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SPECT Reconstruction With a Trained Regularizer
Using CT-Side Information: Application to 177Lu

SPECT Imaging
Hongki Lim , Member, IEEE, Yuni K. Dewaraja , Member, IEEE, and Jeffrey A. Fessler , Fellow, IEEE

Abstract—Improving low-count SPECT can shorten scans and
support pre-therapy theranostic imaging for dosimetry-based
treatment planning, especially with radionuclides like 177Lu
known for low photon yields. Conventional methods often under-
perform in low-count settings, highlighting the need for trained
regularization in model-based image reconstruction. This article
introduces a trained regularizer for SPECT reconstruction that
leverages segmentation based on CT imaging. The regularizer
incorporates CT-side information via a segmentation mask from
a pre-trained network (nnUNet). In this proof-of-concept study,
we used patient studies with 177Lu DOTATATE to train and
tested with phantom and patient datasets, simulating pre-therapy
imaging conditions. Our results show that the proposed method
outperforms both standard unregularized EM algorithms and con-
ventional regularization with CT-side information. Specifically, our
method achieved marked improvements in activity quantification,
noise reduction, and root mean square error. The enhanced low-
count SPECT approach has promising implications for theranostic
imaging, post-therapy imaging, whole body SPECT, and reducing
SPECT acquisition times.

Index Terms—Anatomical information, emission tomography,
low-count quantitative SPECT, segmentation.

I. INTRODUCTION

S INGLE Photon Emission Computed Tomography (SPECT)
is a nuclear imaging method that captures three-

dimensional images using gamma-ray emitting radiotracers.
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This technique visualizes functional processes within the body,
aiding in diagnosis and treatment. Improving low-count SPECT
to reduce noise and scan time, or enabling whole-body imaging
is particularly relevant when imaging radionuclides with low
photon intensities such as 177Lu (208 keV gamma: 10%) [1]
and 90Y (≤ 5% bremsstrahlung yield) [2]. In dosimetry, low
count-rates are often encountered when imaging at later time
points to determine pharmacokinetics following a therapeutic
administration. Furthermore, ultra-low count rates are encoun-
tered when imaging pre-therapy for dosimetry based treatment
planning. However, quantifying images at low count-rates is
difficult due to the high level of noise, particularly for voxel-level
dose estimation.

To improve reconstruction for low-count SPECT, regularized
model-based image reconstruction (MBIR) has been widely
used. “Learned” regularizers in MBIR have significantly im-
proved the quality and quantification of medical image re-
construction, as seen in applications of CT [3], [4], [5] and
MRI [6], [7], [8], [9], compared to “mathematically designed”
regularizers. Several studies have applied these techniques to
emission tomography [10], [11], [12], [13]. Although there has
been much research on incorporating anatomical information
into emission tomography [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], most existing “trained”
regularizers for emission tomography have yet to explore the
utilization of anatomical information from dual-modality sys-
tems such as SPECT-CT or PET-MR. [40] is a learning-based
method that utilizes side information from MR images to assist
in PET image deblurring and super-resolution. However, this
approach is categorized as an image-domain post-processing
technique, while the proposed method addresses the problem of
measurement to image.

Incorporating anatomical information into emission tomog-
raphy can be beneficial because anatomical images have higher
resolution than emission images and provide more accurate
boundary information. Many existing methods that use anatom-
ical information in emission tomography rely on regularizers
that promote spatial smoothness within organ boundaries while
restricting smoothing across boundaries. This is because the
distribution of PET or SPECT tracer is likely to be smooth within
organ boundaries. Many learning-based methods for medical
image reconstruction are conceptualized as ‘unrolled’ versions
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of iterative optimization methods [41]. Here, the traditional
alternating minimization of iterative algorithms is laid out in a
sequence, with certain sub-problems tackled by neural networks,
characterizing a data-driven approach. Building on this founda-
tion, our article reexamines the ‘using anatomical information’
approach to SPECT reconstruction.

We propose a trained version of [15], [31] that used a modified
quadratic regularizer with finite differences between neighbor-
ing voxel values. The modification was the incorporation of
CT-side information as a regularization weight, which was set
to zero at the boundary to prevent penalizing the differences in
voxel values at the boundary location. Instead of the conven-
tional finite differencing matrix, we use a trained convolutional
operators for a more data-driven regularization. Our treatment
of CT-side information also diverges from previous methods.
Instead of using the CT segmentation mask for boundary in-
dication, our method adopts a data-driven approach, training a
function to transform the CT segmentation outcomes for SPECT
regularization. Moreover, our segmentation process is fully au-
tomated and driven by a cutting-edge segmentation network that
processes CT images. This is in contrast to the manually drawn
segmentations employed in [15], [31].

Our proposed method can be easily extended to an end-to-end
framework by jointly training the parameters in the reconstruc-
tion and analysis tasks. [42] proposed an end-to-end approach
for jointly performing reconstruction and analysis tasks, and our
proposed method differs in that the output of the analysis task is
fed back into the reconstruction process, making it a feedback
system.

This article is a proof-of-concept study where we aimed to
enhance the performance of SPECT/CT imaging, particularly
in the context of 177Lu DOTATATE therapy, a widely-used tar-
geted radionuclide therapy for neuroendocrine tumors. Although
177Lu is increasingly adopted in these therapies due to its dual
benefits—delivering therapeutic effects and facilitating SPECT
imaging—capturing accurate images remains a challenge, es-
pecially under low-count conditions commonly encountered in
pre-therapy diagnostic imaging and in post-therapy imaging at
late time points. Although there exists potential for the method
to be generalized across other radionuclides, our research con-
centrates on 177Lu to maintain focus and to provide a com-
prehensive examination within this context. Explorations with
radionuclides beyond 177Lu, such as 90Y, and their associated
nuances are considered pivotal directions for our subsequent
research.

Part of this work was presented at the SPIE Medical Imag-
ing 2020 [43]. We significantly extended this work with more
sophisticated methods, including how we incorporate analy-
sis result into the reconstruction process. Our current method
provides a more flexible, data-driven approach, allowing the
segmentation mask to be used for regularization in a more
adaptive manner. Moreover, we applied the proposed method
to measured 177Lu SPECT data and added detailed analysis of
the proposed method, including a comparison between different
variants of the method.

The rest of this article is organized as follows. Section II de-
scribes the proposed method, a trained regularizer using CT-side

information for SPECT MBIR. Section II also provides details
on how the 177Lu SPECT simulation and real measurement
datasets are created and what evaluation metrics are used to
measure performance. Section III presents the results of different
reconstruction methods on simulation and measurement data.
Section IV discusses how the proposed method utilizes CT-side
information and compares its variants. Section V concludes with
future works.

II. METHODS

This section presents the background of the problem and
reviews other work related to the proposed method, such as
conventional regularized MBIR methods using CT-side infor-
mation. Then, a detailed derivation is provided that inspires the
final form of the proposed method and the method for obtaining
CT-side information is discussed. Additionally, details on the
simulation and measurement data and the evaluation metrics
used to assess the efficacy of each reconstruction algorithm are
provided.

A. Background

Regularized MBIR has been used widely to improve recon-
struction quality of low-count SPECT:

x̂ = argmin
x≥0

f(x) + βR(x)

f(x) := 1T (Ax+ r̄)− yT log(Ax+ r̄), (1)

where x ∈ Rnp is the unknown SPECT image, f(x) is Poisson
negative log-likelihood for measurementy ∈ Rnd and estimated
measurement means ȳ(x) = Ax+ r̄, the matrix A ∈ Rnd×np

denotes the system model, r̄ ∈ Rnd denotes the mean back-
ground events such as the additive scatter contribution, R(x)
is a regularization term to control the noise, and β is the reg-
ularization parameter. Most existing mathematically designed
SPECT regularizers penalize differences between neighboring
pixels [44], [45]. A typical form of such regularizer includes
R(x) = β

2

∑K
k=1 ‖čk ∗ x‖22, where often K = 3 because čk is

a [1,−1] finite difference filter along one of x, y, or z directions.
Therefore, R(x) penalizes the differences between adjacent
voxels without taking into account anatomical boundaries. A
conventional non-trained quadratic regularizer using CT-side
information [15], [31] modifies the quadratic regularizer as
follows:

R(x; w̌k) =
β

2

K∑
k=1

‖čk ∗ x‖2W̌ k
, (2)

where W̌ k = diag{w̌k} ∈ Rnp×np and w̌k ∈ Rnp is a bound-
ary indicator image with 0 values at anatomical boundaries.
Because standard regularized SPECT reconstruction methods,
such as EM-based algorithms, update the image at each iteration
with ∇f(x) and ∇R(x) = β

∑K
k=1 c̀k ∗ (W̌ k(čk ∗ x)) where

c̀k is flipped convolutional kernel of čk, ∇R(x) is zero-valued
where w̌k is zero-valued, indicating the boundary region. Thus,
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incorporating the CT-side information w̌k prevents the regular-
izer from penalizing differences between adjacent voxels only
where the anatomical boundaries are present.

B. A Trained Regularization Method Using CT-Side
Information

Using “hand-crafted” filters, as in (2), is unlikely to be opti-
mal, especially when the filters can be “trained” through data.
Recently, applying trained regularizers to MBIR has signifi-
cantly improved image quality and quantification in medical
image reconstruction [46], [47]. However, most existing trained
regularizers for emission tomography do not fully exploit the
information from dual-modality systems such as SPECT-CT or
PET-MR. In the present work, instead of using single-modality
based regularizer R(x), we propose to use multi-modality based
regularizerR(x; s) that exploits the anatomical side information
provided by segmentation “mask” variable s. A segmentation
network generates s, with the input being a CT image acquired
(nearly) simultaneously with the SPECT measurement. The reg-
ularization term is composed of trained convolutional operations
and a 1-norm to promote sparsity:

R(x; s) = min
z

K∑
k=1

1

2
‖ck ∗ x− zk‖2W k

+ αk ‖zk‖1 , (3)

where W k=diag{wk}, wk=gk(ck ∗ s), {ck∈Rnc×nc×nc :
k = 1, . . .,K} is a set of 3D convolution filters, ∗ denotes
convolution operation, {zk ∈ Rnp : k = 1, . . .,K} is a set of
sparse codes, and K is the number of filters. As illustrated in
Fig. 3, gk(·) is a function for filtered segmentation mask and we
define it as follows:

gk(ν) =
2e−κkν

2

e−κkν2 + 1
, (4)

where κk ∈ R is a trainable parameter.
The way we obtain wk is inspired by w̌k in (2) because w̌k

can be obtained by w̌k = ǧ(čk ∗ s). Here, ǧ(·) is equivalent to
gk(·) in (4), except there is no trainable parameter κk (κk = 1).

A traditional optimization approach for solving (1) with (3)
uses a block coordinate descent algorithm that alternatively
updates {zk} and x:

z
(n+1)
k = arg min

zk

1

2

∥∥∥ck ∗ x(n) − zk

∥∥∥
2

W k

+ αk‖zk‖1 (5)

= T
(
ck ∗ x(n), αk �wk

)
(6)

x(n+1) = arg min
x

f(x) +
β

2

K∑
k=1

∥∥∥ck ∗ x− z
(n+1)
k

∥∥∥
2

W k

, (7)

where� is element-wise division and T (·, ·) is the element-wise
soft thresholding operator:

T (t, q)j := sign(tj)max(|tj | − qj , 0). (8)

When trained filters {ck} satisfy
∑K

k=1 c̃k ∗ (wk 	 (ck ∗
x)) = x where c̃k is a reversed version of ck and 	 denotes
element-wise multiplication, the updates in (6) and (7) can be

Algorithm 1: EM-Based SPECT Reconstruction Algorithm
Using Trained Regularizer with CT-Side Information.

Require:
{c(n)k ,d

(n)
k , α

(n)
k : n = 1, . . . , T}, y, r̄, A, c

Initialize:
x(0) using EM algorithm

Calculate aj =
∑nd

i=1 aij
for n = 0, . . . , T − 1 do
u(n+1) =

∑K
k=1 d

(n+1)
k ∗ (W k(T (c

(n+1)
k ∗

x(n), α
(n+1)
k �wk)))

β(n+1) =
‖aj−

∑nd
i=1 aij

yi

ȳi(x
(n))

‖2
‖x(n)−u(n+1)‖2 · c

for n′ = 0, . . . , T ′ − 1 do
δ = 1

2 (aj − β(n+1)u
(n+1)
j )

γ = x
(n′)
j (

∑nd

i=1 aij
yi

ȳi(x(n′))
)

x
(n′+1)
j =

⎧⎨
⎩

√
δ2+β(n+1)γ−δ

β(n+1) , δ < 0
γ√

δ2+β(n+1)γ+δ
, δ ≥ 0

end for
x(n+1) = x(T ′)

end for

rewritten as the following equivalent variable updates:

u(n+1) =

K∑
k=1

c̃k ∗
(
W k

(
T
(
ck ∗ x(n), αk �wk

)))

x(n+1) = arg min
x

f(x) +
β

2

∥∥∥x− u(n+1)
∥∥∥
2

2
, (9)

For the trained approach considered in this work, we use sep-
arate decoding filters {dk} instead of using {c̃k} to have more
trainable parameters. Moreover, we use iteration-dependent fil-
ters and thresholding values so that the learned method can
handle different levels (or types) of artifact at each iteration.
Inspired by (9), hereafter, we define the variable updates for
SPECT reconstruction as follows:

u(n+1)

=

K∑
k=1

d
(n+1)
k ∗

(
W k

(
T
(
c
(n+1)
k ∗ x(n), α

(n+1)
k �w

(n+1)
k

)))

(10)

x(n+1) = arg min
x

f(x) +
β

2

∥∥∥x− u(n+1)
∥∥∥
2

2
, (11)

where separate encoding and decoding filters {c(n)k } and {d(n)
k }

are learned for the nth iteration during training. Our proposed
framework alternatively updates the reconstructed image x
and the denoised image u using convolution filters and soft-
thresholding values that are trained at each iteration. To solve
the x-update in (11), we iteratively find a minimizer of the EM-
surrogate of f(x) [48]. We also apply an adaptive regularization
parameter scheme proposed in [12] to automatically choose β
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Fig. 1. (a) High-level overview of the proposed method: Our method operates iteratively, alternating between denoising and a regularized EM update. During
the denoising step, we leverage the CT segmentation results. (b) Detailed block diagram of the denoiser, as referenced in (10). The output from the regularized

EM (x(n−1)) undergoes convolution with a set of K filters (c(n)
k

), is then soft-thresholded, and subsequently multiplied by the transformed segmentation mask

(w(n)
k

). This output is further convolved with another set of K filters (d(n)
k

). The use of CT-side information in SPECT reconstruction is emphasized by green
arrows.

regardless of count-level:

β(n+1) = c ·

∥∥∥aj −∑nd

i=1 aij
yi

ȳi(x(n))

∥∥∥
2∥∥x(n) − u(n+1)

∥∥
2

, (12)

where c is a user-defined parameter. Fig. 1 illustrates the cor-
responding architecture and Algorithm 1 provides a detailed
pseudocode of the proposed method. In Algorithm 1, T is the
total number of iterations where each iteration performs (10) and
(11) and T ′ is the number of iterations for solving the x-update
(11).

In the training phase, we train the set of filters {ck}, {dk},
soft-thresholding values {αk}, and the parameters {κk} for the
function in (4) to map the estimated image from the previous
iteration into a high quality image (e.g., EM reconstruction with
high-count measurement) at each iteration:

arg min
{ck},{dk},{αk},{κk}

L∑
l=1

∥∥∥∥∥xtrue,l

−
K∑

k=1

dk ∗W k

(
T
(
ck ∗ x(n)

l , αk �wk

))∥∥∥∥∥
2

2

where L is the total number of training samples, {xtrue,l :

l = 1, . . . , L} is a set of high quality images and {x(n)
l : l =

1, . . . , L} is a set of images estimated in the nth iteration.
While end-to-end training is generally preferred, we opted for
iteration-by-iteration training due to technical challenges in
integrating the system modelA implementation within our deep
learning-based framework.

C. Application to 177Lu SPECT Imaging

To demonstrate performance, we applied the proposed
method to patient SPECT/CT images acquired after 177Lu
DOTATATE, a targeted radionuclide therapy (TRT) for treat-
ment of neuroendocrine tumors (NETs). This therapy is ad-
ministered to patients in four cycles with a fixed activity, typi-
cally 7.4 GBq/cycle. 177Lu is delivered preferentially to tumor
cells by DOTATATE, which binds to the somatostatin receptors
expressed by most well-differentiated NETs. 177Lu, which is
increasingly used in TRT, emits both beta particles that deliver
the therapeutic effect and gamma rays suitable for SPECT
imaging of the activity distribution for visual assessment and
dosimetry. Multiple studies report on 177Lu SPECT/CT imaging
after 177Lu DOTATATE therapy cycles for the purposes of per-
forming dosimetry to adjust subsequent cycles on an individual
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Fig. 2. Illustration of how CT-side information is incorporated into the con-
ventional SPECT reconstruction method [15]. č1 is a [1,-1] finite difference filter
that is convolved along the x-axis. w̌1 is zero-valued in the boundary region.

basis [49], [50]. However, currently pre-therapy 177Lu imaging
is rarely performed relying instead on 68Ga DOTATATE PET/CT
imaging to select patients for therapy. This is because of the
superior spatial resolution of PET and the challenges of 177Lu
imaging under the very low count conditions encountered in
(diagnostic) pre-therapy imaging. 68Ga PET imaging however,
is not well-suited for dosimetry because of the short half-life
of 68Ga and there are distinct advantages of using the same
compound for both pre- and post therapy imaging. Pre-therapy
177Lu imaging with tracer quantities of activity (∼210 Mbq)
has been reported for both 177Lu DOTATATE [51] and 177Lu
PSMA [52] therapies. Furthermore, very low count condi-
tions are encountered even after therapy administration when
imaging at late time points to determine pharmacokinetics for
dosimetry.

D. Neural Network for CT Segmentation

For the image segmentation network, we used nnUNet [53]
based on the recommendations from [54]. Ref. [54] comprehen-
sively compared recent state-of-art medical image segmentation
methods and reported that a vanilla version of nnUNet performed
reasonably well compared to other heavier models. We used
the pre-trained version of nnUNet provided by the article’s
authors. The authors provided many pre-trained models, and
we used the 3D full resolution mode of the model trained
for the Task 3 of Medical Segmentation Decathlon [55] that
contains different types of liver tumors, including hepatocellular
carcinoma, cholangiocarcinoma, and metastatic tumors [56].
177Lu DOTATATE is for the treatment of neuroendocrine tu-
mors, mostly located in the liver (83% of 177Lu DOTATATE
patients have liver metastases [57]), and the healthy liver also
has relatively high uptake. Fig. 4(a) and (b) shows an example of
a 177Lu patient CT image and the corresponding segmentation
prediction by nnUNet.

Fig. 3. Function gk(·) for κk = 1. κk is a trainable parameter that changes
the width of the function.

Fig. 4. (a) One CT image of a 177Lu patient acquired on a Symbia SPECT-CT;
(b) Corresponding segmentation result generated by nnUNet.

TABLE I
SEVERAL KEY SETTINGS FOR SIMULATION DATA

E. Dataset

To validate the efficacy of the proposed method, we applied
the proposed reconstruction method to both simulation and
clinical data.

1) Simulation Data: We used LiTS (Liver Tumor Segmenta-
tion) dataset [56] for the simulation study. Among 130 training
samples in 3D, we used 30 samples for training denoiser in
(10), and 10 samples for testing the performance of different
algorithms. We used the label images of LiTS dataset to gen-
erate the true SPECT image by changing the tumor value to 4
±N (0, 1) to set the tumor-to-liver 177Lu uptake ratio, because
4:1 is a typical value in patients studies. We downsampled the
CT-sized label image to SPECT-sized image with a voxel size
4.8×4.8×4.8 (mm3). The number of slices is different between
each 3D sample in the LiTS dataset. Fig. 5(a) and (b) show the CT
image provided by the dataset and the segmentation mask (s in
(3) predicted by nnUNet. Fig. 5(c) is the true SPECT image that
we generated based on label. We simulated the extremely low-
count realizations with realistic total primary counts and scatter
fraction based on numbers from patient imaging (summarized in
Table I) using the system matrix generated by Michigan Image
Reconstruction Toolbox.1

1[Online]. Available: https://web.eecs.umich.edu/fessler/code/
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Fig. 5. Simulation result: (a) CT slice corresponding to the true SPECT image
in (c). (b) Segmentation estimated by nnUNet. (d)–(f) Reconstructed images.
(g)–(i) Difference maps compared to GT.

TABLE II
PROJECTION PRIMARY COUNTS (COUNT RATE × DURATION) RANGE FOR

CLINICAL DATA, RESAMPLED TO SIMULATE A 1-MINUTE EQUIVALENT SCAN

2) Clinical Patient Data and Physical Phantom Measure-
ment Data: To train the denoising network with the given seg-
mentation mask, we used four 177Lu patient studies with multi-
ple acquisitions. The patient images were acquired at 1-5 days
after 7.4 GBq 177Lu DOTATATE therapy. To generate low-count
realizations in the training dataset (4 patients, 2 cycles, total
number of samples L=25), we resampled [58] the post-therapy
25-minute measurement data using Poisson resampling with a
rate of 4% to generate 1-minute equivalent scan, as ultra-low
count rates are to be expected in pre-therapy imaging application
where the administered activity will be only a fraction of that
used for therapy. Table II summarizes the primary counts. To
test and compare the different reconstruction methods, we used
a 177Lu phantom measurement and two patient studies that were
not used for training. As in the training data, patient images were
acquired at multiple time points, and the total number of patient
projection data we acquired and resampled for testing was 8.
The phantom has six hot spheres (2,4,8,16,30 and 113 mL) in
a warm background and its CT image is shown in Fig. 7(a).
Including this one additional phantom measurement, the total
number of testing samples is 9. For the phantom study, we used
the segmentation mask manually drawn on the CT because the
geometry of phantom is far different from the human abdomen,
therefore the trained network does not work for the phantom.
We did not quantitatively evaluate the output of nnUNet for
segmentation since the ground truth is unknown in patients. Our
aim is to improve the reconstruction, therefore we checked for
any obvious failed cases through visual inspection.

Fig. 6. Simulation result: (a) Noise vs activity recovery in tumor. (b) RMSE
vs iteration. Averaged 10 test samples. The true image was the GT.

Fig. 7. Physical phantom result: (a) CT slice corresponding to the high-count
EM image in (c). (b) Manually drawn segmentation mask. (d)–(f) Reconstructed
images. (g)–(i) Difference maps compared to high count EM image.

F. Training SPECT Denoiser

We trained K sets of 3D convolutional filters
({c(n)k }, {d(n)

k } ∈ R3×3×3), thresholding values (α(n)
k ), and

parameter for (κ(n)
k ) for each iteration using the PyTorch

(version 1.2) [59] deep-learning library. We trained a 10
outer-iteration networks where each outer-iteration has K = 49
sets of thresholding values and convolutional encoding/decoding
filters for simulation data, and K = 100 sets for real data. Each
outer-iteration used 3 inner-iterations for the x-update. We
used the Adam optimization method to train the network.
The denoising network was trained for 150 epochs in the first
outer iteration and 50 epochs in the rest of the iterations, with
the parameters initialized using the values from the previous
iteration. We applied a learning rate decay method (learning
rate = learning rate × 0.9 at every 20 epoch).

G. Evaluation Metrics

We evaluated SPECT reconstruction performance with activ-
ity recovery (AR) of tumor or hot region, image-ensemble-noise
in warm background region (healthy liver) across realizations,
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and root mean square error (RMSE):

AR(%) =
Ĉtumor

C̄tumor
× 100

NoiseBKG(%)

=

√
1

JBKG

∑
j∈ BKG

(
1

M−1

∑M

m=1
(x̂m[j]− 1

M

∑M

m′=1
x̂
m′ [j])2

)
1

JBKG

∑
j ∈ BKG

1
M

∑M

m=1
x̂m[j]

× 100,

where C̄VOI is true mean counts in the volume of interest
(VOI), ĈVOI is estimated mean counts in the VOI, M is total
number of realizations, and JBKG is the total number of voxels
in background liver region. In the simulation data evaluation,
we considered the image used to simulate projections as the
true image. In the clinical data evaluation, we considered the
high-count EM image obtained after 50 iterations as the true
image, as there is no ground truth (GT) available for the patient
data.

III. RESULTS

We compared standard EM, the regularized EM method with
CT-side information (EM-QR-CT) which uses the quadratic
regularizationR(x; w̌k) in (2), and the proposed method. For the
regularized methods, including the proposed method, we used
50 iterations of EM algorithm to obtain the initial image x(0).
We used 30 iterations for the conventional regularizers and 10
(3) outer (inner) iterations for the proposed method.

A. Results on Simulation Data

Fig. 5(d)–(f) visually compares the reconstructed images
using different methods. Fig. 5(a) shows the CT slice where
the reconstructed images are displayed. Fig. 5(b) is the seg-
mentation mask predicted by nnUNet, and both EM-QR-CT
and the proposed method use this mask in their reconstruction
process. Fig. 5(g)–(i) display the difference maps between the
reconstructed images and the true image in Fig. 5(c). In this
comparison, the regularization parameter c in (12) is set to 2−8 in
EM-QR-CT and 2−6 in the proposed method. The regularization
parameter values are chosen based on the results shown in
Fig. 12. Because we simulated very low-count setting, the EM
reconstructed image is noisy in the uniform regions. EM-QR-CT
reduces the noise, but it also removes fine details in the image, as
can be seen in the small tumor region indicated by the red arrow
in Fig. 5(c). The proposed method reduces noise and preserves
fine details simultaneously. The reconstructed image using the
proposed method is closest to the true image.

The numerical evaluation results in Fig. 6(a) align with the
visual comparison. While EM algorithm improves the recovery
in the hot (tumor) region, it also increases the noise as it iterates.
EM-QR-CT reduces noise, but it worsens the recovery in the
hot region. In contrast, the proposed method enhances both
noise reduction and recovery in the tumor region simultane-
ously. Compared to EM-QR-CT and EM, the proposed method
improved RMSE by 29.5% and 34.3%, respectively where the
iteration numbers were 80 for all methods.

Fig. 8. Physical phantom result: (a) Noise vs Activity recovery in hot spheres
(6 spheres averaged). (b) RMSE vs iteration. The high count EM image was the
GT.

B. Results on Measured Data

For the phantom study, Fig. 7(c) shows the reconstructed
image obtained after 50 iterations of EM algorithm, using
high-count projection data. For this study, a segmentation mask
(Fig. 7(b)) was manually drawn on the CT (Fig. 7(a)) because the
geometry of phantom is different from the human abdomen, and
thus, the trained nnUNet cannot be applied. The manually drawn
mask was used for the EM-QR-CT and the proposed method.
Fig. 7(d)–(f) show the reconstructed images using different
methods. Similar to the visual comparison in the simulation
study, EM exhibits a noisy texture in the uniform background,
and EM-QR-CT improves the noise while overly smoothing the
small hot spheres. The visual quality of the proposed method is
closest to that of high-count EM. The error maps in Fig. 7(g)–(i)
shows that the underestimation and overestimation are scattered
across the entire regions in the EM image, while underestimation
in the hot regions is evident in the EM-QR-CT image. Compared
to the other methods, the proposed method shows the least errors,
and there is no obvious pattern in the error map. The EM image
may appear to depict the smallest sphere with greater clarity.
However, it is important to note that this perceived clarity is a
result of the overestimation of the AR by the EM algorithm.
For the smallest sphere, the EM algorithm overestimates the AR
by roughly 35%, whereas our proposed method underestimates
it by approximately 15%. Even though both methods exhibit
biases, the bias in our proposed method is substantially lower
than that observed with the EM algorithm.

Fig. 8 shows the numerical evaluation results for the physical
phantom study. The trend of plots is similar to that of the
simulation results. In Fig. 8(a), EM increases the recovery while
also increasing the noise and EM-QR-CT improves the noise
while decreasing the recovery. The proposed method improves
the noise while maintaining the recovery in the hot spheres.
In Fig. 8(b), the proposed method achieved a lower RMSE
compared to the other methods.

Fig. 9(d)–(f) show the reconstructed images for patient data.
The reconstructed images are visualized with a coronal view. The
image qualities of each algorithm is similar to the results of the
previous simulation and physical phantom studies. EM-QR-CT
generates a relatively less noisy image in the uniform region
compared to EM, but the region near the tumor is overestimated.
This is because the hot region is highly overestimated in the
low-count EM and EM-QR-CT spreads the counts into adjacent
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Fig. 9. Patient result: (a) CT slice corresponding to the high-count EM image
in (c). (b) Segmentation estimated by nnUNet. (d)–(f) Reconstructed images.
(g)–(i) Difference maps compared to high count EM.

Fig. 10. Patient result: (a) Noise vs activity recovery in tumor. (b) RMSE vs
iteration. Averaged 8 test samples. Patient high count EM images were used as
ground truth.

voxels. As shown in Fig. 9(i), the proposed method does not
spread the overestimated counts.

Fig. 10 shows the averaged numerical evaluation results for 8
patient samples. As shown in Fig. 10(a), the proposed method
improves the positive bias in tumor region while reducing the
noise. In Fig. 10(b), the proposed method achieved a lower
RMSE by 40.4% compared to EM-QR-CT and by 42.9% com-
pared to EM (iteration number = 80 for all methods).

IV. DISCUSSION

This work demonstrated the effectiveness of a sparsity-based
trained regularizer using anatomical information, both quali-
tatively and quantitatively, in 177Lu SPECT-CT imaging un-
der very low-count conditions, typical for diagnostic imaging,
and compared it to traditional non-trained regularizer using
anatomical information. The proposed approach uses a learned
denoising neural network that leverages information from a dual
modality system such as SPECT-CT. Specifically, the proposed

Fig. 11. Performance evaluation of variants of the proposed method.

framework employs a segmentation mask generated by a seg-
mentation neural network as a weight for the trained regularizer.
The proposed approach improved the recovery accuracy in the
volume of interest for 177Lu SPECT-CT simulation data com-
pared to other non-trained regularizers. The improvements were
also observed for 177Lu SPECT-CT phantom measurements and
patient measurement data.

Fig 11 compares different variants of the proposed methods.
The “Proposed without mask” method replaces R(x; s) in (3)
with R(x) [12] as follows:

R(x) = min
z

K∑
k=1

1

2
‖ck ∗ x− zk‖22 + αk ‖zk‖1 .

All other parts of the algorithm and training settings remain un-
changed. The “Proposed with boundary” method [43] replaces
wk with the boundary image w̌. w̌ is calculated as follows:

w̌ =
(
w̌◦2

1 + w̌◦2
2 + w̌◦2

3

)◦ 1
2 ,

where ◦ is Hadamard (element-wise) power, w̌k is obtained with
finite differencing matrix along one of x, y, or z directions. The
“Proposed with UNet” replaces the denoiser in (10) with the
UNet [60]. The input to UNet is a concatenation of x(n) and s
in the channel dimension. We evaluated two different sizes of
UNet. One model has 3254 parameters, which is similar in size to
the proposed method (2744, 3× 3× 3× 49× 2 + 49× 2). The
other model has 13 million parameters. The evaluation results
show that methods incorporating the full mask outperform the
method without mask and the method using boundary. Among
the methods using the full mask, the original proposed method
performs better than the UNet-based method, especially when
the number of parameters is similar. Even when UNet has
many more parameters, the proposed method improved all the
evaluation metrics further than UNet-based method.

Fig. 12 illustrates the impact of the regularization parameter c
on the reconstruction performance. For the EM-QR-CT method,
no value of the regularization parameter improved both noise and
recovery accuracy. A value of c = 2−8 appeared to be optimal
because it reduces noise without sacrificing accuracy much,
resulting in the lowest RMSE. In the proposed method, all values
larger than c = 2−10 improve both noise and accuracy. However,
the RMSE value slightly increases in later iterations for larger
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Fig. 12. Impact of parameter c on the performance in regularized methods.

values of c. This is due to the regularizer having a tendency to
overfit to the training data, and too large of a c value forcing the
neglect of the data fidelity term. Finding the appropriate value
of c could enhance the generalization capability.

Using anatomical information would be more beneficial when
the anatomical and emission images align well, as in the sim-
ulation study. Because nnUNet is trained on the LiTS dataset
(Task 3 dataset of the Medical Segmentation Decathlon slightly
modified LiTS dataset), the segmentation performance in the
simulation study is better than in clinical data. Additionally,
the way we generated the simulation dataset assumes that the
anatomical liver and tumor regions match with the 177Lu up-
takes. However, the side information can be mismatched due
to misregistration or differences between information captured
by the functional (SPECT) and the anatomical (CT) imaging
modalities. For example, anatomical image might show no
anomalous voxels where functional images have high uptake,
and vice versa. Moreover, in worst case, the segmentation
method might fail to predict the volume of interest correctly
especially when performed on CT of SPECT/CT that are not
of diagnostic quality. In our clinical study, there were several
obvious failed cases in the training and testing data (2 cases
in training, 1 case in testing). Fig. 13 displays the CT image
of failed case in test data, corresponding segmentation result,
and the evaluation metrics for a failed sample (Patient6 Cycle1
Day1) and another sample (Patient6 Cycle1 Day2, a scan of
the same patient at a different time point) whose segmentation
result is correct. Despite the incorrect segmentation result for
the Patient6 Cycle1 Day1 case, the proposed method improved
the RMSE (11.12%) compared to the initial image x(0) after
50 iterations of the EM algorithm, though the improvement was
lower than for the Patient6 Cycle1 Day2 case (24.65%). One
possibility to enhance the performance of the segmentator is to
use the diagnostic quality baseline CT images instead of the CT
of SPECT/CT. However, this introduces additional challenges
with misregitration and changes in the anatomy due to the fact

Fig. 13. (a)–(b) Patient6 Cycle1 Day1: CT and corresponding segmentation.
(c)–(d) Patient6 Cycle1 Day2: CT and corresponding segmentation. (e) Patient6
Cycle1 Day1 and Patient6 Cycle1 Day2 are the scans of identical patient at
different time points, however, greater RMSE improvement is made when
the segmentation result is correct. The discrepancy in image quality between
(a) and (c) is due to the different values of mAs used to reduce the CT
exposure. Specifically, (a) was captured using a higher mA, whereas (c) was
taken with a lower mA. In two other instances from the training dataset, nnUNet’s
segmentation underperformed on scans acquired with a reduced mA setting, in
contrast to the failed case in (a).

that the baseline CT is typically performed a few months before
the SPECT.

To understand how the trained denoising network uses the
segmentation mask, Fig. 14 visualizes the weights based on the
segmentation mask for the sphere phantom and the denoising
process. The columns of Fig. 14 represent one of the denoising
steps in the denoiser of the proposed method. This work used 100
sets of filters and thresholding values, each trained to produce
a denoised image and using the segmentation mask as prior
information to locate the region of interest.

V. CONCLUSION

Exploiting the available information from a dual-modality
system can benefit a trained regularizer. The proposed method
employs the anatomical (CT) segmentation mask generated by
segmentation neural network in a fully automatic manner. The
CT segmentation informs the SPECT denoising network where
the region of interest is likely located. For 177Lu SPECT/CT
under low count conditions, the proposed method achieved
qualitative and quantitative improvements by incorporating the
anatomical image information, compared to the non-trained
quadratic regularizers using the CT-side information. In partic-
ular, the proposed method reduces noise without compromising
recovery accuracy.

Although the data in our study originated from just four
patients for training (two patients for testing) our patient
SPECT/CT data sample size was 25 for training (eight for
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Fig. 14. Illustration of how CT-side information is incorporated into the proposed method. Each column corresponds to one of the steps in the denoiser
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testing) as we used data from multiple time points and multi
cycles corresponding to different count-rates. Moreover, owing
to our iteration-by-iteration training, the receptive field of our
denoiser during each iteration is confined to 5× 5× 5. This
approach closely aligns with a patch-based method. Given this
perspective, even a single 3D image volume can be divided into a
multitude of distinct 5× 5× 5 patches. Given training volumes
from four patients, our model is exposed to a considerable variety
of patches. Nevertheless, stepping away from the patch-centric
view, training on data from merely four patients might not
capture the broad spectrum of data distributions, which could
potentially limit the model’s generalization capability. Lu-177
DOTATATE SPECT/CT data is not widely available because
imaging is not currently required as part of the clinical protocol
for administering this therapy. However, due to the recent interest
in personalized treatment there is an increase in clinics perform-
ing imaging, hence more accessibility to data for training/testing
is expected in the near future.

Moreover, further investigation of the potential challenges,
such as the impact of additional challenges with misregistration
between modalities, is necessary. Future work also includes
training and testing on datasets that exhibit large discrepancies
or misregistration between modalities due to motion, as well as
training neural networks for both segmentation and denoising
by combining loss functions with weighted combinations.
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