply fast approximations.
For x, the N ×N Jacobian is

∂(A′A+ λT ′T )−1x

∂x
= (A′A+ λT ′T )−1,

∂(A′A+ λT ′T )−1x

∂x∗ = 0.

We can still use CG (with NUFFT) to efficiently multiply this
Jacobian by a vector, albeit approximately.

To consider the Jacobian w.r.t. the sampling pattern ω[d],
define z = (A′A+ λT ′T )−1x andF = A′A+ λT ′T . We as-
sume thatA andT have disjoint null spaces, so thatF is positive
definite and hence invertible. Applying equalities derived above
leads to the following expression for the M ×N Jacobian:

Dω[d] F−1x

=
(DF F−1x

)
(Dω[d] F ) use P6

= −(xT ⊗ I)((F T )−1 ⊗ F−1) (Dω[d] F ) use P5

= − ((xT (F T )−1)⊗ F−1
)
(Dω[d] F ) use P2

= −F−1(xT (F T )−1 ⊗ I) (Dω[d] F ) use P3

= −F−1 (Dω[d] Fz) use P4

= −(A′A+ λT ′T )−1
(
− ıA′diag

{
A(z � r[d])

}
+ ı diag

{
r[d]
}
A′diag{Az}

)
use (11). (13)

We apply this Jacobian to a vector by using four NUFFT
operations followed by running CG to approximate the product
of F−1 times a vector. Notably, the memory cost of (13) is
constant w.r.t the number of iterations, whereas the standard
auto-differentiation approach has linear memory cost. Using the
proposed method, one may apply enough iterations to ensure
convergence to a desired tolerance. This new fast and low-
memory Jacobian approximation is particularly important for
the MRI applications shown in the following sections. Without
this approximation, memory cost can be prohibitively large.

G. Sensitivity Maps

In multi-coil (parallel) acquisition, the MRI system model
contains another linear operator

S =

⎡
⎢⎢⎣
S1

...

SNc

⎤
⎥⎥⎦ ,
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where Si = diag{si} denotes a diagonal matrix containing the
receiver coil sensitivity map [29]. The total number of receiver
channels is Nc. The system matrix (E) for MRI in this case
becomes (INc

⊗A)S. Because of the special block-diagonal
structure of S, all the Jacobian matrices in previous sections
still hold by simply replacing A with E.

The Jacobian derivations are as follows. For the forward
operator (Section II-C), one can show

∂Ex

∂ω[d]
=

∂

⎡
⎢⎢⎣
AS1x

...

ASNc
x

⎤
⎥⎥⎦

∂ω[d]
=

⎡
⎢⎢⎣
−ı diag

{
A(s1 � x� r[d])

}
...

−ı diag
{
A(sNc

� x� r[d])
}
⎤
⎥⎥⎦

= ı diag
{
(INc

⊗A)S(x� r[d])
}

= ı diag
{
E(x� r[d])

}
.

The adjoint operator (Section II-D) follows the same proof and
produces

∂E′y
∂ω[d]

= ı diag
{
r[d]
}
E′diag{y} .

For the gram operator (Section II-E) we have

∂E′Ex

∂ω[d]
=
∑
i

∂S′
iA

′ASix

∂ω[d]
=
∑
i

S′
i

∂A′ASix

∂ω[d]

=
∑
i

−ıS′
iA

′diag
{
A(Sx� r[d])

}

+ ıS′
idiag

{
r[d]
}
A′diag{ASix}

=
∑
i

−ıS′
iA

′diag
{
A(Sx� r[d])

}

+ ı diag
{
r[d]
}
S′

iA
′diag{ASix}

= − ıE′diag
{
E(x� r[d])

}
+ ı diag

{
r[d]
}
E′diag{Ex} . (14)

For the inverse of the PSD matrix (Section II-F), let G =
E′E + λT ′T and z = G−1x (in the usual case where the
regularizer matrix T is designed such that G is invertible).
Combining (13) and (14) produces:

∂ (E′E + λT ′T )−1 x

∂ω[d]

= −G−1 (xT (GT )−1 ⊗ I)Dω[d] G

= −(E′E + λT ′T )−1
(
− ıE′diag

{
E(z � r[d])

}
+ ı diag

{
r[d]
}
E′diag{Ez}

)
.

Again, we apply this Jacobian matrix to a vector by combining
NUFFTs and CG.

H. Field Inhomogeneity

For MRI scans with long readouts, one should also consider
the effects of off-resonance (e.g., B0 field inhomogeneity), in
which case the system matrix elements are given by [5]

aij = e−ı�ωi·�rj e−ıwjti ,

where wj denotes the field map value at the jth voxel and ti is
the time of the ith readout sample.

This form is no longer a Fourier transform operation, but there
are fast and accurate approximations [42] that enable the use
of NUFFT steps and avoid the very slow O(N2) matrix-vector
multiplication. Such approximations of system matrixE usually
have the form:

Ef ≈
L∑

l=1

diag{bil}A(ω) diag{clj} ,

where A denotes the usual (possibly non-uniform) DFT that is
usually approximated by a NUFFT, bil ∈ C

M , and bil ∈ C
N . It

is relatively straightforward to generalize the Jacobian expres-
sions in this paper to handle the case of field inhomogeneity, by
simply replacing A with Ef , similar to the sensitivity map case.

III. OPTIMIZING SAMPLING PATTERNS

For modern MRI systems, the sampling trajectory ω is a
programmable parameter. Traditionallyω is a geometrical curve
controlled by few parameters (such as radial spokes or spiral
leaves), and its tuning relies on derivative-free optimizers such
as grid-search. In this paper, we optimize ω by minimizing
a training loss function from image reconstruction, where the
descent direction of ω is the negative gradient of that loss
[22], [24]. We adopt such a “reconstruction loss” because the
terminal goal of sampling pattern optimization is to improve
image quality. To learn from large datasets, the optimization uses
stochastic gradient descent (SGD)-like algorithms. Additionally,
the loss function may include other terms, such as a penalty
on the maximum gradient strength and slew rate [22], [24] or
peripheral nerve stimulation effects [43].

For image reconstruction, consider a convex and smooth regu-
larizerR(·) for simplicity. Since the noise statistics are Gaussian,
a typical regularized cost function used for model-based image
reconstruction is [5]

Ψ(x) =
1

2
‖Ax− y‖22 + R(x). (15)

During training, the observation y can be retrospectively simu-
lated using y = A(ω)xtrue. For illustration, consider applying
the kth step of gradient descent (GD) to that cost function:

xk+1 = xk − α∇Ψ(xk)

= xk − αA(ω)′ (A(ω)xk − y)− α∇R(xk),

where xk ∈ C
N , α ∈ R+ is the step size. After K iterations, we

have a reconstructed image (batch) xK = xK(ω) = f(ω,y),
where the reconstruction method f(ω,y) is a function of both
the data y and the sampling pattern ω. To learn/update the
sampling pattern ω, consider a simple loss function for a single
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training example:

L(ω) =
∥∥xK(ω)− xtrue

∥∥2
2

(16)

where xtrue is the reference fully-sampled image (batch). Learn-
ing ω via backpropagation (or chain-rule) requires differenti-
ating L w.r.t. the sampling pattern ω, which in turn involves
Jacobians of quantities like A(ω) that we derived above.

Here we use the forward operator (Section II-C) as an example
to illustrate one step in propagation. As needed in a backprop-
agation step (Jacobian-vector product, JVP), the Jacobian (5) is
multiplied with a gradient vector v = ∂L

∂(Ax)∗ ∈ C
M calculated

in the prior step. Using (1), the corresponding JVP is

∂L

∂ω
= real

{
(−ı A(x� r[d]))′ � v

}
. (17)

Efficiently computation can simply apply a NUFFT operation
to x� r[d], followed by a point-wise multiplication with v. The
Gram and PSD inverse (“data consistency”) term in Section II-E
and Section II-F follow a similar pattern during backpropaga-
tion. See our open-source codes 1 for implementation details.

Although we illustrate the GD algorithm with a simple smooth
regularizer, more generally, the reconstruction method f(ω,y)
can involve more sophisticated regularizers such as neural net-
works [22], [24] or non-smooth sparsity models [44] used in
compressed sensing. In such cases, backpropagation uses sub-
gradients, instead of gradients, as is common in stochastic op-
timization. The loss JVPs are backpropagated through iterative
reconstruction steps to compute a gradient w.r.t. ω.

The proposed approach is applicable only to non-Cartesian
MRI, because Cartesian sampling pattern design is usually a dis-
crete optimization problem, incompatible with gradient-based
methods. However, one could optimize phase-encoding loca-
tions continuously (in 2D or 3D) with the frequency-encoding
direction being fully sampled, which is a hybrid Cartesian /
non-Cartesian approach [23].

IV. EXPERIMENTS

This section validates the accuracy and efficiency of the
proposed methods. It also showcases the application to MRI
sampling trajectory optimization.

A. Accuracy and Efficiency

The appendix discusses error bounds for the Jacobian approx-
imations of Section II-C and Section II-D.

We performed numerical experiments to examine the follow-
ing test cases:

∂ ‖f(x)‖22
∂ω[d]

and
∂ ‖f(x)‖22

∂x∗ ,

where f(·) denotes multiplication by A, by the Gram matrix
A′A, or by the ‘inverse of PSD matrix’ (Section II-F) of
sensitivity-informed NUFFTs (Section II-G). The Gram and
inverse experiments implicitly test the adjoint operator’s ap-
proximations. The x adopted is a 40× 40 patch cropped from

1https://github.com/guanhuaw/Bjork

TABLE I
COMPUTATION TIME OF THE TEST CASE

TABLE II
MEMORY USE OF THE TEST CASE

the center of a Shepp–Logan phantom with random additional
phases uniformly distributed in [−π, π]. S is a simulated 8-
channel sensitivity map, and ω is one radial spoke crossing
the k-space center. The Jacobian calculation methods are: (1)
auto-differentiation of NUFFT; the lookup table operation [27] is
replaced by bilinear interpolation to enable auto-differentiation,
similar to [22], (2) our approximation described above, (3)
auto-differentiation of exact non-uniform discrete Fourier trans-
form (NUDFT), implemented with single precision. We regard
method 3 (NUDFT) as the ground truth. Since NUDFT (in its
simplest form) involves only one exponential function, mul-
tiplication and addition for each element, its backpropagation
introduces minimal numerical errors. For the PSD inverse, we
applied 20 CG iterations for all three methods, which was
sufficiently close to convergence based on the residual norm
‖r‖/‖b‖ (the definition follows [45, (45)]).

Figs. 1 and 2 illustrate representative profiles of the gradients
w.r.t. x and ω. For ω, the auto-differentiation (method 1) ap-
proach has larger deviations from method 3 (NUDFT) because
of the non-differentiability of interpolation operations w.r.t. co-
ordinates. For the gradient w.r.t. x, both method 1 and method 2
generate accurate results for forward and Gram operators. The
reason is that in method 1 (auto-diff), the interpolation operation
w.r.t x is linear, hence accurately differentiable. For the PSD
inverse, method 1 led to a slightly inaccurate gradient, stemming
from the accumulated errors of backpropagating CG iterations.

Tables I and II compare the time and memory cost
of methods 1 (auto-diff) and 2 (proposed). The CPU is
Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz and the
GPU is an Nvidia(R) RTX2080Ti. We used PyTorch 1.9.1
and torchkbnufft 1.1.0. The memory usage was tracked
by torch.cuda.max_memory_allocated on Nvidia
GPUs. We implemented the numerical experiments with
torchkbnufft2 [46] and MIRTorch3 toolboxes.

2https://github.com/mmuckley/torchkbnufft
3https://github.com/guanhuaw/MIRTorch
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Fig. 1. Examples of gradients w.r.t. x∗ (the real part is plotted). Plots show
one representative row of a 40× 40 matrix (rescaled to [−1, 1]). The rows
are the forward, Gram, and PSD inverse operator cases. The horizontal axis is
the pixel index. The legend reports the normalized root-mean-square difference
(NRMSD) compared with the reference NUDFT calculation.

Our method is much faster than auto-differentiation on both
GPUs and CPUs, and uses less memory. Importantly, the
PSD inverse Jacobian is impractical for the 3D case, whereas
the proposed approach fit comfortably in GPU’s onboard
memory.

Fig. 2. Examples of gradients w.r.t. ω. Plots show one spoke of 80 points
(rescaled to [−1, 1]). The rows are the forward, Gram, and PSD inverse operator
cases. The proposed approximation better matches the gradient of the NUDFT.
The legend reports the normalized root-mean-square difference (NRMSD) com-
pared with the reference NUDFT calculation. The proposed approach has at least
400× smaller NRMSD for this nonlinear case.

B. MRI Trajectory Optimization

This experiment optimized the MRI sampling trajectory using
the proposed Jacobian approximations and stochastic optimiza-
tion. The reconstruction methods (15) here consider two types
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Fig. 3. Optimized sampling trajectories for several iterative reconstruction methods. The left column shows the uniform radial initialization. The second row
shows the 8× zoomed-in central k-space.

Fig. 4. Examples of the reconstructed images with unoptimized (left) and optimized trajectories (right). Rows 3 and 5 show corresponding error maps.

of algorithms, namely smooth (regularized) least-squares recon-
struction and sparsity-based reconstruction.

The smooth reconstruction method uses the cost function

Ψ(x) =
1

2
‖E(ω)x− y‖22 +

λ

2
‖Tx‖22,

whereT is a finite-difference operator encouraging smoothness.
Correspondingly, the reconstructed image is:

xK = (E′E + λT ′T )−1E′y,

which we solved using CG. The following sections refer to
this method as quadratic penalized least-squares (QPLS).
We also implemented a simpler case, where T = I , which
is referred as CG-SENSE [47]. In both scenarios, we set λ

to 10−3 empirically and still applied 20 CG iterations. The
initialization of CG used the density compensated reconstruction
[48].

The sparsity-based compressed sensing (CS) algorithm
adopts a wavelets-based sparsity penalty, and has the following
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objective function

Ψ(x) =
1

2
‖E(ω)x− y‖22 + λ‖Wx‖1,

where W is an orthogonal DWT matrix and we set λ = 10−5

empirically. We used 40 iterations of the proximal optimized
gradient method (POGM) [49], [50] to solve this non-smooth
optimization problem.

For the purpose of comparing trajectories and image quality,
we also applied the proposed approximations to an unrolled
neural network (UNN) reconstruction method that followed the
definition of [39] ([24] extends it to non-Cartesian cases.) We
used the same network configuration as in [24].

To optimize the k-space trajectory for each of these recon-
struction methods, the training loss (16) is:

L(ω) =
∥∥xK(ω)− xtrue

∥∥2
2

+ μ1φγΔtgmax
(|D1ω|) + μ2φγΔt2smax

(|D2ω|),

where xtrue is the conjugate phase reconstruction of fully sam-
pled Cartesian data [51]. The second and third terms applied
a soft constraint on gradient strength and slew rate according
to [24, Eqn. (2)], where φλ(|x|) =

∑
max(|x| − λ, 0). The

maximum gradient strength (gmax) was 5 Gauss/cm and the max-
imum slew rate (smax) was 15 Gauss/cm/ms. μ1 = μ2 = 10.
We estimated sensitivity maps in E using ESPIRiT [52], and
simulated noiseless raw signals y = E(ω)xtrue retrospectively
w.r.t. candidate trajectories. The training used the fastMRI brain
dataset [53] containing 15902 T1w slices, 16020 T2w slices,
and 3311 FLAIR slices cropped to size 320× 320. The number
of coils ranges from 2 to 28. We used the Adam optimizer
[54], with step size 10−4 and mini-batch size 12. We used 6
epochs for training model-based methods (CG-SENSE, QPLS
and CS) and 60 epochs for the UNN training. The initialization of
learned trajectories was an under-sampled radial trajectory in all
experiments. The initialization had 16 “spokes” and each spoke
was 5ms long with 1280 sampling points. We also adopted the
k-space parameterization trick detailed in [24, Eqn. 3] to avoid
sub-optimal local minima, and parameterized each shot with 40
quadratic spline kernels.

Fig. 3 showcases the trajectories optimized for each of the
reconstruction methods. The centers of trajectories optimized
with quadratic regularizers (CG-SENSE and QPLS) are not
aligned with the k-space origin. We hypothesize that regularizers
(and corresponding iterative algorithms) handle image phases
differently, resulting in distinct trajectory centers.

Table III reports the average image reconstruction quality
(PSNR and SSIM [55], fully sampled image as the ground
truth) on 500 test slices. It also showcases the image quality of
these learned trajectories with reconstruction methods different
from the training phase. All learned trajectories led to improved
reconstruction quality compared to the initial radial trajectory
(unopt.), even with different reconstruction methods. Impor-
tantly, the same reconstruction algorithm across training and
test led to the greatest improvement (the bold diagonal entries).
Fig. 4 shows reconstruction examples.

TABLE III
AVERAGE RECONSTRUCTION QUALITY ON TEST SET WITH TRAJECTORIES

LEARNED FOR DIFFERENT RECONSTRUCTION METHODS

Fig. 5. Learned trajectories with different NUFFT accuracies.

C. Accelerated Learning With Low-Accuracy NUFFT

The major computation cost of trajectory learning is propor-
tional to NUFFTs and their Jacobian calculations. An empirical
acceleration method is to use faster NUFFT approximations
(low over-sampling factors and/or small interpolation neighbor-
hoods) in training. Later, when the learned trajectory is deployed
on test data or prospectively acquired data, one could use default
NUFFT accuracy. We investigated learning trajectories with two
different NUFFT accuracies: (1) gridding size = 1.25× image
size, interpolation kernel size = 5 and (2) gridding size = 2×
image size, interpolation kernel size = 6 which is a commonly
used setting. On our GPUs, the lower-accuracy setting was
1.4× faster than the higher-accuracy one. We used the CS-based
reconstruction and corresponding training strategy described in
the previous subsection. Fig. 5 shows the trajectory optimized for
the two NUFFT accuracy levels. To compare the trajectory op-
timized by these two settings, we used the reconstruction image
quality as the evaluation metric. We simulated and reconstructed
images using the two trajectories on the test data (same as the
previous experiment). The trajectories optimized with the “low
accuracy” and “high accuracy” NUFFT had mean PSNR values
of 35.4±4.6 dB and 35.4±4.7 dB.
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V. DISCUSSION

This paper presents a model-based approximation of Jaco-
bian matrices involving NUFFTs. Compared to direct auto-
differentiation, the proposed method is faster, needs less mem-
ory, and better approximates the reference NUDFT results.
As discussed in II-B, the error of auto-differentiation is not
a software limitation, but rather a problem that stems from
the non-differentiability of interpolation or lookup table op-
erations. NUFFT alternatives such as re-gridding or filtered
back-projection also suffer from similar non-differentiability
issues and are less effective than (NUFFT-based) iterative re-
construction. Our previous studies [24, Fig. 14] compared the
trajectory optimization results of the proposed method and
standard auto-differentiation. The trajectory optimized by the
proposed approximation generated superior image quality, and
conformed better to the empirical criteria [56], [57]: sampling
points should not overlap or be too distant from each other.

Sampling patterns learned with different reconstruction meth-
ods showed distinct characteristics in Section IV-B. This phe-
nomenon was also observed in previous literature [8], [10]. The
differences in sampling patterns may stem from different reg-
ularizers, as well as different iterative algorithms. Importantly,
as shown in Table III, synergistic sampling and reconstruction
led to the best image quality. Several previous studies [22],
[23], [24] only used NN-based reconstruction methods, while
the stability and generalizability of NN-based reconstruction
are still being investigated. In comparison, using our method
delineated in Section III, one may optimize trajectories for
model-based reconstruction methods that may be more robust.
Our results show that with a suitably tailored sampling pat-
tern, traditional model-based reconstruction can compete with
NN-based reconstruction, reinforcing related observations in
recent studies [58]. Additionally, sampling optimization for
model-based reconstruction requires less training data than for
NN-based reconstruction. This property is beneficial for medical
imaging where the data availability is often limited.

The training used discrete-space image datasets, whereas
the actual objects in practice are continuous. Ideally, using an
accurate continuous image model could better approximate the
actual situation. This implicit bias is common for learning-
based methods, and may lead to suboptimal results, such as
the backtracking in the edge/corner of k-space (Fig. 3). The
training also ignored physical processes such as relaxation
and magnetization transfer. Future studies may consider these
processes in the forward system model. The mismatch or do-
main shift from training to prospective scans may influence
the results. For example, there exist differences in protocols
(RF pulses, FOVs, and resolutions), hardware (field strengths
and Tx/Rx coils), system imperfections (eddy currents, gradient
non-linearity, and inhomogeneity), demography, and pathology.
Our previous studies [24] tested the optimized trajectory in a
prospective in-vivo experiment, and discussed practical issues,
including eddy currents, and contrast/SNR mismatch between
the training set and prospective protocols. Subsequent studies
should evaluate the robustness of learned sampling trajectories
in more scenarios.

APPENDIX

This appendix analyzes the error of approximations based
on (5) and (6), by comparing Jacobians computed when A is an
exact NUDFT to those for an NUFFT, denoted Ã. For simplicity,
the analysis is 1D, though the conclusion extends easily to multi-
dimensional NUFFTs.

The system matrix A ∈ C
M×N has elements

amn = e−ıωmn, m = 1, . . . ,M, n = 1, . . . , N.

Typically, an NUFFT involves three steps. The first step applies
scaling factors sn to the signal xn. The second step applies
a K-point FFT to the scaled signal, where K ≥ N via zero-
padding. The third step interpolates K frequency locations into
M sampling locations of ω. For efficiency, the interpolator
usually has finite support, denoted J > 0. The NUFFT Ã has
elements as follows:

ãmn =
J∑

j=1

u∗
j(ωm) sn e

−ıγ (km+j)n,

where u denotes interpolation coefficients, km is an element-
wise offset, and γ = 2π/K [6].

Define the NUFFT error matrix as E = Ã−A. The worst-
case NUFFT error has a bound that can be written as

‖Ex‖∞ ≤ εp ‖x‖2 ,
where εp is tabulated numerically for various choices of inter-
polation parameters p, e.g., in [6, Fig. 12].

The Jacobian of the forward operator (5) is

J =
∂Ax

∂ω
= −ı diag{A(x� r)} .

Let J̃ denote the case where an NUFFT is applied. Since the
backpropagation uses Jacobians in the JVP calculation, here we
analyze the error of JVPs using J and J̃ . We define the worst-
case relative error for a JVP with a (gradient) vectorv as follows:

E1(ω,x, p) � max
‖v‖∞=1

‖J̃v − Jv‖∞/ ‖x‖2

= max
‖v‖∞=1

‖(E (x� r))� v‖∞ / ‖x‖2

≤ ‖E (x� r)‖∞ / ‖x‖2
≤ εp ‖x� r‖2 / ‖x‖2 ≤ εp ‖r‖∞ .

Similarly, the worst-case relative error of a JVP with (6) is
bounded by

E2(ω,x, p) � max
‖v‖∞=1

‖diag{r}E′diag{y}v‖∞ / ‖y‖2

≤ max
‖v‖∞=1

‖r‖∞ ‖E′(y � v)‖∞ / ‖y‖2

≤ εp ‖r‖∞ max
‖v‖∞=1

‖y � v‖2 / ‖y‖2

≤ εp ‖r‖∞ ‖y‖2 / ‖y‖2 ≤ εp ‖r‖∞ .

In both cases, the worst-case error of the NUFFT approxima-
tion for a JVP is bounded by the usual NUFFT error multiplied
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by a constant ‖r‖∞ that is usually half of the field of view
(FOV) in imaging applications. This constant is expected from
unit analysis. If the sampling grid rj has a unit in cm, then the
sample locations ω have units in radians/cm. Corresponding,
the Jacobian matrices in (5) and (6) have units in cm, because
A is unitless. The NUFFT error εp is unitless, hence there is
an r-related factor in the JVP error E. In other words, the
error bounds above depend on the choice of units. One could
express the FOV in voxels to get the unitless error bound εpN/2.
However, the accuracy of JVPs does not necessarily deteriorate
with larger N . Above we normalized the error by ‖x‖2 or ‖y‖2,
whereas the Jacobians are “scaled” with ‖x� r‖2 or ‖y‖2‖r‖2.
A relative error could better describe the effect on optimization.

An alternate definition uses the worst-case in the numerator
relative to an average case in the denominator, considering the
stochastic gradient descent-like optimizers. For example, this
relative error for the JVP of Jacobian (5) is

ε �
max‖x‖2=1 ‖J̃ − J‖F√

Ep(x)[‖J‖2F]
=

max‖x‖2=1 ‖E (x� r)‖2√
Ep(x)[‖A (x� r)‖22]

≤max‖x‖2=1

√
M ‖E (x� r)‖∞√

Ep(x)[‖A (x� r)‖22]
≤

√
Mεp ‖r‖∞√

Ep(x)[‖A (x� r)‖22]
,

where Ep(x)[·] denotes expectation w.r.t. a certain distribution
p(x). For parity with the unit sphere constraint in the numerator,
we consider the case where p(·) is the random distribution on
the unit N -sphere. Use the cyclic property of the trace:

‖A (x� r)‖22 = x′diag{r}A′Adiag{r}x
= Tr{diag{r}A′Adiag{r}xx′} .

Since the covariance of random points on the N -sphere is
(1/N)I , the denominator’s expectation is

Ep(x)[‖A (x� r)‖22] = Tr
{

diag{r}A′Adiag{r}Ep(x)[xx
′]
}

=
1

N
Tr{diag{r}A′Adiag{r}}

=
1

N

∑
j

r2j [A
′A]jj

=
M

N

∑
j

r2j =
M

N
‖r‖22 .

Thus we have the following bound for the relative error:

ε ≤
√
Mεp ‖r‖∞√
M/N ‖r‖2

= εp
√
N

‖r‖∞
‖r‖2

≤ εp
√
N.

Note that the bound can be tighter when considering specific
formulations of r. Similarly, for the Jacobian operator (6), the
alternate error of the JVP is

ε ≤ εp
√
M.
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