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Abstract—Iterative neural networks (INN) are rapidly gaining attention for solving inverse problems in imaging, image processing, and

computer vision. INNs combine regression NNs and an iterativemodel-based image reconstruction (MBIR) algorithm, often leading to both

good generalization capability and outperforming reconstruction quality over existingMBIR optimizationmodels. This paper proposes the

first fast and convergent INN architecture,Momentum-Net, by generalizing a block-wiseMBIR algorithm that usesmomentumand

majorizerswith regression NNs. For fast MBIR,Momentum-Net usesmomentum terms in extrapolationmodules, and noniterativeMBIR

modules at each iteration by usingmajorizers, where each iteration ofMomentum-Net consists of three coremodules: image refining,

extrapolation, andMBIR.Momentum-Net guarantees convergence to a fixed-point for general differentiable (non)convexMBIR functions (or

data-fit terms) and convex feasible sets, under two asymptomatic conditions. To consider data-fit variations across training and testing

samples, we also propose a regularization parameter selection scheme based on the “spectral spread” ofmajorizationmatrices. Numerical

experiments for light-field photography using a focal stack and sparse-view computational tomography demonstrate that, given identical

regression NN architectures, Momentum-Net significantly improvesMBIR speed and accuracy over several existing INNs; it significantly

improves reconstruction quality compared to a state-of-the-art MBIRmethod in each application.

Index Terms—Iterative neural network, deep learning, model-based image reconstruction, inverse problems, block proximal extrapolated

gradient method, block coordinate descent method, light-field photography, X-ray computational tomography

Ç

1 INTRODUCTION

DEEP regression neural network (NN) methods have been
actively studied for solving diverse inverse problems,

due to their effectiveness at mapping noisy signals into clean
signals. Examples include image denoising [1], [2], [3], [4],
image deconvolution [5], [6], image super-resolution [7], [8],
magnetic resonance imaging (MRI) [9], [10], X-ray computa-
tional tomography (CT) [11], [12], [13], and light-field (LF)
photography [14], [15]. However, regression NNs with a
greater mapping capability have increased overfitting/hal-
lucination risks [16], [17], [18], [19]. An alternative approach
to solving inverse problems is an iterative NN (INN) that
combines regression NNs – called “refiners” or denoisers –
with an unrolled iterativemodel-based image reconstruction
(MBIR) algorithm [20], [21], [22], [23], [24], [25], [26], [27].
This alternative approach can regulate overfitting of regres-
sion NNs, by balancing physical data-fit of MBIR and prior
information estimated by refining NNs [16], [18]. This “soft-
refiner” approach has been successfully applied to several
extreme imaging systems, e.g., highly undersampled MRI
[20], [25], [28], [29], [30], low-dose or sparse-view CT [16],

[19], [24], [27], [31], and low-count emission tomography
[18], [32], [33], [34].

1.1 Notation

This section provides mathematical notations. We use
fðx; yÞ to denote a function f of x given y. We use �k kp to
denote the ‘p-norm and write h�; �i for the standard inner
product on C

N . The weighted ‘2-norm with a Hermitian
positive definite matrix A is denoted by k � kA ¼ kA

1
2ð�Þk2.

The Frobenius norm of a matrix is denoted by k � kF. ð�Þ
T ,

ð�ÞH , and ð�Þ� indicate the transpose, complex conjugate
transpose (Hermitian transpose), and complex conjugate,
respectively. diagð�Þ denotes the conversion of a vector into
a diagonal matrix or diagonal elements of a matrix into a
vector. For (self-adjoint) matrices A;B 2 C

N�N , the notation
B � A denotes that A�B is a positive semi-definite matrix.

This article has supplementary material that can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3012955.
The prefix “S” indicates the numbers in section, theorem,
equation, figure, table, and footnote in the supplement.

1.2 From Block-Wise Optimization to INN

To recover signals x 2 C
N from measurements y 2 C

m, con-
sider the following MBIR optimization problem:

argmin
x2X

F ðx; y; zÞ; F ðx; y; zÞ , fðx; yÞ þ
g

2
kx� zk22; (P0)

whereX is a set of feasible points, fðx; yÞ is data-fit function, g
is a regularization parameter, and z2C

N is some high-quality
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approximation to the true unknown signal x. The data-fit
fðx; yÞ measures deviations of model-based predictions of x
from data y, consideringmodels of imaging physics (or image
formation) and noise statistics in y. In (P0), the signal recovery
accuracy increases as the quality of z improves [17, Proposi-
tion 3]; however, it is difficult to obtain such z in practice.
Alternatively, there has been a growing trend in learning spar-
sifying regularizers (e.g., convolutional regularizers [24], [35],
[36], [37], [38]) from training datasets and applying the trained
regularizers to the following block-wise MBIR problem:
argminx2X fðx; yÞ þminzrðx; z;OÞ. Here, a learned regularizer
minzrðx; z;OÞ quantifies consistency between x and refined
sparse signal z via some learned operators O. Recently, we
have constructed INNs by generalizing the corresponding
block-wise MBIR updates with regression NNs without con-
vergence analysis [25], [27]. In existing INNs, two major chal-
lenges exist: convergence and acceleration.

1.3 Challenges in Existing INNs: Convergence

Existing convergence analysis has some practical limitations.
The original form of plug-and-play (PnP [23], [39], [40], [41])
is motivated by the alternating direction method of multi-
pliers (ADMM [42]), and its fixed-point convergence has
been analyzedwith consensus equilibrium perspectives [23].
However, similar to ADMM, its practical convergence
depends on how one selects ADMMpenalty parameters. For
example, [22] reported unstable convergence behaviors of
PnP-ADMM with fixed ADMM parameters. To moderate
this problem, [41] proposed a scheme that adaptively con-
trols the ADMM parameters based on relative residuals.
Similar to the residual balancing technique [42, Section
3.4.1], the scheme in [41] requires tuning initial parameters.
Regularization by Denoising (RED [22]) is an alternative that
moderates some such limitations. In particular, RED aims to
make a clear connection between optimization and a deno-
iser D, by defining its prior term by (scaled) xT ðx�DðxÞÞ.
Nonetheless, [43] showed that many practical denoisers do
not satisfy the Jacobian symmetry in [22], and proposed a
less restrictive method, score-matching by denoising.

The convergence analysis of the INN inspired by the
relaxed projected gradient descent (RPGD) method in [31]
has the least restrictive conditions on the regression NN
among the existing INNs. This method replaces the projec-
tor of a projected gradient descent method with an image
refining NN. However, the RPGD-inspired INN directly
applies an image refining NN to gradient descent updates
of data-fit; thus, this INN relies heavily on the mapping per-
formance of a refining NN and can have overfitting risks,
similar to non-MBIR regression NNs, e.g., FBPConvNet
[12]. In addition, it exploits the data-fit term only for the first
few iterations [31, Fig. 5(c)]. We refer the perspective used in
RPGD-inspired INN and its related works [26], [44] as
“hard-refiner”: different from soft-refiners, these methods
do not use a refining NN as a regularizer. More recently,
[26] presented convergence analysis for an INN inspired by
a proximal gradient descent method. However, their analy-
sis is based on noiseless measurements, which is typically
impractical.

Broadly speaking, existing convergence analysis largely
depends on the (firmly) nonexpansive property of image
refiningNNs [22], [23], [43], [31, PGD], [26]. However, except

for a single-hidden layer convolutional NN (CNN), it is yet
unclear which analytical conditions guarantee the non-
expansiveness of general refining NNs [27]. To guarantee
convergence of INNs even when using possibly expansive
image refining NNs, we proposed a method that normalizes
the output signal of image refining NNs by their Lipschitz
constants [27]. However, if one uses expansive NNs that are
identical across iterations, it is difficult to obtain “best”
image recoverywith that normalization scheme. The spectral
normalization based training [45], [46] can ensure the non-
expansiveness of refining NNs by single-step power itera-
tion. However, similar to the normalization method in [27],
refining NNs trained with the spectral normalization
method [46] degraded the image reconstruction accuracy for
an INN using iteration-wise refining NNs [19]. In addition,
there does not yet exist theoretical convergence results when
refining NNs change across iterations, yet iteration-wise
refining NNs are widely studied [20], [21], [25], [28]. Finally,
existing analysis considers only a narrow class of data-fit
terms: most analyses consider a quadratic function with a
linear imaging model [26], [31] or more generally, a convex
cost function [23], [43], [46] that can be minimized with a
practical closed-form solution. No theoretical convergence
results exist for general (non)convex data-fit terms, iteration-
wiseNNdenoisers, and a general set of feasible points.

1.4 Challenges in Existing INNs: Acceleration

Compared to non-MBIR regression NNs that do not exploit
the data-fit fðx; yÞ in (P0), INNs require more computation
because they consider the imaging physics. Computation
increases as the imaging system or image formation model
becomes larger-scale, e.g., LF photography from a focal
stack, 3D CT, parallel MRI using many receive coils, and
image super-resolution. Thus, acceleration becomes crucial
for INNs.

First, consider the existing methods motivated by ADMM
or block coordinate descent (BCD) method: examples
include PnP-ADMM [23], [41], RED-ADMM [22], [43],
MoDL [30], and BCD-Net [16], [18], [25]. These methods can
require multiple inner iterations to balance data-fit and prior
information estimated by trained refining NNs, increasing
total MBIR time. For example, in solving such problems,
each outer iteration involves xðiþ1Þ ¼ argminx F ðx; y; zðiþ1ÞÞ,
where F is given as in (P0) and zðiþ1Þ is the output from the
ith image refining NN. For LF imaging system using a focal
stack data [47], solving the above problem requires multiple
iterations, and the total computational cost scale with the
numbers of photosensors and sub-aperture images. In addi-
tion, nonconvexity of the data-fit term fðx; yÞ can break con-
vergence guarantees of these methods, because in general,
the proximal mapping argminx fðx; yÞ þ gkx� zðiþ1Þk22 is no
longer nonexpansive.

Second, consider the existing works motivated by gradi-
ent descent methods [21], [26], [28], [31]. These methods
resolve the inner iteration issue; however, they lack a sophis-
ticated step-size control or backtracking scheme that influen-
ces convergence guarantee and acceleration. Accelerated
proximal gradient (APG) methods using momentum terms
can significantly accelerate convergence rates for solving
composite convex problems [48], [49], so we expect that INN
methods in the second class have yet to be maximally
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accelerated. The work in [44] applied PnP to the APG
method [49]; [50] applied PnP to the primal-dual splitting
(PDS) algorithm [51]. However, similar to RPGD [31], these
are hard-refiner methods using some state-of-the-art denois-
iers (e.g., BM3D [52]) but not trained NNs. Those methods
lack convergence analyses and guarantees may be limited to
convex data-fit function.

1.5 Contributions and Organization of the Paper

This paper proposes Momentum-Net, the first INN architec-
ture that aims for fast and convergent MBIR. The architec-
ture of Momentum-Net is motivated by applying the Block
Proximal Extrapolated Gradient method using a Majorizer
(BPEG-M) [24], [35] to MBIR using trainable convolutional
autoencoders [24], [25], [37]. Specifically, each iteration of
Momentum-Net consists of three core modules: image refin-
ing, extrapolation, and MBIR. At each Momentum-Net iter-
ation, an extrapolation module uses momentum from
previous updates to amplify the changes in subsequent iter-
ations and accelerate convergence, and an MBIR module is
noniterative. In addition, Momentum-Net resolves the con-
vergence issues mentioned in Section 1.3: for general differ-
entiable (non)convex data-fit terms and convex feasible sets,
it guarantees convergence to a point that satisfies fixed-
point and critical point conditions, under some mild condi-
tions and two asymptotic conditions, i.e., asymptotically non-
expansive paired refining NNs and asymptotically block-
coordinate minimizer.

The remainder of this paper is organized as follows.
Section 2 constructs the Momentum-Net architecture moti-
vated by BPEG-M algorithm that solves MBIR problem
using a learnable convolutional regularizer, describes its
relation to existing works, analyzes its convergence, and
summarizes the benefits of Momentum-Net over existing
INNs. Section 3 provides details of training INNs, including
image refining NN architectures, single-hidden layer or
“shallow” CNN (sCNN) and multi-hidden layer or “deep”
CNN (dCNN), and training loss function, and proposes a
regularization parameter selection scheme to consider data-
fit variations across training and testing samples. Section 4
considers two extreme imaging applications: sparse-view
CT and LF photography using a focal stack. Section 4
reports numerical experiments of applications where the
proposed Momentum-Net using extrapolation significantly
improves MBIR speed and accuracy, over the existing
INNs, BCD-Net [22], [25], [30], Momentum-Net using no
extrapolation [21], [28], ADMM-Net [20], [23], [41], and PnP-
PDS [50] using refining NNs. Furthermore, Section 4 reports
numerical experiments where Momentum-Net significantly
improves reconstruction quality compared to a state-of-the-
art MBIR method in each application.

2 MOMENTUM-NET: WHERE BPEG-M MEETS

NNS FOR INVERSE PROBLEMS

2.1 Motivation: BPEG-M Algorithm for MBIR Using
Learnable Convolutional Regularizer

This section motivates the proposed Momentum-Net
architecture, based on our previous works [24], [37]. Con-
sider the following approach for recovering signal x from
measurements y (see the setup of multi-(non)convex

problems in Section S.1.1, available in the online supple-
mental material):

argmin
x2X

fðx; yÞ þ g

�
min
fzkg

rðx; fzkg; fhkgÞ

�
;

rðx; fzkg; fhkgÞ ,
XK

k¼1

1

2
hk � x� zkk k22 þ bk zkk k1; (1Þ

where X is a closed set, fðx; yÞ þ grðx; fzkg; fhkgÞ is a (con-
tinuosly) differentiable (non)convex function in x, minfzkgr
ðx; fzkg; fhkgÞ is a learnable convolutional regularizer [24],
[36], fzk :k ¼ 1; . . . ; Kg is a set of sparse features that corre-
spond to fhk � xg, fhk2C

R :k ¼ 1; . . . ; Kg is a set of trainable
filters, and R and K denote the size and number of trained
filters, respectively.

Problem (1) can be viewed as a two-block optimization
problem in terms of the image x and the features fzkg.
We solve (1) using the recent BPEG-M optimization
framework [24], [35] that has attractive convergence guar-
antee and rapidly solved several block optimization prob-
lems [24], [35], [53], [54], [55]. For each block, BPEG-M
has the following key ideas. First, we consider Mb-Lip-
schitz continuity for the gradient of the bth block optimi-
zation problem, 8b:

Definition 1 (M-Lipschitz continuity [24]). A function g :
R

n ! R
n is M-Lipschitz continuous on R

n if there exists a
(symmetric) positive definite matrixM such that

gðuÞ � gðvÞk kM�1 � u� vk kM ; 8u; v 2 R
n:

Definition 1 is a more general concept than the classical
Lipschitz continuity. Second, we use a sharper majorization
matrix M that gives a tighter bound in Definition 1 leads to
a tighter quadratic majorization bound in the following
lemma:

Lemma 2 (Quadratic majorization via M-Lipschitz con-
tinuous gradients [24]). Let fðuÞ : Rn ! R. If rf is
M-Lipschitz continuous, then

fðuÞ � fðvÞ þ hrufðvÞ; u� vi þ
1

2
u� vk k2M ; 8u; v 2 R

n:

Having tighter majorization bounds, sharper majorization
matrices tend to accelerate BPEG-M convergence. Third, the
majorized block problems are “proximable”, i.e., proximal
mapping of majorized function is “easily” computable
depending on the properties of bth block majorizer and regu-
larizer, Mb and rb, where the proximal mapping operator is
defined by

ProxMb
rb

ðzÞ , argmin
u

1

2
u� zk k2Mb

þ rbðuÞ; 8b: (2)

Last, we use block-wise extrapolation and momentum
terms to accelerate convergence. Section S.1 with Algorithm
S.1, available in the online supplemental material, reviews
the BPEG-M framework.

Suppose that 1) gradient of fðx; yÞ þ grðx; fzkg; fhkgÞ is
M-Lipschitz continuous at an extrapolated point �xðiþ1Þ,
8i; 2) filters in (1) satisfy the tight-frame (TF) condition,PK

k¼1 hk � uk k22 ¼ uk k22, 8u, for some boundary conditions
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[24]. Applying the BPEG-M framework to solving (1) leads
to the following block updates:

zðiþ1Þ ¼
XK

k¼1

flipðh�
kÞ � T bk

ðhk � x
ðiÞÞ; (3Þ

�xðiþ1Þ ¼ xðiÞ þ Eðiþ1Þ
�
xðiÞ � xði�1Þ

�
; (4Þ

xðiþ1Þ ¼ Prox
eMðiþ1Þ

IX

�
�xðiþ1Þ � ð eMðiþ1ÞÞ�1rF ð�xðiþ1Þ; y; zðiþ1ÞÞ

�
; (5Þ

where Eðiþ1Þ is an extrapolation matrix that is given in (8)
or (9) below, eMðiþ1Þ is a (scaled) majorization matrix for
rF ðx; y; zðiþ1ÞÞ that is given in (7) below, 8i, the proximal

operator Prox
eMðiþ1Þ

IX
ð�Þ in (5) is given by (2), and IX ðxÞ is the

characteristic function of set X (i.e., IX equals to 0 if x 2 X ,
and1 otherwise).

Proximal mapping update (3) has a single-hidden layer con-
volutional autoencoder architecture that consists of encoding
convolution, nonlinear thresholding, and decoding convolu-
tion, where flipð�Þ flips a filter along each dimension, and the
soft-thresholding operator T aðuÞ : C

N ! C
N is defined by

ðT aðuÞÞn ,
un � a � signðunÞ; junj > a;

0; otherwise;

�
(6)

for n ¼ 1; . . . ; N , in which signð�Þ is the sign function. The
BPEG-M updates in (3)–(5) guarantee convergence to a criti-
cal point, when MBIR problem (1) satisfies some mild condi-
tions, e.g., lower-boundedness and existence of critical
points; see Assumption S.1 in Section S.1.3, available in the
online supplemental material.

The following section generalizes the BPEG-M updates in
(3)–(5) and constructs the Momentum-Net architecture.

2.2 Architecture

This section establishes the INN architecture of Momentum-
Net by generalizing BPEG-M updates (3)–(5) that solve (1).
Specifically, we replace the proximal mapping in (3) with a
general image refining NN Ruð�Þ, where u denotes the train-
able parameters. To effectively remove iteration-wise artifacts

and give “best” signal estimates at each iteration, we further
generalize a refining NNRuð�Þ to iteration-wise image refining
NNs fR

uðiþ1Þð�Þ : i ¼ 0; . . . ;Niter�1g, where uðiþ1Þ denotes the
parameters for the ith iteration refining NNR

uðiþ1Þ , andNiter is
the number of Momentum-Net iterations. The iteration-wise
NNs are particularly useful for reducing overfitting risks in
regression, because R

uðiþ1Þ is responsible for removing noise
features only at the ith iteration, and thus one does not need
to greatly increase dimensions of its parameter uðiþ1Þ [16], [18].
In low-dose CT reconstruction, for example, the refining NNs
at the early and later iterations remove streak artifacts and
Gaussian-like noise, respectively [16].

Each iteration of Momentum-Net consists of 1) image
refining, 2) extrapolation, and 3) MBIR modules, corre-
sponding to the BPEG-M updates (3), (4), and (5), respec-
tively. See the architecture of Momentum-Net in Fig. 1(a)
and Algorithm 1. At the ith iteration, Momentum-Net per-
forms the following three processes:

� Refining: The ith image refining module gives the
“refined” image zðiþ1Þ, by applying the ith refining
NN, R

uðiþ1Þ , to an input image at the ith iteration, xðiÞ

(i.e., image estimate from the ði� 1Þth iteration).

Fig. 1. Architectures of different INNs for MBIR. (a–b) The architectures of Momentum-Net and BCD-Net [25] are constructed by generalizing BPEG-
M and BCD algorithms that solve MBIR problem using a convolutional regularizer trained via convolutional analysis operator learning (CAOL) [24],
[36], respectively. (a) Removing extrapolation modules (i.e., setting the extrapolation matrices fEðiþ1Þ :8ig as a zero matrix), Momentum-Net special-
izes to the existing gradient-descent-inspired INNs [21], [28]. When the MBIR cost function F ðx; y; zðiþ1ÞÞ in (P1) has a sharp majorizer eMðiþ1Þ, 8i,
Momentum-Net (using r�1) specializes to BCD-Net; see Examples 5–6. (b) BCD-Net is a general version of the existing INNs in [20], [22], [23], [30],
[39], [40], [41] by using iteration-wise image refining NNs, i.e., fR

uðiþ1Þ : 8ig, or considering general convex data-fit fðx; yÞ.

Algorithm 1.Momentum-Net

Require: fR
uðiÞ

: i ¼ 1; . . . ; Niterg, r 2 ð0; 1Þ, g > 0, xð0Þ ¼ xð�1Þ, y
for i ¼ 0; . . . ; Niter�1 do

Calculate eMðiþ1Þ by (7), and Eðiþ1Þ by (8) or (9)
Image refining:

zðiþ1Þ ¼ ð1� rÞxðiÞ þ rR
uðiþ1Þ

�
xðiÞ
�

(Alg.1.1)

Extrapolation:

�xðiþ1Þ ¼ xðiÞ þ Eðiþ1Þ
�
xðiÞ � xði�1Þ

�
(Alg.1.2)

MBIR:

xðiþ1Þ ¼ Prox
eMðiþ1Þ

IX

�
�xðiþ1Þ �

� eMðiþ1Þ
��1

rF ð�xðiþ1Þ; y; zðiþ1ÞÞ
�

(Alg.1.3)

end for
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Different from existing INNs, e.g., ADMM-Net [20],
PnP-ADMM [23], [41], RED [22], MoDL [30], BCD-
Net [25] (see Fig. 1(b)), TNRD [21], [28], we apply
r-relaxation with r 2 ð0; 1Þ; see (Alg.1.1). The param-
eter r controls the strength of inference from refining
NNs, but does not affect the convergence guarantee
of Momentum-Net. Proper selection of r can improve
MBIR accuracy (see Section S.10, available in the
online supplemental material).

� Extrapolation: The ith extrapolation module gives the
extrapolated point �xðiþ1Þ, based on momentum terms
xðiÞ � xði�1Þ; see (Alg.1.2). Intuitively speaking,momen-
tum is information from previous updates to amplify
the changes in subsequent iterations. Its effectiveness
has been shown in diverse optimization literature, e.g.,
convex optimization [48], [49] and block optimization
[24], [35].

� MBIR: Given a refined image zðiþ1Þ and ameasurement
vector y, the ith MBIR module (Alg.1.3) applies the
proximal operator Prox

eMðiþ1Þ

IX
ð�Þ to the extrapolated gra-

dient update using a quadratic majorizer of F ðx; y; zðiþ1ÞÞ,
where F is defined in (P0). Intuitively speaking, this
step solves a majorized version of the following MBIR
problem at the extrapolated point �xðiþ1Þ:

min
x2X

F ðx; y; zðiþ1ÞÞ; (P1)

and gives a reconstructed image xðiþ1Þ. In Momen-
tum-Net, we consider (non)convex differentiable
MBIR cost functions F with M-Lipschitz continuous
gradients, and a convex and closed set X . For a wide
range of large-scale inverse imaging problems, the
majorized MBIR problem (Alg.1.3) has a practical
closed-form solution and thus, does not require an
iterative solver, depending on the properties of pra-
ctically invertible majorization matrices Mðiþ1Þ and
constraints. Examples of Mðiþ1Þ-X combinations that
give a noniterative solution for (Alg.1.3) include
scaled identity and diagonal matrices with a box con-
straint and the non-negativity constraint, andmatrices
decomposable by unitary transforms, e.g., a circulant
matrix [56], [57], with X ¼ C

N . The updated image
xðiþ1Þ is the input to the nextMomentum-Net iteration.

The followings aredetails ofMomentum-Net inAlgorithm1.
A scaledmajorizationmatrix is

eMðiþ1Þ ¼ � �Mðiþ1Þ � 0; � � 1; (7)

where Mðiþ1Þ2R
N�N is a symmetric positive definite majo-

rization matrix ofrF ðx; y; zðiþ1ÞÞ in the sense ofM-Lipschitz
continuity (see Definition 1). In (7), � ¼ 1 and � > 1 for con-
vex and nonconvex F ðx; y; zðiþ1ÞÞ (or convex and nonconvex
fðx; yÞ), respectively. We design the extrapolation matrices
as follows:

for convex F;

Eðiþ1Þ ¼ d2mðiÞ �
�
Mðiþ1Þ

��1
2
�
MðiÞ

�1
2; (8Þ

for nonconvex F;

Eðiþ1Þ ¼ d2mðiÞ �
�� 1

2ð�þ 1Þ
�
�
Mðiþ1Þ

��1
2
�
MðiÞ

�1
2; (9Þ

for some d < 1 and f0�mðiÞ�1:8ig. We update the
momentum coefficients fmðiþ1Þ :8ig by the following for-
mula [24], [35]:

mðiþ1Þ ¼
uðiÞ � 1

uðiþ1Þ
; uðiþ1Þ ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðuðiÞÞ2

q

2
; (10)

if F ðx; y; zðiþ1ÞÞ has a sharp majorizer, i.e., rF ðx; y; zðiþ1ÞÞ
has Mðiþ1Þ such that the corresponding bound in Definition 1
is tight, then we set mðiþ1Þ ¼ 0, 8i. Section S.11, available in
the online supplemental material, lists parameters ofMomen-
tum-Net, and summarizes selection guidelines or gives
default values.

2.3 Relations to Previous Works

Several existing MBIR methods can be viewed as a special
case of Momentum-Net:

Example 3. (MBIR model (1) using convolutional autoen-
coders that satisfy the TF condition [24]). The BPEG-M
updates in (3)–(5) are special cases of the modules
in Momentum-Net (Algorithm 1), with fR

uðiþ1Þð�Þ ¼
PK

k¼1

flipðh�
kÞ � T bk

ðhk � ð�ÞÞ :8ig (i.e., single hidden-layer convo-
lutional autoencoder [24]) and r � 1. These give a clear
mathematical connection between a denoiser (3) and cost
function (1). One can find a similar relation between a
multi-hidden layer CNN and a multi-layer convolutional
regularizer [24, Appendix].

Example 4. (INNs inspired by gradient descent method,
e.g., TNRD [21], [28]). Removing extrapolation mod-
ules, i.e., setting fEðiþ1Þ ¼ 0 : 8ig in (Alg.1.2), and set-
ting r � 1, Momentum-Net becomes the existing INN
in [21], [28].

Example 5. (BCD-Net for image denoising [25]). To obtain a
clean image x 2 R

N from a noisy image y 2 R
N corrupted

by an additive white Gaussian noise (AWGN), MBIR
problem (P1) considers the data-fit fðx; yÞ ¼ 1

2
ky� xk2W

with the inverse covariance matrixW ¼ 1
s2
I, where s2 is a

variance of AWGN, and the box constraint X ¼ ½0; U �N

with an upper bound U > 0. For this fðx; yÞ, the MBIR
module (Alg.1.3) can use the exact majorizer f eMðiþ1Þ ¼
ð 1
s2
þ gÞIg and one does not need to use the extrapolation

module (Alg.1.2), i.e., fEðiþ1Þ ¼ 0g. Thus, Momentum-Net
(with r � 1) becomes BCD-Net.

Example 6. (BCD-Net for undersampled single-coil MRI
[25]). To obtain an object magnetization x 2 R

N from a
k-space data y 2 C

m obtained by undersampling (e.g.,
compressed sensing [58])MRI, MBIR problem (P1) consid-
ers the data-fit fðx; yÞ ¼ 1

2
ky�Axk2W with an undersam-

pling Fourier operator A (disregarding relaxation effects
and considering Cartesian k-space), the inverse covariance
matrixW ¼ 1

s2
I, where s2 is a variance of complex AWGN

[59], and X ¼ C
N . For this fðx; yÞ, the MBIR module

(Alg.1.3) can use the exact majorizer f eMðiþ1Þ ¼ FH
disc
ð 1
s2
P þ

gIÞFdiscg that is practically invertible, where Fdisc is the dis-
crete Fourier transform and P is a diagonal matrix with
either 0 or 1 (their positions correspond to sampling pat-
tern in k-space), and the extrapolation module (Alg.1.2)
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uses the zero extrapolation matrices fEðiþ1Þ ¼ 0g. Thus,
Momentum-Net (with r � 1) becomes BCD-Net.

The following section analyzes the convergence of
Momentum-Net.

2.4 Convergence Analysis

In practice, INNs, i.e., “unrolled” or PnPmethods using refin-
ing NNs, are trained and usedwith a specific number of itera-
tions. Nevertheless, similar to optimization algorithms,
studying convergence properties of INNswithNiter ! 1 [23],
[31], [46] is important; in particular, it is crucial to know if a
given INN tends to converge asNiter increases. For INNs using
iteration-wise refining NNs, e.g., BCD-Net [25] and proposed
Momentum-Net, we expect that refiners converge, i.e., their
image refining capacity converges, because information pro-
vided by data-fit function fðx; yÞ in MBIR (e.g., likelihood)
reaches some “bound” after a certain number of iterations.
Fig. 2 illustrates that dCNN parameters of Momentum-Net
tend to converge for different applications. (The similar
behavior was reported for sCNN refiners in BCD-Net [16].)
Although refiners do not completely converge, in practice, one
could use a refining NN at a sufficiently large iteration num-
ber, e.g.,Niter ¼ 100 inMomentum-Net, for the later iterations.

There are two key challenges in analyzing the convergence
of Momentum-Net in Algorithm 1: both challenges relate to
its image refining modules (Alg.1.1). First, image refining
NNsR

uðiþ1Þ change across iterations; even if they are identical
across iterations, they are not necessarily nonexpansive oper-
ators [60], [61] in practice. Second, the iteration-wise refining
NNs are not necessarily proximal mapping operators, i.e.,
they are not written explicitly in the form of (2). This section
proposes two new asymptotic definitions to overcome these
challenges, and then uses those conditions to analyze conver-
gence properties ofMomentum-Net inAlgorithm 1.

2.4.1 Preliminaries

To resolve the challenge of iteration-wise refiningNNs and the
practical difficulty in guaranteeing their non-expansiveness,
we introduce the following generalized definition of the non-
expansiveness [60], [61].

Definition 7 (Asymptotically nonexpansive paired oper-
ators).A sequence of paired operators ðR

uðiÞ
;R

uðiþ1ÞÞ is asymp-
totically nonexpansive if there exist a summable nonnegative
sequence f�ðiþ1Þ � 0 :

P1
i¼0 �

ðiþ1Þ < 1g such that1

R
uðiþ1ÞðuÞ � R

uðiÞ
ðvÞ

�� ��2
2
� u� vk k22 þ �ðiþ1Þ; 8u; v; i:

(11)

When R
uðiþ1Þ ¼ Ru and �ðiþ1Þ ¼ 0, 8i, Definition 7 becomes

the standard non-expansiveness of a mapping operator Ru. If
we replace the inequality (�) with the strict inequality (< ) in
(11), then we say that the sequence of paired operators
ðR

uðiþ1Þ ;Ruðiþ1ÞÞ is asymptotically contractive. (This stronger
assumption is used to prove convergence of BCD-Net in
Proposition S.5, available in the online supplemental material.)
Definition 7 also implies that mapping operators R

uðiþ1Þ con-
verge to some nonexpansive operator, if the corresponding
parameters uðiþ1Þ converge.

Definition 7 incorporates a pairing property because
Momentum-Net uses iteration-wise image refining NNs.
Specifically, the pairing property helps prove convergence
of Momentum-Net, by connecting image refining NNs at
adjacent iterations. Furthermore, the asymptotic property in
Definition 7 allows Momentum-Net to use expansive refining
NNs (i.e., mapping operators having a Lipschitz constant
larger than 1) for some iterations, while guaranteeing con-
vergence; see Figs. 3(a3) and 3(b3). Suppose that refining
NNs are identical across iterations, i.e.,R

uðiþ1Þ ¼ Ru, 8i, sim-
ilar to some existing INNs, e.g., PnP [23], RED [22], and
other methods in Section 1.3. In such cases, if Ru is expan-
sive, Momentum-Net may diverge; this property corre-
sponds to the limitation of existing methods described in
Section 1.3. Momentum-Net moderates this issue by using
iteration-wise refining NNs that satisfy the asymptotic
paired non-expansiveness in Definition 7.

Because the sequence fzðiþ1Þ : 8ig in (Alg.1.1) is not nec-
essarily updated with a proximal mapping, we introduce a
generalized definition of block-coordinate minimizers [53,
(2.3)] for zðiþ1Þ-updates:

Definition 8 (Asymptotic block-coordinate minimizer).
The update zðiþ1Þ is an asymptotic block-coordinate minimizer
if there exists a summable nonnegative sequence fDðiþ1Þ � 0 :P1

i¼0 D
ðiþ1Þ < 1g such that

zðiþ1Þ � xðiÞ
�� ��2

2
� zðiÞ � xðiÞ
�� ��2

2
þD

ðiþ1Þ; 8i: (12)

Definition 8 implies that as i ! 1, the updates fzðiþ1Þ :

i � 0g approach a block-coordinate minimizer trajectory
that satisfies (12) with fDðiþ1Þ ¼ 0 : i�0g. In particular,
D
ðiþ1Þ quantifies how much the update zðiþ1Þ in (Alg.1.1) per-

turbs a block-coordinate minimizer trajectory. The bound
kzðiþ1Þ � xðiÞk22 � kzðiÞ � xðiÞk22 always holds, 8i, when one
uses the proximal mapping in (3) within the BPEG-M
framework. Note that while applying trained Momen-
tum-Net, (12) is easy to examine empirically, whereas
(11) is harder to check.

Fig. 2. Convergence behavior ofMomentum-Net’s dCNN refiners fR
uðiÞ

g in
different applications (uðiÞ denotes the parameter vector of the ith iteration
refiner R

uðiÞ
, for i ¼ 1; . . . ;Niter; see details of fR

uðiÞ
g in (19) and

Section 4.2.1; Niter ¼ 100). Sparse-view CT (fan-beam geometry with
12.5% projections views): R

uðiÞ
quickly converges, where majorization

matrices of training data-fits have similar condition numbers. LF photography
using a focal stack (five detectors and reconstructed LFs consists of 9�9
sub-aperture images): R

uðiÞ
has slower convergence, where majorization

matrices of training data-fits have largely different condition numbers.

1. One could replace the bound in (11) with kR
uðiþ1Þ ðuÞ �

R
uðiÞ

ðvÞk22 � ð1þ �ðiþ1ÞÞ u� vk k22 (and summable f�ðiþ1Þ : 8ig), and the
proofs for our main arguments go through.
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2.4.2 Assumptions

This section introduces and interprets the assumptions
for convergence analysis of Momentum-Net in Algorithm 1:

� Assumption 1) In MBIR problems (P1), (non)con-
vex F ðx; y; zðiþ1ÞÞ is (continuously) differentiable,
proper, and lower-bounded in domðF Þ,2 8i, and X
is convex and closed. Algorithm 1 has a fixed-
point.

� Assumption 2) rF ðx; y; zðiþ1ÞÞ is Mðiþ1Þ-Lipschitz con-
tinuous with respect to x (see Definition 1), where
Mðiþ1Þ is a iteration-wise majorization matrix that sat-
isfiesmF;minIN �Mðiþ1Þ�mF;maxIN with 0 < mF;min �
mF;max < 1, 8i.

� Assumption 3) The extrapolation matrices Eðiþ1Þ � 0

in (8)–(9) satisfy the following conditions:

for convex F;

�
Eðiþ1Þ

�T
Mðiþ1ÞEðiþ1Þ � d2 �MðiÞ; d < 1; (13Þ

for nonconvex F;

�
Eðiþ1Þ

�T
Mðiþ1ÞEðiþ1Þ �

d2ð�� 1Þ2

4ð�þ 1Þ2
�MðiÞ; d < 1: (14Þ

� Assumption 4) The sequence of paired operators
ðR

uðiþ1Þ ;RuðiÞ
Þ is asymptotically nonexpansive with a

summable sequence f�ðiþiÞ�0g; the update zðiþ1Þ is an
asymptotic block-coordinate minimizer with a sum-
mable sequence fDðiþiÞ�0g. The mapping functions
fR

uðiþ1Þ : 8ig are continuous with respect to input
points and the corresponding parameters fuðiþ1Þ : 8ig
are bounded.

Assumption 1 is a slight modification of Assumption S.1
of BPEG-M, and Assumptions 2–3 are identical to
Assumptions S.2–S.3 of BPEG-M; see Assumptions S.1–S.3
in Section S.1.3, available in the online supplemental mate-
rial. The extrapolation matrix designs (8) and (9) satisfy con-
ditions (13) and (14) in Assumption 3, respectively.

We provide empirical justifications for the first two condi-
tions in Assumption 4. First, Fig. 3(a2) illustrates that paired
refining NNs ðR

uðiþ1Þ ;RuðiÞ
Þ of Momentum-Net appear to be

asymptotically nonexpansive in an application that has mild
condition number variations across training data-fit majori-
zation matrices. Figs. 3(a3) and 3(b3) illustrate for different
applications that refining NNs fR

uðiþ1Þg become nonexpan-
sive: their Lipschitz constants at the first several iterations are
larger than 1, and their Lipschitz constants in later iterations
become less than 1. Alternatively, the asymptotic non-expan-
siveness of paired operators ðR

uðiþ1Þ ;RuðiÞ
Þ can be satisfied by

a stronger assumption that the sequence fR
uðiþ1Þg converges

to some nonexpansive operator. (Fig. 2 illustrates that dCNN
parameters ofMomentum-Net appear to converge.)

Fig. 3. Empirical measures related to Assumption 4 for guaranteeing convergence of Momentum-Net using dCNN refiners (for details, see (19) and
Section 4.2.1), in different applications. See empirical measures for guaranteeing convergence of Momentum-Net using sCNN refiners, and estimation
procedure in Fig. S.1 and Section S.2, available in the online supplemental material, respectively. (a) The sparse-view CT reconstruction experiment
used fan-beamgeometry with 12.5%projections views. (b) The LF photography experiment used five detectors and reconstructed LFs consisting of 9�
9 sub-aperture images. (a1, b1) For both the applications, we observed that DðiÞ ! 0. This implies that the zðiþ1Þ-updates in (Alg.1.1) satisfy the asymp-
totic block-coordinateminimizer condition in Assumption 4. (Magenta dots denote themean values and black vertical error bars denote standard devia-
tions.) (a2) Momentum-Net trained from training data-fits, where their majorizationmatrices havemild condition number variations, shows that �ðiÞ ! 0.
This implies that paired NNs ðR

uðiþ1Þ ;RuðiÞ
Þ in (Alg.1.1) are asymptotically nonexpansive. (b2) Momentum-Net trained from training training data-fits,

where their majorization matrices have mild condition number variations, shows that �ðiÞ becomes close to zero, but does not converge to zero in one
hundred iterations. (a3, b3) The NNs,R

uðiþ1Þ in (Alg.1.1), become nonexpansive, i.e., its Lipschitz constant kðiÞ becomes less than 1, as i increases.

2. F : Rn ! ð�1;þ1� is proper if domF 6¼ ;. F is lower bounded in
domðF Þ , fu : F ðuÞ < 1g if infu2domðF Þ F ðuÞ > �1.
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Figs. 3(a3) and 3(b3) illustrate for different applications
that the zðiþ1Þ-updates are asymptotic block-coordinate
minimizers. Section S.3 with Lemma S.4, available in the
online supplemental material, provides a probabilistic jus-
tification for the asymptotic block-coordinate minimizer
condition.

2.4.3 Main Convergence Results

This section analyzes fixed-point and critical point conver-
gence of Momentum-Net in Algorithm 1, under the assump-
tions in the previous section. We first show that differences
between two consecutive iterates generated by Momentum-
Net converge to zero:

Proposition 9 (Convergence properties). Under Assump-
tions 1–4, let fxðiþ1Þ; zðiþ1Þ : i � 0g be the sequence generated
by Algorithm 1. Then, the sequence satisfies

X1

i¼0

xðiþ1Þ

zðiþ1Þ

� �
�

xðiÞ

zðiÞ

� �����
����
2

2

< 1; (15)

and hence
xðiþ1Þ

zðiþ1Þ

� �
�

xðiÞ

zðiÞ

� �����
����
2

! 0.

Proof. See Section S.4, available in the online supplemental
material. tu

Using Proposition 9, our main theorem provides that any
limit points of the sequence generated by Momentum-Net
satisfy critical point and fixed-point conditions:

Theorem10 (A limit point satisfies both critical point and
fixed-point conditions). Under Assumptions 1–4 above, let
fxðiþ1Þ; zðiþ1Þ : i � 0g be the sequence generated by Algorithm 1.
Consider either a fixed majorization matrix with general struc-
ture, i.e.,Mðiþ1Þ ¼ M for i�0, or a sequence of diagonal majori-
zation matrices, i.e., fMðiþ1Þ : i�0g. Then, any limit point �x of
fxðiþ1Þg satisfies both the critical point condition

hrF ð�x; y; �zÞ; x� �xi � 0; 8x 2 X ; (16)

where �z is a limit point of fzðiþ1Þg, and the fixed-point condition:

�x
�x

� �
¼ A

�M
R�u

�x
�x

� �� �
; (17)

where
xðiþ1Þ

xðiÞ

� �
¼ AMðiþ1Þ

R
uðiþ1Þ

xðiÞ

xði�1Þ

� �� �
, AMðiþ1Þ

R
uðiþ1Þ

ð�Þ denotes per-

forming the ith updates in Algorithm 1, and �u and �M is a limit
point of fuðiþ1Þg and fMðiþ1Þg, respectively.

Proof. See Section S.5, available in the online supplemental
material. tu

Observe that, if X ¼ R
N or �x is an interior point of X , (16)

reduces to the first-order optimality condition 0 2 @F ð�x; y; �zÞ,
where @F ðxÞ denotes the limiting subdifferential of F at x.
With additional isolation and boundedness assumptions for
the points satisfying (16) and (17), we obtain whole sequence
guarantees:

Corollary 11 (Whole sequence convergence). Consider the
construction in Theorem 10. Let S be the set of points satisfying
the critical point condition in (16) and the fixed-point condition
in (17). If fxðiþ1Þ : i � 0g is bounded, then distðxðiþ1Þ;SÞ ! 0,

where distðu;VÞ , inffku� vk : v 2 Vg denotes the distance
from u to V, for any point u 2 R

N and any subset V � R
N . If

S contains uniformly isolated points, i.e., there exists h > 0

such that ku� vk � h for any distinct points u; v 2 S, then
fxðiþ1Þg converges to a point in S.

Proof. See Section S.6, available in the online supplemental
material. tu

The boundedness assumption for fxðiþ1Þg in Corollary 11
is standard in block-wise optimization, e.g., [24], [35], [53],
[55], [62]. The assumption can be satisfied if the set X is
bounded (e.g., box constraints), one chooses appropriate reg-
ularization parameters in Algorithm 1 [24], [35], [55], the
function F ðx; y; zÞ is coercive [62], or the level set is bounded
[53]. However, for general F ðx; y; zÞ, it is hard to verify the
isolation condition for the points in S in practice. Instead,
one may use Kurdyka-ºojasiewicz property [53], [62] to ana-
lyze the whole sequence convergencewith some appropriate
modifications.

For simplicity, we focused our discussion to noniterative
MBIR module (Alg.1.3). However, Momentum-Net practi-
cally converges with any proximable MRIR function
(Alg.1.3) that may need an iterative solver, if sufficient inner
iterations are used. To maximize the computational benefit
of Momentum-Net, one needs to make sure that majorized
MBIR function (Alg.1.3) is better proximable over its origi-
nal form (P1).

2.5 Benefits of Momentum-Net

Momentum-Net has several benefits over existing INNs.
First, the image refining module (Alg.1.1) can use iteration-
wise image refining NNs fR

uðiþ1Þ : i�0g: those are particu-
larly useful to reduce overfitting risks by reducing dimen-
sions of their parameters uðiþ1Þ at each iteration [16], [18],
[19]. Iteration-wise refining NNs require less memory for
training, compared to methods that use a single refining
NN for all iterations, e.g., [63]. Different from the existing
methods mentioned in Section 1.3, Momentum-Net does
not require (firmly) nonexpansive mapping operators
fR

uðiþ1Þg to guarantee convergence. Instead, fR
uðiþ1Þg in

(Alg.1.1) assumes a generalized notion of the (firm) non-
expansiveness condition assumed for convergence of the
existing methods that use identical refining NNs across iter-
ations, including PnP [20], [23], [39], [40], [41], [46], RED
[22], [43], etc. The generalized concept is the first practical
condition to guarantee convergence of INNs using itera-
tion-wise refining NNs; see Definition 7.

Second, the extrapolation module (Alg.1.2) uses the
momentum terms xðiÞ � xði�1Þ that accelerate the conver-
gence of Momentum-Net. In particular, compared to the
existing gradient-descent-inspired INNs, e.g., TNRD [21],
[28], Momentum-Net converges faster. (Note that the
way the authors of [43] used momentum is less conven-
tional. The corresponding method, RED-APG [43, Algo-
rithm 6], still can require multiple inner iterations to
solve its quadratic MBIR problem, similar to BCD-Net-
type methods.)

Last, theMBIRmodule (Alg.1.3) does not requiremultiple
inner iterations for a wide range of imaging problems and
has both theoretical and practical benefits. Note first that
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convergence analysis of INNs (including Momentum-Net)
assumes that their MBIR operators are noniterative. In other
words, related convergence theory (e.g., Proposition S.5,
available in the online supplemental material) is inapplicable
if iterative methods, particularly with insufficient number of
iterations, are applied to MBIR modules. Different from the
existing BCD-Net-type methods [20], [22], [23], [25], [30],
[39], [40], [41], [43] that can require iterative solvers for their
MBIR modules, MBIR module (Alg.1.3) of Momentum-Net
can have practical close-form solution (see examples in Sec-
tion 2.2), and its corresponding convergence analysis (see
Section 2.4) can hold stably for a wide range of imaging app-
lications. Second, combined with extrapolation mod-
ule (Alg.1.2), noniterative MBIR modules (Alg.1.3) lead to
faster MBIR, compared to the existing BCD-Net-type meth-
ods that can require multiple inner iterations for their MBIR
modules for convergence. Third, Momentum-Net guaran-
tees convergence even for nonconvex MBIR cost function
F ðx; y; zÞ or nonconvex data-fit fðx; yÞ of which the gradient
is M-Lipschitz continuous (see Definition 1), while existing
INNs overlooked nonconvex F ðx; y; zÞ or fðx; yÞ.

Section S.7, available in the online supplemental material,
analyzes the sequence convergence of BCD-Net [25], and
describes the convergence benefits of Momentum-Net over
BCD-Net.

3 TRAINING INNS

This section describes training of all the INNs compared in
this paper.

3.1 Architecture of Refining NNs and Their Training

For all INNs in this paper, we train the refining NN at each
iteration to remove artifacts from the input image xðiÞ that is
fed from the previous iteration. For the ith iteration NN, we
first consider the following sCNN architecture, residual sin-
gle-hidden layer convolutional autoencoder:

R
uðiþ1ÞðuÞ ¼

XK

k¼1

d
ðiþ1Þ
k � T

expða
ðiþ1Þ
k

Þ

�
e
ðiþ1Þ
k � u

�
þ u; (18)

where uðiþ1Þ ¼ fd
ðiþ1Þ
k ;a

ðiþ1Þ
k ; e

ðiþ1Þ
k :8kg is the parameter set of

the ith image refining NN, fd
ðiþ1Þ
k ; e

ðiþ1Þ
k 2 C

R :k ¼ 1; . . . ; Kg
is a set of K decoding and encoding filters of size R,
fexpða

ðiþ1Þ
k Þ :k ¼ 1; . . . ; Kg is a set of K thresholding values,

and T aðuÞ is the soft-thresholding operator with parameter
a defined in (6), for i ¼ 0; . . . ; Niter�1. We use the exponen-
tial function expð�Þ to prevent the thresholding parameters
fakg from becoming negative during training. We observed
that the residual convolutional autoencoder in (18) gives
better results compared to the convolutional autoencoder,
i.e., (18) without the second term [18], [25]. This corresponds
to the empirical result in [64], [65] that having skip connec-
tions (e.g., the second term in (18)) can improve generaliza-
tion. The sequence of paired sCNN refiners (18) can satisfy
the asymptotic non-expansiveness, if its convergent refiner
satisfies that

smaxðD
H
DÞ � 1=R; smaxðE

H
EÞ � 1=R;

where smaxð�Þ is the largest eigenvalue of a matrix, D ,
½�d1; . . . ; �dK ; dR�, E , ½�e1; . . . ; �eK ; dR�, f�dk; �ek : 8kg are limit
point filters, and dR is the Kronecker delta filter of size R.

For dCNN refiners, we use the following residual multi-
hidden layer CNN architecture, a simplified DnCNN [4]
using fewer layers, no pooling, and no batch normalization
[46] (we drop superscript indices ð�ÞðiÞ for simplicity)

RuðuÞ ¼ u�
XK

k¼1

e
½L�
k � u

½L�1�
k ;

u
½1�
k ¼ ReLU

�
e
½1�
k � u

�
; u

½l�
k ¼ ReLU

 
XK

k0¼1

e
½l�
k;k0

� z
½l�1�
k0

!
; (19)

for k ¼ 1; . . . ;K and l ¼ 2; . . . ; L�1, where u ¼ fe
½l�
k ; e

½l�
k;k0 :

8k; k0; lg is the parameter set of each refining NN, K is the
number of feature maps, L is the number of layers, fe

½l�
k 2 R

R :

k ¼ 1; . . . ;K; l ¼ 1; Lg is a set of filters at the first and last
dCNN layer, fe

½l�
k;k0 2 R

R :k; k0 ¼ 1; . . . ;K; l ¼ 2; . . . ; L�1g is a
set of filters for remaining dCNN layer, and the rectified linear
unit activation function is defined byReLUðuÞ , maxð0; uÞ.

The training process of Momentum-Net requires S high-
quality training images, fxs :s ¼ 1; . . . ; Sg, S training meas-
urements simulated via imaging physics, fys :s ¼ 1; . . . ; Sg,
and S data-fits ffsðx; ysÞ :s ¼ 1; . . . ; Sg and the correspond-
ing majorization matrices fMðiÞ

s ; eMðiÞ
s :s ¼ 1; . . . ; S; i ¼ 1; . . . ;

Niterg. Different from [16], [25], [66] that train convolutional
autoencoders from the patch perspective, we train the image
refining NNs in (18)–(19) from the convolution perspective
(that does not store many overlapping patches, e.g., see [24]).
From S training pairs ðxs; x

ðiÞ
s Þ, where fxðiÞs :s ¼ 1; . . . ; Sg is a

set of S reconstructed images at the ði� 1Þth Momentum-
Net iteration, we train the ith iteration image refining NN in
(18) by solving the following optimization problem:

uðiþ1Þ ¼ argmin
u

1

2S

XS

s¼1

xs �Ruðx
ðiÞ
s Þ

�� ��2
2
; (P2)

where uðiþ1Þ is given as in (18), for i ¼ 0; . . . ;Niter�1. (See some
related properties in Section S.8, available in the online supple-
mentalmaterial).We solve the training optimization problems
(P2) by mini-batch stochastic optimization with the subdiffer-
entials computed by the PyTorch Autograd package.

3.2 Regularization Parameter Selection Based
on “Spectral Spread”

Whenmajorizationmatrices of training data-fits ffsðx; ysÞ :s ¼
1; . . . ; Sg have similar spectral properties, e.g., condition num-
bers, the regularization parameter g in (P1) is trainable by
substituting (Alg.1.1) into (Alg.1.3) andmodifying the training
cost (P2). However, the condition numbers of data-fit major-
izers can greatly differ due a variety of imaging geometries or
image formation systems, or noise levels in training measure-
ments, etc. See such examples in Sections 4.1–4.2.

To train Momentum-Net with diverse training data-fits,
we propose a parameter selection scheme based on the
“spectral spread” of their majorization matrices fM

ðiÞ
fs
g. For

simplicity, consider majorization matrices of the form
eMðiÞ
s ¼ eMs ¼ �ðMfs þ gsIÞ 8i, where the factor � is selected

by (7) and Mfs is a symmetric positive semidefinite
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majorization matrix for fsðx; ysÞ, 8s. We select the regulari-
zation parameter gs for the sth training sample as

gs ¼
sspreadðMfsÞ

x
; (20)

where the spectral spread of a symmetric positive defi-
nite matrix is defined by sspreadð�Þ , smaxð�Þ � sminð�Þ for
smaxðMfsÞ > sminðMfsÞ�0, and sminð�Þ is the smallest eigen-
value of a matrix. For the sth training sample, a tunable fac-
tor x controls gs in (20) according to sspreadðMfsÞ, 8s. The
proposed parameter selection scheme also applies to testing
Momentum-Net, based on the tuned factor x? in its training.
We observed that the proposed parameter selection scheme
(20) gives better MBIR accuracy than the condition number
based selection scheme that is similarly used in selecting
ADMM parameters [17] (for the two applications in
Section 4). One may further apply this scheme to iteration-
wisemajorizationmatrices eMðiÞ

s and select iteration-wise reg-
ularization parameters gðiÞ

s accordingly. For comparing dif-
ferent INNs, we apply (20) to all INNs.

4 EXPERIMENTAL RESULTS AND DISCUSSION

We investigated two extreme imaging applications: sparse-
view CT and LF photography using a focal stack. In particu-
lar, these two applications lack a practical closed-form solu-
tion for the MBIR modules of BCD-Net and ADMM-Net [20],
e.g., solving (Alg.2.2). For these applications, we compared
the performances of the following five INNs: BCD-Net [25]
(i.e., generalization of RED [22] and MoDL [30]), ADMM-Net
[20], i.e., PnP-ADMM [23], [41] using iteration-wise refining
NNs, Momentum-Net without extrapolation (i.e., generaliza-
tion of TNRD [21], [28]), PDS-Net, i.e., PnP-PDS [50] using
iteration-wise refining NNs, and the proposed Momentum-
Net using extrapolation.

4.1 Experimental Setup: Imaging

4.1.1 Sparse-View CT

To reconstruct a linear attenuation coefficient image x 2 R
N

from post-log sinogram y 2 R
m in sparse-view CT, the MBIR

problem (P1) considers a data-fit fðx; yÞ ¼ 1
2
ky�Axk2W and

the non-negativity constraint X ¼ ½0;1ÞN , where A 2 R
m�N

is an undersampled CT systemmatrix,W 2 R
m�m is a diago-

nal weighting matrix with elements fWm0;m0 ¼ p02m=ðp
0
m þ

s2Þ : 8m0g based on a Poisson-Gaussian model [17], [67] for
the pre-log raw measurements p 2 R

m with electronic read-
out noise variance s2.

We simulated 2D sparse-view sinograms of size m ¼
888� 123 – ‘detectors or rays’� ‘regularly spaced projection
views or angles’, where 984 is the number of full views –
with GE LightSpeed fan-beam geometry corresponding to a
monoenergetic source with 105 incident photons per ray and
no background events, and electronic noise variance s2 ¼ 52.
We avoided an inverse crime in imaging simulation and
reconstructed images of size N ¼ 420�420 with a coarser
gridDx ¼ Dy ¼ 0:9766mm; see details in [37, Section 5-A2].

4.1.2 LF Photography Using a Focal Stack

To reconstruct a LF x ¼ ½xT
1 ; . . . ; x

0
C �

T 2R
SN 0

that consists of
C0 sub-aperture images from focal stack measurements y ¼

½yT1 ; . . . ; y
T
C �

T 2R
CN 0

that are collected by C photosensors, the
MBIR problem (P1) considers a data-fit fðx; yÞ ¼ 1

2
ky�Axk22

and a box constraint X ¼ ½0; U �C
0N 0

with U ¼ 1 (or 255 with-
out rescaling), where A2R

CN 0�C0N 0
is a system matrix of

LF imaging system using a focal stack that is constructed
blockwise with C � C0 different convolution matrices
ftcA0

c;c0 2R
N 0�N 0

:c ¼ 1; . . . ; C; c0 ¼ 1; . . . ; C0g [47], [68], tc2

ð0; 1� is a transparency coefficient for the cth detector, andN 0

is the size of sub-aperture images, xc0 , 8c
0.3 In general, a LF

photography system using a focal stack is extremely under-
determined, becauseC � C0.

To avoid an inverse crime, our imaging simulation used
higher-resolution synthetic LF dataset [70] (we converted the
original RGB sub-aperture images to grayscale ones by the
“rgb2gray.m” function in MATLAB, for simplicity and
smaller memory requirements in training). We simulated C ¼
5 focal stack images of sizeN 0 ¼ 255� 255with 40 dB AWGN
that models electronic noise at sensors, and setting transpar-
ency coefficients tc as 1, for c ¼ 1; . . . ;C. The sensor positions
were chosen such that five sensors focus at equally spaced
depths; specifically, the closest sensor to scenes and farthest
sensor from scenes focus at two different depths that corre-
spond to ‘dispminþ 0:2’ and ‘dispmax� 0:2’, respectively,
where dispmax and dispmin are the approximatemaximumand
minimum disparity values specified in [70]. We reconstructed
4D LFs that consist of S ¼ 9� 9 sub-aperture images of size
N 0 ¼ 255� 255, with a coarser gridDx ¼ Dy ¼ 0:13572mm.

4.2 Experimental Setup: INNs

4.2.1 Parameters of INNs

The parameters for the INNs compared in sparse-view CT
experiments were defined as follows. We considered two
BCD-Nets (see Algorithm 2): for one BCD-Net, we applied
the APG method [49] with 10 inner iterations to (Alg.2.2),
and set Niter ¼ 30; for the other BCD-Net, we applied the
APG method with 3 inner iterations to (Alg.2.2), and set
Niter ¼ 45. For ADMM-Net, we used the identical configura-
tions as BCD-Net and set the ADMM penalty parameter to
g in (P1), similar to [16]. For Momentum-Net without
extrapolation, we chose Niter ¼ 100 and r ¼ 1� ". For the
proposed Momentum-Net, we chose Niter ¼ 100 and r ¼ 0:5.

Algorithm 2. BCD-Net [25]

Require:fR
uðiÞ

: i ¼ 1; . . . ; Niterg, g > 0, xð0Þ ¼ xð�1Þ, y
for i ¼ 0; . . . ; Niter�1 do
Image refining:

zðiþ1Þ ¼ R
uðiþ1Þ

�
xðiÞ
�

(Alg.2.1)

MBIR:

xðiþ1Þ ¼ argmin
x2X

F ðx; y; zðiþ1ÞÞ (Alg.2.2)

end for

3. Traditionally, one obtains focal stacks by physically moving imag-
ing sensors and taking separate exposures across time. Transparent
photodetector arrays [47], [69] allow one to collect focal stack data in a
single exposure, making a practical LF camera using a focal stack. If
some photodetectors are not perfectly transparent, one can use tc < 1,
for some c.
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For PDS-Net, we set the first step size to g1 ¼ g�1 and the sec-
ond step size to g2 ¼ g�1

1 s�1
maxðMÞ, per [50]. For performance

comparisons between different INNs, all the INNs used
sCNN refiners (18) with fR;K ¼ 72g to avoid the overfit-
ting/hallucination risks. For Momentum-Net using dCNN
refiners, we choseL ¼ 4 layer dCNN (19) usingR ¼ 32 filters
and K ¼ 64 feature maps, following [46]. (The chosen
parameters gave lower RMSE values than fL ¼ 6; R ¼
33; K ¼ 64g, for identical regularization parameters.) For
comparing different MBIR methods, Momentum used
extrapolation, i.e., (Alg.1.2) with (8) and (10), and fR¼
72; K¼92g for (18). We designed the majorization matrices
as f eMðiþ1Þ ¼ diagðATWA1Þ þ gI : i�0g, setting � ¼ 1 by (7)
and using Lemma S.7, available in the online supplemental
material. (A andW have nonnegative entries). We set an ini-
tial point of INNs, xð0Þ, to filtered-back projection (FBP)
using a Hanning window. The regularization parameters
of all INNs were selected by the scheme in Section 3.2
with x

?
¼ 167:64. (This factor was estimated from the

carefully chosen regularization parameter for sparse-
view CT MBIR experiments using learned convolutional
regularizers in [24].)

The parameters for the INNs compared in experiments of
LF photography using a focal stack were defined as follows.
We considered two BCD-Nets and two ADMM-Nets with
the identical parameters listed above. For Momentum-Net
without extrapolation and the proposed Momentum-Net,
we set Niter ¼ 100 and r ¼ 1� ". For PDS-Net, we used the
identical parameter setup described above. For performance
comparisons between different INNs, all the INNs used
sCNN refiners (18) with fR ¼ 52; K ¼ 32g (to avoid the
overfitting risks) in the epipolar domain. For Momentum-
Net using dCNN refiners, we chose L ¼ 6 layer dCNN (19)
using R ¼ 32 filters and K ¼ 16 feature maps. (The chosen
parameters gave most accurate performances over the
following setups, fL ¼ 4; R ¼ 32; K ¼ 16; 32; 64g, given
the identical regularization parameters.) To generate
R

uðiþ1ÞðxðiÞÞ in (Alg.1.1), we applied a sCNN (18) with fR ¼
52; K ¼ 32g or a dCNN (19) with fL ¼ 6; R ¼ 32; K ¼ 16g to
two sets of horizontal and vertical epipolar plane images,
and took the average of two LFs that were permuted back
from refined horizontal and vertical epipolar plane image
sets, 8i.4 We designed the majorization matrices as
f eMðiþ1Þ ¼ diag ðATA1Þþ gI : i�0g, setting � ¼ 1 by (7) and
using Lemma S.7, available in the online supplemental
material. We set an initial point of INNs, xð0Þ, to ATy
rescaled in the interval ½0; 1� (i.e., dividing by its max value).
The regularization parameters (i.e., g in BCD-Net/Momen-
tum-Net, the ADMM penalty parameter in ADMM-Net,
and the first step size in PDS-Net) were selected by the pro-
posed scheme in Section 3.2 with x

?
¼ 1:5. (We tuned the

factor to achieve the best performances).
For different combinations of INNs and sCNN refiner

(18)/dCNN refiner (19), we use the following naming con-
vention: ‘the INN name’-‘sCNN’ or ‘dCNN’.

4.2.2 Training INNs

For sparse-view CT experiments, we trained all the INNs
from the chest CT dataset with fxs; ys; fsðx; ysÞ ¼

1
2
kys�

Axk2Ws
; eMs :s ¼ 1; . . . ; S; S ¼ 142g; we constructed the data-

set by using XCAT phantom slices [71]. The CT experiment
has mild data-fit variations across training samples: the
standard deviation of the condition numbers ( , smaxð�Þ=
sminð�Þ) of fMfs ¼ diagðATWsA1Þ :8sg is 1.1. For experiments
of LF photography using a focal stack, we trained all the
INNs from the LF photography dataset with fys; fsðx; ysÞ ¼
1
2
kys �Asxk

2
2;
eMs :s ¼ 1; . . . ; S; S ¼ 21g and two sets of

ground truth epipolar images, fxs;epi�h; xs;epi�v : s ¼ 1; . . . ;
S; S ¼ 21�ð255�9Þg; we constructed the dataset by excluding
four unrealistic “stratified” scenes from the original LF
dataset in [70] that consists of 28 LFs with diverse scene
parameter and camera settings. The LF experiment has large
data-fit variations across training samples: the standard
deviation of the condition numbers of fMfs ¼ diagðAT

s As1Þ :
8sg is 2245.5.

In training INNs for both the applications, if not speci-
fied, we used identical training setups. At each iteration of
INNs, we solved (P2) with the mini-batch version of Adam
[72] and trained iteration-wise sCNNs (18) or dCNNs (19).
We selected the batch size and the number of epochs as fol-
lows: for sparse-view CT reconstruction, we chose them as
20 & 300, and 20 & 200 for sCNN and dCNN refiners,
respectively; for LF photography using a focal stack, we
chose them as 200 & 200, and 200 & 100, for sCNN and
dCNN refiners, respectively. We chose the learning rates for
filters in sCNNs and dCNNs, and thresholding values
fa

ðiþ1Þ
k :8k; ig in sCNNs (18), as 10�3 and 10�1, respectively;

we reduced the learning rates by 10% every 10 epochs. At
the first iteration, we initialized filter coefficients with Kaim-
ing uniform initialization [73]; in the later iteration, i.e., at
the ith INN iteration, for i � 2, we initialized filter coeffi-
cients from those learned from the previous iteration, i.e.,
ði� 1Þth iteration (this also applies to initializing threshold-
ing values).

4.2.3 Testing Trained INNs

In sparse-view CT reconstruction experiments, we tested
trained INNs to two samples where ground truth images
and the corresponding inverse covariance matrices (i.e., W
in Section 4.1.1) sufficiently differ from those in training
samples (i.e., they are a few cm away from training images).
We evaluated the reconstruction quality by themost conven-
tional error metric in CT application, RMSE (in HU), in a
region of interest (ROI), where RMSE and HU stand for
root-mean-square error and (modified) Hounsfield unit,
respectively, and the ROI was a circular region that incl-
udes all the phantom tissues. The RMSE is defined by

RMSEðx?; xtrueÞ, ð
PNROI

j¼1 ðxj
? � xtrue

j Þ2=NROIÞ
1=2, where x? is a

reconstructed image, xtrue is a ground truth image, and NROI

is the number of pixels in a ROI. In addition, we compared
the trained Momentum-Net (using extrapolation) to a stan-
dardMBIRmethod using a hand-crafted EP regularizer, and
an MBIR model using a learned convolutional regularizer
[24], [37] which is the state-of-the-art MBIR method within
an unsupervised learning setup. We finely tuned their regu-
larization parameters to achieve the lowest RMSE. See details

4. Epipolar images are 2D slices of a 4D LF LF ðcx; cy; cu; cvÞ, where
ðcx; cyÞ and ðcu; cvÞ are spatial and angular coordinates, respectively.
Specifically, each horizontal epipolar plane image are obtained by fix-
ing cy and cv, and varying cx and cu; and each vertical epipolar image
are obtained by fixing cx and cu, and varying cy and cv.
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of these two MBIR models in Section S.9.2, available in the
online supplemental material.

In experiments of LF photography using a focal stack, we
tested trained INNs to three samples of which scene param-
eter and camera settings are different from those in training
samples (all training and testing samples have different
camera and scene parameters). We evaluated the recon-
struction quality by the most conventional error metric in
LF photography application, PSNR (in dB), where PSNR
stands for peak signal-to-noise. In addition, we compared
the trained Momentum-Net (using extrapolation) to MBIR
method using the state-of-the-art non-trained regularizer,
4D EP introduced in [47]. (The low-rank plus sparse tensor
decomposition model [68], [74] failed when inverse crimes
and measurement noise are considered.) We finely tuned its
regularization parameter to achieve the lowest RMSE val-
ues. See details of this MBIR model in Section S.9.3, avail-
able in the online supplementalmaterial. We further
investigated impacts of the LF MBIR quality on a higher-
level depth estimation application, by applying the robust
Spinning Parallelogram Operator (SPO) depth estimation
method [75] to reconstructed LFs.

For comparing Momentum-Net with PDS-Net, we
measured quality of refined images, zðiþ1Þ in (Alg.1.1),
because PDS-Net is a hard-refiner.

The imaging simulation and reconstruction experiments
were based on the Michigan image reconstruction tool-
box [76], and training INNs, i.e., solving (P2), was based on
PyTorch (for sparse-view CT, we used ver. 1.2.0; for LF

photography using a focal stack, we used ver. 0.3.1). For
sparse-view CT, single-precision MATLAB and PyTorch
implementations were tested on 2.6 GHz Intel Core i7 CPU
with 16 GB RAM, and 1,405MHz Nvidia Titan Xp GPUwith
12 GB RAM, respectively. For LF photography using a focal
stack, they were tested on 3.5 GHz AMD Threadripper
1920X CPU with 32 GB RAM, and 1531 MHz Nvidia GTX
1080 Ti GPUwith 11 GB RAM, respectively.

4.3 Comparisons Between Different INNs

First, compare sCNN results in Figs. 4–5 and 6–7, for sparse-
viewCT and LF photography using a focal stack, respectively.
For both applications, the proposed Momentum-Net using
extrapolation significantly improves MBIR speed and accu-
racy, compared to the existing soft-refining INNs, [21], [22],
[23], [28], [30] that correspond to BCD-Net [25] orMomentum-
Net using no extrapolation, and ADMM-Net [20], [23], [41], and
the existing hard-refining INN PDS-Net [50]. (Note that BCD-
Net and Momentum-Net require slightly less computational
complexity per INN iteration, compared to ADMM-Net and
PDS-Net, respectively, due to having fewer modules.) Fig. 5
shows that to reach the 24 HU RMSE value in sparse-view CT
reconstruction, the proposed Momentum-Net decreases
MBIR time by 53.3 % and 62.5 %, compared to Momentum-
Netwithout extrapolation andBCD-Net using three inner iter-
ations, respectively. Fig. 7 shows that to reach the 32 dB PSNR
value in LF reconstruction from a focal stack, the proposed
Momentum-Net decreases MBIR time by 36.5 % and 61.5 %,

Fig. 4. RMSEminimization comparisons between different INNs for sparse-
view CT (fan-beam geometry with 12.5% projections views and 105 incident
photons; (a) averaged RMSE values across two test refined images;
(b) averaged RMSE values across two test reconstructed images).

Fig. 5. RMSEminimization comparisons between different INNs for sparse-
viewCT (fan-beam geometry with 12.5%projections views and 105 incident
photons; averagedRMSEvalues across two test reconstructed images).

Fig. 6. PSNR maximization comparisons between different INNs in LF
photography using a focal stack (LF photography systems with C ¼ 5
detectors obtain a focal stack of LFs consisting of S ¼ 81 sub-aperture
images; (a) averaged RMSE values across two test refined images); (b)
averaged RMSE values across two test reconstructed images.

Fig. 7. PSNR maximization comparisons between different INNs in LF
photography using a focal stack (LF photography systems with C ¼ 5
detectors obtain a focal stack of LFs consisting of S ¼ 81 sub-aperture
images; averaged PSNR values across three test reconstructed images).
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Fig. 8. Comparison of reconstructed images from different MBIR methods in sparse-view CT (fan-beam geometry with 12.5% projections views and
105 incident photons; images outside zoom-in boxes are magnified to better show differences; display window ½800; 1200� HU). See also Table S.1
and Fig. S.2, available in the online supplemental material.

Fig. 9. Error map comparisons of reconstructed sub-aperture images from different MBIRmethods in LF photography using a focal stack (LF photogra-
phy systems with C ¼ 5 detectors capture a focal stack of LFs consisting of S ¼ 81 sub-aperture images; sub-aperture images at the ð5; 5Þth angular
coordinate; the PSNR values in parenthesis were measured from reconstructed LFs). See also Table S.2 and Fig. S.2, available in the online supple-
mental material.
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compared to Momentum-Net without extrapolation and
BCD-Net using three inner iterations, respectively. In addi-
tion, Figs. 5 and 7 show that using extrapolation, i.e., (Alg.1.2)
with (8)–(10), improves the performance of Momentum-Net
versus iterations.

We conjecture that the larger performance gap between
soft-refiner Momentum-Net and hard-refiner PDS-Net, in
Fig. 4(a) compared to Fig. 6(a), is because the LF problem
needs stronger regularization, i.e., a smaller tuned factor x?

in (20), than the CT problem. Similarly, comparing Fig. 4(b)
to Fig. 6(b) shows that the LF problem has small perfor-
mance gaps between BCD-Net and ADMM-Net.

For both the applications, using dCNN refiners (19)
instead of sCNN refiners (18) has a negligible effect on total
run time of Momentum-Net, because reconstruction time of
MBIR modules (Alg.1.3) (in CPUs) dominates inference
time of image refining modules (Alg.1.1) (in GPUs). Com-
pare results between Momentum-Net-sCNN and -dCNN in
Figs. 5 and 7.

4.4 Comparisons Between Different MBIR Methods

In sparse-view CT using 12.5% of the full projection views,
Figs. 8(b), 8(c), 8(d), and 8(e) show that the proposedMomen-
tum-Net achieves significantly better reconstruction quality

compared to the conventional EPMBIRmethod and the state-
of-the-art MBIR method within an unsupervised learning
setup, MBIR model using a learned convolutional regularizer
[24], [37]. In particular, Momentum-Net recovers both low-
and high-contrast regions (e.g., soft tissues and bones, respec-
tively) more accurately than MBIR using a learned convolu-
tional regularizer; see Figs. 8(c), 8(d), and 8(e). In addition,
when their shallow convolutional autoencoders need identical
computational complexities, Momentum-Net achieves much
faster MBIR compared toMBIR using a learned convolutional
regularizer; see Tables S.1(c) and S.1(d), available in the online
supplementalmaterial.

In LF photography using five focal sensors, regardless
of scene parameters and camera settings, Momentum-Net
consistently achieves significantly more accurate image
recovery, compared to MBIR model using the state-of-the-
art non-trained regularizer, 4D EP [47]. The effectiveness
of Momentum-Net is more evident for a scene with less
fine details. See Figs. 9(b), 9(c), and 9(d). Regardless of the
scene distances from LF imaging systems, the recon-
structed LFs by Momentum-Net significantly improve the
depth estimation accuracy over those reconstructed by the
state-of-the-art non-trained regularizer, 4D EP [47]. See
Figs. 10(c), 10(d), and 10(e).

Fig. 10. Comparisons of estimated depths from LFs reconstructed by different MBIR methods in LF photograph using a focal stack (LF photography
systems with C ¼ 5 detectors capture a focal stack of LFs consisting of S ¼ 81 sub-aperture images; SPO depth estimation [75] was applied to
reconstructed LFs in Fig. 9; display window in meters). See also Table S.3 and Fig. S.2, available in the online supplemental material.
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In general, Momentum-Net needs more computations
per iteration than EP MBIR, because its refining NNs
use more and larger filters than the small finite-difference
filters in EP MBIR, and EPMBIR algorithms can be often fur-
ther accelerated by gradient approximations, e.g., ordered-
subsetsmethods [77], [78].

5 CONCLUSION

Developing rapidly converging INNs is important, because
1) it leads to fast MBIR by reducing the computational com-
plexity in calculating data-fit gradients or applying refining
NNs, and 2) training INNs with many iterations requires
long training time or it is challenging when refining NNs are
fixed across INN iterations. The proposed Momentum-Net
framework is applicable for a wide range of inverse prob-
lems, while achieving fast and convergent MBIR. To achieve
fast MBIR, Momentum-Net uses momentum in extrapola-
tion modules, and noniterative MBIR modules at each itera-
tion via majorizers. For sparse-view CT and LF photography
using a focal stack, Momentum-Net achieves faster and
more accurate MBIR compared to the existing soft-refining
INNs, [21], [22], [23], [28], [30] that correspond to BCD-Net
[25] or Momentum-Net using no extrapolation, and ADMM-
Net [20], [23], [41], and the existing hard-refining INN PDS-
Net [50]. When an application needs strong regularization
strength, e.g., LF photography using limited detectors, using
dCNN refiners with moderate depth significantly improves
the MBIR accuracy of Momentum-Net compared to sCNNs,
only marginally increasing total MBIR time. In addition,
Momentum-Net guarantees convergence to a fixed-point for
general differentiable (non)convex MBIR functions (or data-
fit terms) and convex feasible sets, under some mild condi-
tions and two asymptotic conditions. The proposed regulari-
zation parameter selection scheme uses the spectral spread
of majorization matrices, and is useful to consider data-fit
variations across training/testing samples.

There are a number of avenues for future work. First, we
expect to further improve performances of Momentum-Net
(e.g., MBIR time and accuracy) by using sharper majorizer
designs. Second, we expect to further reduce MBIR time of
Momentum-Net with the stochastic gradient perspective
(e.g., ordered subset [77], [78]). On the regularization param-
eter selection side, our future work is learning the factor x in
(20) from datasets while training refiningNNs.
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F

This supplementary material for [1] a) reviews the Block Proximal Extrapolated Gradient method using a Majorizer
(BPEG-M) [2], [3], b) lists parameters of Momentum-Net, and summarizes selection guidelines or gives default values,
c) compares the convergence properties between Momentum-Net and BCD-Net, and d) provides mathematical proofs or
detailed descriptions to support several arguments in the main manuscript. We use the prefix “S” for the numbers in
section, theorem, equation, figure, table, and footnote in the supplement.

S.1 BPEG-M: REVIEW

This section explains multi-(non)convex optimization problems, and summarizes the state-of-the-art method for block multi-
(non)convex optimization method, BPEG-M [2], [3], along with its convergence guarantees.

S.1.1 Multi-(non)convex optimization

In a block optimization problem, the variables of the underlying optimization problem are treated either as a single block
or multiple disjoint blocks. In multi-(non)convex optimization, we consider the following problem:

min
u

F (u1, . . . , uB) , f(u1, . . . , uB) +
B∑

b=1

rb(ub) (S.1)

where variable u is decomposed into B blocks u1, . . . , uB ({ub ∈ R
nb : b = 1, . . . , B}), f is assumed to be (continuously)

differentiable, but functions {rb : b = 1, . . . , B} are not necessarily differentiable. The function rb can incorporate the
constraint ub ∈ Ub, by allowing rb’s to be extended-valued, e.g., rb(ub) = ∞ if ub /∈ Ub, for b = 1, . . . , B. It is standard
to assume that both f and {rb} are proper and closed, and the sets {Ub} are closed. We consider either that (S.1) has
block-wise convexity (but (S.1) is jointly nonconvex in general) [2], [4] or that f , {rb}, or {Ub} are not necessarily convex
[3], [5]. Importantly, rb can include (non)convex and nonsmooth `p (quasi-)norm, p ∈ [0, 1]. The next section introduces our
optimization framework that solves (S.1).

The following sections review BPEG-M [2], [3], the state-of-the-art optimization framework for solving multi-(non)convex
problems, when used with sufficiently sharp majorizers. BPEG-M uses block-wise extrapolation, majorization, and proximal
mapping. By using a more general Lipschitz continuity (see Definition 1) for block-wise gradients, BPEG-M is particularly
useful for rapidly calculating majorizers involved with large-scale problems, and successfully applied to some large-scale
machine learning and computational imaging problems; see [2], [3], [6] and references therein.

S.1.2 BPEG-M

This section summarizes the BPEG-M framework. Using Definition 1 and Lemma 2, the proposed method, BPEG-M,
is given as follows. To solve (S.1), we minimize majorizers of F cyclically over each block u1, . . . , uB , while fixing the

remaining blocks at their previously updated variables. Let u
(i+1)
b be the value of ub after its ith update, and define

f
(i+1)
b (ub) , f

(
u
(i+1)
1 , . . . , u

(i+1)
b−1 , ub, u

(i)
b+1, . . . , u

(i)
B

)
,
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Huang, Hongki Lim, and Jeffrey A. Fessler are with the Department of Electrical Engineering and Computer Science, The University of Michigan, Ann
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Algorithm S.1 BPEG-M [2], [3]

Require: {u
(0)
b = u

(−1)
b : ∀b}, {w

(i)
b ∈ [0, 1], ∀b, i}, i = 0

while a stopping criterion is not satisfied do
for b = 1, . . . , B do

Calculate M̃
(i+1)
b by (S.4), and E

(i+1)
b to satisfy (S.5) or (S.6)

ú
(i+1)
b = u

(i)
b + E

(i+1)
b

(
u
(i)
b − u

(i−1)
b

)

u
(i+1)
b = Prox

M̃
(i+1)
b

rb

(
ú
(i+1)
b −

(
M̃

(i+1)
b

)−1

∇f
(i+1)
b (ú

(i+1)
b )

)

end for
i = i+ 1

end while

for all b, i. At the bth block of the ith iteration, we apply Lemma 2 to functional f
(i+1)
b (ub) with a M (i+1)-Lipschitz

continuous gradient at the extrapolated point ú
(i+1)
b , and minimize a majorized function. In other words, we consider the

updates

u
(i+1)
b = argmin

ub

〈∇f
(i+1)
b (ú

(i+1)
b ), ub − ú

(i+1)
b 〉+

1

2

∥∥∥ub − ú
(i+1)
b

∥∥∥
2

M̃
(i+1)
b

+ rb(ub)

= Prox
M̃

(i+1)
b

rb

(
ú
(i+1)
b −

(
M̃

(i+1)
b

)−1
∇f

(i+1)
b (ú

(i+1)
b )

︸ ︷︷ ︸
extrapolated gradient step using a majorizer of f

(i+1)
b

)
, (S.2)

where
ú
(i+1)
b = u

(i)
b + E

(i+1)
b

(
u
(i)
b − u

(i−1)
b

)
, (S.3)

the proximal operator is defined by (2), ∇f
(i+1)
b (ú

(i+1)
b ) is the block-partial gradient of f at ú

(i+1)
b , a scaled majorization

matrix is given by

M̃
(i+1)
b = λb ·M

(i+1)
b � 0, λb ≥ 1, (S.4)

and M
(i+1)
b ∈ R

nb×nb is a symmetric positive definite majorization matrix of ∇f
(i+1)
b (ub). In (S.3), the R

nb×nb matrix

E
(i+1)
b � 0 is an extrapolation matrix that accelerates convergence in solving multi-convex problems [2]. We design it to

satisfy conditions (S.5) or (S.6) below. In (S.4), {λb = 1 : ∀b} and {λb > 1 : ∀b}, for multi-convex and multi-nonconvex
problems, respectively.

For some f
(i+1)
b having sharp majorizers, we expect that extrapolation (S.3) has no benefits in accelerating convergence,

and use {E
(i+1)
b = 0 : ∀i}. Other than the blocks having sharp majorizers, one can apply some increasing momentum

coefficient formula [7], [8] to the corresponding extrapolation matrices. The choice in [2]–[4] accelerated BPEG-M for some
machine learning and data science applications. Algorithm S.1 summarizes these updates.

S.1.3 Convergence results

This section summarizes convergence results of Algorithm S.1 under the following assumptions:

• Assumption S.1) In (S.1), F is proper and lower bounded in dom(F ) , {u : F (u) < ∞}. In addition,

for multi-convex (S.1), f is differentiable and (S.1) has a Nash point or block-coordinate minimizerS.1 (see its definition
in [4, (2.3)–(2.4)]);
for multi-nonconvex (S.1), f is continuously differentiable, rb is lower semicontinuousS.2, ∀b, and (S.1) has a critical
point u? that satisfies 0 ∈ ∂F (u?).

• Assumption S.2) ∇f
(i+1)
b (ub) is M -Lipschitz continuous with respect to ub, i.e.,

∥∥∥∇f
(i+1)
b (u)−∇f

(i+1)
b (v)

∥∥∥(
M

(i+1)
b

)
−1 ≤ ‖u− v‖

M
(i+1)
b

,

for u, v ∈ R
nb , where M

(i+1)
b is a bounded majorization matrix.

• Assumption S.3) The extrapolation matrices E
(i+1)
b � 0 satisfy that

for multi-convex (S.1),
(
E

(i+1)
b

)T
M

(i+1)
b E

(i+1)
b � δ2 ·M

(i)
b ; (S.5)

for multi-nonconvex (S.1),
(
E

(i+1)
b

)T
M

(i+1)
b E

(i+1)
b �

δ2(λb − 1)2

4(λb + 1)2
·M

(i)
b , (S.6)

S.1. Given a feasible set U , a point u? ∈ dom(F ) ∪ U is a critical point (or stationary point) of F if the directional derivative dT∇F (u?) ≥ 0 for
any feasible direction d at u?. If u? is an interior point of U , then the condition is equivalent to 0 ∈ ∂F (u?).

S.2. F is lower semicontinuous at point u0 if lim infu→u0 F (u) ≥ F (u0).
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with δ < 1, ∀b, i.

Theorem S.1 (Multi-convex (S.1): A limit point is a Nash point [2]). Under Assumptions S.1–S.3, let {u(i+1) : i ≥ 0} be the
sequence generated by Algorithm S.1. Then any limit point of {u(i+1) : i ≥ 0} is a Nash point of (S.1).

Theorem S.2 (Multi-nonconvex (S.1): A limit point is a critical point [3]). Under Assumptions S.1–S.3, let {u(i+1) : i ≥ 0} be
the sequence generated by Algorithm S.1. Then any limit point of {u(i+1) : i ≥ 0} is a critical point of (S.1).

Remark S.3. Theorems S.1–S.2 imply that, if there exists a critical point for (S.1), i.e., 0 ∈ ∂F (u?), then any limit point of
{u(i+1) : i ≥ 0} is a critical point. One can further show global convergence under some conditions: if {u(i+1) : i ≥ 0} is
bounded and the critical points are isolated, then {u(i+1) : i ≥ 0} converges to a critical point [2, Rem. 3.4], [4, Cor. 2.4].

S.1.4 Application of BPEG-M to solving multi-(non)convex problem (1)

For update (3), we do not use extrapolation, i.e., (S.3), since the corresponding majorization matrices are sharp, so
one obtains tight majorization bounds in Lemma 2. See, for example, [3, §V-B]. For updates (3) and (5), we rewrite∑K

k=1 ‖hk ∗x− ζk‖
2
2 as ‖x−

∑K
k=1 flip(h

∗
k)∗ ζk‖

2
2 by using the TF condition in §2.1 [3, §VI], [6].

S.2 EMPIRICAL MEASURES RELATED TO THE CONVERGENCE OF MOMENTUM-NET USING SCNN REFIN-

ERS

This section provides empirical measures related to Assumption 4 for Momentum-Net using single-hidden layer au-
toencoders (18); see Fig. S.1 below. We estimated the sequence {ε(i) : i = 2, . . . , Nlyr} in Definition 7, the sequence

{∆(i) : i = 2, . . . , Nlyr} in Definition 8, and the Lipschitz constants {κ(i) : i = 1, . . . , Nlyr} of refining NNs {Rθ(i) : ∀i},
based on a hundred sets of randomly selected training samples related with the corresponding bounds of the measures,
e.g., u and v in (11) are training input to Rθ(i+1) and Rθ(i) in (Alg.1.1), respectively.

(a) Sparse-view CT: Condition numbers of data-fit majorizers have mild variations.
(a1) {∆(i) : i ≥ 2} (a2) {ε(i) : i ≥ 2} (a3) {κ(i) : i ≥ 1}
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(b) LF photography using focal stack: Condition numbers of data-fit majorizers have strong variations.
(b1) {∆(i) : i ≥ 2} (b2) {ε(i) : i ≥ 2} (b3) {κ(i) : i ≥ 1}

20 40 60 80 100

Iterations (i)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
ze
d
∆

(i
)

20 40 60 80 100

Iterations (i)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
ze
d
ë
(i
)

20 40 60 80 100

Iterations (i)

0.9

1

1.1

1.2

L
ip
sc
h
it
z
co
n
st
.,
κ
(i
)

Fig. S.1. Empirical measures related to Assumption 4 for guaranteeing convergence of Momentum-Net using sCNN refiners (for details, see (18)
and §4.2.1), in different applications. (a) The sparse-view CT reconstruction experiment used fan-beam geometry with 12.5% projections views.
(b) The LF photography experiment used five detectors and reconstructed LFs consisting of 9×9 sub-aperture images. (a1, b1) For both the
applications, we observed that ∆(i) → 0. This implies that the z(i+1)-updates in (Alg.1.1) satisfy the asymptotic block-coordinate minimizer
condition in Assumption 4. (Magenta dots denote the mean values and black vertical error bars denote standard deviations.) (a2) Momentum-Net
trained from training data-fits, where their majorization matrices have mild condition number variations, shows that ε(i) → 0. This implies that
paired NNs (R

θ(i+1) ,Rθ(i)
) in (Alg.1.1) are asymptotically nonexpansive. (b2) Momentum-Net trained from training training data-fits, where their

majorization matrices have mild condition number variations, shows that ε(i) becomes close to zero, but does not converge to zero in one hundred
iterations. (a3, b3) The NNs, R

θ(i+1) in (Alg.1.1), become nonexpansive, i.e., its Lipschitz constant κ(i) becomes less than 1, as i increases.

S.3 PROBABILISTIC JUSTIFICATION FOR THE ASYMPTOTIC BLOCK-COORDINATE MINIMIZER CONDITION

IN ASSUMPTION 4

This section introduces a useful result for an asymptotic block-coordinate minimizer z(i+1): the following lemma provides
a probabilistic bound for ‖x(i) − z(i+1)‖22 in (12), given a subgaussian vector z(i+1) − z(i) with independent and zero-mean
entries.
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Lemma S.4 (Probabilistic bounds for ‖x(i) − z(i+1)‖22). Assume that z(i+1) − z(i) is a zero-mean subgaussian vector of which
entries are independent and zero-mean subgaussian variables. Then, each bound in (12) holds with probability at least

1− exp




−
(
‖z(i+1) − z(i)‖22 +∆(i+1)

)2

8ρ · σ(i+1) · ‖Rθ(i+1)(x(i))− x(i)‖22


 ,

where σ(i+1) is a subgaussian parameter for z(i+1) − z(i), and a random variable is subgaussian with parameter σ if P{| · | ≥ t} ≤
2 exp(− t2

2σ ) for t ≥ 0.

Proof. First, observe that
∥∥∥x(i) − z(i+1)

∥∥∥
2

2
=
∥∥∥x(i) − z(i) − (z(i+1) − z(i))

∥∥∥
2

2

=
∥∥∥x(i) − z(i)

∥∥∥
2

2
+
∥∥∥z(i+1) − z(i)

∥∥∥
2

2
− 2〈x(i) − z(i), z(i+1) − z(i)〉

=
∥∥∥x(i) − z(i)

∥∥∥
2

2
+
∥∥∥z(i+1) − z(i)

∥∥∥
2

2
− 2〈z(i+1) − z(i) + ρ(x(i) −Rθ(i+1)(x(i))), z(i+1) − z(i)〉 (S.7)

=
∥∥∥x(i) − z(i)

∥∥∥
2

2
−
∥∥∥z(i+1) − z(i)

∥∥∥
2

2
+ 2ρ〈Rθ(i+1)(x(i))− x(i), z(i+1) − z(i)〉 (S.8)

where the inequality (S.7) holds by x(i) = ρx(i)−ρRθ(i+1) +z(i+1) via (Alg.1.1). We now obtain a probablistic bound for the
third quantity in (S.8) via a concentration inequality. The concentration inequality on the sum of independent zero-mean
subgaussian variables (e.g., [9, Thm. 7.27]) yields that for any t(i+1) ≥ 0

P

{
〈Rθ(i+1)(x(i))− x(i), z(i+1) − z(i)〉 ≥ t(i+1)

}
≤ exp

(
−

(t(i+1))2

2σ(i+1)‖Rθ(i+1)(x(i))− x(i)‖22

)
(S.9)

where σ(i+1) is given as in Lemma S.4. Applying the result (S.9) with t(i+1) = 1
2ρ (‖z

(i+1) − z(i)‖22 +∆(i+1)) to the bound
(S.8) completes the proofs.

Lemma S.4 implies that, given sufficiently large ∆(i+1), or sufficiently small σ(i+1) (e.g., variance for a Gaussian random
vector z(i+1) − z(i)) or ‖Rθ(i+1)(x(i))− x(i)‖22, bound (12) is satisfied with high probability, for each i. In particular, ∆(i+1)

can be large for the first several iterations; if paired operators (Rθ(i+1) ,Rθ(i)) in (Alg.1.1) map their input images to similar
output images (e.g., the trained NNs Rθ(i+1) and Rθ(i) have good refining capabilities for x(i) and x(i−1)), then σ(i+1) is
small; if the regularization parameter γ in (Alg.1.3) is sufficiently large, then ‖Rθ(i+1)(x(i))− x(i)‖22 is small.

S.4 PROOFS OF PROPOSITION 9

First, we show that
∑∞

i=0 ‖x
(i+1) − x(i)‖22 < ∞ for convex and nonconvex F (x; y, z(i+1)) cases.

• Convex F (x; y, z(i+1)) case: Using Assumption 2 and {M̃ (i+1)=M (i+1) :∀i} for the convex case via (7), we obtain the
following results for any X :

F
(
x(i); y, z(i)

)
− F

(
x(i+1); y, z(i+1)

)
+ γ∆(i+1)

≥ F
(
x(i); y, z(i+1)

)
− F

(
x(i+1); y, z(i+1)

)
(S.10)

≥
1

2

∥∥∥x(i+1) − x́(i+1)
∥∥∥
2

M(i+1)
+
(
x́(i+1) − x(i)

)T
M (i+1)

(
x(i+1) − x́(i+1)

)
(S.11)

=
1

2

∥∥∥x(i+1) − x(i)
∥∥∥
2

M(i+1)
−

1

2

∥∥∥E(i+1)
(
x(i) − x(i−1)

)∥∥∥
2

M(i+1)
(S.12)

≥
1

2

∥∥∥x(i+1) − x(i)
∥∥∥
2

M(i+1)
−

δ2

2

∥∥∥x(i) − x(i−1)
∥∥∥
2

M(i)
(S.13)

where the inequality (S.10) uses the condition (12) in Assumption 4, the inequality (S.11) is obtained by using the results
in [2, Lem. S.1], the equality (S.12) uses the extrapolation formula (Alg.1.2) and the symmetry of M (i+1), the inequality
(S.13) holds by Assumption 3.
Summing the inequality of F (x(i); y, z(i))−F (x(i+1); y, z(i+1))+ γ∆(i+1) in (S.13) over i = 0, . . . , Nlyr − 1, we obtain

F
(
x(0);y,z(0)

)
−F

(
x(Nlyr);y,z(Nlyr)

)
+γ

Nlyr−1∑

i=0

∆(i+1)≥

Nlyr−1∑

i=0

1

2

∥∥∥x(i+1)−x(i)
∥∥∥
2

M(i+1)
−

δ2

2

∥∥∥x(i)−x(i−1)
∥∥∥
2

M(i)

≥

Nlyr−1∑

i=0

1−δ2

2

∥∥∥x(i+1)−x(i)
∥∥∥
2

M(i+1)
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≥

Nlyr−1∑

i=0

mF,min(1−δ2)

2

∥∥∥x(i+1)−x(i)
∥∥∥
2

2
(S.14)

where the inequality (S.14) holds by Assumption 2. Due to the lower boundedness of F (x; y, z) in Assumption 1 and
the summability of {∆(i+1) ≥ 0 : ∀i} in Assumption 4, taking Nlyr → ∞ gives

∞∑

i=0

∥∥∥x(i+1) − x(i)
∥∥∥
2

2
< ∞. (S.15)

• Nonconvex F (x; y, z(i+1)) case: Using Assumption 2, we obtain the following results without assuming that F (x; y, z(i+1))
is convex:

F
(
x(i); y, z(i)

)
− F

(
x(i+1); y, z(i+1)

)
+ γ∆(i+1)

≥ F
(
x(i); y, z(i+1)

)
− F

(
x(i+1); y, z(i+1)

)
(S.16)

≥
λ− 1

4

∥∥∥x(i+1) − x(i)
∥∥∥
2

M(i+1)
−

(λ+ 1)2

λ− 1

∥∥∥x(i) − x́
(i+1)
b

∥∥∥
2

M(i+1)
(S.17)

=
λ− 1

4

∥∥∥x(i+1) − x(i)
∥∥∥
2

M(i+1)
−

(λ+ 1)2

λ− 1

∥∥∥E(i+1)
(
x(i) − x(i−1)

)∥∥∥
2

M(i+1)
(S.18)

≥
λ− 1

4

(∥∥∥x(i+1) − x(i)
∥∥∥
2

M(i+1)
− δ2

∥∥∥x(i) − x(i−1)
∥∥∥
2

M(i)

)
(S.19)

where the inequality (S.16) uses the condition (12) in Assumption 4, the inequality (S.17) use the results in [3, §S.3], the
equality (S.18) holds by (Alg.1.2), the inequality (S.19) is obtained by Assumption 3.
Summing the inequality of F (x(i); y, z(i))−F (x(i+1); y, z(i+1))+ γ∆(i+1) in (S.19) over i = 0, . . . , Nlyr − 1, we obtain

F
(
x(0);y,z(0)

)
−F

(
x(Nlyr);y,z(Nlyr)

)
+γ ·

Nlyr−1∑

i=0

∆(i+1)≥

Nlyr−1∑

i=0

λ−1

4

(∥∥∥x(i+1)−x(i)
∥∥∥
2

M(i+1)
−δ2

∥∥∥x(i)−x(i−1)
∥∥∥
2

M(i)

)

≥

Nlyr−1∑

i=0

(λ−1)(1−δ2)

2

∥∥∥x(i+1)−x(i)
∥∥∥
2

M(i+1)

≥

Nlyr−1∑

i=0

mF,min(λ−1)(1−δ2)

2

∥∥∥x(i+1)−x(i)
∥∥∥
2

2
,

where we follow the arguments in obtaining (S.14) above. Again, using the lower boundedness of F (x; y, z) and the
summability of {∆(i+1) ≥ 0 : ∀i}, taking Nlyr → ∞ gives the result (S.15) for nonconvex F (x; y, z(i+1)).

Second, we show that
∑∞

i=0 ‖z
(i+1) − z(i)‖22 < ∞. Observe

∥∥∥z(i+1) − z(i)
∥∥∥
2

2
=
∥∥∥(1− ρ)

(
x(i) − x(i−1)

)
+ ρ

(
Rθ(i+1)(x(i))−Rθ(i)(x(i−1))

)∥∥∥
2

2

≤ (1− ρ)
∥∥∥x(i) − x(i−1)

∥∥∥
2

2
+ ρ

∥∥∥Rθ(i+1)(x(i))−Rθ(i)(x(i−1))
∥∥∥
2

2

≤
∥∥∥x(i) − x(i−1)

∥∥∥
2

2
+ ρε(i+1) (S.20)

where the first equality uses the image mapping formula in (Alg.1.1), the first inequality holds by applying Jensen’s in-
equality to the (convex) squared `2-norm, the second inequality is obtained by using the asymptotically non-expansiveness
of the paired operators (Rθ(i+1) ,Rθ(i)) in Assumption 4. Summing the inequality of ‖z(i+1) − z(i)‖22 in (S.20) over
i = 0, . . . , Nlyr − 1, we obtain

Nlyr−1∑

i=0

∥∥∥z(i+1) − z(i)
∥∥∥
2

2
≤

Nlyr−2∑

i=0

∥∥∥x(i+1) − x(i)
∥∥∥
2

2
+ ρ

Nlyr−1∑

i=0

ε(i+1), (S.21)

where we used x(0) = x(−1) as given in Algorithm 1. By taking Nlyr → ∞ in (S.21), using result (S.15), and the summability

of the sequence {ε(i+1) : i ≥ 0}, we obtain
∞∑

i=0

∥∥∥z(i+1) − z(i)
∥∥∥
2

2
< ∞. (S.22)

Combining the results in (S.15) and (S.22) completes the proofs.
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S.5 PROOFS OF THEOREM 10

Let x̄ be a limit point of {x(i) : i ≥ 0} and {x(ij)} be the subsequence converging to x̄. Let z̄ be a limit point of {z(i) : i ≥ 0}
and {z(ij)} be the subsequence converging to z̄. The closedness of X implies that x̄ ∈ X . Using the results in Proposition 9,
{x(ij+1)} and {z(ij+1)} also converge to x̄ and z̄, respectively. Taking another subsequence if necessary, the subsequence
{M (ij+1)} converges to some M̄ , since M (i+1) is bounded by Assumption 2. The subsequences {θ(ij+1)} converge to some
θ̄, since x(ij+1) → x̄, z(ij+1) → z̄, and {θ(i+1)} is bounded via Assumption 4.

Next, we show that the convex proximal minimization (S.23) below is continuous in the sense that the output point

x(ij+1) continuously depends on the input points x́(ij+1) and z(ij+1), and majorization matrix M̃ (ij+1):

x(ij+1) = argmin
x∈X

〈∇F (x́(ij+1); y, z(ij+1)), x− x́(ij+1)〉+
1

2

∥∥∥x− x́(ij+1)
∥∥∥
2

M̃(ij+1)
(S.23)

= ProxM̃
(ij+1)

IX

(
x́(ij+1) −

(
M̃ (ij+1)

)−1
∇F (x́(ij+1); y, z(ij+1))

)
.

where the proximal mapping operator ProxM̃
(ij+1)

IX
(·) is given as in (2). We consider the two cases of majorization matrices

{M (i+1)} given in Theorem 10:

• For a sequence of diagonal majorization matrices, i.e., {M (i+1) : i ≥ 0}, one can obtain the continuity of the convex

proximal minimization (S.23) with respect to x́(ij+1), z(ij+1), and M̃ (ij+1), by extending the existing results in [10,
Thm. 2.26], [11] with the separability of (S.23) to element-wise optimization problems.

• For a fixed general majorization matrix, i.e., M = M (i+1), ∀i, we obtain that the convex proximal minimization (S.24)

below is continuous with respect to the input points x́(ij+1) and z(ij+1):

x(ij+1) = argmin
x∈X

〈∇F (x́(ij+1); y, z(ij+1)), x− x́(ij+1)〉+
1

2

∥∥∥x− x́(ij+1)
∥∥∥
2

M̃
(S.24)

= ProxM̃
IX

(
x́(ij+1) − M̃−1∇F (x́(ij+1); y, z(ij+1))

)

=
(
Id + M̃−1∂̂IX

)−1(
x́(ij+1) − M̃−1∇F (x́(ij+1); y, z(ij+1))

)
(S.25)

where ∂̂f(x) is the subdifferential of f at x and Id denotes the identity operator, and the proximal mapping of IX

relative to ‖ · ‖M̃ is uniquely determined by the resolvent of the operator M̃−1∂̂IX in (S.25).

First, we obtain that the operator M̃−1∂̂IX is monotone. For a convex extended-valued function fe : RN → R ∪ {∞},

observe that M̃−1∂̂fe is a monotone operator:

〈M̃−1∂̂fe(u)− M̃−1∂̂fe(v), u− v〉 = 〈M̃−1M̃︸ ︷︷ ︸
=I

∂̂fe(M̃ũ)− M̃−1M̃︸ ︷︷ ︸
=I

∂̂fe(M̃ ṽ), M̃ ũ− M̃ ṽ〉 ≥ 0, ∀u, v, (S.26)

where the equality uses the variable change {u = M̃ũ, v = M̃ ṽ}, a chain rule of the subdifferential of a composition of

a convex extended-valued function and an affine mapping [12, §7], and the symmetry of M̃ , and the inequality holds
because the subdifferential of convex extended-valued function is a monotone operator [13, §4.2]. Because characteristic

function of a convex set is extended-valued function, the result in (S.26) implies that the operator M̃−1∂̂IX is monotone.

Second, note that the resolvent of a monotone operator M̃−1∂̂IX (with a parameter 1), i.e., (Id+M̃−1∂̂IX )−1 in (S.25), is
nonexpansive [10, §6] and thus continuous. We now obtain that the convex proximal minimization (S.24) is continuous

with respect to the input points x́(ij+1) and z(ij+1), because the proximal mapping operator (Id+M̃−1∂̂IX )−1 in (S.25),

the affine mapping M̃−1, and ∇F (x; y, z) are continuous with respect to their input points.

For the two cases above, using the fact that x(ij+1) → x̄, x́(ij+1) → x̄, z(ij+1) → z̄, and M (ij+1) → M̄ (or M̄ = M for
the {M (i+1) = M} case) as j → ∞, (S.23) becomes

x̄ = argmin
x∈X

〈∇F (x̄; y, z̄), x− x̄〉+
1

2
‖x− x̄‖2M̄ . (S.27)

Thus, x̄ satisfies the first-order optimality condition of minx∈X F (x; y, z̄):

〈∇F (x̄; y, z̄), x− x̄〉 ≥ 0, for any x ∈ X ,

and this completes the proof of the first result.
Next, note that the result in Proposition 9 imply

∥∥∥∥A
M(i+1)

R
θ(i+1)

([
x(i)

x(i−1)

])
−

[
x(i)

x(i−1)

]∥∥∥∥
2

→ 0. (S.28)

Additionally, note that a function AM(i+1)

R
θ(i+1)

− I is continuous. To see this, observe that the convex proximal mapping in

(Alg.1.3) is continuous (see the obtained results above), and Rθ(i+1) is continuous (see Assumption 4). Combining (S.28),

the convergence of {M (ij+1),R
θ(ij+1)}, and the continuity of AM(i+1)

R
θ(i+1)

− I , we obtain [x̄T, x̄T ]T =AM̄
Rθ̄

([x̄T, x̄T ]T ), and this

completes the proofs of the second result.
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S.6 PROOFS OF COROLLARY 11

To prove the first result, we use proof by contradiction. Suppose that dist(x(i),S) 9 0. Then there exists ε > 0 and a
subsequence {x(ij)} such that dist(x(ij),S) ≥ ε, ∀j. However, the boundedness assumption of {x(ij)} in Corollary 11
implies that there must exist a limit point x̄ ∈ S via Theorem 10. This is a contradiction, and gives the first result (via the
result in Proposition 9). Under the isolation point assumption in Corollary 11, using the obtained results, ‖x(i+1)−x(i)‖2 →
0 (via Proposition 9) and dist(x(i+1),S) → 0, and the following the proofs in [4, Cor. 2.4], we obtain the second result.

S.7 MOMENTUM-NET VS. BCD-NET

This section compares the convergence properties of Momentum-Net (Algorithm 1) and BCD-Net (Algorithm 2). We first
show that for convex f(x; y) and X , the sequence of reconstructed images generated by BCD-Net converges:

Proposition S.5 (Sequence convergence). In Algorithm 2, let f(x; y) be convex and subdifferentiable, and X be convex. Assume
that the paired operators (Rθ(i+1) ,Rθ(i)) are asymptotically contractive, i.e.,

‖Rθ(i+1)(u)−Rθ(i)(v)‖2 < ‖u− v‖2 + ε(i+1),

with
∑∞

i=0 ε
(i+1) < ∞ and {ε(i+i) ∈ [0,∞) : ∀i}, ∀u, v, i. Then, the sequence {x(i+1) : i ≥ 0} generated by Algorithm 2 is

convergent.

Proof. We rewrite the updates in Algorithm 2 as follows:

x(i+1) = argmin
x∈X

f(x; y) +
γ

2

∥∥∥x−Rθ(i+1)(x(i))
∥∥∥
2

2
= ProxγIf+IX

(
Rθ(i+1)(x(i))

)

=
(
Id + γ−1∂̂(f(x; y) + IX )

)−1(
Rθ(i+1)(x(i))

)

=: A(i+1)(x(i)).

We first show that the paired operators {A(i+1),A(i)} is asymptotically contractive:
∥∥∥A(i+1)(u)−A(i)(v)

∥∥∥
2

=
∥∥∥
(
Id + γ−1∂̂(f(x; y) + IX )

)−1(
Rθ(i+1)(u)

)
−
(
Id + γ−1∂̂(f(x; y) + IX )

)−1(
Rθ(i)(v)

)∥∥∥
2

≤ ‖Rθ(i+1)(u)−Rθ(i)(v)‖2 (S.29)

≤ L′‖u− v‖2 + ε(i+1)‖u− v‖2, (S.30)

∀u, v, where the inequality (S.29) holds because the subdifferential of the convex extended-valued function f(x; y) + IX

(the characteristic function of a convex set X , IX , is convex, and the sum of the two convex functions, f(x; y) + IX ,
is convex) is a monotone operator [13, §4.2], and the resolvent of a monotone relation with a positive parameter, i.e.,

(Id + γ−1∂̂(f(x; y) + IX ))−1 with γ−1 > 0, is nonexpansive [13, §6], and the inequality (S.30) holds by L′ < 1 via the
contractiveness of the paired operators (Rθ(i+1) ,Rθ(i)), ∀i. Note that the inequality (S.29) does not hold for nonconvex
f(x; y) and/or X . Considering that L′ < 1, we show that the sequence {x(i+1) : i ≥ 0} is Cauchy sequence:

∥∥∥x(i+l) − x(i)
∥∥∥
2
=
∥∥∥(x(i+l) − x(i+l−1)) + . . .+ (x(i+1) − x(i))

∥∥∥
2

≤
∥∥∥x(i+l) − x(i+l−1)

∥∥∥+ . . .+
∥∥∥x(i+1) − x(i)

∥∥∥
2

≤
(
L′l−1

+ . . .+ 1
)∥∥∥x(i+1) − x(i)

∥∥∥
2
+
(
ε(i+l) + . . .+ ε(i+1)

)

≤
1

1− L′

∥∥∥x(i+1) − x(i)
∥∥∥
2
+

l∑

i′=1

ε(i+i′)

where the second inequality uses the result in (S.30). Since the sequence {x(i+1) : i ≥ 0} is Cauchy sequence, {x(i+1) : i ≥
0} is convergent, and this completes the proofs.

In terms of guaranteeing convergence, BCD-Net has three theoretical or practical limitations compared to Momentum-
Net:

• Different from Momentum-Net, BCD-Net assumes the asymptotic contractive condition for the paired operators
{Rθ(i+1) ,Rθ(i)}. When image mapping operators in (Alg.2.1) are identical across iterations, i.e., {Rθ = Rθ(i+1) : i≥0},
then Rθ is assumed to be contractive. On the other hand, a mapping operator (identical across iterations) of Momentum-
Net only needs to be nonexpansive. Note, however, that when f(x; y) = 1

2‖y − Ax‖2W with AHWA � 0 (e.g.,
Example 5), BCD-Net can guarantee the sequence convergence with the asymptotically nonexpansive paired operators
(Rθ(i+1) ,Rθ(i)) (see Definition 7) [14].

• When one applies an iterative solver to (Alg.2.2), there always exist some numerical errors and these obstruct the
sequence convergence guarantee in Proposition S.5. To guarantee sufficiently small numerical errors from iterative
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methods solving (Alg.2.2) (so that one can find a critical point solution for the MBIR problem (Alg.2.2)), one needs to
use sufficiently many inner iterations that can substantially slow down entire MBIR.

• BCD-Net does not guarantee the sequence convergence for nonconvex data-fit f(x; y), whereas Momentum-Net
guarantees convergence to a fixed-point for both convex f(x; y) and nonconvex f(x; y).

S.8 FOR THE SCNN ARCHITECTURE (18), CONNECTION BETWEEN CONVOLUTIONAL TRAINING LOSS

(P2) AND ITS PATCH-BASED TRAINING LOSS

This section shows that given the sCNN architecture (18), the convolutional training loss in (P2) has three advantages over
the patch-based training loss in [14], [15] that may use all the extracted overlapping patches of size R:

• The corresponding patch-based loss does not model the patch aggregation process that is inherently modeled in (18).
• It is an upper bound of the convolutional loss (P2).
• It requires about R times more memory than (P2).

We prove the benefits of (P2) using the following lemma.

Lemma S.6. The loss function (P2) for training the residual convolutional autoencoder in (18) is bounded by the patch-based loss
function:

1

2L

S∑

s=1

∥∥∥x̂(i)
s −

K∑

k=1

dk ~ Tαk
(ek ~ x(i)

s )
∥∥∥
2

2
≤

1

2LR

S∑

s=1

∥∥X̂(i)
s −DTα̃(EX(i)

s )
∥∥2
F
, (S.31)

where the residual is defined by x̂
(i)
s , xs −x

(i)
s , {xs, x

(i)
s } are given as in (P2), X̂s ∈ R

R×Vs and Xs ∈ R
R×Vs are the lth training

data matrices whose columns are Vs vectorized patches extracted from the images x̂s and xs (with the circulant boundary condition
and the “stride” parameter 1), respectively, D , [d1, . . . , dK ] ∈ C

R×K is a decoding filter matrix, and E , [e∗1, . . . , e
∗
K ]H ∈ C

K×R

is an encoding filter matrix. Here, the definition of soft-thresholding operator in (6) is generalized by

(Tα̃(u))k ,

{
uk − αk · sign(uk), |uk| > αk,

0, otherwise,
(S.32)

for K = 1, . . . ,K , where α̃ = [α1, . . . , αK ]T . See other related notations in (18).

Proof. First, we have the following reformulation [3, §S.1]:



e1∗u
...

eK ∗u


 = P ′




EP1

...
EPN




︸ ︷︷ ︸
, Ẽ

u, ∀u, (S.33)

where P ′ ∈ C
KN×KN is a permutation matrix, E is defined in Lemma (S.6), and Pn ∈ C

R×N is the nth patch extraction

operator for n = 1, . . . , N . Considering that
∑K

k=1 flip(e
∗
k) ~ (ek ~ u) = 1

R ẼHẼu via the definition of Ẽ in (S.33) (see also
the reformulation technique in [3, §S.1]), we obtain the following reformulation result:

K∑

k=1

flip(e∗k) ~ Tαk
(ek ~ x(i)

s ) =
1

R

N∑

n=1

PH
n EHTα̃

(
EPnx

(i)
s

)
(S.34)

where the soft-thresholding operators {Tαk
(·) : ∀k} and Tα̃(·) are defined in (S.32) and we use the permutation invariance

of the thresholding operator Tα(·), i.e., Tα(P (·)) = PTα(·) for any α. Finally, we obtain the result in (S.31) as follows:

1

2L

S∑

s=1

∥∥∥x̂(i)
s −

K∑

k=1

dk ~ Tαk
(ek ~ x(i)

s )
∥∥∥
2

2
=

1

2L

S∑

s=1

∥∥∥x̂(i)
s −

1

R

N∑

n=1

PH
n DTα̃

(
EPnx

(i)
s

)∥∥∥
2

2
(S.35)

=
1

2L

S∑

s=1

∥∥∥ 1
R

N∑

n=1

PH
n Pnx̂

(i)
s −

1

R

N∑

n=1

PH
n DTα̃

(
EPnx

(i)
s

)∥∥∥
2

2
(S.36)

=
1

2LR2

S∑

s=1

∥∥∥∥
N∑

n=1

PH
n

(
x̂
(i)
l,n −DTα̃

(
Ex

(i)
l,n

))∥∥∥∥
2

2

≤
1

2LR

S∑

s=1

N∑

n=1

∥∥∥x̂(i)
l,n −DTα̃

(
Ex

(i)
l,n

)∥∥∥
2

2
(S.37)

=
1

2LR

S∑

s=1

∥∥∥X̂(i)
s −DTα̃

(
EX(i)

s

)∥∥∥
2

F
,
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where D is defined in Lemma S.6, {x̂
(i)
l,n = Pnx̂

(i)
s ∈ C

R, x
(i)
l,n = Pnx

(i)
s ∈ C

R : n = 1, . . . , N} is a set of extracted patches,

the training matrices {X̂
(i)
s , X

(i)
s } are defined by X̂

(i)
s , [x̂

(i)
l,n, . . . , x̂

(i)
l,N ] and X

(i)
s , [x

(i)
l,1, . . . , x

(i)
l,N ]. Here, the equality

(S.35) uses the result in (S.34), the equality (S.36) holds by
∑N

n=1 P
H
n Pn = R · I (for the circulant boundary condition in

Lemma S.6), and the inequality (S.37) holds by P̃ P̃H � R · I with P̃ , [PH
1 · · ·PH

N ]H .

Lemma S.6 reveals that when the patch-based training approach extract all the R-size overlapping patches, 1) the
corresponding patch-based loss is an upper bound of the convolutional loss (P2); 2) it requires about R-times larger
memory than (P2) because Vs ≈ RNs for x ∈ R

Ns and the boundary condition described in Lemma S.6, ∀l; and 3) it
misses modeling the patch aggregation process that is inherently modeled in (18) – see that the patch aggregation operator∑N

n=1 P
H
n (·)n is removed in the inequality (S.37) in the proof of Lemma S.6. In addition, different from the patch-based

training approach [14], [15], i.e., training with the function on the right-hand side in (S.31), one can use different sizes of
filters {ek, dk : ∀k} in the convolutional training loss, i.e., the function on the left-hand side in (S.31).

S.9 DETAILS OF EXPERIMENTAL SETUP

S.9.1 Majorization matrix designs for quadratic data-fit

For (real-valued) quadratic data-fit f(x; y) in the form of 1
2‖y − Ax‖2W , if a majorization matrix M exists such that

AHWA � M , it is straightforward to verify that the gradient of quadratic data-fit f(x; y) satisfies the M -Lipchitz continuity
in Definition 1, i.e.,

‖∇f(u; y)−∇f(v; y)‖M−1 = ‖AHWAu−AHWAv‖M−1 ≤ ‖u− v‖2M , ∀u, v ∈ R
N .

because the assumption ATWA � M ⇔ M−1/2ATWAM−1/2 � I implies that the eigenspectrum of M−1/2ATWAM−1/2

lies in the interval [0, 1], and gives the following result:

(
M−1/2ATWAM−1/2

)2
� I ⇔ (ATWA)M−1(ATWA) � M.

Next, we review a useful lemma in designing majorization matrices for a wide class of quadratic data-fit f(x; y):

Lemma S.7 ( [2, Lem. S.3]). For a (possibly complex-valued) matrix A and a diagonal matrix W with non-negative entries,
AHWA � diag(|AH |W |A|1), where |A| denotes the matrix consisting of the absolute values of the elements of A.

S.9.2 Parameters for MBIR optimization models: Sparse-view CT reconstruction

For MBIR model using EP regularization, we combined a EP regularizer
∑N

n=1

∑
n′∈Nn

ιnιn′ϕ(xn − xn′) and the data-fit
f(x; y) in §4.1.1, where Nn is the set of indices of the neighborhood, ιn and ιn′ are parameters that encourage uniform
noise [16], and ϕ(·) is the Lange penalty function, i.e., ϕ(t) = δ2(|t/δ| − log(1 + |t/δ|)), with δ=10 in HU. We chose the
regularization parameter (e.g., γ in (P0)) as 215.5. We ran the relaxed linearized augmented Lagrangian method [17] with
100 iterations and 12 ordered-subsets, and initialized the EP MBIR algorithms with a conventional FBP method using a
Hanning window.

For MBIR model using a learned convolutional regularizer [6, (P2)], we trained convolutional regularizer with filters of
{hk ∈ R

R : R=K=72} via CAOL [3] in an unsupervised training manner; see training details in [3]. The regularization
parameters (e.g., γ in (1)) were selected by applying the “spectral spread” based selection scheme in §3.2 with the tuned
factor χ?=167.64. We selected the spatial-strength-controlling hard-thresholding parameter (i.e., α′ in [6, (P2)]) as follows:
for Test samples #1–2, we chose it is as 10−10 and 6−11, respectively. We initialized the MBIR model using a learned
regularizer with the EP MBIR results obtained above. We terminated the iterations if the relative error stopping criterion
(e.g., [2, (44)]) is met before reaching the maximum number of iterations. We set the tolerance value as 10−13 and the
maximum number of iterations to 4×103.

S.9.3 Parameters for MBIR optimization models: LF photography using a focal stack

For MBIR model using 4D EP regularization [18], we combined a 4D EP regularizer
∑N

n=1

∑
n′∈Nn

ϕ(xn−xn′) and the data-
fit f(x; y) in §4.1.2, where Nn is the set of indices of the 4D neighborhood, and ϕ(·) is the hyperbola penalty function, i.e.,
ϕ(t) = δ2(

√
1 + |t/δ|2 − 1). We selected the hyperbola function parameter δ and regularization parameter (e.g., γ in (P0))

as follows: for Test samples #1–3, we chose them as {δ=10−4, γ=103}, {δ=10−1, γ=107}, and {δ=10−1, γ=5×103},
respectively. We ran the conjugate gradient method with 100 iterations, and initialized the 4D EP MBIR algorithms with
AT y rescaled in the interval [0, 1].

S.9.4 Reconstruction accuracy and depth estimation accuracy of different MBIR methods

Tables S.1–S.3 below provide reconstruction accuracy numerics of different MBIR methods in sparse-view CT reconstruction
and LF photography using a focal stack, and reports the SPO depth estimation [19] accuracy numerics on reconstructed
LFs from different MBIR methods:
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TABLE S.1
RMSE (HU) of different CT MBIR methods

(fan-beam geometry with 12.5% projections views and 105 incident photons)

(a) FBP
(b) EP

reg.
(c) Learned convolutional

reg. [3], [6]
(d) Momentum-Net-

sCNN
(e) Momentum-Net-

sCNN w/ larger width
(f) Momentum-Net-

dCNN

Test #1 82.8 40.8 35.2 19.9 19.5 19.8
Test #2 74.9 38.5 34.5 18.4 17.7 17.8

(c)’s convolutional regularizer uses {R=K=72}
(d)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder (18) with {R=K=72}.
(e)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder (18) with {R=72,K =92}.
This setup gives results in Fig. 8(d), as described in §4.2.1.
(f)’s refining dCNNs are in the form of residual multi-hidden layer CNN (19) with {L=4, R=32,K=64}.

TABLE S.2
PSNR (dB) of different LF MBIR methods

(LF photography systems with C=5 detectors obtain a focal stack of LFs consisting of S=81 sub-aperture images)

(a) AT y (b) 4D EP reg. [18] (c) Momentum-Net-sCNN (d) Momentum-Net-dCNN

Test #1 16.4 32.0 35.8 37.1

Test #2 21.1 28.1 30.7 32.0

Test #3 21.6 28.1 30.9 31.7

(c)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder with {R=52,K=32}.
(d)’s refining dCNNs are in the form of residual multi-hidden layer CNN (19) with {L=6, R=32,K=16}.
Momentum-Nets use refining CNNs in an epipolar-domain; see details in §4.2.1.

TABLE S.3
RMSE (in 10−2, m) of estimated depth from reconstructed LFs with different LF MBIR methods

(LF photography systems with C=5 detectors obtain a focal stack of LFs consisting of S=81 sub-aperture images)

(a) Ground truth
LF

(b) Reconstructed LF
by AT y

(c) Reconstructed LF
by 4D EP reg. [18]

(d) Reconstructed LF
by Momentum-Net-sCNN

(e) Reconstructed LF
by Momentum-Net-dCNN

Test #1 4.7 41.0 13.8 8.0 5.7

Test #2 30.5 117.6 39.5 34.6 31.9

Test #3 n/a† n/a† n/a† n/a† n/a†

SPO depth estimation [19] was applied to reconstructed LFs.
(d)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder with {R=52,K=32}.
(e)’s refining dCNNs are in the form of residual multi-hidden layer CNN (19) with {L=6, R=32,K=16}.
Momentum-Nets use refining CNNs in an epipolar-domain; see details in §4.2.1.
†The ground truth depth map for Test sample #3 does not exist in the LF dataset [20].

S.9.5 Reconstructed images and estimated depths with noniterative analytical methods

This section provides reconstructed images by an analytical back-projection method in sparse-view CT reconstruction and
LF photography using a focal stack (see the first two columns in Fig. S.2), and estimated depths from reconstructed LFs via
the SPO depth estimation method [19] (see the third column in Fig. S.2(c)). Results in Fig. S.2 below are supplementary to
Fig. 8, Fig. 9, and Fig. 10, and the first two columns visualize initial input images to INN methods.

S.10 HOW TO CHOOSE PARAMETERS OF IMAGE REFINING MODULES IN SOFT-REFINING INNS?

In soft-refining INNs using iterative-wise refining NNs, one does not need to greatly increase parameter dimensions of
refining NNs [14], [21]. The natural question then arises, “How one can choose between sCNN (18) and dCNN (19) refiners,
and select their parameters (R, K , and L)?” The first answer to this question depends on some understanding of data-
fit f(x; y) in MBIR problem (P1), e.g., the regularization strength γ and the condition number variations across training
data-fit majorizers. (An additional criteria could be general understandings between sample size/diversity and parameter
dimension of NNs.)

For example, the sparse-view CT system in §4.1.1 needs moderate regularization strength (χ? = 167.64) and the
majorization matrices of its training data-fits have mild condition number variations (the standard deviation is 1.1). training
data-fits have mild parameter variations across samples. Comparing results between Momentum-Net-sCNN and -dCNN
in Fig. 5 and Table S.1 demonstrates that sCNN (18) seems suffice. Table S.1(d)–(e) shows that one can further improve the
refining accuracy of sCNN (18) by increasing its width, i.e., K . The LF photography system using a limited focal stack in
§4.1.2 needs a large γ value (χ?=1.5), and the majorization matrices of its training data-fits have large condition number
variations (the standard deviation is 2245.5). Comparing results between Momentum-Net-sCNN and -dCNN in Fig. 7 and
Table S.2 demonstrates that dCNN (19) yields higher PSNR than sCNN (18). For dCNN (19), we observed increasing its
depth, i.e., L, up to a certain number is more effective than increasing its width, i.e., K , as briefly discussed in §4.2.1.
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Fig. 8: FBP

RMSE (HU)
= 82.8

RMSE (HU)
= 74.9

Fig. 9: Error maps of AT y

PSNR (dB) = 16.5 (16.4)

PSNR (dB) = 22.6 (21.1)

PSNR (dB) = 23.4 (21.6)

Fig. 10: Estimated depth
from LF recon. by AT y

RMSE (m) = 41.0×10−2

RMSE (m) = 117.6×10−2

n/a

Fig. S.2. Reconstructed images from analytical back-projection methods. We used such results in the first two columns to initialize INN methods.

For choosing the relaxation parameter ρ in (Alg.1.1), we also suggest considering the regularization strength in (Alg.1.3).
For an application that needs moderate regularization strength, e.g., sparse-view CT in §4.1.1, we suggest setting ρ to 0.5
so as to mix information between input and output of refining NNs, rather than 1− ε that does not mix input and output.
For an application that needs strong regularization, e.g., LF photography using a limited focal stack in §4.1.2, we suggest
using ρ=1− ε than ρ=0.5. Results in the next section validate this suggestion.

Performance of Momentum-Net with different relaxation parameters ρ in (Alg.1.1)

Fig. S.3 below compares the performances of Momentum-Net-sCNN with different ρ values. The results in Fig. S.3 support
the ρ selection guideline in §4.2.3. One can maximize the MBIR accuracy of Momentum-Net by properly selecting ρ.

Note that ρ ∈ (0, 1) controls strength of inference from refining NNs in (Alg.1.1), but does not affect the convergence
guarantee of Momentum-Net. Fig. S.3 illustrates that Momentum-Net appears to converge regardless of ρ values.

(a) Sparse-view CT (b) Light-field photography using focal stack
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(18) R = K = 49, Ã = 1− ë

(18) R = 49,K = 81, Ã = 1− ë

(18) R = K = 49, Ã = 0.5
(18) R = 49,K = 81, Ã = 0.5
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(18) R = 25,K = 32, Ã = 0.5

Fig. S.3. Convergence behavior of Momentum-Net-sCNN with different relaxation parameters, ρ = 0.5 and ρ = 1 − ε. For both applications (see
their imaging setups in §4.1), PyTorch ver. 0.3.1 was used.
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S.11 PARAMETERS OF MOMENTUM-NET

Table S.4 below lists parameters of Momentum-Net, and summarizes selection guidelines or default values. Similar to BCD-
Net/ADMM-Net, the main tuning jobs to maximize the performance of Momentum-Net include selecting architectures of
refining NNs {Rθ(i) :∀i} in (Alg.1.1), and choosing a regularization parameter γ in (Alg.1.3) by tuning χ in §3.2. One can
simplify the tuning process by using the selection guidelines in §S.10 for selecting architectures of {Rθ(i) :∀i}, and training
χ in §3.2. Note that one designs majorization matrices {M (i) : ∀i} rather than tuning them: majorization matrices can be
analytically designed, e.g., Lemma S.7 as used in §4.2.1; one can algorithmically design them [22]. Tighter majorization
matrices are expected to further accelerate the convergence of Momentum-Net [2], [3].

TABLE S.4
Guidelines for choosing parameters of Momentum-Net

Param. Module Guidelines or default values

{R
θ(i)

:∀i} (Alg.1.1)
Trainable by §3.1. For selecting their
architecture/param., see guideline
§S.10.

ρ ∈ (0, 1) (Alg.1.1)
Use regularization strength γ; see
guideline in §S.10.

δ < 1 in
(8)–(9)

(Alg.1.2) 1−ε

{M(i) :∀i} (Alg.1.3)
Designed off-line. For large-scale
inverse problems with quadratic
data-fit, use Lemma S.7.

λ ≥ 1 in (7) (Alg.1.3)
For convex F (x; y, z(i+1)), λ=1;
for nonconvex F (x; y, z(i+1)), λ=1+ε.

γ>0 (Alg.1.3) Chosen by tuning/training χ in §3.2

All INN methods also must select a number of INN iterations, Niter. One could determine it by using the convergence behavior
of iteration-wise refiners in Fig. 2.
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