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Abstract—Reconstruction of CT images from a limited set of
projections through an object is important in several applications
ranging from medical imaging to industrial settings. As the num-
ber of available projections decreases, traditional reconstruction
techniques such as the FDK algorithm and model-based itera-
tive reconstruction methods perform poorly. Recently, data-driven
methods such as deep learning-based reconstruction have garnered
a lot of attention in applications because they yield better per-
formance when enough training data is available. However, even
these methods have their limitations when there is a scarcity of
available training data. This work focuses on image reconstruc-
tion in such settings, i.e., when both the number of available CT
projections and the training data is extremely limited. We adopt
a sequential reconstruction approach over several stages using an
adversarially trained shallow network for ‘destreaking’ followed by
a data-consistency update in each stage. To deal with the challenge
of limited data, we use image subvolumes to train our method, and
patch aggregation during testing. To deal with the computational
challenge of learning on 3D datasets for 3D reconstruction, we
use a hybrid 3D-to-2D mapping network for the ‘destreaking’
part. Comparisons to other methods over several test examples
indicate that the proposed method has much potential, when both
the number of projections and available training data are highly
limited.

Index Terms—Sparse-views, computed tomography, machine
learning, deep learning, image reconstruction.

I. INTRODUCTION

COMPUTED Tomography (CT) is an important imaging
modality across applications in medicine, industry, science
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and security. In this work, we develop an iterative machine
learning-based approach for 3D cone beam CT reconstruction
from very limited measurements or projections, and using lim-
ited training data. In the following, we first review some back-
ground in limited-view CT reconstruction before highlighting
the contributions of this work.

A. Background

Cone Beam CT (CBCT) is a CT-based technique that allows
for three-dimensional imaging of an object using X-rays diverg-
ing from a source. In CBCT, an entire 3D image volume is recon-
structed from a set of 2D projections through the corresponding
object. These projections/measurements are obtained at different
angles or ‘views’ around the object, and are collectively dubbed a
sinogram. There are several approaches for the inverse problem
of obtaining an image from these measurements. A classical
method for this task is the analytical Feldkamp-Davis-Kress
(FDK) algorithm [1]. More sophisticated methods for 2D or
3D reconstruction involve model-based reconstruction using
iterative algorithms [2], [3], [4], and data-driven algorithms [5],
[6].

Model-based image reconstruction (MBIR) or statistical im-
age reconstruction (SIR) methods exploit sophisticated models
for the physics of the imaging system and models for sensor
and noise statistics as well as for the underlying object. These
methods iteratively optimize for the underlying image based on
the system forward model, measurement statistical model, and
assumed prior for the underlying object [7], [8], [9], [10]. In
particular, penalized weighted least squares (PWLS) approaches
have been popular for CT image reconstruction that optimize a
combination of a statistically weighted quadratic data-fidelity
term (capturing the forward and noise model) and a regularizer
penalty that captures prior information of the object [11]. MBIR
methods have often used simple regularizers [12] such as edge-
preserving regularization involving nonquadratic functions of
differences between neighboring pixels [13] (implying image
gradients may be sparse) or other improved regularizers [14],
[15], [16], [17].

Within the class of data-driven approaches, dictionary learn-
ing [12] and deep learning based methods for reconstruction
have gained popularity in recent years due to their demonstrated
effectiveness in removing artifacts from images in a variety
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of modalities, great flexibility and the availability of curated
datasets for training [18], [19], [20].

However, in several applications, acquiring many projections
or ‘views’ through the object may be undesirable or impossi-
ble. This constraint may be to reduce exposure to radiation in
medical imaging applications, or due to only pre-set limited or
sparse views being possible in industrial or security applications.
Moreover, in dynamic imaging applications, where the object is
changing while being imaged, we would also be limited to fewer
views per temporal state, to prevent blurring. While total varia-
tion (TV)-based MBIR methods have been extensively applied to
such sparse-view and sparse angle reconstruction problems [21],
[22], [23], [24], [25], [26], other model-based CT reconstruction
algorithms rely upon learned prior-based regularizers [27], [28],
[29]. These methods often require many iterations to converge,
leading to large runtimes, and also require careful selection of
regularization parameters to obtain reasonable image quality
trade-offs.

Deep learning algorithms have found considerable use in
many problems ranging from artifact correction to image re-
construction by combining with model-based reconstruction
[30], [31], [32], [33], [34], [35], [36], [37], [38]. Deep learning
approaches could be supervised or unsupervised or mixed [39],
[40] and include image-domain (denoising) methods, sensor-
domain methods, AUTOMAP, as well as hybrid-domain meth-
ods (cf. reviews in [12], [41]). Hybrid-domain methods are
gaining increasing interest and enforce data-consistency (i.e.,
the reconstruction should be consistent with the measurement
model) during training and reconstruction to improve stability
and performance. Deep learning methods often require large
training data sets and long training times to work well. They
may also struggle to generalize to data with novel features or
that are obtained with different experimental settings.

When reconstructing 3D objects from extremely limited to-
mographic views or projections, many of the aforementioned
approaches fail. The FDK algorithm yields reconstructions that
are severely ridden with streak artifacts. While conventional
iterative methods perform better, the quality of reconstructions
leave a lot to be desired, and there is often poor bias-variance
trade-offs. Deep learning-based approaches have the potential
to perform better in this scenario, but still perform poorly when
there is a scarcity of available data for training, such as in
national security applications where experimental data is limited
and accurate simulations are expensive [42]. While there are
approaches that reconstruct from very limited projections, they
either do not target 3D CBCT imaging [19], [25], [43], [44], or
rely upon many paired training image volumes [18], [20], [45],
[46], [47], [48].

B. Contributions

This paper focuses on developing a method that improves
the art of reconstruction of 3D objects from very sparse cone
beam CT views, when there is extremely limited data for train-
ing the reconstruction model. The proposed reconstruction ap-
proach works across multiple stages, similar to an unrolled-loop

algorithm [12], where each stage consists of a shallow CNN
block trained using a combined supervised and adversarial loss,
followed by a data-consistency block. The adversarial compo-
nent of our loss yields destreaked images that have more realistic
texture. To mitigate the challenge of reduced training data, we
reduce the scope of our learning to patches or image subvolumes.
This approach allows us to provide several training examples
from even a single training image. Destreaked patches are aggre-
gated before data-consistency is applied to the whole volume.
Furthermore, we prime our method using an edge-preserving
regularized reconstruction as input.

We compare our methods to a variety of techniques including
the FDK algorithm, edge-preserving regularized reconstruction,
and deep CNN-based reconstruction without data-consistency.
Simulation results suggest that the proposed method provides
much better image quality than previous techniques with ex-
tremely limited (four or eight) views of 3D objects.

C. Organization

The rest of this paper is organized as follows. Section II
describes the proposed approach in detail. Section III explains
our choices for various algorithm parameters as well as our
experimental setup. Section IV presents the results of our com-
parisons to other algorithms as well as other experiments that
offer insights into the process of our reconstruction. Section V
elaborates upon these observations. Finally, Section VI states
our conclusions and offers some avenues for future research.

II. ALGORITHM & PROBLEM SETUP

Our proposed method for CBCT reconstruction focuses on
addressing two primary challenges: a very limited number of
available views, and limited number of available training objects.
We address the former through a combination of three aspects:
(1) using an edge-preserving regularized reconstruction [4] to
initialize our iterative-type algorithm; (2) including an adversar-
ial component to the training loss function for our learned de-
streaking networks (similar to generative adversarial networks or
GANs); and (3) including data-consistency blocks that reinforce
acquired measurements in the destreaked 3D reconstruction.

The problem of scarce training data is addressed primarily
by two approaches. First, we split an entire image volume into
patches in the form of overlapping subvolumes. Essentially, this
step localizes the scope of CNN-based destreaking to a compara-
tively smaller neighborhood, while allowing us to generate many
training examples from a single image volume. Second, we use
a shallow destreaking CNN to avoid overfitting to the training
data. To reduce computation time associated with multiple 3D
convolutions and subsequent patch aggregation, the CNN is
designed to map 3D subvolumes to 2D slices [49]. This approach
enables using 3D contextual information for the destreaking
task, while removing the need for patch averaging (of overlap-
ping 3D patches) and associated artifacts during aggregation.

Many learning-based reconstruction approaches in applica-
tions like MRI work through end-to-end training, whereas such
approaches are less practicle in CT due to the complexity of
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Fig. 1. Flow diagram depicting the overall pipeline of our algorithm, wherexFDK is the FDK reconstruction,xEP is an edge-preserving regularized reconstruction,
xG is the generator’s output after slice aggregation, and x1 is the output of the first stage.

the system matrix. Thus, our developed algorithm operates as
a multi-stage greedy approach similar to works like [50], [51].
Each stage is composed of a CNN that maps each 3D subvolume
with streaking artifacts to a clean 2D slice corresponding to
the slice at the centre of the subvolume. Because the objects
considered here have finite support, we treat the slices at the
edge of the volume in the direction of aggregation are being
empty, and set them to zero. One could use other boundary
conditions for long objects [52]. Once an entire image volume
has been aggregated from individual clean slices, this volume is
passed through a data-consistency update to reinforce acquired
measurements and reduce any ‘hallucinations’ introduced by the
network. This output subvolume is then provided as input to the
next stage. Fig. 1 depicts the process that is akin to algorithm
unrolling [53]. As mentioned earlier, to reduce noise and streaks,
the input to the first stage of our method is an edge-preserving
regularized (iteratively obtained) reconstruction, using the regu-
larizer in [4] and the algorithm in [54], which in turn is initialized
with an FDK reconstruction for faster convergence.

We train the CNN parameters separately for each stage. The
training loss for the destreaking CNN in each stage consists
of a weighted combination of a masked mean squared error
term calculated over a region of interest using the ground truth
training image slices, and an adversarial input from another CNN
that acts as a discriminator for the output of the destreaking
CNN (also specific to the stage). Adversarial training often is
posed as a min-max optimization problem [55], but the practical
implementation involves alternating between updating gener-
ator (destreaking) network G parameters φk and discrimina-
tor network D parameters θk, with more frequent updates of
the generator parameters. Our approach to updating the gen-
erator weights for the kth stage is mathematically expressed
as:

θ̂k = argmin
θ

−λ E
[
Dφk(Gθ(P3xk−1))

]

+ E
[
‖P2,mid

3 xGT −Gθ(P3xk−1)‖22
]
, (1)

where xk−1 is the output of the (k − 1)th stage of our algo-
rithm, x0 is set to be xEP (the edge-preserving regularized
reconstruction), xGT is the ground truth, λ is a regularization
parameter that varies as the weights of Gk are updated (see
Section III-B), P3 is a 3D patch or subvolume extraction oper-
ator, and P2,mid

3 is an operator that extracts the 2D central slice
from an image subvolume, where the position of the subvolume
is determined by P3. We restricted the reconstructions to a
region in the image volume containing the object of interest.
The expectation E is taken over the set of training examples.

Our approach to updating the the discriminator network pa-
rameters is likewise given as:

φ̂k = argmin
φ

E
[
(Dφ(Gθk(P3xk−1))− 0)2

]

+ E

[(
Dφ(P2,mid

3 xGT)− 1
)2

]
. (2)

The data-consistency update involves seeking an image that
is consistent with the acquired measurements while still being
‘close’ to the slice-aggregated destreaked image. The optimiza-
tion problem for this step is framed as:

xk = arg min
x

‖Ax− y‖22 + β‖x− xk,G‖22, (3)

where A is the CBCT system matrix, implemented with the
separable-footprint projector [56], y denotes the projections or
acquired measurements,β > 0 is a regularization parameter, and
xk,G is the output of the generator after slice aggregation at the
kth stage. We used an ordinary least-squares (LS) data-fit term
rather than a weighted LS (WLS) term because the focus here is
on sparse views rather than low-dose imaging, but the method
generalizes directly to the WLS case. We used 50 conjugate
gradient (CG) iterations to minimize (3).
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TABLE I
COMPARISON OF THE PERFORMANCE OF OUR PROPOSED METHOD AGAINST FDK RECONSTRUCTION, EDGE-PRESERVING (EP) REGULARIZED RECONSTRUCTION,
A SINGLE STAGE OF CNN-BASED DESTREAKING WITHOUT DATA-CONSISTENCY (USING THE SAME ARCHITECTURE AS IN OUR METHOD), A 2.5D DNCNN [49]

WITHOUT DATA CONSISTENCY, OUR PROPOSED APPROACH WITH 1 STAGE BUT WITH DESTREAKING CNN TRAINED FOR 160 EPOCHS AND OUR PROPOSED

MULTISTAGE RECONSTRUCTION ALGORITHM FOR 8 ACQUIRED PROJECTIONS WITH 4 STAGES WITH DESTREAKING CNN TRAINED FOR 40 EPOCHS EACH. THE

METRICS USED FOR PERFORMANCE ARE THE NORMALIZED MEAN ABSOLUTE ERROR (NMAE) AND THE NORMALIZED HIGH-FREQUENCY ERROR NORM

(NHFEN)

III. METHODS

A. Dataset and Experimental Settings

To train and test our method, we examined two diverse prob-
lems. The first problem is a standard sparse-view image recon-
struction problem in which we utilized the publicly available 3D
walnut CT dataset [57]. To study the ability to learn from very
limited data, we used a single walnut for training our method,
and tested our algorithm on 5 different walnuts. Furthermore,
extremely limited data with 8 or 4 views/projections through the
walnuts were used in training and testing the network. Separate
networks were trained for reconstructing image volumes from
4 and 8 views, respectively. These CBCT views were generated
using the MIRT [58] package, and were equally spaced over
360 degrees. The distance from source to detector was set to
be 20 cm, the distance from the object to the detector was
4.08 cm, and each projection view was 150× 150 pixels of
size ≈ 0.4 mm2 Our second problem examines [59] the re-
construction of complex hydrodynamic phenomena using the
computational fluid dynamics software CTH [60]. Specifically,
we examined the ability to perform reconstructions from a
single hydrodynamic training simulation using only a single
temporal slice and 8 projections. To illustrate the variation of
the voxel values, Fig. 8 provides a few one dimensional profiles
of different simulations across the central row of the central
slice.

The ability of the algorithm to reconstruct hydrodynamic
simulations generated with different hydrodynamic parameters
was tested using two simulations, one referred to as simulation
12 (see Figs. 9 and 10) that was generated using one set of
parameters at an early time and another referred to as simulation
7 (see Figs. 11 and 12) that was generated using a different set
of parameters and at a later time in its simulation. We also used
two grossly different volumes to train the network to examine the
ability of the network to generalize from different training cases.
The CBCT data here were generated in the same manner as the
walnut data. The 2.5D Deep CNN and our proposed method were
both trained on the volume within a bounding box containing
the outermost shell; this outer shell can be seen in Figs. 9–12.
For comparison, all reconstruction metrics were reported in a
130× 130× 130 bounding box containing the inner topological
structures in the volume. This box is shown in the zoomed in
parts of images shown in Figs. 9–11.

Because the CBCT system simulated here has a small cone
angle (almost parallel beam), 8 views over 360◦ probably has
only a bit more information than 4 views over 180◦. The image
volume for each walnut was 501× 501× 501. The dimensions
of each voxel were approx. 0.12× 0.12× 0.12 mm3, whereas
the dimensions of the hydrodynamic simulations were 448×
448× 448 with voxel size 0.025×0.025×0.025 cm3.

B. Hyperparameters and Network Architectures

The subvolume size for our scheme was chosen to be 500×
500× 8. The parameterβ was chosen to be 1, and λ was changed
dynamically as the network weights were updated according
to 10�log(r)�, where r = E[‖P2,mid

3 xGT −Gθ(P3xk−1)‖22]. This
was done to maintain balance between the �2 and adversarial loss
components during generator training. The number of stages in
our method was set to 4, and the networks in each stage were
trained for 40 epochs. The weights for the discriminator were
updated once for every 10 times the weights of the destreaking
CNN were updated.

Fig. 1 depicts the generator architecture we used. The kernel
size for 3D convolutions was (3× 3× 3), and (3× 3) for the
2D convolutions. The discriminator was akin to a classifier with
two convolutional layers and with 8 filters in each convolutional
layer with (3× 3) kernel size with stride 1 followed by fully
connected layers with (1152,8,8) nodes respectively, with a
sigmoid activation at the final output to constrain the output to be
between 0 and 1. The batch size during training the destreaking
CNNs was 6. Training the destreaking CNN in each stage of our
algorithm for walnut data took approx. 10 hours on 3 NVIDIA
Quadro RTX 5000 GPUs, while at test time, each walnut volume
required 7 minutes to reconstruct with a batch size of 3 on two
of the same GPUs. The data consistency update required an
additional 3 minutes on a workstation with Intel(R) Xeon(R)
Silver 4214 CPU @ 2.20 GHz with 48 cores.

C. Compared Methods

To assess the performance of our method, we used 4 stages of
our proposed algorithm to achieve a compromise between image
quality and runtime. We compared the output for all 5 test wal-
nuts to the conventional FDK reconstruction, an edge-preserving
(EP) regularized (MBIR) reconstruction [4], as well as the
slice-aggregated output from a single stage of our destreaking
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TABLE II
COMPARISON OF THE PERFORMANCE OF OUR PROPOSED METHOD AGAINST FDK RECONSTRUCTION, EDGE-PRESERVING (EP) REGULARIZED RECONSTRUCTION,
A SINGLE STAGE OF CNN-BASED DESTREAKING WITHOUT DATA-CONSISTENCY (USING THE SAME ARCHITECTURE AS IN OUR METHOD), A 2.5D DNCNN [49]

WITHOUT DATA CONSISTENCY AND OUR PROPOSED MULTISTAGE RECONSTRUCTION ALGORITHM 4 ACQUIRED PROJECTIONS. THE METRICS USED FOR

PERFORMANCE ARE THE NORMALIZED MEAN ABSOLUTE ERROR (NMAE) AND THE NORMALIZED HIGH-FREQUENCY ERROR NORM (NHFEN)

Fig. 2. Comparison of the quality of reconstruction of our proposed algorithm (h) for walnut 2 (8 views) in Table I to various reference methods. Each subfigure
depicts slices through the center of the walnut volume in three different directions (or sagittal, coronal and transverse orientations). The normalized mean absolute
errors have also been shown underneath each subfigure. The central slices corresponding to the ground truth training walnut volume have also been shown in (b).
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Fig. 3. Comparison of the quality of reconstruction of our proposed algorithm (f) for walnut 2 (4 views) in Table II to various reference methods. Each subfigure
depicts slices through the center of the walnut volume in the sagittal, coronal and transverse orientations. The normalized mean absolute errors have also been
shown underneath each subfigure.

Fig. 4. Central slices corresponding to all three orientations of test walnut 2 (8 views) after various steps during a single stage (Stage 1) of our proposed algorithm.

CNN without data consistency. We also compared our proposed
method to a deep 2.5D (residual) CNN whose architecture is as
in [49] and without data consistency. This network had 16 hidden
convolutional layers, whose input was a subvolume of three
slices, and its output was a single slice trained to be the residual
needed to be added to the middle slice of the EP reconstruction
input to get the full-views image. The network was trained with a
learning rate of 0.001 for Walnuts and 0.0002 for hydrodynamic
simulations, both using the Adam optimizer with a learning rate
scheduler that multiplied the current learning rate by 0.1 every 50
epochs. The network was trained for 100 epochs. A batch size of

4 was used for Walnut dataset whereas a batch size of 6 was used
for hydrodynamic simulations. This network was trained using
masked mean squared error between output residual and ground
truth-based residual, where the mask was the bounding box con-
taining the edges of the training volume. Ground truth residuals
were obtained by subtracting the EP slice from full-views or
ground truth image. We trained this model with and without
data augmentation that involved random elastic deformations,
random rotations, and flips. However, we observed that data
augmentation did not improve the performance on the unseen
test volumes for both the datasets. Data augmentation increased
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Fig. 5. Central slices through the reconstructions of walnut 1 (8 views) in all three orientations at the end of each of the 4 stages of our algorithm (post
data-consistency). It is evident that the quality of the reconstruction progressively improves across the stages. The normalized mean absolute error (NMAE) for
each figure is also provided underneath.

the training time, but it still gave similar performance to without
data augmentation. We therefore simply show the latter results.
Finally, we also compare the robustness of our proposed four
stage method by testing with smaller object to detector and
source to detector distances, wherein cone beam artifacts are
more prevalent and different than in the training set.1

D. Performance Metrics

We primarily used the normalized mean absolute error
(NMAE) as a metric for evaluating the performance of various
methods. For the walnut data, the error is evaluated over the
voxels within the region-of-interest (ROI) of a three-dimensional
mask obtained by dilating a ground truth segmentation of the
walnut being reconstructed. The masked region includes all
voxels within the shell of the walnut. The NMAE normaliza-
tion used the mean intensity of the ground truth voxels within
this mask. Essentially, ENMAE(xGT , xO,M) = ‖M� (xGT −
xO)‖1/‖M� xGT ‖1, where xGT is the ground truth image vol-
ume, xO is the reconstruction whose quality is being evaluated,
and M is a binary mask specific to the test volume (e.g., which
excludes any pixel not within the dilation of the outer boundary

1Implementation of proposed and compared methods are available in https:
//github.com/gtm2122/SparseViewCT-TCI

for walnuts).2 For computing metrics for hydrodynamic data,
we let the mask cover a central region of the volume having the
predominant object dynamics. The masks were applied so that a
cubical region of size 130× 130× 130 encompasses the central
toplogical features. This was done to evaluate the reconstructions
of this interior region which had complex features of interest.

Another metric that is used for comparison in our work is
the normalized high-frequency error norm or NHFEN [61]. We
computed the HFEN for every slice of the reconstructed walnut
as the �2 norm of the difference of masked edges (obtained
through a high-pass filtering) between the input and reference
images. The masking is done similarly as described earlier.
A Laplacian of Gaussian (LoG) filter was used as the edge
detector. The kernel size was set to 15× 15, with a standard
deviation of 1.5 pixels. The normalization was performed over
the high frequency components of the ground truth image over
the masked ROI. Mathematically, this metric is calculated as
ENHFEN(xGT , xO,M) = 1

N

∑
i ‖H(M[:, :, i]� xGT [:, :, i])−

(H(M[:, :, i]� xO[:, :, i])‖2/‖H(M[:, :, i]� xGT [:, :, i])‖2,
where H denotes the LoG filter described earlier, i indexes
the slices of the image volume in the z direction, where N
is the total number of slices in that direction, and the other

2These are obtained by a histogram-based thresholding of the corresponding
ground truth volumes for the test walnuts.
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Fig. 6. (a) and (b) show the effects of rotating the test walnuts (by changing the angle of acquired projections) on the quality of the reconstructions for 8 acquired
views, while (c) and (d) capture the effect of varying the scale of features of the test walnut compared to the scale used in training. (e) and (f) show the effect of
different cone-beam artifacts by simultaneously multiplying source to detector and object to detector distances by a multiplication factor. (a), (c), and (e) depict
the normalized MAE metric while (b), (d), and (f) depict the normalized HFEN error metric for the respective experiments.

symbols have their usual meaning, as described previously. An
advantage of using such normalized metrics is that it allows
for the evaluation of the reconstruction quality only in areas of
interest in the volume, disregarding the effect of empty spaces
around it.

IV. RESULTS

A. Walnut Dataset Reconstruction Comparisons

Table I and Table II compare the reconstruction performance
of various methods (including our own) described in the previous
sections. The proposed approach substantially improves the
NMAE and NHFEN compared to the reference methods for 8
and 4 acquired projections, respectively. As expected, the quality
of reconstructions using 4 acquired projections was worse than
when 8 projections were acquired for reconstruction.

Additionally, to better test the advantage of having multiple
stages in our method, we trained the destreaking network in
Stage 1 for 4 times the epochs as our multi-stage scheme,
and followed up the network with data-consistency once. This
method was compared against our proposed approach where
each destreaking CNN was trained for 40 epochs followed by
a data consistency step for a total of 4 stages. Table I shows
this comparison in terms of reconstruction metrics. Fig. 2 shows
a visual comparison of reconstruction quality for 8 views with
the previously mentioned methods and our 4 stage approach.
The proposed algorithm provides significantly higher quality
reconstructions than the other methods. This is particularly
evident in the extent to which our algorithm is able to restore
the finer features of the walnuts, and has fewer artifacts.

Fig. 3 compares the reconstructions from 4 views. The quality
of the reconstruction is poorer compared to that using 8 views,
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Fig. 7. Comparison of the quality of reconstruction of our proposed algorithm at half the source to detector and object to detector distances as used during
training. Reconstructions are shown for walnut 2 (8 views) with (a) FDK, (b) Desktreaking CNN, and (c) the proposed method. The cone beam artifacts are more
prevalent in (a). Each subfigure depicts slices through the center of the walnut volume in three different orientations. In the image titles, OD stands for Object to
Detector Distance and SD stands for Source to Detector distance.

Fig. 8. 1-D Profile of central row of central slice of three different Hydrody-
namic Simulations.

though the proposed approach still visibly outperforms the other
methods.

Fig. 4 shows the results of the intermediate steps of the first
stage of our reconstruction for walnut 2 (8 views) in the test
dataset. While the patch-based destreaking compensates for
the blurring introduced by the EP-regularized reconstruction
and ‘fills-in’ details in the reconstructed volume, the data-
consistency plays a key role in mitigating hallucinations in-
troduced by the CNN, and reinforces image features that are
consistent with the acquired measurements.

Fig. 5 shows walnut 1 from our test dataset being progres-
sively reconstructed from 8 projections across the stages of our
algorithm; as the stages progress, more features are restored
in the reconstructed walnut, until the improvements become
incremental. The residual streaking artifacts outside the walnut
are mitigated in the reconstructions from the third and fourth
stages.

Fig. 6(a) and (b) show how the quality of the reconstruc-
tions from 8 acquired views using our method varies when
the orientation of the test walnuts is changed, in comparison
to training-time. This is achieved by changing the position of

the acquired (equidistant) projections, as this is akin to rotating
the test walnut. For this purpose, essentially the position of
the first acquired projection is shifted by a specified angle.
For the three test walnuts shown in the figure, the angle of
rotation was changed between +22.5◦ and −22.5◦ in intervals
of 7.5◦. Both the normalized mean absolute error (NMAE) and
the normalized high-frequency error norm (NHFEN) were used
as quality metrics in this experiment. Our method seems to be
fairly robust to rotated test-data.

We also studied the effect of varying the scale of the features
of test walnuts on reconstructions from our method (from 8
projections), which was still trained on a single scale. For this
purpose, we used the three walnuts which were used in the
previous experiment. From Fig. 6(c) and (d), it is evident that
while there are differences in the NMAE and NHFEN across
scales, our method holds up reasonably well across multi-scale
test data. Particularly, we notice that while higher-frequency
features are better reconstructed when the test walnuts are scaled
down, the best NMAE is observed when the scale of the test
walnut is 1.1 times its original scale. We surmise that this
happens because at a scale of 1.1, the scale of features of the
test walnuts matches that of the training walnut very well. (We
excluded scale 1.3 for walnut 3 because at that scale, the walnut
exceeded the 501× 501× 501 voxel grid.)

To test the robustness of the proposed approach with respect
to some variations in the acquisition geometry (different cone-
beam artifacts), we simulated projections by varying the source
to detector and object to detector distances simultaneously in
our setup, such that the ratio of the two remained roughly the
same. We used the same network for 8 views as in the previous
cases and tested it in these modified setups, where only the data-
consistency module used the correct forward model whereas
the CNNs were fixed (to test their generalizability). Fig. 6(e)
and (f) show the variation of reconstruction metrics when the
source to detector and object to detector distances are multiplied
by a multiplication factor. Fig. 7 also shows an example of
reconstructions at 1000 mm source to detector distance and
204 mm object to detector distance (i.e., at multiplication factor
of 0.5). The results show that the reconstruction quality varies
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Fig. 9. Comparison of different methods for reconstructing hydrodynamic data from 8 views. All methods were trained on the simulation shown in (a). Zoom-ins
of the central portion of each image are provided. The proposed method clearly outperforms the other schemes.

only somewhat with changes in the artifacts (i.e., with more
cone beam type artifacts), indicating a level of robustness for
the proposed approach.

B. Hydrodynamic Simulation Reconstruction Comparisons

Table III displays a similar comparison with two versions of
our proposed model, each trained on a different hydrodynamic
simulation using the same acquisition geometry as used for the
walnuts in Table I. There were 12 simulations in total generated
using 4 set of simulation parameters and each were sampled
at different timepoints. Out of these 12, simulations 7 and 12
were used for training. These were generated using different
sets of parameters and the training volumes corresponded to
two different time points in the simulations. The results show
that the proposed method outperforms the compared methods
across a variety of test cases in both training scenarios. Fig. 9

compares reconstructions of a test simulation by various meth-
ods mentioned above; our proposed method clearly outper-
formed all compared methods. Fig. 10 compares reconstructions
by our proposed method against 2.5D DnCNN [49] for a case
where the latter showed a comparable reconstruction to our pro-
posed method in terms of NMAE. Despite the similar NMAE,
the image features are still visually better for our proposed
network. We see similar observations for Figs. 11 and 12, where
the reconstruction is visually better for our proposed method
when trained on Simulation 7.

V. DISCUSSION

Our observations in Section IV indicate that the proposed
physics-aware learning-based approach for limited-view CBCT
reconstruction is able to improve upon the quality of recon-
structions yielded not only by the FDK algorithm, but also
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Fig. 10. Comparison of different methods for reconstructing hydrodynamic data from 8 views. All methods were trained on the simulation shown in (a). Zoom-ins
of the central portion of each image are provided. The proposed method clearly outperforms the other schemes.

traditional prior-based iterative reconstruction, which serves a
crucial role in initializing our algorithm, and ensures that the
subsequent CNN-based destreaking is afforded a reasonable
mapping to learn when trained with ground truth images as
targets. Furthermore, in Fig. 4, we also demonstrated the im-
portance of data-consistency when reconstructing from limited
measurements. The data consistency update could easily be
the most crucial step in our algorithm because it corrects for
hallucinations introduced by the CNN-based destreaking step,
which are very likely to occur given the limited availability
of training data. This allows our algorithm to be repeated for
several stages, which is key to the improvement provided by
the proposed method over a simple image domain CNN-based
denoiser. The generalizability of our approach is evident from
the consistent improvements yielded by our approach in Table I
and Table II, which is a consequence of using subvolumes or
patches in training our method as well as the relative shallowness

of the CNNs used therein. These measures effectively reduce the
chances of overfitting when training on extremely limited full-
view data. The chosen patch size effectively allowed the learned
destreaking CNN to utilize three-dimensional context while also
reducing: (1) the total number of overlapping subvolumes that
are forward propagated through the destreaking CNN at test
time and (2) the memory requirements for training the network.
The hybrid 3D to 2D mapping also plays an important role by
reducing the computational and time demands of our algorithm,
and by removing any chances of artifacts that may be introduced
during (conventional overlapping) patch aggregation.

We noted that the final reconstruction quality for some test
walnuts was better than others, and also that the final recon-
struction quality from our algorithm depended on the quality
of the initial EP reconstruction. We think this may be because
the acquired views (equidistant over 360◦) may not be the best
choice for higher fidelity reconstructions for some walnuts,
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Fig. 11. Comparison of different methods for reconstructing hydrodynamic data from 8 views. All methods were trained on the simulation shown in (a). Zoom-ins
of the central portion of each image are provided. The proposed method clearly outperforms the other approaches. .

and because these walnuts may be less similar to the training
walnut.

In comparison to 2.5D DnCNN reconstructions, the proposed
approach was substantially better at reconstructing walnuts even
with 4 views, where the differences are very noticeable, and the
2.5D DnCNN failed to reconstruct not only the internal features
but also the boundary of the test walnut.

The proposed approach also showed robustness to different
cone-beam artifacts caused by varying the source-detector and
object-detector distances. Despite the initial FDK reconstruc-
tion having different amounts of cone-beam artifacts, the final
reconstructions, in terms of both NMAE and HFEN metrics,
hardly differed as shown in Fig. 7 and from the appearance of
reconstructed features.

The proposed approach displayed robustness to reconstruc-
tion of hydrodynamic simulations. As seen in Fig. 12, despite
being trained on a hydrodynamic simulation with very different

topological features in the center, our algorithm was able to re-
construct the edges of a test hydrodynamic simulation with very
different features, whereas The 2.5D DnCNN failed to capture
this despite having similar reconstruction NMAE values. Fig. 10
is another example that demonstrates the proposed method’s
ability to generalize better than the 2.5D DnCNN.

Regarding the performance of our reconstructions in terms
of the NHFEN metric, we observe a lack of sensitivity with
respect to other compared techniques for both 8 and 4 views.
We surmise that this is because neither of the networks was
trained for improved NHFEN, i.e., a NHFEN term was not part
of the training loss.

While the experiments with rotated projections and varying
scale of features showcased some robustness of our proposed
approach to both rotation and up/downscaling of features– it
also brought to light the necessity for data augmentation for
improved performance. The consistent degradation of the high
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Fig. 12. Comparison of different methods for reconstructing hydrodynamic data from 8 views. All methods were trained on the simulation shown in (a). Zoom-ins
of the central portion of each image are provided. The proposed method clearly outperforms the other approaches.

TABLE III
COMPARISON OF THE PERFORMANCE OF OUR PROPOSED METHOD FOR 8 VIEWS AGAINST FDK RECONSTRUCTION, EDGE-PRESERVING (EP) REGULARIZED

RECONSTRUCTION AND 2.5D DNCNN [49]. THE TRAINING WAS DONE ON TWO DIFFERENT 3D HYDRODYNAMIC SIMULATIONS. ALL SCORES ARE REPORTED ON

A 130× 130×130 PIXEL VOLUME AT THE CENTER OF EACH RECONSTRUCTION.
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frequency features (observed through the NHFEN metric) in
reconstructions with increase in scale was interesting to note,
and its contrast with the trends in NMAE points towards a
sharpness/fidelity trade-off that may need more investigation.

However, it is key to realize that the improved performance in
the NHFEN metric at smaller scales using our method is likely
due to fewer edges that need to be reproduced in the image, and
does not suggest that reconstructions of increasingly sharper
quality may be obtained by continually shrinking the scale of
walnuts.

VI. CONCLUSIONS AND FUTURE WORK

This paper developed a method to provide high quality re-
constructions from extremely limited CBCT projections and
scarce training data. The key features of our approach were the
multi-stage approach of alternating between learning-based de-
streaking and data consistency and the use of subvolume-based
learning and shallower (adversarially trained) CNNs to combat
over-fitting. In the future, we will focus on extending our method
to dynamic imaging applications in CT, as well as being able
to jointly segment and reconstruct three-dimensional objects.
Towards this end, we are also interested in finding a better metric
than the mean absolute error to assess the fidelity and quality of
our reconstructions for specific tasks.
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