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Abstract— Optimizing k-space sampling trajectories is a
promising yet challenging topic for fast magnetic resonance
imaging (MRI). This work proposes to optimize a reconstruc-
tion method and sampling trajectories jointly concerning
image reconstruction quality in a supervised learning man-
ner. We parameterize trajectories with quadratic B-spline
kernels to reduce the number of parameters and apply multi-
scale optimization, which may help to avoid sub-optimal
local minima. The algorithm includes an efficient non-
Cartesian unrolled neural network-based reconstruction
and an accurate approximationfor backpropagationthrough
the non-uniform fast Fourier transform (NUFFT) operator
to accurately reconstruct and back-propagate multi-coil
non-Cartesian data. Penalties on slew rate and gradi-
ent amplitude enforce hardware constraints. Sampling
and reconstruction are trained jointly using large public
datasets. To correct for possible eddy-current effects intro-
duced by the curved trajectory, we use a pencil-beam tra-
jectory mapping technique. In both simulations and in-vivo
experiments, the learned trajectory demonstrates signifi-
cantly improved image quality compared to previous model-
based and learning-based trajectory optimization methods
for 10× acceleration factors. Though trained with neural
network-based reconstruction, the proposed trajectory also
leads to improved image quality with compressed sensing-
based reconstruction.

Index Terms— Magnetic resonance imaging, non-
Cartesian sampling, deep learning, eddy-current effect,
image reconstruction.
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I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) systems acquire
raw data in the frequency domain (k-space). Most scan-

ning protocols sample data points sequentially according to a
pre-determined sampling pattern. The most common sampling
patterns are variants of Cartesian rasters and non-Cartesian
trajectories such as radial spokes [1] and spiral interleaves [2].
The local smoothness of these patterns facilitates ensuring
that they obey hardware limits, namely the maximum gra-
dient and slew rate that constrain the speed and acceleration
when traversing k-space. These patterns also make it easy to
ensure sufficient sampling densities. In recent years, hardware
improvements, especially with the RF and gradient systems,
enable more complex gradient waveform designs and sampling
patterns. For a given readout time, optimized designs can cover
a broader and potentially more useful region in k-space, reduc-
ing the overall scanning time and/or improving image quality,
particularly when combined with multiple receive coils.

For fast imaging, many works focus on acceleration in the
phase-encoding (PE) direction with fully sampled frequency-
encoding (FE) lines [3]–[7]. Usually, there is enough time for
the �k shifts in the PE direction, so gradient and slew rate
constraints are readily satisfied. More general non-Cartesian
trajectory designs in 2D and 3D can further exploit the flex-
ibility in the FE direction. However, in addition to hardware
physical constraints, MRI systems are affected by imperfec-
tions such as the eddy currents that cause the actual trajectory
to deviate from the nominal one and introduce undesired phase
fluctuations in the acquired data [8]. Some studies optimize
properties of existing trajectories such as the density of spiral
trajectories [9] or the rotation angle of radial trajectories [10].
More complex waveforms, e.g., wave-like patterns [11], can
provide more uniform coverage of k-space and mitigate alias-
ing artifacts. To accommodate the incoherence requirements
of compressed sensing based methods, [12], [13] introduce
slight perturbations to existing trajectories, like radial or spiral
trajectories. Some works also explore genetic algorithms to
solve this non-convex constrained problem [14].

The recent SPARKLING method [15]–[17] considers two
criteria for trajectory design: (1) the trajectory should match
a pre-determined sampling density according to a certain
measure, and (2) the sampling points should be locally uniform
to avoid clusters or gaps. The density and uniformity criteria
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are transformed into “attraction” and “repulsion” forces among
the sampling points. The work uses fast multipole methods
(FMM) [18] to efficiently calculate the interactions between
points. Projection-based optimization handles the gradient and
slew rate constraints [19]. In-vivo and simulation experiments
demonstrate that this approach reduces aliasing artifacts for 2D
and 3D T2*-weighted imaging. However, in SPARKLING, the
density is determined heuristically; determining the optimal
sampling density for different protocols remains an open
problem. The work also does not consider some k-space signal
characteristics such as conjugate symmetry. Furthermore, the
point spread function (PSF) of the calculated trajectory for
high under-sampling rates may be suboptimal for recon-
struction algorithms like those based on convolution neural
networks, because the reconstruction algorithm is not part of
the SPARKLING design process.

With rapid advances in deep learning and auto-
differentiation software, learning-based signal sampling
strategies are being investigated in multiple fields such as
optics and ultrasound [20], [21]. In MRI, most learning-based
works have focused on sampling patterns of phase encoding
locations. Some studies formulate the on-grid sampling pattern
as i.i.d samples from multivariate Bernoulli distribution
[22], [23]. Since random sampling operations are not
differentiable, different surrogate gradients, such as Gumbel-
Softmax, are developed in these works. Rather than gradient
descent, [24] uses a greedy search method. [25] further reduces
the complexity of greedy search by Pareto optimization,
an evolutionary algorithm for sparse regression [26]. Some
works have used reinforcement learning. For example, [27]
and [28] adopted a double network setting: one for recon-
struction and the other generating a sampling pattern, where
the first work used Monte-Carlo Tree Search (MCTS) and the
second used Q-learning to optimize the 1-D sub-sampling.
Instead of using an end-to-end CNN as the reconstruction
algorithm in other works, [29] constructs a differentiable
compressed sensing reconstruction framework. [30] used an
unrolled neural network as the reconstruction algorithm.

To our knowledge, PILOT [31] is the first work to optimize
a 2D non-Cartesian trajectory and an image reconstruction
method simultaneously. The training loss is the reconstruction
error since the ultimate goal of trajectory optimization is high
image quality. The trained parameters were the locations of
sampling points and the weights of the reconstruction neural
network. Large datasets and stochastic gradient descent were
used to optimize the parameters. To meet the hardware limits,
a penalty was applied on the gradient and slew rate. Since
the reconstruction involves non-Cartesian data, PILOT uses
a (bilinear, hence differentiable almost everywhere) gridding
reconstruction algorithm to map the k-space data into the
image domain, followed by a U-Net [32] to refine the gridded
image data. Simulation experiments report encouraging results
compared to ordinary trajectories. Nevertheless, the algorithm
often gets stuck in sub-optimal local minima where the initial
trajectory is only slightly perturbed yet the slew rate rapidly
oscillates. To reduce the effect of initialization, [31] uses
a randomized initialization algorithm based on the traveling
salesman problem (TSP). However, this initialization approach
works only with single-shot long TE sequences, limiting

its utility in many clinical applications. The implementation
in [31] relies on auto-differentiation to calculate the Jacobian
of the non-uniform Fourier transform; here we adopt a new
NUFFT Jacobian approximation that is faster and more accu-
rately approximates the non-Cartesian discrete Fourier trans-
form (DFT) [33].

To overcome the limitations of previous methods and fur-
ther expand their possible applications, this paper proposes
an improved supervised learning workflow called B-spline
parameterized Joint Optimization of Reconstruction and
K-space trajectory (BJORK). Our main contributions include
the following. (1) We parameterize the trajectories with
quadratic B-spline kernels. The B-spline reparameterization
reduces the number of parameters and facilitates multilevel
optimization, enabling non-local improvements to the ini-
tial trajectory. Moreover, the local smoothness of B-spline
kernels avoids rapid waveform oscillations. (2) We adopt
an unrolled neural network reconstruction method for non-
Cartesian sampling patterns [34]. Compared to the image-
domain U-Net implemented in previous works, the proposed
approach combines the strength of learning-based and model-
based reconstruction, improving the effect of both reconstruc-
tion and trajectory learning. (3) We adopt accurate and efficient
NUFFT-based approximations of the Jacobian matrices of the
DFT operations used in the reconstruction algorithm. (See [33]
for detailed derivations and validation.) (4) In addition to
a simulation experiment, we also conducted phantom and
in-vivo experiments with protocols that differ from the training
dataset to evaluate the generalizability and applicability of
the model. (5) We used a k-space mapping technique to
correct potential eddy current-related artifacts. (6) Compared
with SPARKLING, the proposed learning-based approach does
not need to assume signal characteristics such as spectrum
energy density. Instead, BJORK learns the required sampling
trajectories from a large data set in a supervised manner.

The remaining materials are organized as follows. Section II
details the proposed method. Section III describes experiment
settings and control methods. Sections IV and V present and
discuss the results.

II. METHODS

This section describes the proposed approach for supervised
learning of the sampling trajectory and image reconstruction
method.

A. Problem Formulation
Fig. 1 shows the overall workflow of the proposed approach.

The goal is to optimize ω ∈ RNs×Nd , a trainable (possibly
multi-shot) sampling pattern, and θ ∈ RM , the M parameters
of the image reconstruction method, where Ns denotes the
total number of k-space samples, and Nd denotes the image
dimensionality. (The results are for Nd = 2, i.e., 2D images,
but the method is general.)

The training loss for jointly optimizing the trajectory para-
meters ω and reconstruction parameters θ is as follows:

arg min
ω∈RNs×Nd , θ∈RM

Ex∈X [�( fθ (ω; A(ω)x + ε), x)]

s.t. �D1ω
[d]�∞ ≤ γ�tgmax,

�D2ω
[d]�∞ ≤ γ�t2smax, d = 1, . . . , Nd, (1)
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Fig. 1. Diagram of the proposed approach. To optimize the sampling trajectory and the reconstruction algorithm jointly using a stochastic gradient
descent (SGD)-type method, we construct a differentiable forward MRI system matrix A(ω) that simulates k-space data w.r.t. trajectory ω from ground
truth images, and an unrolled neural network for reconstruction. The reconstruction errors compared with the ground truth are used as the training
loss to update learnable parameters (the trajectory ω and the network’s parameters θ).

where each x ∈ CNv is a fully sampled reference image
having Nv voxels drawn from the training data set X and
ε is simulated additive complex Gaussian noise. (In practice
the expectation is taken over mini-batches of training images.)

The system matrix A = A(ω) ∈ CNs Nc×Nv represents the
MR imaging physics (encoding), where Nc denotes the number
of receiver coils. For multi-coil non-Cartesian acquisition, it is
a non-Cartesian SENSE operator [35] that applies a pointwise
multiplication of the sensitivity maps followed by a NUFFT
operator (currently we do not consider field inhomogeneity
but it would be straightforward to extend because the Jaco-
bian approximation can cover such cases [33]). The func-
tion fθ (ω; ·) denotes an image reconstruction algorithm with
parameters θ that is applied to simulated under-sampled data
A(ω)x+ε. As detailed in subsection II-C, we use an unrolled
neural network. The reconstruction loss �(·, ·) quantifies the
similarity between a reconstructed image and the ground truth,
and can be a combination of different terms. Here we chose
the loss � to be a combined �1 and square of �2 norm. The
matrices D1 and D2 denote the first-order and second-order
finite difference operators. �t is the raster time and γ denotes
the gyromagnetic ratio. For multi-shot imaging, the difference
operator applies to each shot individually. The optimization
is constrained in gradient field strength (gmax), and slew rate
(smax). To use the stochastic gradient descent (SGD) method,
we convert the box constraint into a penalty function φ, where

φλ(|x|) = 1T max .(|x| − λ, 0),

where max .(·) operates point-wisely. Our final joint optimiza-
tion problem has the following form:

arg min
ω∈CNs×Nd , θ∈RM

Ex∈X [ �( fθ,ω(ω; A(ω)x + ε), x)]
+μ1φγ�tgmax

(|D1ω|)
+μ2φγ�t2smax

(|D2ω|). (2)

We update θ and ω simultaneously for each mini-batch of
training data.

B. Parameterization and Multi-Level Optimization

We parameterize the sampling pattern with 2nd-order
quadratic B-spline kernels:

ω[d] = Bc[d], d = 1, . . . , Nd, (3)

where B ∈ RNs×L denotes the interpolation matrix, and c[d]
denotes the dth column of the coefficient matrix c ∈ RL×Nd .
L denotes the length of c[d], or the number of interpolation
kernels in each dimension. The decimation rate in Fig. 5 is
defined as Decim. = Ns/L. Compared to other parameteriza-
tion kernels, B-spline kernels reduce the number of individual
inequality constraints (on maximum gradient strength and slew
rate) from 4Nd Ns to 4Nd L where typically L � Ns. See [36]
for more details.

Early versions of previous work [31] and our preliminary
experiments found optimized trajectories that were often local
minima near the initialization, only slightly perturbing the
initial trajectory.1 We use a multilevel training strategy to
improve the optimization process [37], [38].

We initialized the decimation rate Ns/L with a large value
(like 64). Thus, many neighboring sample points are controlled
by the same coefficient, which introduces more ‘non-local’
improvements. After both c and θ converge, we reduce the
decimation rate, typically by a factor of 2, and begin a new
round of training initialized with ω and θ of the previous
round. Fig. 5 depicts the evolution along with decimation rates.

C. Reconstruction

In the joint learning model, we adopted a model-based
unrolled neural network (UNN) approach to image recon-
struction [34], [39]–[41]. Compared to the previous joint

1The latest versions of PILOT on arXiv [31, versions 4-5] also use trajectory
parameterization, focusing on long readout time cases.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 02,2022 at 01:11:20 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: BJORK FOR ACCELERATED 2D MRI 2321

learning model (PILOT) that used a single image domain
network [31], an unrolled network can lead to a more accurate
reconstruction [34], at the price of longer reconstruction time.

A typical cost function for regularized MR image recon-
struction has the form:

x̂ = arg min
x
�Ax − y�22 +R(x). (4)

The first term is usually called the data-consistency term that
ensures the reconstructed image is consistent with the acquired
k-space data y. (In the training phase, A(ω)x + ε is the
simulated y.) The regularization term R(·) is designed to
control aliasing and noise when the data is under-sampled.
By introducing an auxiliary variable z, one often replaces (4)
with the following alternative:

x̂ = arg min
x

min
z
�Ax − y�22 +R(z)+ μ�x − z�22, (5)

where μ > 0 is a penalty parameter. Using an alternating
minimization approach, the optimization updates become:

xi+1 = arg min
x
�Ax − y�22 + μ�x − zi�22, (6)

zi+1 = arg min
z

R(z)+ μ�x i+1 − z�22. (7)

The analytical solution for the x update is

xi+1 = (A�A+ μI)−1(A� y + μzi ),

which involves a matrix inverse that would be computationally
prohibitive to compute directly. Following [34], we use a
few iterations of the conjugate gradient (CG) method for
the x update. The implementation uses a Toeplitz embedding
technique to accelerate the computation of A�A [42], [43].

For a mathematically defined regularizer, the z update
would be a proximal operator. Here we follow previous work
[34], [44] and use a CNN-based denoiser zi+1 = Dθ (xi+1).
To minimize memory usage and avoid over-fitting, we used
the same θ across iterations, though iteration-specific networks
may improve the reconstruction result [41].

For the CNN-based denoiser, we used the Deep Iterative
Down-Up CNN (DIDN) [41], [45]. As a state-of-art model
for image denoising, the DIDN model requires less memory
than popular models like U-net [32] while providing improved
reconstruction results. In our experiments, it also led to faster
training convergence than previous denoising networks.

Since neural networks are sensitive to the scale of the
input, a good and consistent initial estimate of x is important.
We used the following quadratic roughness penalty approach
to compute an initial image estimate:

x0 = arg min
x
�Ax − y�22 + λ�Rx�22

= (A�A+ λR�R)−1 A� y, (8)

where R denotes the Nd-dimensional first-order finite dif-
ference (roughness) operator. We also used the CG method
to (approximately) solve this quadratic minimization problem.

D. Correction of Eddy-Current Effect

Rapidly changing gradient waveforms may suffer from
eddy-current effects, even with shielded coils. This hardware
imperfection requires additional measurements and corrections
so that the actual sampling trajectory is used for reconstructing
real MRI data. Some previous works used a field probe and
corresponding gradient impulse-response (GIRF) model [46].
In this work, we adopted the ‘k-space mapping’ method
[8], [47] that does not require additional hardware. Rather than
mapping the kx and ky components separately as in previous
papers, we excited a pencil-beam region using one 90◦ flip and
a subsequent 180◦ spin-echo pulse [48]. We averaged multiple
repetitions to estimate the actual acquisition trajectory. We also
subtracted a zero-order eddy current phase term from the
acquired data [8].

The following pseudo-code summarizes the BJORK training
process.

Algorithm 1 Training Algorithm for BJORK
Require: Training set X ; denoiser Dθ for initial CNN weights

θ0; initial trajectory ω0; levels of optimization Nlevel;
number of epoch Nepoch; step size of denoiser update ηD;
step size of trajectory update ηω; penalty parameter for
gradient/slew rate constraint μ1 and μ2.

Ensure: ω = Bc
1: θ ← θ0
2: ω← ω0
3: Pre-train Dθ with fixed ω0.
4: for l = 1 to Nlevel do
5: Initialize new coefficient matrix Bl .
6: Initialize new coefficient c0

l with ωl−1 ≈ Bl c0
l .

7: for j = 1 to Nepoch do
8: for training batches xK in X do
9: Simulate the k-space w.r.t. ωl :

10: yK = A(ωK
l )xK + ε

11: Reconstruction with UNN:
12: Reconstruct initial images using (8) with CG
13: for i = 1 to Niter do
14: xi+1: UNN reconstruction update of zi

15: using (6)
16: Apply CNN: zi+1 = Dθ (xi+1)
17: end for
18: Calculate loss function:
19: L = �(x̂K , x K )+ μ1φγ�tgmax

(|D1ω
K
i |)

20: + μ2φγ�t2smax
(|D2ω

K
i |)

21: Update denoiser and trajectory:
22: θ K = θ K−1 − ηD∇θ K−1 L
23: ωK

l = ωK−1
l − ηω∇ωK−1

l
L

24: end for
25: end for
26: end for

III. EXPERIMENTS

A. Comparison With Prior Art

We compared the proposed BJORK approach with the
SPARKLING method for trajectory design in all experiments,
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TABLE I
PROTOCOLS FOR DATA ACQUISITION

and have set the readout length and physical constraints to be
the same for both methods.

Both BJORK and PILOT [31] are methods for joint sam-
pling design and reconstruction optimization. We compared
three key differences between the two methods individually.
(1) The NUFFT Jacobian matrices, as discussed in [33] and
the Appendix. (2) The reconstruction method involved. Our
BJORK approach uses an unrolled neural network, while
PILOT uses a single reconstruction neural network in the
image domain (U-Net). We also presented the effect of tra-
jectory parameterization (BJORK uses quadratic B-splines
following [36], whereas versions 1-3 of PILOT used no
parameterization and more recent versions of PILOT use cubic
splines [31]).

B. Image Quality Evaluation

To evaluate the reconstruction quality provided by different
trajectories, we used two types of reconstruction methods in
the test phase: unrolled neural network (UNN) (with learned θ )
and a compressed sensing approach (sparsity regulariza-
tion for an discrete wavelet transform). For SPARKLING-
optimzed trajectories and standard undersampled trajectories
(radial/spiral), we used the same unrolled neural networks as
in BJORK for reconstruction. Only the network parameters θ

were trained, with the trajectory ω fixed.
We also used compressed sensing-based reconstruction to

test the generalizability of BJORK-optimized trajectories. The
penalty function is the �1 norm of a discrete wavelet transform
with a Daubechies 4 wavelet. The ratio between the penalty
term and the data-fidelity term is 10−7. We used the SigPy
package2 and its default primal-dual hybrid gradient (PDHG)
algorithm (with 50 iterations). This study includes two evalu-
ation metrics: the structural similarity metric (SSIM) and peak
signal-to-noise ratio (PSNR) [49].

C. Trajectories

For both simulation and real acquisition, the acquisition
sampling time and gradient raster time are both 4 μs, with
a target matrix size of 320 × 320. The maximum gradi-
ent strength is 26.7 mT/m, and the maximum slew rate
is 150 T/m/s, which were set to limit peripheral nerve stimu-
lation and conform to the Nyquist criterion.

To demonstrate the proposed model’s adaptability, we inves-
tigated two types of initialization of waveforms: an under-
sampled in-out radial trajectory with a shorter readout time
(∼5 ms) and an undersampled center-out spiral trajectory with
a longer readout time (∼16 ms). For the in-out radial initial-
ization, the number of spokes is 16/24/32, and each spoke

2https://github.com/mikgroup/sigpy

has 1280 points of acquisition (4 μs samples). The rotation
angle is equidistant between −π/2 and π/2. For the center-out
spiral initialization, the number of spokes is 8, and each leaf
has ∼4000 points of acquisition. We used the variable-density
spiral design package3 from [9]. For SPARKLING, we use
τ = 0.5 and d = 2.5 for 16-spoke radial, τ = 0.5 and
d = 2.5 for 24-spoke radial, τ = 0.6 and d = 2.5 for 32-spoke
radial, and τ = 0.5 and d = 2 for 8-shot spiral ( [15, Eqn. 8],
which can also be learned as described in [50].) after grid
search with CS-based reconstruction.

D. Network Training and Hyper-Parameter Setting

The simulation experiments used the NYU fastMRI brain
dataset to train the trajectories and neural networks [51].
The dataset consists of multiple contrasts, including T1w
(23220 slices), T2w (42250 slices), and FLAIR (5787 slices).
FastMRI’s knee subset was also used in a separate training
run to investigate the influence of training data on learned
sampling patterns. The central 320× 320 region was cropped
(or zero-filled). Sensitivity maps were estimated using the
ESPIRiT method [52] with the central 24 phase-encoding
lines, and the corresponding conjugate phase reconstruction
was regarded as the ground truth during training.

The batchsize was 4. The number of blocks, or the number
of outer iterations for the unrolled neural network was 6.
The weight μ in (5) could also be learned, but this operation
would double the computation load with minor improvement.
We set μ = 2. The number of training epochs was set to
3 for each level of B-spline kernel length, which is empirically
enough for the training to converge. We used Nlevel = 4 opti-
mization levels, and Nepoch = 3 so the total number of epochs
was 12. We set Niter = 6 of the unrolled neural network.
For training the reconstruction network with existing trajec-
tories (radial, spiral, and SPARKLING-optimized), we also
used 12 training epochs. We used the Adam optimizer [53],
with parameter β = [0.5, 0.999], for both trajectories ω and
network parameters θ . The learning rate linearly decayed from
1e-3 to 0 for the trajectory update, and from 1e-5 to 0 for
the network update. We did not observe obvious over-fitting
phenomena on the validation set. The training on a Intel Xeon
Gold 6138 CPU and an Nvidia RTX2080Ti GPU took around
120-150 hours.4

E. Prospective Studies

Table I details the scanning protocols of the RF-spoiled,
gradient echo (GRE) sequences used. For in-vivo acquisitions,
a fat-saturation pulse was applied before the tip-down RF

3https://mrsrl.stanford.edu/ brian/vdspiral/
4The code is available at https://github.com/guanhuaw/Bjork
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Fig. 2. PSFs of different sampling patterns. Each middle plot is the
averaged profile of different views (angles) through the origin. The FWHM
for undersampled radial, BJORK and SPARKLING is respectively 1.5,
1.6, 2.1 pixels.

pulse. We chose the TR and FA combination for desired
T1-weighed contrast. For radial-like sequences, we tested a
GRE sequence with 3 different readout trajectories: standard
undersampled radial, BJORK initialized with undersampled
radial, and SPARKLING initialized with undersampled radial.
Radial-full means the fully sampled radial trajectory. The
simulation experiments (evaluation) and real experiments use
the same readout trajectory.

We also acquired an additional dual-echo Cartesian GRE
image, for generating the sensitive map and (potentially)
B0 map. The sensitivity maps were generated by ESPIRiT [52]
methods. The sequences were programmed with TOPPE [48],
and implemented on a GE MR750 3.0T scanner with a Nova
Medical 32 channel Rx head coil. Subjects gave informed
consent under local IRB approval. For phantom experiments,
we used a water phantom with 3 internal cylinders.

The k-space mapping was implemented on a water phantom.
The thickness of the pencil-beam was 2mm × 2mm. The
trajectory estimates were based on an average of 30 repetitions.

IV. RESULTS

A. Quantitative Results of Simulation Reconstruction
Study

The test set includes 1520 slices, and the validation
set includes 500 slices. Table II shows the quantitative
results (SSIM and PSNR). The proposed method has signif-
icant improvement compared with un-optimized trajectories
(P < 0.005). It also has improved reconstruction quality
compared with SPARKLING considering unrolled neural
network-based reconstruction. Compared to undersampled

Fig. 3. The dash-dot line shows the 180◦ rotated BJORK trajectory.
The original and rotated trajectory have little overlap, suggesting that the
BJORK automatically learned a sampling pattern that exploits approxi-
mate k-space Hermitian symmetry.

Fig. 4. Learned radial-like trajectories with different acceleration ratios.

radial trajectory or SPARKLING trajectory, the proposed
method has a better restoration of details and lower levels of
artifacts. In the experiment, different random seeds in training
led to very similar learned sampling trajectories.

Fig. 2 displays point spread functions of 32-spoke radial-like
trajectories. The BJORK’s PSF has a narrower central-lobe
than SPARKLING and much fewer streak artifacts than stan-
dard radial. Fig. 3 shows the conjugate symmetry relationship
implicitly learned in the BJORK trajectory. Fig. 4 displays
optimization results under different acceleration ratios. Fig. 11
in the Appendix exhibits example slices. Fig. 12 in the
Appendix shows the gradient waveform of one shot on one
direction (from the optimized 32-spoke radial-like trajectory)
and the corresponding slew rate.

B. Multi-Level Optimization

Fig. 5 shows the evolution of sampling patterns using our
proposed multi-level optimization. Different widths of the
B-spline kernels introduce different levels of improvement
as the acquisition is optimized. Also shown are the results
of multi-level optimization and a nonparametric trajectory as
used early versions of the PILOT paper [31, versions 1-3].
Directly optimizing sampling points seems only to introduce a
small perturbation to the initialization. Fig. 13 in the Appendix
shows the training losses: the reconstruction loss �(·, ·), the
penalty on maximum gradient strength, and the penalty on
maximum slew rate. Transitions between different B-spline
kernel widths led to a stepped training loss descent pattern.
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Fig. 5. The evolution of the learned trajectories. Decim means Ns/L in (3). Nonparametric means the locations of each sampling points are
independent trainable variables, rather than being parameterized by quadratic B-spline kernels. SSIM denotes the average reconstruction quality on
the evaluation set of each level. The rightmost zoomed-in set shows the very small perturbations produced by the nonparametric approach (stuck
into local-minima).

TABLE II
QUANTITATIVE RESULTS FOR SIMULATION EXPERIMENTS

Fig. 6. Trajectories learned from different datasets.

C. Effect of Training Set

Fig. 6 shows radial-initialized trajectories trained by BJORK
with brain and knee datasets. Different trajectories are learned
from different datasets. We hypothesize that the difference is
related to frequency distribution of energy, as well as the noise
level, which requires further study. This phenomenon was also
observed in [22].

D. Effect of Reconstruction Methods

To test the influence of reconstruction methods on trajec-
tory optimization, we tried a single image-domain refinement

TABLE III
EFFECT OF DIFFERENT RECONSTRUCTION NETWORKS

INVOLVED IN THE JOINT LEARNING MODEL

network as the reconstruction method in the joint learning
model, similar to PILOT’s approach. Quadratic roughness
penalty reconstruction in (8) still is the network’s input. The
initialization of the sampling pattern is an undersampled radial
trajectory. Table III shows that the proposed BJORK recon-
struction method (unrolled neural network, UNN) improves
reconstruction quality compared to a single end-to-end
model. Such improvements are consistent with other com-
parisons between UNN methods and image-domain CNN
methods using fixed sampling patterns (reconstruction only)
[34], [39], [41].

E. Prospective Experiments

Fig. 7 shows the water phantom results for different
reconstruction algorithms. The rightmost column is the
fully-sampled ground truth (Radial-full). Note that the unrolled
neural network (UNN) here was trained with fastMRI brain
dataset, and did not receive fine-tuning in all prospective exper-
iments. The BJORK-optimized trajectory leads to fewer arti-
facts and improved contrast for the UNN-based reconstruction.

Fig. 8 showcases one slice from the in-vivo experiment. For
CS-based reconstruction, the undersampled radial trajectory
exhibits stronger streak artifacts than SPARKLING- and
BJORK-optimized trajectories. For UNN-based reconstruc-
tion, all trajectories’ results show reductions of artifacts
compared to CS-based reconstruction. The proposed method
restores most of the structures and fine details, with minimal
artifacts.

The Appendix also contains examples of reconstruction
results before/after eddy currents correction, the measurement
of actual k-space trajectories, and effectiveness of the warm
initialization (quadratic least-squares reconstruction).

V. DISCUSSION

This paper proposes an efficient learning-based frame-
work for the joint design of MRI sampling trajectories and
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Fig. 7. Representative results of the prospective phantom experiment using CS-based and UNN-based reconstruction algorithms. The sequences
involved were radial-like GRE (detailed in Table I) with T1w contrast. The parameters of UNNs are trained with fastMRI dataset without fine-
tuning. The readout length was 5.12 ms. The number of shots for undersampled trajectories was 32, and for the fully-sampled radial trajectory
is 320 (10× acceleration). The FOV was 22cm. Red boxes indicate the zoomed-in regions displayed on the upper right corner.

reconstruction parameters. Defining an appropriate objective
function for trajectory optimization is an open question.
We circumvented this long-lasting problem by directly using
the reconstruction quality as the training loss function in
a supervised learning paradigm. The workflow includes a
differentiable reconstruction algorithm for which the learning
process obtains an intermediate gradient w.r.t. the recon-
struction loss. However, solely depending on backpropaga-
tion and stochastic gradient descent cannot guarantee optimal
results for this non-convex problem. To improve the training
effect, we adopted several techniques, including trajectory
parameterization, multi-level training, warm initialization of
the reconstruction network, and an accurate approximation of
NUFFT’s Jacobian [33]. Results show that these approaches
can stabilize the training and provide better local minimizers
than previous methods.

We trained an unrolled neural network-based reconstruc-
tion method for non-Cartesian MRI data. The single image-
domain network used in previous work does not efficiently
remove aliasing artifacts. Additionally, the k-space “hard”
data-consistency trick for data fidelity [54], [55] is inapplicable
for non-Cartesian sampling. An unrolled algorithm can reach
a balance between data fidelity and the de-aliasing effect
across multiple iterations. For 3D trajectory design using
the proposed approach, the unrolled method’s memory con-
sumption can be huge. More memory-efficient reconstruction
models, such as the memory-efficient network [56] should be
explored in further study. We would also investigate recent

calibration-less unrolled neural networks, which do not require
external sensitivity maps, and shows improved performance
relative to MoDL [57].

For learning-based medical imaging algorithms, one main
obstacle towards clinical application is the gap between sim-
ulation and the physical world. Some factors include the
following.

First, inconsistency exists between the training datasets
and real-world acquisition, such as different vendors and
protocols, posing a challenge to reconstruction algorithms’
robustness and generalizability. Our training dataset consisted
of T1w/T2w/FLAIR Fast Spin-Echo (FSE or TSE) sequences,
acquired on Siemens 1.5T/3.0T scanners. The number of
receiver channels includes 4, 8, and 16, etc. We conducted the
in-vivo/phantom experiment on a 3.0T GE scanner equipped
with a 32-channel coil. The sequence is a GRE sequence that
has lower SNR compared to FSE sequences in the training
set. Despite the very large differences with the training set,
our work still demonstrated improved and robust results in
the in-vivo and phantom experiment, without any fine-tuning.

We hypothesize that several factors could contribute to
the generalizability: (1) the reconstruction network uses the
quadratic roughness penalized reconstruction as the initial-
ization, normalized by the median value. Previous works
typically use the adjoint reconstruction as the input of
the network. In comparison, our regularized initialization
helps provide consistency between different protocols, without
too much compromise of the computation time/complexity,
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Fig. 8. Results of the T1w prospective in-vivo experiment. The trajectories were also radial-like (detailed in Table I). The parameters of UNNs are
trained with the fastMRI dataset without fine-tuning. The readout time was 5.12 ms. The number of shots for undersampled trajectories was 32, and
for the fully-sampled radial trajectory is 320 (10× acceleration). The FOV was 22cm. Red boxes indicate the zoomed-in regions displayed on the
upper right corner.

(2) the PSF of the learned trajectory has a compact central
lobe, without significant streak artifacts. Thus the reconstruc-
tion is basically a de-blurring/denoising task that is a local low-
level problem and thus may require less training data than de-
aliasing problems. For de-blurring of natural images, networks
are usually adaptive to different noise levels and color spaces,
and require small cohorts of data [58], [59]. For trajectories
like radial and SPARKLING, in contrast, a reconstruction
CNN needs to remove global aliasing artifacts, such as the
streak and ringing artifacts. The dynamics behind the neural
network’s ability to resolve such artifacts is still an unsolved
question, and the training requires a large amount of diverse
data.

Secondly, it is not easy to simulate system imperfections like
eddy currents and off-resonance in the training phase. These
imperfections can greatly affect image quality in practice.
We used a trajectory measurement method to correct for
the eddy-current effect. Future work will incorporate field
inhomogeneity into the workflow.

Furthermore, even though the BJORK sampling was opti-
mized for a UNN reconstruction method, the results in
Fig. 7 and Fig. 8 suggest that the learned trajectory is
also useful with a CS-based reconstruction method or other
model-based reconstruction algorithms. This approach can still
noticeably improve the image quality by simply replacing
the readout waveform in the existing workflow, promoting
the applicability of the proposed approach, similar to [22].
We plan to apply the general framework to optimize a

Fig. 9. Compressed sensing-based reconstruction of a water phantom.
The left column is the reconstruction with the nominal trajectory, and
right is with the measured trajectory. Reconstruction with the mapped
trajectory introduces fewer artifacts.

trajectory for (convex) CS-based reconstruction and com-
pare to the (non-convex) open-loop UNN approach in future
work.
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Fig. 10. The measurement of the influence of the eddy currents on readout waveform. The solid line is the nominal trajectory, and the dotted line
is the measurement.

Though the proposed trajectory is learned via a data-driven
approach, it can also reflect the ideas behind SPARKLING
and Poisson disk sampling: sampling patterns having large
gaps or tight clusters of points are inefficient, and the sam-
pling points should be somewhat evenly distributed (but not
too uniform). Furthermore, BJORK appears to have learned
some latent characteristics, like the conjugate symmetry for
these spin-echo training datasets. To combine both methods’
strengths, a promising future direction is to use SPARKLING
as a primed initialization of BJORK.

The learning used here exploited a big public data set. As is
shown in the results, knee imaging and brain imaging led to
different learned trajectories. This demonstrates that the data
set can influence the optimization results, as was observed
in [22]. We also implemented a complementary experiment
on a smaller training set (results not shown). We found
that a small subset (3000 slices) also led to similar learned
trajectories. Therefore, for some organs where a sizeable
dataset is not publicly available, this approach may still work
with small-scale private datasets. To examine the influence
of scanner models, field strength, and sequences, follow-up
studies should investigate more diverse datasets.

The eddy-current effect poses a long-term problem for non-
Cartesian trajectories and impedes their widespread clinical
use. This work used a simple k-space mapping technique
as the correction method. The downside of this method is
its long calibration time, although it can be performed in a
scanner’s idle time. This method is waveform-specific, which
means that correction should be done for different trajectories.
Other methods relying on field probes can get a more accurate
correction with less time, albeit with dedicated hardware.
In a future study, the eddy current-related artifacts could be
simulated according to the GIRF model in the training phase,
so that the trajectory is learned to be robust against the eddy
current effect.

Aside from practical challenges with GPU memory, the
general approach described here is readily extended from
2D to 3D sampling trajectories [16]. A more challenging
future direction is to extend the work to dynamic imaging
applications like fMRI and cardiac imaging, where both the
sampling pattern and the reconstruction method should exploit
redundancies in the time dimension, e.g., using low-rank
models [60]. To optimize sampling in higher dimensions, the

TABLE IV
EFFECT OF DIFFERENT CONTRASTS ON LEARNED MODELS

proposed approach should also have additional regularization
on the PNS effect.

APPENDIX

A. Eddy-Current Effect

Fig. 9 displays the CS-based reconstruction of real acquisi-
tions reconstructed using both the nominally designed trajec-
tories and the measured trajectories.

Fig. 10 shows the results of the trajectory measurements.
Using the measurement of the actual trajectory seems to miti-
gate the influence of eddy current effects in the reconstruction
results.

B. Cross Contrast Validation

In this experiment, we trained the model with one image
contrast from the fastMRI brain dataset (without simulated
additive noise), and tested the learned trajectory with all con-
trasts (with simulated additive Gaussian noise whose variance
is 10−3 of the mean magnitude of the signal). Each contrast
has 4500 training slices and 500 test slices. We fine-tuned
the reconstruction unrolled neural network for different test
contrasts. The initialization is a 16-spoke radial trajectory.
Table IV shows the average reconstruction quality. The learned
trajectories are insensitive to different contrasts within the
fastMRI dataset.

C. Accurate Jacobian of NUFFT

We compared the trajectories learned with different NUFFT
Jacobian calculation methods: our accurate DFT approxima-
tion methods [33], and using auto-differentiation of NUFFT
(the approach used in PILOT [31]). To save time, we used only
one level of parameterization (Decim. = 4) and 6 epochs.
In Fig. 14, our approximation method leads to a learned
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Fig. 11. Examples from the simulation experiment using the UNN-based reconstruction algorithm, with three different acceleration ratios. Ns stands
for the number of shots or spokes. The first slice is FLAIR contrast. The second slice is T1w contrast. The third slice T2w contrast. Red boxes indicate
the zoom-in region, and red arrows point to reconstruction artifacts/blur. Below the zoomed-in regions are the corresponding error maps, compared
with fully sampled images.

Fig. 12. The gradient strength and slew rate of one spoke from BJORK-optimized radial trajectory.

trajectory consistent with intuition: sampling points should not
be clustered or too distant from each other. The quantitative

reconstruction results also demonstrate significant improve-
ment (950 test slices, SSIM: 0.930 vs. 0.957.)
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Fig. 13. Smoothed training training losses of a 16-spoke radial-initialized sequence. We use 4 levels and each level contains 3 epochs. The three
columns are the reconstruction loss, penalty on the maximum slew rate, and penalty on the maximum gradient strength.

Fig. 14. The learned trajectories with descent directions calculated by
different methods.

D. Benefit of the Warm Initialization

We compared two inputs of the unrolled neural network: the
adjoint of undersampling signal (A� y) and quadratic roughness
penalized reconstruction (A�A+λR�R)−1 A� y. The experiment
optimized a 16-spoke radial trajectory and used 1520 test
slices. The average reconstruction quality (SSIM values) of
the two settings are 0.944 and 0.950, respectively.
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