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Abstract— Accurate scatter estimation is important in
quantitative SPECT for improving image contrast and accu-
racy. With a large number of photon histories, Monte-Carlo
(MC) simulation can yield accurate scatter estimation, but
is computationally expensive. Recent deep learning-based
approaches can yield accurate scatter estimates quickly,
yet full MC simulation is still required to generate scatter
estimates as ground truth labels for all training data. Here
we propose a physics-guided weakly supervised training
framework for fast and accurate scatter estimation in quan-
titative SPECT by using a 100× shorter MC simulation as
weak labels and enhancing them with deep neural net-
works. Our weakly supervised approach also allows quick
fine-tuning of the trained network to any new test data
for further improved performance with an additional short
MC simulation (weak label) for patient-specific scatter mod-
elling. Our method was trained with 18 XCAT phantoms
with diverse anatomies / activities and then was evaluated
on 6 XCAT phantoms, 4 realistic virtual patient phantoms,
1 torso phantom and 3 clinical scans from 2 patients for
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177Lu SPECT with single / dual photopeaks (113, 208 keV).
Our proposed weakly supervised method yielded compara-
ble performance to the supervised counterpart in phantom
experiments, but with significantly reduced computation in
labeling. Our proposed method with patient-specific fine-
tuning achieved more accurate scatter estimates than the
supervised method in clinical scans. Our method with
physics-guided weak supervision enables accurate deep
scatter estimation in quantitative SPECT, while requiring
much lower computation in labeling, enabling patient-
specific fine-tuning capability in testing.

Index Terms— Quantitative SPECT, scatter estimation,
weakly supervised learning, physics-based deep learning.

I. INTRODUCTION

QUANTITATIVE single photon emission computed
tomography (SPECT) is important for clinical appli-

cations including dosimetry-guided treatment planning [1],
[2], [3] for optimization of therapies such as pep-
tide receptor radionuclide therapy (PRRT) for the treat-
ment of neuroendocrine tumors with 177Lu-DOTATATE [4],
or radioembolization with 90Y microspheres for the treatment
of liver malignancies [5]. Scattered photons detected within an
energy window degrade SPECT image quality by reducing the
contrast in the reconstructed images and introducing additional
uncertainties on activity distributions [6]. Scatter estimation
has been an active research area for several decades for
improving the quality of SPECT images [7], [8], [9], [10],
[11]. Scatter estimation methods can be divided into three
categories [7]: 1) multiple energy window-based methods [12],
2) Monte-Carlo simulation-based methods [2], [13], [14], and
3) deep learning-based methods [15].

Energy window-based estimation is used widely [16] due
to its straightforward implementation with computational effi-
ciency and wide applicability to various radionuclides. One
drawback is the noise amplification due to relatively low
abundance of counts in narrow scatter windows [8]. Filtering
can reduce noise, but may introduce bias and other artifacts in
the estimated scatter [8], [17]. Moreover, the photons recorded
in the lower energy window may not originate from the same
locations in the photopeak window or may have scattered
several times, causing inaccurate scatter estimation [13].

The Monte-Carlo (MC) simulation-based scatter estimation
has achieved accurate estimation performance [18], [19], [20],
[21], [22], [23]. Since it simulates the transport of photons
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in patients [19], one must track enough photon histories to
generate scatter estimates with low noise, hence accurate
MC scatter modeling requires heavy computation. A few
studies have attempted to mitigate the accuracy-computational
efficiency trade-off [21], [24]. GPU acceleration can reduce
MC simulation time [25], but unfortunately most current
MC simulation codes for SPECT imaging systems including
SIMIND do not support GPU. Moreover, GPU may not
be the best choice for accurate MC simulations since they
usually require double (FP64) precision computations while
GPU is optimized for single (FP32) or half (FP16) precision
computations. The effective scatter source estimation (ESSE)
method [26] uses MC simulations to estimate a kernel to
represent the scatter projection and has been used for 177Lu
SPECT, yielding promising results over energy window-based
estimation on phantom studies [27], [28]. The ESSE method
can be seen as a further approximation by simplifying the MC
simulation as a convolution with a spatially-invariant learned
kernel without using given attenuation information.

There has been much interest in deep learning (DL)-
based reconstruction for emission tomography for the last
few years [29], [30], [31], [32], [33], [34]. Recently,
DL-based scatter estimation in SPECT was also investi-
gated [15], [35]. Xiang et al. proposed a DL-based scat-
ter estimation method for 90Y SPECT that greatly reduces
computational cost in testing while keeping the accuracy
comparable to the MC method [15]. However, it still requires
running enough MC simulation histories to generate scatters as
ground truth labels for all training data. In other words, heavy
computation in MC simulation-based method for one case is
translated into even heavier computation in DL-based method
for generating scatter estimates as ground truth labels before
training.

This paper proposes a physics-guided deep scatter (PGDS)
estimator using a weakly supervised framework that does
not require computationally expensive full MC simulations
for generating ground truth labels; in contrast, it uses 100×
shorter MC simulations to generate weak labels to train
deep neural networks to learn the energy-window specific
mapping from measurement to scatter estimates. Moreover,
our weakly supervised framework enables quick fine-tuning of
the trained network to incoming test data with a weak label for
further improvement. After training the networks on 18 diverse
XCAT phantoms for 177Lu SPECT imaging, we evaluated our
proposed methods on 6 XCAT phantoms, 4 realistic virtual
patient phantoms and 1 torso phantom. Although 177Lu emits
two gamma-rays (208 kev (10%), 113 keV (6%)) suitable
for SPECT imaging, in typical acquisition protocols only
the higher energy gamma-ray is used because of the high
downscatter associated with an acquisition window centered
on the lower peak. However, due to the low 177Lu gamma-
ray yields it is desirable to increase count levels by imaging
both gamma-rays, provided a suitable scatter correction can
be performed. Hence, in our phantom studies we evaluate
scatter estimation for both single (208 keV) and dual (113 keV,
208 keV) photopeaks acquisition. In addition to the phantom
studies, we evaluated our methods on 3 clinical scans from
patients who underwent 177Lu PRRT with SPECT imaging

after therapy administration to determine pharmacokinetics for
dosimetry.

Section II briefly reviews commonly known scatter estima-
tion methods in SPECT imaging. Then, Section III describes
our proposed weak-supervised training framework with a very
short MC simulation, called physics-guided deep scatter esti-
mation (PGDS). Section IV outlines the detailed description
on data and experimental settings and then Section V reports
quantitative evaluation results on diverse XCAT phantoms,
realistic virtual patient phantoms as well as real torso phan-
tom and real clinical scans for 177Lu SPECT with single /
dual photopeaks. We conclude our paper with discussions in
Sections VI and VII.

II. BACKGROUND

A. SPECT Image Reconstruction With Scatter Estimation
The SPECT measurement model can be described as:

y ∼ Poisson(Ax + s), (1)

where y ∈ RM is the vector of measured projections that
follow independent Poisson distributions, x ∈ RN denotes the
unknown activity of emitted (unscattered) primary photons,
s ∈ RM denotes the scatters, and the matrix A ∈ RM×N

models the SPECT imaging system including attenuation.
Given a scatter estimate ŝ, the unknown activity x is

reconstructed using maximum likelihood (ML) estimation:

x̂ = arg max
x≥0

L(x; A, y, ŝ),

L(x; A, y, ŝ) ≜ y′ log(Ax + ŝ)− 1′M (Ax + ŝ), (2)

where x ≥ 0 is a non-negativity constraint on x. The ordered-
subset expectation maximization (OSEM) [36] with early
stopping is a popular choice for solving (2) with the following
update equation:

x̂ ← x̂ + x̂ ⊘ (A′k1K )⊙∇L(x̂; Ak, yk, ŝk) (3)

where ⊙ denotes element-wise multiplication, ⊘ denotes
element-wise division, k is a subset index that is varying over
sub-iterations, Ak is a submatrix of A for the kth subset
and yk, ŝk are the subvectors of y, ŝ for the kth subset,
respectively. We denote the OSEM reconstructed image by
x̂ = OSEM(A, y, ŝ).

As the true scatter vector s depends on the unknown true
image x, it is challenging to estimate ŝ. The following sub-
sections review some of the commonly used scatter estimation
methods.

B. Energy Window-Based Scatter Estimation
Energy window-based scatter estimation uses additional

acquisitions in scatter windows. Besides the measurement
y in the photopeak window, two additional measurements
ylw, yuw are collected in the lower and upper narrow energy
windows, respectively. Then, the triple energy window (TEW)
method [12], [13], [16], [37] estimates the scatter in the
photopeak window using the following formula:

ŝTEW
=

(
ylw/wlw + yuw/wuw

)
× wpw/2, (4)

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 04,2023 at 00:48:42 UTC from IEEE Xplore.  Restrictions apply. 



KIM et al.: PHYSICS-GUIDED DEEP SCATTER ESTIMATION BY WEAK SUPERVISION 2963

Algorithm 1 MC Simulation-Based Scatter Correction [21]
Measurement y, attenuation map µ, forward model A,
# of MC histories α, # of updates J are given.

1: Incorporate µ into A for attenuation correction.
2: Set the initial scatter ŝ = 0.
3: x̂ = OSEM(A, y, ŝ)
4: for j = 1, . . . , J do
5: [ ŷMC

, ŝMC
] =MC(x̂, µ, α)

6: ŝ = ( y ⊘ ŷMC
)⊙ ŝMC

7: x̂ = OSEM(A, y, ŝ)
8: end for
9: return x̂, ŝ

where wlw, wuw, and wpw denote the widths of lower, upper,
and photopeak windows, respectively.

C. Monte-Carlo Simulation-Based Scatter Estimation

Monte-Carlo (MC) simulation has been used estimate the
scatter component by modeling the physics of photon trans-
port in the patients and the SPECT camera [38] for several
radionuclides such as 99mTc [18], [22], 166Ho [39], 90Y [20],
[21], 131I [2], [40], and recently 177Lu [41].

MC-based scatter estimation assumes that the ratio of the
unknown scatter component s to the measured total projection
y is proportional to the ratio of those simulated by MC [21],
i.e.,

s ≈
(

y ⊘ yMC
)
⊙ sMC, (5)

when the MC simulation is performed with very large photon
histories. The unknown image x is estimated by the OSEM
with some estimated scatter ŝ (i.e., x̂ = OSEM(A, y, ŝ)), and
then the estimate of the unknown scatter s is updated using (5)
and the MC simulation (SIMIND [42] in this work) with the
estimated image x̂ and the corresponding attenuation map µ:

[ ŷMC
, ŝMC
] =MC(x̂, µ, α), (6)

where α denotes the number of MC histories. Algorithm 1 and
Fig. 1-A1 illustrate such alternating updates for x̂ and ŝ.

While MC simulation-based scatter estimation is more accu-
rate than the TEW method for a wide range of isotopes in
SPECT and does not require additional acquisition windows,
MC takes much more time, mainly due to the MC simulation
step in the line 5 of Algorithm 1. For example, 500 million
histories per projection were simulated per iteration using
SIMIND and usually 2-3 iterations (J) are needed [21]; thus
it took about 16-24 hours per one scatter correction using
12 cores (or 192-288 hours per patient using a single core).

D. Supervised Deep Learning-Based Scatter Estimation

Xiang et al. [15] proposed a deep neural network (DNN) for
90Y SPECT scatter estimation. With the measurement y and
the projected attenuation map p, the deep scatter estimation
network h(·) is

ŝDNN
= h( y; p). (7)

Training the DNN h(·) requires a training set with suitable
inputs (a large set of measurement and attenuation map pairs)
and labels (ground truth scatters). The work of [15] used digi-
tal phantoms (L true activities {xtrue

1 , . . . , xtrue
L }) and long MC

simulations to generate the necessary measurements for inputs
({ yoracle

1 , . . . , yoracle
L }) and oracle scatters for ground truth

labels ({soracle
1 , . . . , soracle

L }). This heavy computation with long
MC simulations on all training data is the primary “cost” for
labeling in supervised learning. As illustrated in Fig. 1-A2,
the training of the DNN h(·) minimizes the following mean
squared error (MSE) loss:

LMSE(h) =

L∑
l=1

∥∥∥h( yoracle
l ; pl)− soracle

l

∥∥∥2

2
. (8)

We denote the DNN trained with the loss (8) by hMSE(·).
While the DNN-based method can yield accurate and fast

scatter estimates in inference, it is computationally expensive
to generate ground truth scatter labels. In [15], 1 billion
histories per projection were used for generating ground truth
scatter labels. For 10 digital phantoms, it took about 133 hours
using 12 CPU cores. Training with clinical scans would take
even longer time due to using 2-3 iterations of long MC sim-
ulations in Algorithm 1. Thus, reducing labeling computation
cost seems important in clinical applications with diverse, new
imaging protocols, more patients and new diseases.

III. METHOD

This section describes our physics-guided deep scatter
(PGDS) estimator using weakly supervised learning for 2D
projection-wise scatter estimation in 3D quantitative SPECT.
While supervised training for a scatter estimating DNN
requires time-demanding MC simulations to generate scatters
as ground truth labels [15], our proposed method uses weak
labels from “short MC” simulations that are two orders of
magnitude faster. Our scatter generation module is the same
as the supervised method (7) and the scaling modules are
the DNNs to indirectly enhance weak labels. They are jointly
trained under weak supervision and we use only the trained
scatter generation module for inference.

A. Physics-Guidance by Short MC Simulation

Inspired by the MC scatter estimation pipeline in
Algorithm 1, we define the “physics-guidance” that is the key
ingredient for our weakly supervised training of the scatter
generation module. First, we rearrange the terms in (5) as:(

yMC
⊘ sMC

)
⊙ ŝ⇒ rMC

⊙ ŝ, (9)

where rMC denotes the proposed “physics-guidance” ratio
vector that can be used for predicting the measurement y
using the scatter estimate ŝ. An accurate ratio rMC can
facilitate training of scatter generation module with a given
measurement y, but still requires long time MC simulation.

An approximate physics-guidance, denoted by rshort, can
be quickly generated by running a “short MC” simulation and
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Fig. 1. (A1) Flowchart illustrating the MC scatter estimation pipeline [21]. “1 update” denotes one cycle of scatter estimation and reconstruction using
the current estimated image to yield the next estimated image. (A2) Supervised training pipeline of scatter generation module with the MC simulation
for generating ground truth scatters [15]. (B1) Network structure for the scatter generation module h( · ) to estimate scatters from the measurements
and its corresponding projected attenuation maps in all energy windows simultaneously. (B2) Network structure for the scaling module g( · ) to
enhance approximate physics-guidance with the projected attenuation map in each energy window. (C) Proposed PGDS with the scatter generation
module and scaling modules by weak supervision (short MC simulation) for generating approximate physics-guidances.

then enhanced by the scaling module g(·) with a projected
attenuation map p to predict rMC as follows:

rMC
≈ r̂CNN

= g(rshort
; p). (10)

However, we do not generate rMC as labels. Instead, we pro-
pose a weakly supervised training framework for g(·) with the
input rshort and the given measurement y.

B. Physics-Guided Deep Scatter Estimation (PGDS)
The scatter generation module in (7) and the scaling mod-

ules in (10) can predict the (total) measurement via (9):

y ≈ ŷCNN
≡ r̂CNN

⊙ ŝCNN
= g(rshort

; p)⊙ h( y; p). (11)

Fig. 1-B1 illustrates the scatter generation module h( y; p)

whose output is the estimated scatter ŝCNN and inputs are
the measurement y and the projected attenuation map p.
Fig. 1-B2 illustrates the scaling module g(r̂short

; p) that was
trained to learn scaling factors to enhance the approximate
physics-guidance in each energy window. For multiple energy
windows (say c energy windows), we jointly trained one
scatter generation module and c separate scaling modules. The
outputs of each scaling module were stacked channel-wise to
have the same channel size as whole energy windows.

For a set of measurements { y1, . . . , yL}, approximate
physics-guidances r̂short

l (scatters ŝshort
l as weak labels) are

generated via short MC simulations. Then, all modules are
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Algorithm 2 Physics-Guided Deep Scatter Estimation (PGDS)
Train set: measurement, attenuation map { yl , µl}, l =
1, . . . , L , forward model A, # of MC histories β, # of
epoch e

1: Initialize h, g and set ŝ = 0 ,∀l
2: x̂l = OSEM(A, yl , ŝl),∀l
3: [ ŷshort

l , ŝshort
l ] =MC(x̂l , µl , β),∀l

4: Pre-compute r̂short
l = ŷshort

l ⊘ ŝshort
l , pl = Aµl ,∀l

5: for i = 1, . . . , e do
6: ŝCNN

l = h( yl; pl),∀l
7: r̂CNN

l = g(r̂short
l ; pl),∀l

8: ŷCNN
l = r̂CNN

l ⊙ ŝCNN
l ,∀l

9: [h, g] ← arg min Eq. (12) with respect to [h, g]
10: end for
11: return [hPGDS, gPGDS] ← [h, g]

jointly trained by minimizing our weakly supervised loss
between the predicted projections ŷCNN

l and the measured /
simulated projections yl via (11) as follows:

LPGDS(g, h) =
∑L

l=18( yl , ŷCNN
l )+9(r̂CNN

l , ŝCNN
l ) (12)

where 8( ŷCNN
l , yl) is the Poisson negative log-likelihood

( ŷCNN
l − yl log ŷCNN

l ) and 9(r̂CNN
l , ŝCNN

l ) is a regularizer to
avoid undesirable solutions g

(
rshort
; p

)
= 1, h( y; p) = y:

9(·, ·) = c1

∥∥∥r̂CNN
l − rshort

l

∥∥∥
1
+ c2

∥∥∥ŝCNN
l − sshort

l

∥∥∥
1
.

We chose c1, c2 = 0.01 from the studies in Section V-E.
Algorithm 2 summarizes the labeling / training procedure

of our PGDS including OSEM reconstruction and short MC
simulation. For weak labels, short MC simulations are per-
formed for all measurements with reduced MC histories, which
are 100 times faster than full MC simulations (i.e., β in
Algorithm 2≪ α in Algorithm 1). Then, for the measurement
y and its projected attenuation p, the scatter is estimated by

ŝPGDS
= hPGDS( y; p). (13)

Fig. 1-C illustrates our weakly supervised framework.

Algorithm 3 Patient Specific Fine-Tuning (PGDS-T)
Test set: measurement y, attenuation map µ, forward
model A, # of MC histories β, # of epoch et

1: set ŝ = 0, [h, g] = [hPGDS, gPGDS]

2: x̂ = OSEM(A, y, ŝ)
3: [ ŷshort

, ŝshort
] =MC(x̂, µ, β)

4: Pre-compute r̂short
= ŷshort

⊘ ŝshort, p = Aµ

5: for i = 1, . . . , et do
6: ŝCNN

= h( y; p)

7: r̂CNN
= g(r̂short

; p)

8: ŷCNN
= r̂CNN

⊙ ŝCNN

9: [h, g] ← arg min Eq. (12) with respect to [h, g]
10: end for
11: return [hPGDS-T, gPGDS-T] ← [h, g]

Fig. 2. Examples for 6 different anatomical structures of XCAT phantoms
corresponding to 3 sizes (small, normal, large) ×2 genders (male,
female).

C. Patient-Specific Fine-Tuning (PGDS-T)
Our proposed method also supports the fine-tuning of the

trained networks [hPGDS, gPGDS] to a given measurement with
weak label via additional short MC simulation. Algorithm 3
describes the details of fine-tuning our networks using a new
test measurement y. Fine-tuning can be useful in inference
stage by adapting the trained network in (13) to the test data
and then estimating the scatter using (13). We found that
our model trained on a synthetic dataset can be fine-tuned
to well perform on clinical patient dataset. We set e = 100 in
Algorithm 2 and et =30 in Algorithm 3.

IV. EXPERIMENT SETUP

A. Synthetic, Realistic, and Real Datasets
1) Digital XCAT Phantom Dataset (Training, Testing): 177Lu

SPECT scans were simulated using the SIMIND MC simula-
tor [42] with emulating imaging following 177Lu DOTATATE
PRRT a total of 24 3D XCAT phantoms [43] with diverse
anatomies and activities (4 activity types ×6 anatomy types).
Anatomy differences include gender (male, female) and size
(normal, small with scaling factors [0.85, 0.95] and large with
scaling factors [1.1, 0.9]) as illustrated in Fig. 2. Activity
differences are summarized in Table I, having different activ-
ity ratios in organs, different lesion volumes and activities.
All 24 XCAT phantom simulations were divided into 18 sim-
ulations for training and 6 simulations for testing.

Our SIMIND MC simulator models full photon transport in
the object and camera, including collimator septal penetration
and scatter effect in the object, collimator, NaI(Tl) crystal,
and backscatter layer. We configured the SIMIND simulator
to accurately emulate 177Lu imaging in the clinic with Siemens
Intevo Bold SPECT/CT system equipped with a medium-
energy (ME) collimator, a 15 mm crystal, acquisition windows
for the two photopeaks centered at 113 and 208 keV with a
20% window width, two 10% side window width (only for
TEW), 128 projections over 360◦, and the reconstructed image
size of 128 × 128 × 81 voxels (4.8 × 4.8 × 4.8 mm3).

For supervised training, ground truth scatters from the
true activity images were generated as labels by using the
SIMIND MC simulation with 1 billion histories per projection
as suggested in [15] (denoted as ‘Oracle’). In contrast, for
our proposed weakly supervised training, approximate scatter
estimates for the given measurements were generated as weak
labels using Algorithm 1 with 1 update and “Short MC”
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TABLE I
ACTIVITY RATIOS AND LESION VOLUMES IN XCAT PHANTOMS FOR

TRAINING (TYPE 1-3) AND TESTING (TYPE 4)

TABLE II
ACTIVITY RATIOS AND LESION VOLUMES IN NON-UNIFORM VIRTUAL

PATIENT PHANTOMS FOR TESTING

simulation with 10 million histories. The former took 24 hours
per phantom for supervised training, while the latter took
15 minutes (0.24 hours per phantom) for weakly supervised
training. All MC simulations were performed using 16 threads
on a Mac Pro.

2) Non-Uniform Virtual Patient Phantom Dataset (Testing):
Four clinically relevant phantoms (of size 512 × 512 ×
130 voxels, 0.98 × 0.98 × 3mm3) were used in the simulation.
For each phantom, the organ masks (liver, kidney, and spleen)
and lesion masks were delineated by a radiology technologist
and a radiologist at the University of Michigan (UM), respec-
tively, on diagnostic CT images where patients underwent
177Lu DOTATATE therapy with UM Institutional Review
Board (IRB) approval for retrospective analysis. The activity
ratios were computed from the post-therapy 177Lu SPECT/CT
scan, but the phantom was defined by 68Ga PET/CT images
(200 × 200 × 577 voxels, 4.073 × 4.073 × 2mm3) to
exploit the higher spatial resolution. PET is acquired ahead of
time to determine the eligibility of 177Lu SPECT DOTATATE
therapy and expected to be similar to 177Lu SPECT activity
distributions (see Table II).

The center slices of PET images covering from lung to
kidney were extracted, which were typical regions imaged by
177Lu SPECT (SPECT field-of-view (FOV)). Density maps
were generated from the CT images using the bi-linear conver-
sion from a prior calibration experiment using a phantom with
16 tissue equivalent rods. The activity maps were registered
into CT image spaces before the SIMIND MC simulation.

3) Torso Phantom Dataset (Testing): A liver/lung torso phan-
tom (Data Spectrum) was modified to include “lesion” inserts
(a 30mL ovoid shape and a 16mL sphere) in the liver. 177Lu
activities in the form of a chloride solution were carefully
measured [44] and used to fill the liver and inserts to achieve
an insert-to-liver activity concentration ratio of 3.8:1, rep-
resentative of liver lesions encountered when imaging after
177Lu DOTATATE therapy. No activity was used in the lungs
or the phantom compartment outside of the liver. The total
activity in the phantom at scanning time was 118 MBq.

The SPECT acquisition used 20% windows at 113 keV and
208 keV photopeaks and adjacent 10% lower and upper scatter
windows. Other acquisition parameters were the same as those
used for patient imaging except that a prolonged acquisition
of 275 sec/view was used to make the count-level (noise)
representative of patient imaging.

4) Clinical Patient Dataset (Testing): In addition to the
above digital phantom data and virtual patient phantom data,
we tested our method on clinical SPECT/CT datasets from
2 patients. Two patients underwent the cycle 1 of standard
(7.4 GBq/cycle) 177Lu-DOTATATE PRRT and then imaged
by the previously described Siemens Intevo Bold SPECT/CT
system with approval by the UM IRB. The patient provided
written informed consent. Manufacture recommended settings
of 20% acquisition window at 208 keV with adjacent 10%
scatter windows, 256 × 256 matrix (downsampled to 128 ×
128 in reconstruction) and 60 × 2 views were used. For
one of the clinical scans, two 25 seconds/view SPECT scans
were performed on the system described above at day 0 and
day 1, respectively. Non-contrast, free breathing CT scan at
the reference timepoint was performed at 120 kVp, 80 mAs at
the reference and 15 mAs at all other timepoints. The patient
image was upsampled using bilinear interpolation to have the
same size with the virtual patient phantom.

B. Implementation Details

The same network structure as Xiang et al. [15] was used in
this work as illustrated in Fig. 1-B. The scaling module g(·)

has 3 convolution layers following ReLU (Rectified Linear
Unit) activation for each layer. The input of the scaling
module was approximate physics-guidance from “short” MC
and projected µ-map. A skip-connection was used between the
input and the output of the scaling module. Multiple scaling
modules were used to account for different energy windows.
The Adam optimizer was used for training and fine-tuning [45]
with the parameters of β1 = 0.9, β2 = 0.999, batch size 80,
100 epochs, and learning rate 1 × 10−4 with decaying by
0.2 every 50 epochs. For fine-tuning, batch size, number of
epochs and learning rate were set to 20, 30 and 1 × 10−5,
respectively.

Five independent noise realizations were used for each
XCAT phantom for training, so a total of 11,520 projections
(18 XCAT phantoms × 5 realizations × 128 projections)
were used for 90% training and 10% validation sets. The
measurements and projected attenuation maps were not nor-
malized. However, since the SIMIND normalizes its output
to be 1 Mbq per 1 second in FOV, short MC result was
normalized to have the same maximum value of the given
measurement. Approximate physics-guidance from short MC
was normalized by 99% percentile per each energy window.
The training time for the proposed weakly supervised learning
method was 1.5 hours on an NVIDIA RTX 3060Ti GPU.

All compared scatter estimation methods are summarized:
• Oracle True scatter generated along with measurement

using MC simulation with 1 billion histories.
• No scatter All scatter components were set to zero.
• TEW TEW scatter estimation using (4).
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• Short MC MC scatter estimation using Algorithm 1 with
1 update and 10 million photon histories.

• Full MC MC scatter estimation using Algorithm 1 with
3 updates and 1 billion histories per each MC simulation.

• Supervised DL scatter estimation trained with the ground
truth scatters (labels) from Oracle.

• PGDS Proposed DL scatter estimation trained using
Algorithm 2 using Short MC for weak labels.

• PGDS-T Proposed DL scatter estimation fine-tuned on test
data using Algorithm 3 with Short MC for weak labels.

Since both methods use the same scatter estimation net-
work layers that were trained differently, ours and previous
supervised methods take the same inference time for scatter
estimates. The reconstruction times for all methods are the
same once the scatter estimates are generated since image
reconstruction in all the above methods was using OSEM
(20 iterations, 4 subsets), which takes only about 30 seconds
for all iterations in each reconstruction step. We performed two
reconstructions: one with single photopeak window (208 keV)
and the other with dual photopeak windows (113, 208 keV)
centered on the 2 dominant gamma-rays associated with 177Lu.
The latter summed two reconstructed images from two energy
windows with the weights proportional to primary counts [46].
These weights can be estimated from measurements [47] or
point source MC simulation [48].

Estimated scatter components were not blurred in the XCAT
phantom dataset to account for piece-wise uniform activity.
Hanning window filtering was applied in the non-uniform
virtual patient and the clinical datasets, which is similar to
the process on the clinical workstation [13].

C. Evaluation Metrics

The following metrics were used to compare our proposed
method with other scatter estimation methods for quantitative
SPECT imaging. Recovery coefficient (RC) on volume-of-
interest (VOI) is a widely used metric that can assess the
quantitative accuracy for hot spheres and is defined as

RCVOI =
∑

n∈�VOI

x̂[n]/
∑

n∈�VOI

x[n]

where x̂[n], x[n] denote the nth voxel value of the recon-
structed, true activity, respectively, and �VOI is an index set
for a given VOI. All reconstructed images were normalized to
have the same total activity with the true activity images on
FOV without post-filtering. Residual count error (RCE) can
assess the quantitative accuracy for cold regions with zero
activity [49] and is defined as

RCEVOI =
1

|�VOI|

∑
n∈�VOI

x̂[n]/
1

|�BKG|

∑
n∈�BKG

x[n]

where �BKG is an index set for a chosen background region
and | · | is the number of elements in a set.

Background noise was measured using multiple realizations
(say K realizations) as follows. Firstly, the reconstructed
volume x̂k for the kth realization is obtained for all realiza-
tions. Then, the mean and variance volumes are computed as

Fig. 3. MC simulated measurement (‘projections’) and its oracle scatter
for test XCAT phantom (Phantom #4 in Table I) are shown in the leftmost
column. The scatter estimates by TEW, Short MC, Supervised and our
PGDS are shown with computation time, NRMSE and SSIM on the top
left, bottom left and bottom right of each scatter estimate, respectively.

¯̂x = 1
K

∑K
k=1 x̂k, Var(x̂) = 1

K−1
∑K

k=1(x̂k −
¯̂x)2, respec-

tively. Finally, the background noise is given by

Noise =

√
1

|�BKG|

∑
n∈�BKG

Var(x̂)[n]

1
|�BKG|

∑
n∈�BKG

¯̂x[n]
.

Additionally, contrast recovery (CR) for the spherical lesions
in the torso phantom experiment is calculated by:

CR = 100×
C/CBKG − 1

R− 1
where C is the mean counts for the lesion inserts, CBKG is the
mean counts of the background (normal liver) and R is the true
lesion-to-normal liver activity concentration ratio (R = 3.8 in
this study). The contrast-to-noise ratio for the lesion inserts is
calculated as:

CNR = (C− CBKG)/STDBKG

where the background VOI is the normal liver (liver minus
inserts). Normalized root mean squared error (NRMSE) was
used for evaluating x̂ with respect to x and structural similarity
index measure (SSIM) was also used [50]. For digital XCAT
and virtual patient phantom datasets, true activity maps x
were available and for the torso phantom and clinical patient
datasets, the reconstructed volume with MC scatter correction
was used as ground truth.

V. EXPERIMENT RESULTS

This section shows the experimental results on the test
datasets from 6 XCAT phantoms, 4 realistic virtual patient
phantoms and 3 clinical scans of 2 patients.

A. Digital XCAT Phantom Study
Fig. 3 shows the different scatter estimation results. Our

proposed method yielded visually comparable images to those
reconstructed with Oracle and Supervised methods and also
visually better than images that were reconstructed using
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Fig. 4. Axial views of the reconstructed volumes and their normalized profiles (0 to 1) for digital XCAT phantom (Phantom #4 of Table I) using
different scatter estimation methods; Oracle, No scatter, TEW, Supervised, Short MC and PGDS. RC for the hot region, RCE for the cold region and
computation time are also reported on the bottom left, bottom right and top of each image, respectively. Our method yielded comparable performance
to Oracle / Supervised with much faster computation.

Fig. 5. Quantitative results of 177Lu SPECT imaging on the test XCAT phantoms for single (208 keV, diamond) and dual (113,208 keV, circle)
photopeak windows using various scatter estimation methods. RC over sphere volumes, averaged RC over different anatomy types, RCE in lungs
over background noise, and RCE over different anatomy types are reported with computation time in the legend. The values on the lines in the right
column are the averages of RC and RCE over all phantom and window types. Our method yielded comparable results to Oracle and Supervised
methods with much faster computation speed.

No Scatter, TEW and Short MC methods. Fig. 3 shows the
estimated scatter components by different methods for our

177Lu test XCAT phantom (Phantom #4 of Table I). TEW did
not yield visually accurate scatter estimate while Supervised
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Fig. 6. Axial views of the true activity and the reconstructed images using various scatter estimation methods with NRMSE (bottom left in each
image) and SSIM (bottom right in each image) for virtual patient phantom. For a single photopeak window, TEW, Supervised and our PGDS methods
yielded similar quantitative and qualitative images to Oracle. For dual photopeak windows, all methods yielded similar images and quantitative values
except for TEW, yielded worse SSIM than No scatter.

TABLE III
THE EVALUATION RESULTS OF OUR PROPOSED SCATTER ESTIMATION METHOD FOR 177LU ON VIRTUAL PATIENT PHANTOMS. OUR PGDS
YIELDED COMPARABLE PERFORMANCE TO SUPERVISED METHOD AND IMPROVED VALUES OVER NO SCATTER AND TEW METHODS IN ALL

METRICS. SEE TABLE II FOR MORE INFORMATION ON THE VIRTUAL PATIENT PHANTOMS INCLUDING ACTIVITY VOLUMES AND RATIOS. NOTE THAT

RC SMALL AND RC LARGE DENOTE THE RCS FOR THE SMALLEST AND LARGEST LESIONS IN TABLE II, RESPECTIVELY. THE RCE VALUES

WERE MEASURED IN THE LUNG REGION AND THE NOISE WAS CALCULATED IN THE BACKGROUND

method yielded visually comparable scatter estimate to Oracle.
Short MC yielded good number of counts in lesions and
organs, but almost no count in background due to short
photon simulations. The proposed method yielded visually
comparable estimate to Oracle and Supervised methods with
much faster computation, but with over-estimation in the back-
ground. For quantitative results, TEW and short MC yielded
very low SSIM compared to Oracle, while our proposed PGDS
yielded significantly enhanced NRMSE and SSIM over Short
MC, as illustrated in Fig. 3. The supervised method slightly
outperformed our PGDS in the background, but otherwise is
comparable with our PGDS. However, note that Supervised
method was trained with labels (Oracle) while our PGDS was
trained with weak labels (Short MC), which explains the slight
performance gap between Supervised and our PGDS methods.

Fig. 4 shows the axial views (slices) of XCAT reconstructed
images and the line profiles over hot and cold regions for

different scatter estimation results that are illustrated in Fig. 3.
Fig. 5 shows quantitative results of the reconstructed test
XCAT phantoms with 208 keV and 113+208 keV energy
windows using different scatter estimation methods, which are
consistent with the results of Fig. 4. No scatter, Short MC and
Supervised + Short MC yielded poor quantitative results with
low RC and high RCE. TEW yielded improved RC and RCE
over No scatter, Short MC and Supervised+Short MC, with
high noise. Supervised method [15] had very similar perfor-
mance to Oracle in all metrics, but with heavy computation
for ground truth label generation with long MC simulations
for all training data.

Our proposed PGDS yielded similar RCs and RCEs to
those of Oracle and Supervised methods with small quan-
titative differences over different sizes of hot spheres and
phantoms. For single and dual photopeak windows, Oracle,
Supervised and our PGDS methods achieved consistently
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TABLE IV
THE EVALUATION RESULTS OF OUR PROPOSED SCATTER ESTIMATION METHOD FOR 177LU TORSO PHANTOM MEASUREMENT. OUR PGDS

WITH FINE-TUNING (PGDS-T) YIELDED COMPARABLE PERFORMANCE TO FULL MC AND SUPERVISED METHOD IN 208 KEV ENERGY WINDOW

AND ACHIEVED IMPROVED VALUE IN 113+208 KEV ENERGY WINDOW. NOTE THAT THE BEST AND THE SECOND BEST SCORES EXCEPT FULL

MC (AS A BENCHMARK) ARE LABELED AS BOLD AND UNDERLINED, RESPECTIVELY

Fig. 7. The reconstructed images using various scatter estimation
methods, the CT image of the torso phantom, and each absolute
difference map for full MC images. The score R on the left bottom corner
is the sphere-to-background ratio of the 16mL sphere (True R = 3.8).
The sphere-to-background ratio can be converted into contrast recovery
by using the equation in subsection IV-C. Note that the other quantitative
evaluations are in Table IV.

small performance gaps in RC and RCE between single and
dual energy windows and noise reduction using dual energy
windows without compromising RCE performance. However,
No scatter, TEW, Short MC, and Short MC+Supervised
methods achieved noise reduction using dual energy windows
with degraded performance in RCE. Moreover, including the
113 keV window for No scatter, TEW, Short MC, and Short
MC+Supervised methods degraded the performance in RC
and RCE, which suggests the importance of accurate scatter
estimation when using multiple photopeak windows due to
downscatter contributions.

B. Virtual Patient Phantom Study
Fig. 6 shows the SPECT reconstructed images for virtual

patient phantom data with 208 keV and 113+208 keV along
with NRMSE and SSIM. The noises of the reconstructed
images with Oracle, Supervised and our PGDS methods
were reduced in 113+208 keV as compared to those in
208 keV without compromising other quantitative values such
as NRMSE and SSIM. However, the SSIM was degraded
for No scatter and TEW methods when additionally using
more counts in the 113 keV photopeak window. Quantitative
evaluations for all 4 virtual patient phantoms are reported in
Table III, showing consistent results as illustrated in Fig. 6.

Our proposed PGDS with computationally efficient weak
labels via short MC yielded comparable performance in RC,
RCE and noise to the Oracle and Supervised methods with
heavy MC simulations for the test and training datasets,
respectively.

C. Torso Phantom Study
Fig. 7 illustrates the SPECT reconstruction results of the

torso phantom data. The images in the left column are the
visualization of reference activity as well as the CT image.
Table IV shows the quantitative evaluation results for both
208 keV and 113+208 keV energy windows. Note that
MC-based scatter corrected images were used as ground truth
for computing NRMSE and SSIM. To compute contrast recov-
ery (CR) and contrast-to-noise ratio (CNR), CT annotated
mask was used. Since the CR score is computed by using
the true lesion-to-normal liver activity (R) which is 3.8,
a value close to 100(%) implies a more accurate reconstruction
performance. Our PGDS often yielded better performance
than the Supervised method on CR but less performance on
CNR due to noise. Moreover, our proposed method with fine-
tuning (PGDS-T) achieved a comparable performance to or
outperformed all other methods in both 208 keV and 113+208
keV energy windows by showing CR as 79.7 and 82.6 for the
sphere and the ovoid, respectively.

D. Clinical Patient Study
Fig. 8 illustrates the SPECT reconstruction results of the

clinical patient scan as well as the profile along the kidney
region. Table V shows the quantitative evaluation results
for 3 clinical scans from 2 patients. Note that MC-based
scatter corrected images were used as ground truth for
all evaluations (Full MC instead of Oracle). Our proposed
method with fine-tuning (PGDS-T) outperformed all other
methods including Supervised scatter estimation method.
The proposed PGDS often yielded better performance than
Supervised method - Our PGDS yielded 0.075 NRMSE and
0.960 SSIM, while Supervised method yielded 0.092 NRMSE
and 0.956 SSIM. Our proposed PGDS-T further improved the
reconstruction quality with 0.029 NRMSE and 0.996 SSIM
using fine-tuning and additional weak label for a test measure-
ment. Also, the absolute difference images (left) and relative
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Fig. 8. Reconstructed images and profiles of reconstructed images for clinical patient data (P#1 Scan#2) using various scatter estimation methods.
NRMSE and SSIM were evaluated with MC-based scatter corrected images as ground truth. Our proposed PGDS method yielded the highest contrast
in the kidney region and the PGDS with fine-tuning (Proposed-T) yielded the lowest difference map with 0.0373 NRMSE while the Supervised method
yielded 0.0599 NRMSE.

Fig. 9. Ablation study of PGDS for selecting the loss function (L1 or
Poisson NLL), and the values of c1 and c2 in equation after (12). Each
dot indicates the averaged performance over all phantom types.

difference images (right) show that our PGDS-T yielded the
reconstructed image that is the closest to MC-based scatter
corrected image.

TABLE V
QUANTITATIVE EVALUATION RESULTS OF VARIOUS SCATTER

ESTIMATION METHODS FOR 177LU SPECT IMAGING ON 3 CLINICAL

SCANS FROM 2 PATIENTS. THE RECONSTRUCTED IMAGE FROM THE

FULL MC WAS USED AS THE GROUND TRUTH IN COMPARISON

E. Ablation Study

To evaluate the effectiveness of each component of proposed
weakly supervised loss in (12), we performed an ablation study
of for our proposed PGDS by using a different data-fitting
term (Poisson negative log-likelihood vs. L1-norm (l1) and by
using grid search of c1 and c2 in various scales from 0 to 1.
Fig. 9 shows the averaged performance over different phantom
types. By comparing the two loss functions (l1 and Poisson
NLL), when the PGDS uses Poisson NLL loss, the lower RCE
and higher RC was achieved than that of l1 loss. In Fig. 9
we enlarged the region to include the results with similar
performance in average RC and RCE (the width and height of
this region are 0.02 in RCE and 0.04 in RC). When the ratio
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between c1 and c2 is 1:1, regardless of scales the reconstructed
image qualities are very similar to each other (i.e., 0.01:0.01,
0.1:0.1 or 1:1). In contrast, when the ratio of c1 to c2 is much
larger than 1, they yielded poor RCEs.

VI. DISCUSSION

Scatter estimation for SPECT using a supervised DL-based
approach requires true scatter labels for training, which is very
time consuming to generate; though once trained, it could be
a good alternative to MC-based scatter estimation since it only
takes 30 seconds for DL in inference while it takes 19 hours
×3 updates for MC in inference. In this work, we propose
a method to significantly reduce label cost (computation in
MC simulation) by a factor of 100 (24.5 hours/set for label
generation in supervised learning if true activities are available
and 0.26 hour ×1 update for weak label generation in our
weakly supervised learning for the proposed PGDS). When
true activities are not available, the computation time for
generating training label is increased because Oracle must be
replaced with Full MC that takes 19 hours ×3 updates for
each training set. It seems that the computation time gain is
mostly in the labeling stage before the training stage, but this
‘computation gain’ in this stage can provide the advantage
of training and retraining flexibility in clinical usage such as
using different isotopes for other imaging, or patient-specific
models. For different imaging systems with different isotopes,
it is likely that one has to re-train the scatter estimation
DNNs. Thus, our proposed method can save the overall time
before and after training and hence more favorable compared
to Supervised methods. Additionally, our PGDS has better
generalization property to new data set only with short time
fine-tuning.

To overcome the limitation of DL-based approaches that
require labeled targets for training, we investigated several
schemes before arriving at our proposed weakly supervised
framework. One possible model was to directly multiply the
small MC-based physical ratio by the output of the network
without using the scaling network. Since the short MC yielded
insufficient information on both the simulated measurement
and simulated scatter, many of the ratios were 1. Unfortunately,
it led to almost no back-propagation for training so the weakly
supervised scheme was not able to yield sufficiently accurate
results for clinical use. Another possible model was to replace
the region of the value of 1 with the mean of the simulated
ratio region, but it led to distorting the network output.

There were some options in designing the scaling network
especially for handling multiple energy windows and using
skip connections. We observed that using two scaling modules
without a skip-connection showed very slow convergence,
whereas using one scaling module with a skip-connection
resulted in a failure by showing less scatter estimation accu-
racy. The other options were applying one scaling network
for both energy windows without a skip-connection layer or
applying two scaling networks for each energy window with a
skip-connection layer. Since we aimed to preserve the physical
interpretability, we chose the latter option that had two scaling
modules (one for each energy window) each with a skip-
connection.

Our proposed method uses a 2D projection-wise scatter
estimation for 3D SPECT, but does not exploit any rela-
tionship between projections. Thus, exploring inter-projection
dependencies may improve scatter estimation. We have shown
that using dual-window in 177Lu SPECT imaging with scatter
dominant 113 keV window is possible by reducing noise while
maintaining comparable performance in other quantification
metrics thanks to accurate scatter estimation without much
computation. Therefore, investigating inter-energy window
information for reconstruction [33], [46], [47] and scatter
estimation can be another future work for further improving
performance.

VII. CONCLUSION

We proposed a novel DL scatter estimation method for
SPECT reconstruction to overcome the high computing cost in
generating training labels. We developed a weakly supervised
training that requires only “short” runs of MC for generating
weak labels efficiently. Our experimental results showed that
our proposed approach yielded comparable or even improved
performance to the existing methods such as supervised learn-
ing [15], yet is 100 times faster as demonstrated by exper-
iments including synthetic XCAT phantom, virtual patient,
torso phantom and clinical patient datasets.
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