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Poisson Phase Retrieval in Very Low-Count Regimes
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Abstract—This paper proposes novel phase retrieval algorithms
for maximum likelihood (ML) estimation from measurements
following independent Poisson distributions in very low-count
regimes, e.g., 0.25 photon per pixel. Specifically, we propose a
modified Wirtinger flow (WF) algorithm using a step size based
on the observed Fisher information. This approach eliminates all
parameter tuning except the number of iterations. We also propose
a novel curvature for majorize-minimize (MM) algorithms with
a quadratic majorizer. We show theoretically that our proposed
curvature is sharper than the curvature derived from the supre-
mum of the second derivative of the Poisson ML cost function.
We compare the proposed algorithms (WF, MM) with existing
optimization methods, including WF using other step-size schemes,
quasi-Newton methods and alternating direction method of multi-
pliers (ADMM) algorithms, under a variety of experimental set-
tings. Simulation experiments with a random Gaussian matrix,
a canonical discrete Fourier transform (DFT) matrix, a masked
DFT matrix and an empirical transmission matrix demonstrate
the following. 1) As expected, algorithms based on the Poisson ML
model consistently produce higher quality reconstructions than
algorithms derived from Gaussian noise ML models when applied
to low-count data. 2) For unregularized cases, our proposed WF
algorithm with Fisher information for step size converges faster
than other WF methods, e.g., WF with empirical step size, back-
tracking line search, and optimal step size for the Gaussian noise
model; it also converges faster than the quasi-Newton method. 3)
In regularized cases, our proposed WF algorithm converges faster
than WF with backtracking line search, quasi-Newton, MM and
ADMM.

Index Terms—Low-count image reconstruction, non-convex op-
timization, poisson phase retrieval.

I. INTRODUCTION

P
HASE retrieval is an inverse problem with many applica-

tions in engineering and applied physics [1], [2], including

radar [3], X-ray crystallography [4], astronomical imaging [5],

Fourier ptychography [6], [7], [8], [9] and coherent diffractive
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imaging (CDI) [10]. In these applications, the sensing systems

can only measure the magnitude (or the square of the magnitude)

of the signal, for example, optical detection devices (e.g., CCD

cameras) cannot measure the phase of a light wave. The problem

of recovering the original signal from only the magnitude of such

linear measurements is called phase retrieval. Mathematically,

the goal is to recover the unknown signal x ∈ F
N from mea-

surements {yi} that follow some statistical distribution

yi ∼ p(|a�
ix|2 + bi), (1)

where p(·) is a probability density function. Here, a�
i ∈ C

N

denotes the ith row of the system matrix A ∈ C
M×N , where

i = 1, . . . ,M , and bi ∈ R+ denotes a known mean background

signal for the ith measurement, e.g., as arising from dark cur-

rent [11]. Here the field F = R or F = C depending on whether

x is known to be real or complex.

The sensing vectors {a�
i} are often assumed to follow some

structure, e.g., i.i.d. random Gaussian, or the coefficients of

discrete Fourier transform (DFT). For the random Gaussian

case, Candès et al. [12] showed that M ∼ O(N logN) samples

are sufficient to recover the signal; Bandeira et al. [13] posed

a conjecture that M = 4N − 4 is necessary and sufficient to

uniquely recover the original signal from noiseless measure-

ments. However, under very low-count regimes with noise, a

much larger M is often needed to successfully reconstruct the

signal. Additionally, whenA corresponds to a Fourier transform,

the measurements describe only the magnitudes of a signal’s

Fourier coefficients, and one usually does not have enough

information to recover the signal; while the Fourier transform is

injective, its point-wise absolute value is not [14]. So a common

approach is to create redundancy in the measurement process by

additional illuminations of the object using different masks [15].

Banderia et al. [14] showed that by using a set of O(logM)
random masks can increase the probability of recovering the

signal.

A. Background for Gaussian Phase Retrieval

In many previous works, the measurement vector y ∈ R
M

was assumed to have statistically independent elements follow-

ing Gaussian distributions with variance σ2:

yi ∼ N (|a�
ix|2 + bi, σ

2). (2)

For this Gaussian noise model, the ML estimate ofx corresponds

to the following non-convex optimization problem

x̂ = argmin
x∈FN

g(x), g(x) �
�

i

�

�

�
yi − bi −

�

�a�
ix
�

�

2
�

�

�

2

. (3)
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To solve (3), numerous algorithms have been proposed. One

approach reformulates (3) by “matrix lifting” [12], [15], [16],

where a rank-one matrix is introduced and if the rank constraint

is relaxed, then the transformed problem is convex and can be

solved by semi-definite programming (SDP). The SDP based

algorithms can yield robust solutions but can be computational

expensive, especially on large-scale data. Another approach is

Wirtinger Flow (WF) [17] and its variants [18], [19], [20] that de-

scend the cost function with a (projected/thresholded/truncated)

Wirtinger gradient using an appropriate step size. In the classic

WF algorithm [17], the gradient 1 for the Gaussian cost function

(3) is

∇g(x) = 4A� diag{|Ax|2 − y + b}Ax. (4)

To descend the cost function, reference [17] used a heuristic

where the step size μ is rather small for the first few iterations

and gradually increases as the iterations proceed. The intuition

is that the gradient is noisy at the early iterations so a small

step size is preferred. A drawback of this approach is that one

needs to select hyper-parameters that control the growth of μ.

An alternative approach is to perform backtracking for μ at

each iteration [21], i.e., by reducing μ until the cost function

decreases sufficiently. This approach guarantees decreasing the

cost function monotonically but can increase the compute time

of the algorithm due to the variable number of inner iterations.

Jiang et al. [18] derived the optimal step size for the Gaussian

ML cost function (3) and showed faster convergence than the

heuristic step size when measurements are noiseless or follow

i.i.d. Gaussian distribution. Cai et al. [19] proposed thresholded

WF and showed it can achieve the minimax optimal rates of

convergence, but that scheme requires an appropriate selection

of tuning parameters. Soltanolkotabi et al. [20] reformulated the

phase retrieval problem as a nonconvex optimization problem

and proved that projected Wirtinger gradient descent, when

initialized in a neighborhood of the desired signal, has a linear

convergence rate. However, it can be difficult to find an initial

estimate satisfying the conditions mentioned in [20].

An alternative to cost function (3) (aka intensity model) is

the magnitude model that works with the square root of y.

In particular, [22] proposed an algorithm known as Gerchberg

Saxton (GS) that introduced a new variable θ to represent the

phase, leading to the following joint optimization problem

x̂, θ̂ = argmin
x∈FN ,θ∈CN

�Ax− diag{
�

max(y − b,0)}θ�22,

subject to |θi| = 1, i = 1, . . ., N. (5)

The square root in (5) is reminiscent of the Anscombe

transform that converts a Poisson random variable into another

random variable that approximately has a standard Gaussian

distribution. However, that approximation is accurate when the

Poisson mean is sufficiently large (e.g., above 5), whereas this

paper focuses on the lower-count regime. The convergence and

recovery guarantees of GS were studied in [23], [24].

1If x ∈ RN , then all gradients w.r.t. x in this paper should be real and hence
use only the real part of expressions like (4).

In addition to matrix-lifting, WF, GS and their variants, several

other algorithms have been proposed to solve phase retrieval

problems under the assumption of the Gaussian measurement

noise, including Gauss-Newton methods [25], Limited-memory

Broyden–Fletcher–Goldfarb–Shanno (LBFGS) updates to ap-

proximate the Hessian in the Newton’s method [26], majorize-

minimize (MM) methods [21], alternating direction method of

multipliers (ADMM) [27], and an iterative soft-thresholding

with exact line search algorithm (STELA) [28]. It seems unlikely

that any of the many existing methods for the Gaussian noise case

are optimal for low-count Poisson noise.

B. Background for Poisson Phase Retrieval

In many low-photon count applications [8], [29], [30], [31],

[32], [33], [34], especially in [34], where 0.25 photon per pixel

on average is considered, a Poisson noise model is more appro-

priate:

yi ∼ Poisson(|a�
ix|2 + bi). (6)

ML estimation of x for the model (6) corresponds to the follow-

ing optimization problem

x̂ = argmin
x∈FN

f(x), f(x) �
�

i

ψ(a�
ix; yi, bi),

ψ(v; y, b) � (|v|2 + b)− y log(|v|2 + b). (7)

Here, f(x) denotes the negative log-likelihood corresponding

to (6), ignoring irrelevant constants independent of x, and the

function ψ(·; y, b) denotes the marginal negative log-likelihood

for a single measurement, where v ∈ C. Because |v| is real, it is

helpful to re-write ψ in the form ψ(v; y, b) = φ(|v|; y, b), where

φ(r; y, b) � (r2 + b)− y log(r2 + b), r ∈ R+. (8)

One can verify that the function φ(r; y, b) is non-convex over

r ∈ R+ when 0 < b < y. That property, combined with the

modulus within the logarithm in (7), makes (7) a challenging

optimization problem. Similar problems for b = 0 have been

considered previously [6], [7], [15], [35], [36], [37], [38], but

many optical sensors also have Gaussian readout noise [7], [38]

so that the mean background signal is unlikely to be zero. To

accommodate the Gaussian readout noise, a more precise model

would consider a sum of Gaussian and Poisson noise. However,

the log likelihood for a Poisson plus Gaussian distribution is

complicated, so a common approximation is to use a shifted

Poisson model [39] that also leads to the cost function in

(7). An alternative to the shifted Poisson model could be to

work with an unbiased inverse transformation of a generalized

Anscombe transform approximation [9], [40] or use a surrogate

function that tightly upper bounds the challenging Poisson plus

Gaussian ML objective function and apply a majorize-minimize

algorithm [41]. Algorithms for the Poisson plus Gaussian noise

model are interesting topics for future work.

Existing algorithms for the Poisson phase retrieval are limited

in the literature. Chen et al. [36] proposed to solve the Poisson

phase retrieval problem by minimizing a nonconvex functional

as in the Wirtinger flow (WF) approach; Bian et al. [6] used

Poisson ML estimation and truncated Wirtinger flow in Fourier
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ptychographic (FP) reconstruction. Zhang et al. [42] consider

a scale square root of (6) for the common case with bi = 0.

Chang et al. [43] derived a (TV) regularized ADMM algorithm

for Poisson phase retrieval and established its convergence. Re-

cently, Fatima et al. [44] proposed a double looped primal-dual

majorize-minimize (PDMM) algorithm.

In this paper, we propose novel algorithms for the Poisson

phase retrieval problem and report empirical comparisons of

the convergence speed and reconstruction quality of algorithms

under a variety of experimental settings. We presented a pre-

liminary version of this work at the 2021 IEEE international

conference on image processing (ICIP) [45]. We significantly

extended this work by testing our proposed method under more

practical experimental settings. We also added comparisons to

related works such as [18], [26].

The main contributions of this paper can be summarized as

follows:

1) We propose a novel method for computing the step size

for the WF algorithm that can lead to faster convergence

compared to empirical step size [17], backtracking line

search [21], optimal step size derived for the Gaussian

noise model [18], and LBFGS updates to approximate the

Hessian in Newton’s method [26]. Moreover, our proposed

method can be computed efficiently without any tuning

parameter.

2) We derive a majorize-minimize (MM) algorithm with

quadratic majorizer using a novel curvature. We show

theoretically that our proposed curvature is sharper than

the curvature derived from the upper bound of the second

derivative of the Poisson ML cost function.

3) We present numerical simulation results under random

Gaussian, canonical DFT, masked DFT and empirical

transmission system matrix settings for very low-count

data, e.g., 0.25 photon per pixel. We show that under such

experimental settings, algorithms derived from the Pois-

son ML model produce consistently higher reconstruction

quality than algorithms derived from Gaussian ML model,

as expected. Furthermore, the reconstruction quality is

further improved by incorporating regularizers that exploit

assumed properties of the signal.

4) We compare the convergence speed (in terms of cost func-

tion and peak signal-to-noise ratio (PSNR) vs. time) of WF

with Fisher information with other methods for step size

(backtracking line search, optimal Gaussian) and LBFGS

quasi-Newton method. We also compare the convergence

speed of regularized WF with MM and ADMM [46], using

smooth regularizers such as corner-rounded anisotropic

total variation (TV). For both cases, our proposed WF

Fisher algorithm converges the fastest under all system

matrix settings.

The rest of this paper is organized as follows. Section II

introduces the proposed modified WF method with Fisher infor-

mation for step size; and derives the improved curvature for the

MM algorithm. Section III illustrates implementation details of

algorithms discussed in Section II. Section IV provides numer-

ical results using simulated data under different experimental

settings. Section V and Section VI discuss and conclude this

paper and provide future directions.

Notation: Bold upper/lower case letters (e.g., A, x, y, b)

denote matrices and column vectors, respectively. Italics (e.g.,

μ, y, b) denote scalars. yi and bi denote the ith element in

vector y and b, respectively. R
N andCN denoteN -dimensional

real/complex normed vector space, respectively. (·)∗ denotes

the complex conjugate and (·)� denotes Hermitian transpose.

diag{·} is a diagonal matrix constructed from a column vector.

Unless otherwise defined, a subscript denotes outer iterations

and superscript denotes the inner iterations, respectively. For

example, xk denotes the estimate of x at the kth iteration of

an algorithm. � denotes element-wise division. The first and

second derivatives of a scalar function ψ are denoted ψ̇ and

ψ̈, respectively. For gradients associated with complex num-

bers/vectors, the notation ψ̇(·) and ∇(·), should be considered

as an ascent direction, not as a derivative.

II. METHODS

A. Wirtinger Flow (WF)

This section describes the modified WF algorithm with pro-

posed step-size approach based on Fisher information. To gen-

eralize the Wirtinger flow algorithm to the Poisson cost function

(7), the most direct approach simply replaces the gradient (4)

by (9) in the WF framework [42] and performs backtracking to

find the step-size μ, as in [21]. We propose a faster alternative

next. We treat 0 log 0 as 0 in (7) because a Poisson random

variable with zero mean can only take the value 0. With this

assumption, one can verify thatψ has the following well-defined

ascent direction (negative of descent direction [47]) and a second

derivative:

ψ̇(v; y, b) = 2v

�

1− y

|v|2 + b

�

, v ∈ C.

ψ̈(v; y, b) = sign(v)

�

2 + 2y
|v|2 − b

(|v|2 + b)2

�

,

|ψ̈(v; y, b)| ≤ 2 +
y

4b
. (9)

1) Fisher Information for Poisson Model: We first make a

quadratic approximation along the gradient direction of the cost

function at each iteration, and then apply one step of Newton’s

method to minimize that 1D quadratic. Because computing the

Hessian can be computationally expensive in large-scale prob-

lems, we follow the statistics literature by replacing the Hessian

by the observed Fisher information when applying Newton’s

method [48], [49]. Our Fisher approach is based on the fact that

the observed Fisher information is the negative Hessian matrix

of the incomplete data log-likelihood functions evaluated at the

observed data, and hence can provide a good approximation

to the Hessian with enough data [50]. Moreover, the Fisher

information matrix is always positive semi-definite, and avoids

calculation of second derivatives. Using Fisher information in

gradient-based algorithms has a long history in statistics and is

central to Fisher’s method of scoring [48], [49], [51], [52].
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Specifically, we first approximate the 1D line search problem

associated with (7) by the following Taylor series

μk = argmin
µ∈R

fk(μ),

fk(μ) � f(xk − μ∇f(xk)) ≈ f(xk)− �∇f(xk)�22 μ

+
1

2
∇f(xk)

�∇2f(xk)∇f(xk)μ
2, (10)

where one can verify that the minimizer is

μk =
�∇f(xk)�22

real{∇f(xk)�∇2f(xk)∇f(xk)}
. (11)

We next approximate the Hessian matrix ∇2f(x) using the

observed Fisher information matrix:

∇2f(x) ≈ I(x, b)

� Ey

�

∇2f(x;y, b)
�

�

�
x, b

�

= Ey

�

(∇f(x;y, b)) (∇f(x;y, b))�
�

�

�
x, b

�

= A�
Ey

�

�

ψ̇
·
(v;y, b)

��

ψ̇
·
(v;y, b)

�� �
�

�
v, b

�

A.

(12)

Here the dot subscript notation ψ̇
·
(v;y, b) denotes element-

wise application of the function ψ̇ to its arguments (as in the

Julia language), so the gradient ψ̇
·
(v;y, b) is a vector in C

M .

One can verify that the marginal Fisher information for a single

term ψ(v; y, b) is

Ī(v, b) = Ey

�

�

�ψ̇(v; y, b)
�

�

2
�

�

�
v, b

�

=
4|v|2

|v|2 + b
, v ∈ C, b > 0. (13)

Substituting (13) into (12) using the statistical independence

of the elements of the gradient vector, and then substituting (12)

into (11) yields the simplified step-size expression

μk �
�∇f(xk)�22
d�
k D1 dk

∈ R+, (14)

where dk � A∇f(xk) and D1 � diag{Ī
·
(Axk, b)}. (Careful

implementation avoids redundant matrix-vector products.)

This approach removes all tuning parameters other than num-

ber of iterations. In addition, using the observed Fisher infor-

mation leads to a larger step size than using the best Lipschitz

constant of (7), i.e., maxi{2 + yi/(4bi)} when bi > 0, hence

accelerating convergence.

To facilitate fair comparisons in subsequent sections, we also

derive a Fisher information step size for the Gaussian noise

model here. The marginal Fisher information for the scalar case

of the Gaussian cost function (3) is

Ī(v, b) = Ey

�

�

�4|v|(|v|2 − b− y)
�

�

2
�

�

�
v, b

�

= 16|v|2(|v|2 + b). (15)

Substituting (15) into (14), one can also derive a convenient

step size μk for the WF algorithm for the Gaussian model (3)

using its observed Fisher information to approximate the exact

Hessian. We used such step size in our experiment as will be

discussed in Section IV.

2) WF With Regularization: To potentially improve the re-

construction quality, one often adds a regularizer or penalty to the

Poisson log-likelihood cost function, leading to a cost function

of the form

Ψ(x) = f(x) + βR(x), (16)

where R : F
N �→ R+ is a regularizer and β ≥ 0 denotes the

regularization strength. The general methods in the paper are

adaptable to many regularizers, but for simplicity we focus

on regularizers that are based on the assumption that Tx is

approximately sparse, for a K ×N matrix T . In particular,

we used the corner-rounded anisotropic finite-difference matrix

(aka total variation (TV)) for regularization. Because the WF

algorithm requires a well-defined gradient, we replaced the �1
norm term with a Huber function regularizer of the form

R(x) = 1
�h

·
(Tx;α) = min

z

1

2
�Tx− z�22 + α�z�1,

h(t;α) �

�

1
2 |t|2, |t| < α,
α|t| − 1

2α
2, otherwise,

(17)

which involves solving for z analytically in terms of x. This

smooth regularizer is suitable for gradient-based methods like

WF and for quasi-newton methods like LBFGS, as well as for

versions of MM and ADMM. We refer to (17) as “TV regu-

larization” even though it is technically (anisotropic) “corner

rounded” TV.

For the smooth regularizer (17), we majorize the Huber func-

tionh(t) using quadratic polynomials with the optimal curvature

using the ratio ḣ(z)/z [52, p. 184], so that the step size μk

becomes

μk �
�∇f̃(xk)�22

∇f̃(xk)� (A�D1A+ βT �D2T )∇f̃(xk)
,

∇f̃(xk) � ∇f(xk) + βT �ḣ
·
(Tx;α),

D2 � diag{min
·
(α� |Txk|, 1)}, (18)

where � denotes element-wise division.

3) Truncated Wirtinger Flow: To potentially reduce the error

in gradient estimation due to noisy measurements, Chen et al.

[36] proposed a truncated Wirtinger flow (TWF) approach that

uses only those measurements satisfying a threshold criterion to

calculate the Wirtinger flow gradient. In particular, the threshold

criterion [6] is defined as

�

�yi − |a�
ix|2

�

� ≤ ah
�

�y − |Ax|2
�

�

1

M
· |a

�
ix|2

�x�2
, (19)

where ah is a user-defined parameter that controls the threshold

value. When ah is chosen appropriately, yi values that do not

satisfy (19) will be truncated when calculating the gradient, to

try to reduce noise. However, we did not use gradient truncation

in our experiments (Section IV) because we did not observe
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any improvement on the cost function value at convergence for

various setting ofah compared to WF (shown in the supplement),

which is consistent with results in [7]. Furthermore, we found

that the TWF can instead be computationally inefficient because

it requires computing the truncated indices in each iteration,

especially when both the iteration number and M are large.

4) Summary: Algorithm 1 summarizes the Wirtinger flow

algorithm for the Poisson model that uses the observed Fisher

information for the step size and the optional gradient truncation

for noise reduction.

B. Majorize-Minimize (MM)

This section introduces our proposed MM algorithm with

a quadratic majorizer using a novel curvature formula for the

Poisson phase retrieval problem.

A majorize-minimize (MM) algorithm [54] is a generalization

of the expectation-maximization (EM) algorithm that solves an

optimization problem by iteratively constructing and solving

simpler surrogate optimization problems. Quadratic majoriz-

ers are very common in MM algorithms because they have

closed-form solutions and are well-suited to conjugate gradient

methods.

The bounded curvature property derived in (9) enables us to

derive an MM algorithm [55] with a quadratic majorizer for (7).

Fig. 1 illustrates that one can construct a quadratic majorizer on

R for (8). With a bit more work to generalize to C
N , a quadratic

majorizer for the Poisson ML cost function (7) has the form

q(x;xk) � f(xk) + real
�

(x− xk)
�A�ψ̇

·
(Axk;y, b)

�

+
1

2
(x− xk)

�A�WA(x− xk), (20)

where W denotes a diagonal curvature matrix. From (9), one

choice of W uses the maximum of ψ̈:

Wmax � diag{2 + y/(4b)} ∈ R
M×M . (21)

Fig. 1. Quadratic majorizers for the non-convex Poisson log-likelihood func-
tion φ(r; y, b) when y = 6 and b = 2.

However, Wmax is suboptimal because the curvature of a

quadratic majorizer of ψ(v; ·) varies with v = [Axk]i. For ex-

ample, when |v| → ∞, then (7) is dominated by the quadratic

term having curvature = 2; so if y is large and b is small, then

Wmax can be much greater than the optimal curvature 2. Thus,

instead of using Wmax to build majorizers, we propose to use

the following improved curvature:

W imp � diag{c
·
(Axk;y, b)} ∈ R

M×M ,

c(s; y, b) �

§

¨

©

ψ̈

�

b+
√

b2+b|s|2
|s| ; y, b

�

, s �= 0,

2, s = 0.
(22)

One can verify lims→0 c(s; y, b) = 2 so (22) is continuous

over s ∈ C. The next subsection proves that (22) provides a

majorizer in (20) and is an improved curvature compared to

Wmax, though it is not necessarily the sharpest possible [56]; the

sharpest (optimal) curvature copt(s) in real case can be expressed

as

copt(s) = sup
r �=s

2
�

φ(r)− φ(s)− φ̇(s)(r − s)
�

(r − s)2
, (23)

where φ(·) is the marginal Poisson cost function defined in (8).

However, (23) usually does not have a closed-form solution due

to its transcendental derivative; while our W imp has a simpler

form and is more efficient to compute. Fig. 2 visualizes the

quadratic majorizer with different curvatures and the original

Poisson cost function (7). We find the optimal curvature numer-

ically by first discretizing r and then finding the supremum over

all discrete segments.

For the ML case where constraints or regularizers are absent,

the quadratic majorizer (20) associated with (21) or (22) leads

to the following MM update:

xk+1 = argmin
x∈FN

q(x;xk)

= xk − (A�WA)−1A�ψ̇
·
(Axk;y, b). (24)
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Fig. 2. Comparison of quadratic majorizers with maximum, improved and the
optimal curvatures, for y = 6 and b = 2, visualized around r = 0.5. All three
curves touch at the point r = s = 10 by construction.

If x ∈ R
N , then the MM update for xk+1 is

xk − (real{A�WA})−1real{A�ψ̇
·
(Axk;y, b)}.

When N is large, the matrix inverse operation in (24) is im-

practical, so we run a few inner iterations of conjugate gradient

(CG) to descend the quadratic majorizer and hence descend the

original cost function.

1) Proof of the Proposed Curvature: For simplicity, we drop

the subscript i and irrelevant constants and focus on the negative

log-likelihood for real case for simplicity as in (8).

One can generalize the majorizer derived here for (8) to the

complex case by taking the magnitude and some other minor

modifications.

First, we consider some simple cases:

1) If y = 0, then (8) is a quadratic function, so no quadratic

majorizer is needed.

2) If b = 0 and y > 0 then (8) has unbounded 2nd derivative

so no quadratic majorizer exists.

3) If b = 0 and r = 0, then y must be zero because a Poisson

random variable with zero mean can only take the value

0. Thus again quadratic majorizer is not needed.

So hereafter we assume that y > 0, b > 0. Under these as-

sumptions, the derivatives of (8) are:

φ̇(r) = 2r

�

1− y

r2 + b

�

, (25)

φ̈(r) = 2 + 2y
r2 − b

(r2 + b)2
, (26)

φ(3)(r) =
2yr(3b− r2)

(r2 + b)3
, (27)

where φ(3)(r) denotes the third derivative. Clearly, φ̇(r) is

convex on (−∞,−
√
3b] and [0,

√
3b], and concave on [−

√
3b, 0]

and [
√
3b,+∞), based on the sign of φ(3)(r).

A quadratic majorizer of φ(·) at point s has the form:

Φ(r; s) = φ(s) + φ̇(s)(r − s) +
1

2
c(s)(r − s)2. (28)

The derivative of this function (w.r.t. r) is:

Φ̇(r; s) = c(s)(r − s) + φ̇(s). (29)

By design, this kind of quadratic majorizer satisfies Φ(s; s) =
φ(s) and Φ̇(s; s) = φ̇(s). From (27), we note that r2 = 3b is a

maximizer of φ̈ so the maximum curvature is:

φ̈(r) ≤ 2y
2b

(4b)2
+ 2 = 2 +

y

4b
. (30)

Proposition: Φ(r; s) defined in (28) is a majorizer of φ(r)
when c(s) = cimp(s), where:

cimp(s) �

�

φ̈(u(s)) , s �= 0,

lim
s→0

φ̈(u(s)) , s = 0,
(31)

where

u(s) �
b+

√
b2 + bs2

s
. (32)

By construction, the proposed curvature c(s) is at most the max

curvature given in (30).

Proof: Because of the symmetry of φ̈(r), it suffices to prove

the proposition for s ≥ 0 without loss of generality. First we

consider some trivial cases:

1) If s = 0, one can verify lims→0 φ̈(u(s)) = 2. In this case,

Φ(r; s) is simply

Φ(r; 0) = φ(0) +
1

2
c(0)r2

= r2 + b− y log(b)

≥ r2 + b− y log(r2 + b) = φ(r). (33)

2) If s =
√
3b, one can verify

φ̈(g(
√
3b)) = 2 +

y

4b
, (34)

which equals the maximum curvature.

Hereafter, we consider only s > 0 and s �=
√
3b.

To proceed, it suffices to prove

∀r ∈ (−∞, s], φ̇(r) ≥ Φ̇(r; s),

∀r ∈ [s,+∞), φ̇(r) ≤ Φ̇(r; s), (35)

because if (35) holds, then ∀r̃ < s:

Φ(s; s)− Φ(r̃; s) =

" s

r̃

Φ̇(r; s)dr

≤
" s

r̃

φ̇(r)dr = φ(s)− φ(r̃), (36)

and ∀r̃ > s:

Φ(r̃; s)− Φ(s; s) =

" r̃

s

Φ̇(r; s)dr

≥
" r̃

s

φ̇(r)dr = φ(r̃)− φ(s). (37)

Together with Φ(s; s) = φ(s), we have shown that (35) implies

Φ(r; s) ≥ φ(r), ∀r ∈ R.

Substituting Φ̇(r; s) = c(s)(r − s) + φ̇(s) into (35), one can

verify that showing (35) becomes showing

cimp(s) ≥
φ̇(r)− φ̇(s)

r − s
, ∀r ∈ R, r �= s. (38)
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Furthermore, when s > 0, the parabola Φ(·; s) is symmetric

about its minimizer:

δ = δ(s) � arg minr Φ(r; s) = s− φ̇(s)

cimp(s)

=
s φ̈(u(s))− φ̇(s)

φ̈(u(s))
≥ 0. (39)

This minimizer is nonnegative because φ̇(s) ≤ 2 s and

cimp(s) = φ̈(u(s)) = 2 +
ys2(b+

√
b2 + bs2)

b(b+ s2 +
√
b2 + bs2)2

≥ 2. (40)

Thus, if φ(r) ≤ Φ(r; s) when r ≥ 0, we have φ(−r) =
φ(r) ≤ Φ(r; s) ≤ Φ(−r; s) = Φ(r + 2δ; s), so it suffices to

prove (38) only for r ≥ 0, which simplifies (38) to showing

cimp(s) ≥
φ̇(r)− φ̇(s)

r − s
, ∀r ≥ 0, r �= s. (41)

In short, if (41) holds, then Φ(r; s) ≥ φ(r), ∀r ∈ R.

To prove (41), we exploit a useful property of cimp(s). Under

geometric view, cimp(s) defines (the ratio of) an affine function

connecting points (u(s), φ̇(u(s))) and (s, φ̇(s)) is tangent to

φ̇(r) at point r = u(s), so that one can verify

φ̈(u(s)) = cimp(s) =
φ̇(u(s))− φ̇(s)

u(s)− s
, u(s) �= s. (42)

The reason why u(s) �= s is that one can verify u(s) = s
implies s =

√
3b for s > 0 that has already been proved above.

Let ξ(r) = (φ̇(r)− φ̇(s))/(r − s), where r ≥ 0 and r �= s,

plugging in φ̇(r) and φ̇(s) yields:

ξ(r) = 2 +
2y(sr − b)

(s2 + b)(r2 + b)
. (43)

Differentiating w.r.t. r leads to:

ξ̇(r) =
2y

s2 + b
· −sr2 + 2br + bs

(r2 + b)2
, (44)

where one can verify the positive root of −sr2 + 2br + bs = 0
is u(s) that is given by (32).

Together with ξ̇(r) > 0 when r ∈ (0, u(s)) and ξ̇(r) < 0
when r ∈ (u(s),∞), we have (41) holds because ξ(r) achieves

its maximum at ξ(u(s)):

ξ(r) ≤ ξ(u(s)) = cimp(s). � (45)

2) Regularized MM: For the regularized cost function (16),

one can use the quadratic majorizer (20) as a starting point. If

the regularizer is prox-friendly, then the minimization step of an

MM algorithm for the regularized optimization problem is

xk+1 = argmin
x∈FN

q(x;xk) + β�Tx�1. (46)

To solve (46), one can apply proximal gradient methods [57],

[58], [59]. We can use the proximal optimized gradient method

(POGM) with adaptive restart [59] that provides faster worst-

case convergence bound than the fast iterative shrinkage-

thresholding algorithm (FISTA) [58].

For non-proximal friendly regularizers, we can “smooth”

it using the Huber function (17), leading to the optimization

problem of the form

xk+1 = argmin
x∈FN

q(x;xk) + β1�h
·
(Tx;α), (47)

and we use nonlinear CG for this minimization, with step sizes

based on Huber’s quadratic majorizer.

Algorithm 2 summarizes our MM algorithm with quadratic

majorizer using the improved curvature (22).

III. IMPLEMENTATION DETAILS

This section introduces the implementation details of algo-

rithms discussed in the previous section and our experimental

setup for the numerical simulation (Section IV). We ran all

algorithms on a server with Ubuntu 16.04 LTS operating system

having Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20 GHz and

187 GB memory. All elements in the measurement vector y

were simulated to follow independent Poisson distributions per

(6). All algorithms were implemented in Julia v1.7.3. All the

timing results presented in Section IV were averaged across 10

independent test runs.

A. Initialization

Luo et al. [60] proposed the optimal initialization strategy

under random Gaussian system matrix setting with Poisson

noise. Since this paper focuses on very low-count regimes, the

scale factor κ in [60] is a very small number so that y − κ ≈ y.

Therefore, we used x̃0, the leading eigenvector of A� diag{y �
(y + 1)}A (instead of A� diag{(y − κ)� (y + 1)}A) as an

initial estimate of x.

To accommodate signals of arbitrary scale, we scaled that

leading eigenvector using a nonlinear least-square (LS) fit:

α̂ = argmin
α∈R

�y − b− |αAx̃0|2�22 =

�

(y − b)�|Ax̃0|2
�Ax̃0�24

.

(48)

Finally, our initial estimate is the element-wise absolute value

of α̂x0 if x is known to be real and nonnegative; and is α̂x0

otherwise.
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Fig. 3. Reference image from [31] used in HCDI and our canonical DFT
experiments.

B. Ambiguities

To handle the global phase ambiguity, i.e., all the algorithms

can recover the signal only to within a constant phase shift

due to the loss of global phase information, before quantitative

comparison, we corrected the phase of x̂ by

x̂corrected � sign (�x̂,x�) x̂. (49)

C. System Matrix and True Signals

1) System Matrix: We investigated 4 different choices for

the system matrix A: complex random Gaussian matrix (having

80000 rows), canonical DFT (with reference image), masked

DFT matrix (with 20 masks) and a transmission matrix (ETM)

that is acquired empirically through physical experiments [61],

[62].

For the canonical DFT, we used a reference image as used in

holographic coherent diffraction imaging (HCDI) [31], specifi-

cally, the measurements follow

y ∼ Poisson(|F{[x,0,R]}|2 + b), (50)

where F denotes discrete Fourier transform (DFT) and R de-

notes a known reference image. This paper uses the reference

image shown in Fig. 3, taken by screen shot from [31].

For the masked DFT case, the measurement vector y in the

Fourier phase retrieval problem has elements with means given

by

E[y[ñ]] =

�

�

�

�

�

N−1
�

n=0

x[n]e−ı2πnñ/Ñ

�

�

�

�

�

2

+ b[ñ], (51)

where Ñ = 2N − 1 (here we consider the over-sampled case),

and ñ = 0, . . ., Ñ − 1. After introducing redundant masks, the

measurement model becomes

E[yl[ñ]] =

�

�

�

�

�

N−1
�

n=0

x[n]Dl[n]e
−ı2πnñ/Ñ

�

�

�

�

�

2

+ bl[ñ], (52)

where E[yl] ∈ R
Ñ for i = 1, . . . , L and Dl denotes the lth of

L masks. Our experiment used L = 21 masks to define the

overall system matrix A ∈ C
LÑ×N , where the first mask has

full sampling and the remaining 20 have sampling rate 0.5 with

random sampling patterns.

Fig. 4. True images used in the simulations. Subfigure (d) shows the magnitude
of a complex image.

We scaled each system matrix by a constant factor such that

the average count of measurement vector y is 0.25, and the

background count b is set to be 0.1.

2) True Images: We considered 4 images as the true images

in our experiments Fig. 4 shows such images; (b) is from [63],

(c) is from [31], (d)–(f) are from [62]. We used subfigure (a)

for experiments with random Gaussian system matrix, (b) for

masked DFT matrix, (c) for canonical DFT matrix and (d) for

empirical transmission matrix, respectively.

IV. NUMERICAL SIMULATIONS RESULTS

A. Convergence Speed of WF With Fisher Information

This section compares convergence speeds, in terms of cost

function vs. time and PSNR vs. time, between WF using our

proposed Fisher information for step size, and empirical step

size [15], backtracking line search [21], the optimal step size for

the Gaussian ML cost function [18], and LBFGS quasi-Newton

to approximate the Hessian in Newton’s method [26]. The

LBFGS algorithm was from the “Optim.jl” Julia package [64].

Fig. 5 shows that, for all system matrix choices, WF with Fisher

information converged faster (in terms of decreasing the cost
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Fig. 5. Comparison of convergence speed for various WF methods and LBFGS
under different system matrix settings. The “Optim Gau” curve is WF using
the curvature from [18] that is optimal for Gaussian noise. The circle marker
corresponds to the cost function and the square marker corresponds to PSNR.

function) than all other methods; the LBFGS algorithm had com-

parable convergence speed as WF with backtracking line search.

We found that WF with the empirical step size did not converge

using hyper-parameters in [15] so we excluded those results in

Fig. 5. The backtracking approach, although slower than Fisher

approach per wall-time, is faster per-iteration. However, the step

size found by backtracking line search could be sensitive to

hyper-parameter choices. For the WF algorithm with optimal

step size (derived based on Gaussian noise model [18]), we

conjectured that it reached a non-stationary point that has larger

cost function value than those of other methods, as expected.

In terms of PSNR, we found that in random Gaussian, masked

DFT and empirical transmission cases, WF with Fisher informa-

tion increased the PSNR faster than all other methods; WF with

optimal Gaussian step size led to lower PSNR, perhaps again due

to reaching a sub-optimal minimizer. However, for the canonical

Fourier case, we found that all methods started decreasing PSNR

after several iterations. The algorithms may be more sensitive to

noise in the canonical Fourier matrix setting, especially in the

very low-count regime considered here. Apparently WF with

optimal Gaussian step size overfits the noise more slowly due to

its sub-optimal step size under Poisson noise.

B. Comparison of Poisson and Gaussian Algorithms

This section compares the reconstruction quality, i.e., the

NRMSE to the true signal, between WF derived from the Gaus-

sian ML cost function (3), and WF derived from the Poisson

ML cost function (7) as well as regularized WF under different

system matrix settings. We used corner-rounded TV regularizer

with β = 32 and α = 0.1 in the regularized WF algorithm.

Fig. 6 shows that algorithms derived from the Poisson

model yielded consistently better reconstruction quality (lower

NRMSE) than algorithms derived from the Gaussian model,

as expected. Furthermore, by incorporating regularizer that ex-

ploits the assumed property of the true signal, the NRMSE was

further decreased. Spectral initialization worked well in random

Gaussian matrix setting, but not for other system matrices, as

expected from its theory. The WF Gaussian approach failed to

reconstruct in masked and canonical DFT system matrix setting.

Since incorporating appropriate regularizers helps algorithms

yield higher quality reconstructions, a question is naturally

raised about which regularized algorithm converges the fastest.

The next subsection presents such comparisons.

C. Convergence Speed of Regularized Poisson Algorithms

As discussed in Section II, many algorithms can be mod-

ified to accommodate regularizers. We compared the conver-

gence speeds of regularized Poisson algorithms (WF Fisher, WF

backtracking, LBFGS, MM and ADMM [46]), with a smooth

regularizer (corner-rounded TV), under different system matrix

settings. Based on Fig. 5, we did not run simulations of regular-

ized WF with empirical step size and with Gaussian optimal step

size, due to their non-converging trend and sub-optimal solution,

respectively. For all other algorithms, we set the regularization

parameters to be β = 32 and α = 0.1 (defined in (16) and (17)).

Fig. 7 shows that the regularized WF with our proposed Fisher

information for step size converged the fastest compared to other

methods under all different system matrices. The LBFGS again

had a comparable convergence speed as WF using backtracking

line search. The MM algorithm with improved curvature, was

slower in wall-time due to extra computation per iteration, but

was faster per iteration due to its sharper curvature. In masked
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Fig. 6. Reconstruction quality comparison between four methods (left to right): the optimal Poisson spectral initialization [60], the WF Gaussian method, the WF
Poisson method, and WF Poisson with TV regularization. System matrices: (a)–(d) random Gaussian; (e)–(h) masked DFT; (i)–(l) canonical DFT with reference
image; (m)–(p) ETM. Magnitude of complex images shown. All WF algorithms used the proposed Fisher information for step size.

and canonical Fourier case, however, MM with improved cur-

vature was faster than the maximum curvature in wall-time

comparison, which can be attributed to large magnitude low

frequency components in the coefficients of the Fourier trans-

form.

V. DISCUSSION

Current methods for phase retrieval mostly focus on ML

estimation for Gaussian noise; fewer algorithms were derived

for Poisson noise [6], [36], [43]. Here we proposed a novel WF

algorithm and an MM algorithm and then did an empirical study

on the convergence speed as well as reconstruction quality of

several Poisson phase retrieval algorithms. In our proposed WF

algorithm, we first replaced the gradient term in Gaussian WF

(4) with its Poisson counterpart (9). Then we did a quadratic

approximation of the cost function and applied one iteration

of Newton’s method to define an “optimal” step size. We then

proposed to use the observed Fisher information to approximate

the Hessian when computing the step size, which is a common

method in computational statistics. Moreover, the Fisher infor-

mation matrix is guaranteed to be positive semi-definite and is

more computationally efficient compared to the Hessian. To fur-

ther illustrate our proposed method of using Fisher information

to approximate the Hessian, Fig. 8 visualizes these two matrices

(in marginal forms).

As shown in Fig. 8, the Hessian is noisy and can have

some negative elements. Such undesirable features can lead to
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Fig. 7. Comparison of convergence speed of variant algorithms with corner-
rounded TV regularizer. The circle marker corresponds to cost function and the
square marker corresponds to PSNR.

unstable step size calculations. In contrast, the elements in Fisher

information matrix are non-negative and less noisy. We ran some

experiments and found that when the background counts bi are

large, using the noisy Hessian to calculate the step size can lead

to divergence of the cost function, due to the negative values in

the marginal second derivative. Setting such negative values in

the second derivative to zero is a possible solution, but we found

Fig. 8. Visualization of the marginal Hessian (9) and the marginal observed
Fisher information (13). The horizontal axis denotes the ith element in the
marginal Hessian/Fisher. Data were simulated with a random Gaussian matrix
and 100 independent realizations.

that approach led to slower convergence than using the Fisher

information. One potential alternative to our approach is to use

the empirical Fisher information, but that may be suboptimal

since the empirical Fisher information does not generally capture

second-order information [65].

To accommodate our WF algorithm with non-smooth regu-

larizers, e.g., �Tx�1, we used a Huber function to approximate

the �1 norm with a quadratic function around zero, so that

the Wirtinger gradient is well-defined everywhere. A limitation

of this paper is that we did not consider other regularizers in

our experiments, though our algorithms can be generalized to

handle other smooth regularizers with minor modifications. One

drawback of TV regularization is that it assumes piece-wise

uniform latent images so it lacks generalizability to other kinds

of images, One way to address this is to train deep neural

networks [66], [67] with a variety of images, potentially leading

to better generalizability.

VI. CONCLUSION

This paper proposed and compared algorithms based on ML

estimation and regularized ML estimation for phase retrieval

from Poisson measurements, in very low-photon count regimes,

e.g., 0.25 photon per pixel. We proposed a novel method that

used the Fisher information to compute the step size in the

WF algorithm; this approach eliminates all parameter tuning

except the number of iterations. We also proposed a novel

MM algorithm with improved curvature compared to the one

derived from the upper bound of the second derivative of the

cost function.

Simulation results experimented on random Gaussian matrix,

masked DFT matrix, canonical DFT matrix and an empirical

transmission matrix showed that: 1) For unregularized algo-

rithms, the WF algorithm using our proposed Fisher information

for step size converged faster than using empirical step size,

backtracking line search, optimal step size for Gaussian noise

model and LBFGS. Moreover, our proposed Fisher step size

can be computed efficiently without any tuning parameter. 2)

As expected, algorithms derived from the Poisson noise model

produce consistently better reconstruction quality than algo-

rithms derived from the Gaussian noise model for low-count
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data. Furthermore, by incorporating regularizers that exploit

the assumed properties of the true signal, the reconstruction

quality can be further improved. 3) For regularized algorithms

with smooth corner-rounded TV regularizer, WF with Fisher

information converges faster than WF with backtracking line

search, LBFGS, MM and ADMM.

Future work includes precomputing and tabluting the

optimal curvature for the quadratic majorizer, establishing suf-

ficient conditions for global convergence, investigating algo-

rithms with other kind of regularizers (e.g., deep learning meth-

ods [66], [67]), investigating sketching methods for large prob-

lem sizes [68], and testing Poisson phase retrieval algorithms

under a wider variety of experimental settings.
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A. WF with gradient truncation

Reference [1] shows that under Poisson noisy measurement

setting, the relative error (RE) is almost monotonically de-

creasing as the tuning parameter ah increases. Here we found

a similar trend. Fig. 1 shows that under all three different

system matrix settings, the Poisson ML cost function values

of TWF is also monotonically decreasing as ah increases;

and are consistently higher than those of non-truncated WF.

Moreover, we found that TWF can significantly increase

the computational time compared to the non-truncated WF

for random Gaussian and ETM matrix settings; for masked

DFT matrix setting, both versions of WF showed comparable

running time, presumably due to the efficient implementation

of fast Fourier transform (FFT). Based on the results presented

in Fig. 1, we did not use TWF for the rest simulations in this

paper. And we will focus on incorporating regularization for

potential reconstruction quality improvement.

B. Derivation of an ADMM algorithm for the Poisson phase

retrieval problem

1) ADMM for Poisson ML problem: The ML estimation of

x for the Poisson noise model corresponds to the following

optimization problem

x̂ =argmin
x∈FN

f(x), f(x) ≜
"

i

ψ(a′

ix; yi, bi),

ψ(v; y, b) ≜ (|v|2 + b)− y log(|v|2 + b). (1)

With variable splitting vi = a′

ix, an augmented linearized

Lagrangian of (1) when bi = 0 is given by

Lρ(v,x;η, ρ) =
"

i

�

(|vi|
2)− yi log(|vi|

2)
�

(2)

+
ρ

2

"

i

�

|vi − a′

ix+ ηi|
2 − |ηi|

2

�

,

where η is the dual variable and ρ > 0 denotes the AL penalty

parameter.
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(a) Cost function value (logarithm) of WF vs. TWF.

(b) Running time of WF vs. TWF.

Fig. 1: Comparison of TWF and WF under random

Gaussian, masked DFT and empirical transmission matrix

settings. The logarithm of the Poisson ML cost function was

taken with base 10. All algorithms were ran 200 iterations.

We followed the order of first updating v, then x and finally

η. Because the updates for the phase and magnitude of v are

separable; in particular, the update for the phase of v is

sign(vk+1) = sign(Axk − ηk). (3)

To update the magnitude of v, similar to [2], set ti = |a
′

ixk−
ηi|; then the update of a single component |vi| is given by the

following positive solution of a quadratic polynomial:

|vi| =
ρti +

�

ρ2t2i + 8yi(2 + ρ)

2(2 + ρ)
. (4)

Again, in the unregularized case, the x update is a simple

least square (LS) problem that can be optimized by CG or the



2

following operation (5) involving matrix inverse.

xk+1 = (A′A)−1A′(vk+1 + ηk), (5)

Again, if x ∈ R
N , then the x update is

xk+1 = (real{A′A})−1real{A′(vk+1 + ηk)}.

2) Regularized ADMM: For the regularized case, the x update

becomes

xk+1 = argmin
x∈FN

ρ

2
∥Ax− vk+1 − ηk∥

2
2 + βR(x). (6)

We solve this using CG or POGM, depending on whether the

regularizer R is smooth or not.

The dual variable η ascent update [3] is simply

ηk+1 = ηk + (vk+1 −Axk+1). (7)

For the case bi > 0, everything is the same as the case bi = 0
except the update for |vi|, for which one can verify the |vi| is

instead a positive root of the following cubic polynomial

0 = (2+ρ)|vi|
3−ρti|vi|

2+(2bi−2yi+ρbi)|vi|−ρbiti. (8)

Owing to the intermediate value theorem and the non-

negativity of ρ, bi, ti, this cubic (8) can only possess one

or three positive real roots. If the cubic has one positive root,

then the update of |vi| is simply to assign the single positive

root. If the cubic has three positive roots, we choose the root

that minimizes the following Lagrangian term based on (9):

(|vi|
2 + bi)− yi log(|vi|

2 + bi) +
ρ

2
(|vi| − ti)

2. (9)

A natural extension is to vary AL penalty parameter along with

the variable update every few iterations. Reference [3] consid-

ered the magnitude of primal residual rk+1 = Axk+1−vk+1

and dual residual sk+1 = ρA′(vk+1 − vk), as a principle to

select penalty parameter to potentially improve convergence

for convex optimization problems. However, for non-convex

problems, the penalty parameter ρ is preferred to be suffi-

ciently large to enable the convergence of ADMM algorithm

[4]. Thus, we used the following heuristic to update ρ every

10 iterations:

ρk+1 =







2ρk, ∥rk∥ > 10∥sk∥
ρk/2, ∥sk∥ > 100ρk∥rk∥
ρk, otherwise.

(10)

Algorithm 1 summarizes the ADMM algorithm described

above.

C. Computation Time Comparison Between CG and BS

Fig. 2 compares the convergence rates of GS, MM and

ADMM that involve solving least squares problems. In Fig. 2,

M = 3000 and N = 100 are both small enough so that both

backsubstitution (BS) (backslash in Julia) and CG are viable

options for solving the inner quadratic optimization problems.

In every case the CG version of 250 iterations decreased

NRMSE faster than the BS version.

Algorithm 1: ADMM algorithm for the Poisson model

Input: A,y, b,x0 and n (number of iterations)

Initialize:

v0 ← Ax0

η0 ← v0 −Ax0

for k = 0, ..., n− 1 do
Update sign(vk) by (3)

if bi = 0 then
Update |vk| by (4)

else
Update |vk| by selecting root based on (9)

end

if cost function is regularized then
Update xk by (6) using CG or POGM

else
Update xk by (5) or CG

end

Update ηk by (7)
end

Output: xn

However, when A is a DFT matrix, one can verify that A′A

is a diagonal matrix that is trivial to invert. In this case we

used matrix inverse rather than CG to solve the least squares

problems.

D. Huber Function vs. Alternating Minimization

For non-prox-friendly regularizers, other than modifying by

the Huber function, an alternative can be introducing another

variable and applying alternating minimization. In particular,

The update of x in LSMM becomes

xk+1, zk+1 = argmin
x∈FN ,z∈CK

Qk(x, z),

Qk(x, z) ≜ q(x;xk) + β
�1

2
∥Tx− z∥22 + α∥z∥1

�

,

where one can alternatively update x and z. The x update

uses the closed-form solution that involves matrix inverse or

conjugate gradient. The z update is simply a soft-thresholding

operation.

Similarly, the update of x in ADMM is

xk+1, zk+1 = argmin
x∈FN ,z∈CK

ρ

2
∥Ax− vk+1 − ηk∥

2
2

+ β
�1

2
∥Tx− z∥22 + α∥z∥1

�

.

We compared these two approaches (Huber function vs. al-

ternating minimization) and found that using Huber function

was more efficient than alternating minimization, as evident

in Fig. 3.
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(a)

(b)

Fig. 2: NRMSE vs. time (ms) using different update strategy.

Here A is random Gaussian with the average of a′

ix equals

to 2, M = 3000 and bi = 0.5. Subfigure (a) and (b)

correspond to experiments on a real signal and a complex

signal, respectively.

Fig. 3: Speed comparison of WF, LSMM and ADMM using

Huber function and alternating minimization for

regularization. LSMM-TV and ADMM-TV denote the

alternating minimization approach.
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