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Abstract—Training end-to-end unrolled iterative neural
networks for single-photon emission computerized tomogra-
phy (SPECT) image reconstruction requires a memory-efficient
forward–backward projector for efficient backpropagation. This
article describes an open-source, high-performance Julia imple-
mentation of a SPECT forward–backward projector that sup-
ports memory-efficient backpropagation with an exact adjoint.
Our Julia projector uses only ∼5% of the memory of an
existing MATLAB-based projector. We compare unrolling a
CNN-regularized expectation–maximization (EM) algorithm with
end-to-end training using our Julia projector with other training
methods, such as gradient truncation (ignoring gradients involv-
ing the projector) and sequential training, using XCAT phantoms
and virtual patient (VP) phantoms generated from SIMIND
Monte Carlo (MC) simulations. Simulation results with two dif-
ferent radionuclides (90Y and 177Lu) show that: 1) for 177Lu
XCAT phantoms and 2) 90Y VP phantoms, training unrolled
EM algorithm in an end-to-end fashion with our Julia projector
yields the best reconstruction quality compared to other train-
ing methods and ordered-subset EM (OSEM), both qualitatively
and quantitatively. For VP phantoms with 177Lu radionuclide,
the reconstructed images using end-to-end training are in higher
quality than using sequential training and OSEM, but are com-
parable with using gradient truncation. We also find there exists
a tradeoff between computational cost and reconstruction accu-
racy for different training methods. End-to-end training has
the highest accuracy because the correct gradient is used in
backpropagation; sequential training yields worse reconstruc-
tion accuracy, but is significantly faster and uses much less
memory.

Index Terms—Backpropagatable forward–backward projector,
end-to-end learning, quantitative single-photon emission com-
puterized tomography (SPECT), regularized model-based image
reconstruction.
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I. INTRODUCTION

S INGLE-PHOTON emission computerized tomography
(SPECT) is a nuclear medicine technique that images

spatial distributions of radioisotopes and plays a pivotal role
in clinical diagnosis, and in estimating radiation-absorbed
doses in nuclear medicine therapies [1], [2]. For example,
quantitative SPECT imaging with Lutetium-177 (177Lu) in
targeted radionuclide therapy (such as 177Lu DOTATATE)
is important in determining dose–response relationships in
tumors and holds great potential for dosimetry-based indi-
vidualized treatment. Additionally, quantitative Yttrium-90
(90Y) bremsstrahlung SPECT imaging is valuable for safety
assessment and absorbed dose verification after 90Y radioem-
bolization in liver malignancies. However, SPECT imaging
suffers from noise and limited spatial resolution due to the
collimator response; the resulting reconstruction problem is
hence ill-posed and challenging to solve.

Numerous reconstruction algorithms have been proposed
for SPECT reconstruction, of which the most popular ones
are model-based image reconstruction algorithms, such as
maximum-likelihood expectation–maximization (MLEM) [3]
and ordered-subset EM (OSEM) [4]. These methods first con-
struct a mathematical model for the SPECT imaging system,
then maximize the (log-)likelihood for a Poisson noise model.
Although MLEM and OSEM have achieved great success in
clinical use, they have a tradeoff between recovery and noise.
To address that tradeoff, researchers have proposed alterna-
tives such as regularization-based (or maximum a posteriori
in Bayesian setting) reconstruction methods [5], [6], [7]. For
example, Panin et al. [5] proposed total variation (TV) regular-
ization for SPECT reconstruction. However, TV regularization
may lead to “blocky” images and oversmoothing the edges.
One way to overcome blurring edges is to incorporate anatom-
ical boundary side information from CT images [8], but that
method requires accurate organ segmentation. Chun et al. [9]
used nonlocal means (NLM) filters that exploit the self-
similarity of patches in images for regularization, yet that
method is computationally expensive and hence less prac-
tical. In general, choosing an appropriate regularizer can
be challenging; moreover, these traditional regularized algo-
rithms may lack generalizability to images that do not follow
assumptions made by the prior.

With the recent success of deep learning (DL) and espe-
cially convolutional neural networks (CNNs), DL methods
have been reported to outperform conventional algorithms
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in many medical imaging applications, such as MRI [10], [11],
[12], CT [13], [14], and PET reconstruction [15], [16], [17].
However, fewer DL approaches to SPECT reconstruction
appear in the literature. Shao et al. [18] proposed “SPECTnet”
with a two-step training strategy that learns the transforma-
tion from projection space to image space as an alternative
to the traditional OSEM algorithm. Shao et al. [19] also
proposed a DL method that can directly reconstruct the activ-
ity image from the SPECT projection data, even with reduced
view angles. Mostafapour et al. [20] trained a neural network
that maps nonattenuation-corrected SPECT images to those
corrected by CT images as a post-processing procedure to
enhance the reconstructed image quality.

Though promising results were reported with these meth-
ods, most of them worked in 2-D whereas 3-D is used
in practice [18], [19]. Furthermore, there has yet to be an
investigation of end-to-end training of CNN regularizers that
are embedded in unrolled SPECT iterative statistical algo-
rithms such as CNN-regularized expectation–maximization
(EM). End-to-end training is popular in machine learning and
other medical imaging fields such as MRI image reconstruc-
tion [21] and is reported to meet data-driven regularization for
inverse problems [22]. But for SPECT image reconstruction,
end-to-end training is nontrivial to implement due to its com-
plicated system matrix. Alternative training methods have been
proposed, such as sequential training [23], [24], [25], [26]
and gradient truncation [27]; these methods were shown to
be effective, though they could yield suboptimal reconstruc-
tion results due to approximations to the training loss gradient.
Another approach is to construct a neural network that also
models the SPECT system matrix, like in “SPECTnet” [18],
but this approach lacks interpretability compared to algorithms
like unrolled CNN-regularized EM, i.e., if one sets the regu-
larization parameter to zero, then the latter becomes identical
to the traditional EM.

As an end-to-end training approach has not yet been inves-
tigated for SPECT image reconstruction, this article first
describes a SPECT forward–backward projector written in the
open-source and high-performance Julia language that enables
efficient auto-differentiation. Then, we compare the end-to-
end training approach with other non-end-to-end training
methods.

The structure of this article is as follows. Section II
describes the implementation of our Julia projector and dis-
cusses end-to-end training and other training methods for the
unrolled EM algorithm. Section III compares the accuracy,
speed, and memory use of our Julia projector with Monte
Carlo (MC) and a MATLAB-based projector, and then com-
pares reconstructed images with end-to-end training versus
sequential training and gradient truncation on different datasets
(XCAT and virtual patient (VP) phantoms), using qualita-
tive and quantitative evaluation metrics. Sections IV and V
conclude this article and discuss future works.

Notation: Bold upper/lower case letters (e.g., A, x, y,
and b) denote matrices and column vectors, respectively.
Italics (e.g., μ, y, and b) denote scalars. yi and bi denote
the ith element in vector y and b, respectively. R

N and
C

N denote the N-dimensional real/complex normed vector

Fig. 1. SPECT imaging model for parallel-beam collimators, with attenuation
and depth-dependent collimator point spread response.

space, respectively. (·)∗ denotes the complex conjugate and
(·)′ denotes the Hermitian transpose.

II. METHODS

This section summarizes the Julia SPECT projector, a DL-
based image reconstruction method, as well as the dataset used
in experiments and other experiment setups.

A. Implementation of Julia SPECT Projector

Our Julia implementation of SPECT projector is based
on [28], modeling parallel-beam collimator geometries. Our
projector also accounts for attenuation and depth-dependent
collimator response. We did not model the scattering events
like Compton scatter and coherent scatter of high-energy
gamma rays within the object. Fig. 1 illustrates the SPECT
imaging system modeled in this article.

For the forward projector, at each rotation angle, we first
rotate the 3-D image matrix x ∈ R

nx×ny×nz according to
the third dimension by its projection angle θl (typically
2π(l − 1)/nview); l denotes the view index, which ranges
from 1 to nview and nview denotes the total number of pro-
jection views. We implemented and compared (results shown
in Section III) both bilinear interpolation and 3-pass 1-D lin-
ear interpolation [29] with zero padding boundary condition
for image rotation. For attenuation correction, we first rotated
the 3-D attenuation map μ ∈ R

nx×ny×nz (obtained from trans-
mission tomography) also by θl, yielding a rotated 3-D array
μ̃(i, j, k; l), where i, j, k denotes the 3-D voxel coordinate.
Assuming ny is the index corresponding to the closest plane of
x to the detector, then we model the accumulated attenuation
factor μ̄ for each view angle as

μ̄(i, j, k; l) = e
−�y

(
1
2 μ̃(i,j,k;l)+∑ny

s=j+1 μ̃(i,s,k;l)
)

(1)

where � y denotes the voxel size for the (first and) second
coordinates. Next, for each y slice (an (x, z) plane for a given
j index) of the rotated and attenuated image, we convolve with
the appropriate slice of the depth-dependent point spread func-
tion p ∈ R

px×pz×ny×nview using a 2-D fast Fourier transform
(FFT). Here, we use replicate padding for both the i and k coor-
dinates. The view-dependent PSF accommodates noncircular
orbits. Finally, the forward-projection operation simply sums
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Algorithm 1: SPECT Forward Projector

Input: 3D image x ∈ R
nx×ny×nz ,

3D attenuation map μ ∈ R
nx×ny×nz ,

4D point spread function p ∈ R
px×pz×ny×nview ,

voxel size �y.
Initialize: v ∈ R

nx×nz×nview as all zeros.
for l = 1, . . . , nview do

x̃← rotate x by θl

μ̃← rotate μ by θl

for j = 1, . . . , ny do
μ̄← calculate by (1) using μ̃

x̃(i, j, k) ∗= μ̄(i, j, k)
v(i, k, l) += x̃(i, j, k) � p(i, k; j, l)

end
end
Output: projection views v ∈ R

nx×nz×nview

Algorithm 2: SPECT Backward Projector

Input: Array of 2D projection views v ∈ R
nx×nz×nview ,

3D attenuation map μ ∈ R
nx×ny×nz ,

4D point spread function p ∈ R
px×pz×ny×nview ,

voxel size �y.
Initialize: x ∈ R

nx×ny×nz as all zeros.
for l = 1, . . . , nview do

μ̃ ← rotate μ by θl

for j = 1, . . . , ny do
μ̄← calculate by (1) using μ̃

ṽ(i, k, l) ← adjoint of v(i, k, l) � p(i, k, j, l)
x̃(i, j, k)← ṽ(i, k, l) · μ̄(i, j, k; l)

end
x += adjoint rotate x̃ by θl

end
Output: x ∈ R

nx×ny×nz

the rotated, blurred, and attenuated activity image x along
the second coordinate j. Algorithm 1 summarizes the forward
projector, where � denotes a 2-D convolution operation.

All of these steps are linear, so hereafter, we use A to denote
the forward projector, though it is not stored explicitly as a
matrix. As each step is linear, each step has an adjoint oper-
ation. So the backward projector A′ is the adjoint of A that
satisfies

〈Ax, y〉 = 〈
x, A′y

〉 ∀x, y. (2)

The exact adjoint of (discrete) image rotation is not simply a
discrete rotation of the image by −θl. Instead, one should also
consider the adjoint of linear interpolation. For the adjoint of
convolution, we assume the point spread function is symmet-
ric along coordinates i and k so that the adjoint convolution
operator is just the forward convolution operator along with
the adjoint of replicate padding. Algorithm 2 summarizes the
SPECT backward projector.

To accelerate the for-loop process, we used multithreading
to enable projecting or backprojecting multiple angles at the
same time. To reduce memory use, we preallocated necessary
arrays and used fully in-place operations inside the for-loop in

forward and backward projection. To further accelerate auto-
differentiation, we customized the chain rule to use the linear
operator A or A′ as the Jacobian when calling Ax or A′y dur-
ing backpropagation. We implemented and tested our projector
in Julia v1.6; we also implemented a GPU version in Julia
(using CUDA.jl) that runs efficiently on a GPU by eliminat-
ing explicit scalar indexing. For completeness, we also provide
a PyTorch version but without multithreading support, in-place
operations nor the exact adjoint of image rotation.

B. Unrolled CNN-Regularized EM Algorithm

Model-based image reconstruction algorithms seek to esti-
mate image x ∈ R

N from noisy measurements y ∈ R
M with

imaging model A ∈ R
M×N . In SPECT reconstruction, the

measurements y are often modeled by

y ∼ Poisson(Ax+ r̄) (3)

where r̄ ∈ R
M denotes the vector of means of back-

ground events such as scatters. Combining regularization
with the Poisson negative log likelihood yields the following
optimization problem:

x̂ = arg min
x≥0

f (x)+ R(x),

f (x) � 1′(Ax+ r̄)− y′ log(Ax+ r̄) (4)

where f (x) is the data fidelity term and R(x) denotes the reg-
ularizer. For DL regularizers, we follow [23] and formulate
R(x) as

R(x) � β

2

∥∥x− gθ (x)
∥∥2

2 (5)

where β denotes the regularization parameter; and gθ denotes
a neural network with parameter θ that is trained to learn to
enhance the image quality.

Based on (4), a natural reconstruction approach is to apply
variable splitting with u = gθ (x) and then alternatively update
the images x and u as follows:

uk+1 = gθ (xk),

xk+1 = arg min
x≥0

f (x)+ β

2
‖x− uk+1‖22 (6)

where subscript k denotes the iteration number. To mini-
mize (6), we used the EM-surrogate from [30] as summarized
in [23], leading to the following vector update:

x̂k = 1

2β

(
−d(β)+

√
d(β)2 + 4βxk  e(xk)

)
(7)

d(β) � A′1− βuk, e(xk) � A′(y� (Axk + r̄)) (8)

where  and � denote element-wise multiplication and divi-
sion, respectively. To compute xk+1, one must substitute x̂k

back into e(·) in (8), and repeat. Hereafter, we refer to (6)
as one outer iteration and (7) as one inner EM iteration.
Algorithm 3 summarizes the CNN-regularized EM algorithm.

To train gθ , the most direct way is to unroll Algorithm 3
and train end-to-end with an appropriate target; this super-
vised approach requires backpropagating through the SPECT
system model, which is not trivial to implement with previous
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Algorithm 3: SPECT CNN-Regularized EM Algorithm
Input: 3D projection measurements y,
3D background measurements r̄,
system model A, initial guess x0,
deep neural network gθ ,
outer iterations K.
for k = 0, . . . , K − 1 do

uk+1 = gθ (xk)

xk+1 ← repeat (7) until convergence tolerance or
maximum # of inner iterations is reached

end
Output: xK

SPECT projection tools due to the memory issues. Non-
end-to-end training methods, e.g., sequential training [23],
first train uk by the target and then plug into (7) at each
iteration. This method must use nonshared weights for the
neural network per each iteration. Another method is gradient
truncation [27] that ignores the gradient involving the system
matrix A and its adjoint A′ during backpropagation. Both of
these training methods, though reported to be effective, may be
suboptimal because they approximate the overall training loss
gradients.

C. Phantom Dataset and Simulation Setup

We used simulated XCAT phantoms [31] and VP phantoms
for experiment results presented in Section III. Each XCAT
phantom was simulated to approximately follow the activ-
ity distributions observed when imaging patients after 177Lu
DOTATATE therapy. We set the image size to 128× 128× 80
with voxel size 4.8×4.8×4.8 mm3. Tumors of various shapes
and sizes (5–100 mL) were located in the liver as is typical
for patients undergoing this therapy.

For VP phantoms, we consider two radionuclides: 177Lu
and 90Y. For 177Lu phantoms, the true images were from
PET/CT scans of patients who underwent diagnostic 68Ga
DOTATATE PET/CT imaging (Siemens Biograph mCT) to
determine eligibility for 177Lu DOTATATE therapy. The 68Ga
DOTATATE distribution in patients is expected to be similar
to 177Lu and hence can provide a reasonable approximation
to the activity distribution of 177Lu in patients for DL training
purposes but at a higher resolution. The PET images had size
200× 200× 577 and voxel size 4.073× 4.073× 2 mm3 and
were obtained from our Siemens mCT (resolution is 5–6 mm
FWHM [32]) and reconstructed using the standard clinic pro-
tocol: 3-D OSEM with three iterations, 21 subsets, including
resolution recovery, time of flight, and a 5-mm (FWHM)
Gaussian post-reconstruction filter. The density maps were
also generated using the experimentally derived CT-to-density
calibration curve.

For 90Y phantoms, the true activity images were recon-
structed (using a previously implemented 3-D OSEM recon-
struction with CNN-based scatter estimation [33]) from 90Y
SPECT/CT scans of patients who underwent 90Y microsphere
radioembolization in our clinic.

In total, we simulated 4 XCAT phantoms, 8 177Lu and
8 90Y VP phantoms. We repeated all of our experiments three
times with different noise realizations. All image data have
the University of Michigan Institutional Review Board (IRB)
approval for retrospective analysis. For all simulated phan-
toms, we selected the center slices covering the lung, liver,
and kidney corresponding to SPECT axial field of view (FOV)
(39 cm).

Then, we ran the SIMIND MC program [34] to generate the
radial position of SPECT camera for 128 view angles. The
SIMIND model parameters for 177Lu were based on 177Lu
DOTATATE patient imaging in our clinic (Siemens Intevo
with medium energy collimators, a 5/8” crystal, a 20% pho-
topeak window at 208 keV, and two adjacent 10% scatter
windows) [35]. For 90Y, a high-energy collimator, 5/8” crystal,
and a 105–195-keV acquisition energy window was modeled
as in our clinical protocol for 90Y bremsstrahlung imaging.
Next, we approximated the point spread function for 177Lu
and 90Y by simulating the point source at six different dis-
tances (20, 50, 100, 150, 200, and 250 mm) and then fitting a
2-D Gaussian distribution at each distance. The camera orbit
was assumed to be noncircular (auto-contouring mode in clini-
cal systems) with the minimum distance between the phantom
surface and detector set at 1 cm.

III. EXPERIMENT RESULTS

A. Comparison of Projectors

We used an XCAT phantom to evaluate the accuracy and
memory efficiency of our Julia projector.

1) Accuracy: We first compared primary (no scatter events
included) projection images and profiles generated by our Julia
projector with those from MC simulation and the MATLAB
projector. For the results of MC, we ran two SIMIND simula-
tions for 1 billion histories using 177Lu and 90Y as radionuclide
source, respectively. Each simulation took about 10 h using
a 3.2-GHz 16-Core Intel Xeon W CPU on MacOS. The
MATLAB projector was originally implemented and com-
piled in C99 and then wrapped by a MATLAB MEX file
as a part of the Michigan Image Reconstruction Toolbox
(MIRT) [36]. The physics modeling of the MATLAB projec-
tor was the same as our Julia projector except that it only
implemented 3-pass 1-D linear interpolation for image rota-
tion. Unlike the memory-efficient Julia version, the MATLAB
version prerotates the patient attenuation map for all projec-
tion views. This strategy saves time during EM iterations for
a single patient, but uses considerable memory and scales
poorly for DL training approaches involving multiple patient
datasets.

Fig. 2 compared the primary projections generated by dif-
ferent methods without adding Poisson noise. Visualizations of
image slices and line profiles illustrate that our Julia projec-
tor (with rotation based on 3-pass 1-D interpolation) is almost
identical to the MATLAB projector, while both give a reason-
ably good approximation to the MC. Using MC as reference,
the normalized root-mean-square error (NRMSE) of Julia1-
D/MATLAB/Julia2-D projectors were 7.9%/7.9%/7.6% for
177Lu, respectively; while the NRMSE were 8.2%/8.2%/7.9%
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Primary (scatter-free) projections generated by MC simulation, MATLAB projector, and our Julia projector with 3-pass 1-D linear interpolation and
2-D bilinear interpolation for image rotation, using 177Lu and 90Y radionuclides. (i)–(l) show line profiles across tumors as shown in (a) and (e), respectively.
MC projections were scaled to have the same total activities as the MATLAB projector per field of view. (a) MC (177Lu). (b) Julia 1-D (177Lu). (c) Julia
2-D (177Lu). (d) MATLAB (177Lu). (e) MC (90Y). (f) Julia 1-D (90Y). (g) Julia 2-D (90Y). (h) MATLAB (90Y). (i) Horizontal profile (177Lu). (j) Vertical
profile (177Lu). (k) Horizontal profile (90Y). (l) Vertical profile (90Y).

for 90Y. We also compared the OSEM reconstructed images
using Julia (2-D) and MATLAB projectors, where we did not
observe notable difference, as shown in Fig. 3. The overall
NRMSD between MATLAB and Julia (2-D) projector for the
whole 3-D OSEM reconstructed image ranged from 2.5% to
2.8% across three noise realizations.

2) Speed and Memory Use: We compared the memory use
and compute times between our Julia projector (with 2-D
bilinear interpolation) and the MATLAB projector using dif-
ferent number of threads when projecting a 128 × 128 × 80
image. Fig. 4 shows that our Julia projector has comparable
computing time for a single projection with 128 view angles
using different number of CPU threads while using only a
very small fraction of memory (∼5%) and preallocation time
(∼1%) compared to the MATLAB projector.

3) Adjoint of Projector: We generated a set of random
numbers to verify that the backprojector is an exact adjoint of
the forward projector. Specifically, we generated the system
matrix of size (8 × 6 × 7) × (8 × 8 × 6) using random
(non-negative) attenuation maps and random (symmetric) PSF.
Fig. 5 compares the transpose of the forward projector to the
backprojector. As shown in Fig. 5(d), the Frobenius norm error
of our backprojector agrees well with the regular transpose
within an accuracy of 10−6 across 100 different realizations,

(a) (b)

(c) (d)

Fig. 3. Comparison of one slice of the 128× 128× 80 OSEM reconstruc-
tion (16 iterations, 4 subsets) using MATLAB and Julia (2-D interpolation)
projectors. (a) True activity. (b) OSEM-MATLAB. (c) OSEM-Julia 2-D.
(d) Difference of (b) and (c).

as expected for 32-bit floating-point calculations. A more
comprehensive comparison is available in the code tests at
https://github.com/JuliaImageRecon/SPECTrecon.jl.
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Fig. 4. Time and memory comparison between the MATLAB projector
and our Julia projector for projecting 128 view angles of a 128 × 128 × 80
image. “time pre” denotes the time cost for preallocating necessary arrays
before projection; “time proj” denotes the time cost for a single projection;
and “mem” denotes the memory usage. All methods were tested on MacOS
with a 3.8-GHz 8-Core Intel Core i7 CPU.

(a) (b)

(c) (d)

Fig. 5. Accuracy of the backprojector. In (d), A′ denotes the regular
transpose of A; and Ab denotes the backprojector. (a) Regular trans-
pose. (b) Backprojector. (c) Difference of (a) and (b) multiplied by 107.
(d) Frobenius norm error.

B. Comparison of CNN-Regularized EM Using Different
Training Methods

This section compares end-to-end training with other train-
ing methods that have been used previously for SPECT image
reconstruction, namely, the gradient truncation and sequential
training. The training targets were simulated activity maps on
177Lu XCAT phantoms and 177Lu & 90Y VP phantoms. We
implemented an unrolled CNN-regularized EM algorithm with
three outer iterations, each of which had one inner iteration.
Only three outer iterations were used (compared to previous
works such as [27]) because we used the 16-iteration 4-subset
OSEM reconstructed image as a warm start for all reconstruc-
tion algorithms. We set the regularization parameter [defined
in (5)] as β = 1. The regularizer was a 3-layer 3-D CNN,

(a) (b)

Fig. 6. Training and validation loss of three backpropagation methods.
(a) Training loss. (b) Validation loss.

where each layer had a 3× 3× 3 convolutional filter followed
by ReLU activation (except the last layer), and hence had 657
trainable parameters in total. We added the input image xk

to the output of CNN following the common residual learn-
ing strategy [37]. End-to-end training and gradient truncation
could also work with a shared weights CNN approach, but
were not included here for fair comparison purpose, since
the sequential training only works with nonshared weights
CNN. All the neural networks were initialized with the same
parameters (drawn from a Gaussian distribution) and trained
on an Nvidia RTX 3090 GPU for 600 epochs by minimizing
mean-square error (loss) using AdamW optimizer [38] with a
constant learning rate 0.002.

Besides line profiles for qualitative comparison, we also
used mean activity error (MAE) and NRMSE as quantitative
evaluation metrics, where MAE is defined as

MAE �
∣∣∣∣1−

1
np

∑
j∈VOI x̂[j]

1
np

∑
j∈VOI xtrue[j]

∣∣∣∣× 100% (9)

where np denotes the number of voxels in the voxels of interest
(VOI). x̂ and xtrue denote the reconstructed image and the true
activity map, respectively. The NRMSE is defined as

NRMSE �

√
1
np

∑
j∈VOI

(
x̂[j]− xtrue[j]

)2

√
1
np

(∑
j∈VOI xtrue[j]

)2
× 100%. (10)

All activity images were scaled by a factor that normalized
the whole activity to 1 MBq per FOV before comparison. All
quantitative results (Tables I–III) were averaged across three
different noise realizations.

1) Loss Function, Computing Time, and Memory Use: We
compared the training and validation loss using sequential
training, gradient truncation, and end-to-end training. We ran
1800 epochs for each method on 177Lu XCAT phantoms with
the AdamW optimizer [38]. Fig. 6 shows that the end-to-
end training achieved the lowest validation loss while it had
comparable training loss with the gradient truncation (which
became lower at around 1400 epochs). For visualization, we
concatenated the first 600 epochs of each outer iteration for
the sequential training method, as shown by the spikes in the
sequential training curve. We ran 600 epochs for each algo-
rithm for subsequent experiments because the validation losses
were pretty much settled at around 600 epochs.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 7. Qualitative comparison of different training methods and OSEM
tested on 177Lu XCAT phantoms. (a)–(c) True activity map, attenuation map,
and OSEM reconstruction (16 iterations and 4 subsets); (d)–(f) regularized
EM using sequential training, gradient truncation, and end-to-end training,
respectively; and (g) and (h) line profiles in (a).

We also compared the computing time of each training
method. We found that for MLEM with three outer itera-
tions and one inner iteration, where each outer iteration had
a 3-layer CNN, sequential training took 48.6 s to complete
a training epoch; while gradient truncation took 327.1 s and
end-to-end training took 336.3 s. Under the same experiment
settings, we found sequential training took less than 1 GB of
memory to backpropagate through one outer iteration; com-
pared to approximately 6 GB used in gradient truncation and
end-to-end training that backpropagated through three outer
iterations.

2) Results on 177Lu XCAT Phantoms: We evaluated the
CNN-regularized EM algorithm with three training methods
on 4 177Lu XCAT phantoms we simulated. We generated the
primary projections by calling forward operation of our Julia
projector and then added uniform scatters with 10% of the
primary counts before adding Poisson noise. Of the 4 phan-
toms, we used 2 for training, 1 for validation, and 1 for
testing.

Fig. 7 shows that the end-to-end training yielded incremen-
tally better reconstruction of the tumor in the liver center over
OSEM, sequential training, and gradient truncation. Fig. 7(g)
also illustrates this improvement by the line profile across the
tumor. For the tumor at the top-right corner of the liver, all
methods had comparable performance; this can be attributed
to the small tumor size (5 mL) for which partial volume (PV)
effects associated with SPECT resolution are higher; and hence
its recovery is even more challenging.

Table I demonstrates that the CNN-regularized EM algo-
rithm with all training methods (sequential training, gradient

TABLE I
AVERAGE(±STANDARD DEVIATION) MAE(%) AND NRMSE(%) ACROSS

THREE NOISE REALIZATIONS OF 177Lu XCAT PHANTOMS

truncation, and end-to-end training) consistently had lower
reconstruction error than the OSEM method. Among all train-
ing methods, the proposed end-to-end training had lower MAE
over nearly all lesions and organs than other training methods.
The relative reduction in MAE by the end-to-end training was
up to 32% (for lesion 3) compared to sequential training. End-
to-end training also had lower NRMSE for most lesions and
organs and was otherwise comparable to other training meth-
ods. The relative improvement compared to sequential training
was up to 29% (for lesion 3).

3) Results on 177Lu VP Phantoms: Next, we present test
results on 8 177Lu VP phantoms. Out of 8 177Lu phantoms,
we used 4 for training, 1 for validation, and 3 for testing.

Fig. 8 shows that the improvement of all learning-based
methods was limited compared to OSEM, which was also
evident from line profiles. For example, in Fig. 8(g), where
the line profile was drawn on a small tumor. We found
that OSEM yielded a fairly accurate estimate already, and
we did not observe as much improvement as we had seen
on 177Lu XCAT phantoms for end-to-end training or even
learning-based methods. Table II also demonstrates this obser-
vation. The OSEM method had substantially lower MAE and
NRMSE compared to the errors shown for 177Lu XCAT data
(cf. Table I). Moreover, the end-to-end training method had
comparable accuracy with gradient truncation. For example,
gradient truncation was the best on lesion, liver, and lung in
terms of MAE; end-to-end training had the lowest NRMSE
on lesion, liver, lung, kidney, and spleen. Perhaps this could
be due to the loss function used for training, i.e., MSE loss
was used in our experiments so that end-to-end training might
yield lower NRMSE. A more comprehensive study would be
needed to verify this conjecture.

4) Results on 90Y VP Phantoms: We also tested with 8 90Y
VP phantoms. Of the 8 phantoms, we used 4 for training, 1
for validation, and 3 for testing.

Fig. 9 compares the reconstruction quality between the
OSEM and CNN-regularized EM algorithm using sequential
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 8. Qualitative comparison of different training methods and OSEM
tested on 177Lu VP phantoms. (g) and (h) Correspond to line profiles marked
in (a). (a) True activity. (b) Attenuation map. (c) OSEM. (d) Sequential.
(e) Truncation. (f) End2end. (g) Line 1 profile. (h) Line 2 profile.

TABLE II
AVERAGE(±STANDARD DEVIATION) MAE(%) AND NRMSE(%) ACROSS

THREE NOISE REALIZATIONS OF 177Lu VP PHANTOMS

training, gradient truncation, and end-to-end training. Visually,
the end-to-end training reconstruction yields the closest esti-
mate to the true activity. This is also evident through the line
profiles [subfigures (m) and (n)] across the tumor and the
liver.

Table III reports the MAE and NRMSE for lesions and
organs across all testing phantoms. Similar to the qualita-
tive assessment (Fig. 9), the end-to-end training also produced
lower errors consistently across all testing lesions and organs.
For instance, compared to sequential training/gradient trun-
cation, the end-to-end training relatively reduced MAE on
average by 8.7%/7.2%, 18.5%/11.0%, and 24.7%/16.1% for
lesion, healthy liver, and lung, respectively. The NRMSE
was also relatively reduced by 6.1%/3.8%, 7.2%/4.1%, and

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Fig. 9. Qualitative comparison of different training methods and OSEM tested
on 90Y VP phantoms. (a)–(f) and (g)–(l) Show two slices from two testing
phantoms. (m) and (n) Correspond to line profiles in (a) and (g), respectively.

TABLE III
AVERAGE(±STANDARD DEVIATION) MAE(%) AND NRMSE(%) ACROSS

THREE NOISE REALIZATIONS OF 90Y VP PHANTOMS

6.1%/3.0% for lesion, healthy liver, and lung, respectively. All
learning-based methods consistently had lower errors than the
OSEM method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 10. Visualization of intermediate iteration results of different training
methods. (a) True activity; (b) attenuation map; (c) OSEM; (d)–(f) sequential
training; (g)–(i) gradient truncation; and (j)–(l) end-to-end training.

C. Results at Intermediate Iterations

One potential problem associated with end-to-end training
(and gradient truncation) is that the results at intermediate
iterations could be unfavorable, because they are not directly
trained by the targets [39]. Here, we examined the images
at intermediate iterations and did not observe such problems
as illustrated in Fig. 10, where images at each iteration gave
a fairly accurate estimate to the true activity. Perhaps under
the shallow-network setting (e.g., three layers used here, with
only three outer iterations), the network for each iteration was
less likely to overfit the training data. Another reason could
be due to the nonshared weights setting so that the network
could learn suitable weights for each iteration.

IV. DISCUSSION

Training end-to-end CNN-based iterative algorithms for
SPECT image reconstruction requires memory efficient
forward–backward projectors so that backpropagation can be
less computationally expensive. This work implemented a
new SPECT projector using Julia that is an open-source,
high-performance, and cross-platform language. With com-
parisons between MC and a MATLAB-based projector, we
verified the accuracy, speed, and memory efficiency of our
Julia projector. These favorable properties support efficient
backpropagation when training end-to-end unrolled iterative
reconstruction algorithms. Most modern DL algorithms pro-
cess multiple data batches in parallel, so memory efficiency is

of great importance for the efficient training and testing neu-
ral networks. To that extent, our Julia projector is much more
suitable than the MATLAB-based projector.

We used the CNN-regularized EM algorithm as an example
to test end-to-end training and other training methods on differ-
ent datasets, including 177Lu XCAT phantoms, 177Lu and 90Y
VP phantoms. Simulation results demonstrated that end-to-
end training improved reconstruction quality on these datasets.
For example, end-to-end training improved the MAE of
lesion/liver in 90Y phantoms by 8.7%/16.6% and 7.2%/12.4%
compared to sequential training and gradient truncation. This
improvement could be attributed to the correct gradient was
used in backpropagation. Although the end-to-end training
yielded the lowest reconstruction error on both 177Lu XCAT
phantoms and 90Y VP phantoms, the reconstruction errors
on 177Lu VP phantoms were comparable with the gradient
truncation. This could be due to the choice of loss func-
tions and CNN architectures in the EM algorithm, which we
will explore in the future. Also, we noticed that the recov-
ery of the nonuniform activity in VP phantoms was generally
higher than activity for the XCAT phantom (MAE reported in
Tables I and II) because the assigned “true” activities at the
boundaries of organs did not drop sharply, and instead, were
blurred out. And therefore the OSEM algorithm was fairly
competitive as reported in Table II; in 90Y VP results, the
OSEM performed worse than learning-based methods, which
could be attributed to the high downscatter associated with 90Y
SPECT due to the continuous bremsstrahlung energy spec-
trum. We found all learning methods did not work very well
for small tumors (e.g., 5 mL), potentially due to the worse PV
effect. Reducing PV effects in SPECT images has been studied
extensively [40], [41]. Recently, Xie et al. [42] trained a deep
neural network to learn the mapping between PV-corrected
and noncorrected images. Incorporating their network into our
reconstruction model using transfer learning is an interesting
future direction.

Although promising results were shown in previous sec-
tions, this work has several limitations. First, we did not test
numerous hyperparameters and CNN architectures, nor with a
wide variety of phantoms and patients for different radionu-
clides therapies. Second, our experiments used OSEM images
as warm start to the CNN-regularized EM algorithm, where
the OSEM itself was initialized with a uniform image. We did
not investigate using other images such as uniform images
as the start of the EM algorithm. Using a uniform image to
initialize the network would likely require far more network
iterations which would be very expensive computationally and
therefore impractical. Additionally, this article used fixed reg-
ularization parameter [β in (5)] rather than declaring β as a
trainable parameter. We compared different methods for back-
propagation, which requires using the same cost function (4)
for a fair comparison. If one set β as a trainable parameter,
then different methods could learn different β values, leading
to different cost functions. However, the investigation of train-
able β values is an interesting future work. Another limitation
is that we did not investigate more advanced parallel com-
puting methods such as distributed computing using multiple
computers to further accelerate our Julia implementation of
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SPECT forward–backward projector. Such acceleration is fea-
sible using existing Julia packages if needed. The compute
times reported in Fig. 4 shows that the method needs a few
seconds per 128 projection views using eight threads, which
is already feasible for scientific investigation.

We also found there exists a tradeoff between computa-
tional cost and reconstruction accuracy for different training
methods. End-to-end training yielded reconstruction results
with the lowest MAE and NRMSE because the correct gra-
dient was used during backpropagation. Sequential training
yielded worse results, but it was significantly faster and more
memory efficient than the end-to-end training method. It is
notably faster because it splits the whole training process and
trains each of neural networks separately, and its backprop-
agation does not involve terms associated with the MLEM
algorithm, so sequential training is actually equivalent to train-
ing that neural network alone without considering the MLEM.
Sequential training also used much less memory because the
training was performed iteration by iteration, one network
by one network, and hence the memory limitation did not
depend on the number of unrolled iterations in the MLEM
algorithm.

V. CONCLUSION

This article presents a Julia implementation of backprop-
agatable SPECT forward–backward projector that is accu-
rate, fast, and memory efficient compared to MC and a
previously developed analytical MATLAB-based projector.
Simulation results based on 177Lu XCAT phantoms, 90Y and
177Lu VP phantoms demonstrate that: 1) end-to-end train-
ing yielded reconstruction images with the lowest MAE
and NRMSE when tested on XCAT phantoms and 90Y
VP phantoms, compared to other training methods (such as
sequential training and gradient truncation) and OSEM and
2) for 177Lu VP phantoms, the end-to-end training method
yielded better results than sequential training and OSEM;
but was rather comparable with gradient truncation. We also
found there exists a tradeoff between computational cost and
reconstruction accuracy in different training methods (e.g.,
end-to-end training and sequential training). These results
indicate that end-to-end training, which is feasible with our
developed Julia projector, is worth investigating for SPECT
reconstruction.
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