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Image security is becoming an increasingly important issue due to advances in deep learning based image manip-
ulations, such as deep image inpainting and deepfakes. There has been considerable work to date on detecting
such image manipulations using improved algorithms, with little attention paid to the possible role that hardware
advances may have for improving security. We propose to use a focal stack camera as a novel secure imaging device,
to the best of our knowledge, that facilitates localizing modified regions in manipulated images. We show that
applying convolutional neural network detection methods to focal stack images achieves significantly better detec-
tion accuracy compared to single image based forgery detection. This work demonstrates that focal stack images
could be used as a novel secure image file format and opens up a new direction for secure imaging. © 2022 Optica

PublishingGroup

https://doi.org/10.1364/AO.450654

1. INTRODUCTION

Digital images are convenient to store and share, but they are
also susceptible to malicious manipulations. With common
photo editing tools, little effort or expertise is needed to con-
vincingly manipulate an image. With advances in deep learning,
this issue becomes even more severe: generative adverserial
networks (GANs) are able to synthesize realistic non-existing
images, change the style of an image, or inpaint an image to
remove specific objects in it. Deepfakes can even seamlessly swap
the face of one person with another in images [1,2]. These mali-
ciously manipulated images could appear in the news, causing
misleading opinions in the public or being provided in the court
as evidence, with obvious serious consequences.

Verifying the integrity of multi-media has been a research
topic for a long time in the field of multi-media forensics [3–8].
Traditional methods verify the integrity of a digital medium
and detect traces of malicious manipulation by examining
some signatures in the image, using either passive or active
approaches. In the active approach, semi-fragile watermarks are
pro-actively embedded into the image. The introduced water-
mark (which is visually imperceptible) is persistent after benign
image operations such as brightness adjustment, resizing, and
compression, but can be destroyed by malicious editing. In the
passive approach, imaging artifacts such as those due to lens dis-
tortion [9], color filtering [7], photo response non-uniformity
(PRNU) [8], or compression are used to authenticate an image.

Each method has its own limitations, however. The passive
approach, while being simple to implement, relies on weak
traces that are likely to be destroyed by compression/resizing.
PRNU fingerprint analysis, while being a popular forensic
method, requires knowledge about the source camera’s PRNU.
On the other hand, the active watermarking approach is more

robust against compression/resizing, but alters the original
content due to the watermark embedding. More recently, deep
learning based forensic detection methods have also been pro-
posed [10–13]. However, the ability to generalize data-driven
models remains a key challenge: these models perform well on
images that are similar to the training data, but the performance
can quickly degrade when the models are fed with images that
differ too much from the training data distribution [14,15].

Most existing image forgery detection methods assume
a standard conventional camera and attempt to determine
image authenticity by analyzing features present in a given 2D
image file. Such methods are widely applicable to present-day
2D image file formats, but forgery detection remains a sig-
nificant and growing problem as the sophistication of image
manipulation techniques continues to grow.

In this paper, we propose to make image manipulation and
forgery more detectable through a combined hardware and
software approach. Specifically, we propose to use a focal stack
of images, instead of a single image, for secure media shar-
ing, where the entire focal stack image file is shared publicly.
By enriching the information carried by the digital images,
essentially extending the data into a third dimension, we can
dramatically improve our ability to detect image manipula-
tion. Because the image formation requires a focal stack, this
approach may not be as widely applicable as present-day 2D
imaging approaches; it is nevertheless critical to consider alter-
natives that may involve more complex optical systems for
imaging where security is an over-riding concern, given the
severe limitations faced by 2D image forgery detection.

Figure 1 illustrates the idea: images in the focal stack contain
depth-dependent defocus blur. Because generating physically
realistic content with defocus blur that is consistent across the
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Fig. 1. Focal stack system for inpainting region localization.
(a) Imaging system schematic showing depth-dependent defocus
blur of a cube-ball object. (b) Inpainting localization CNN estimates
inpainting regions from a focal stack.

focal stack is extremely challenging, we show that detecting
image manipulation is much easier using a focal stack compared
to using a single image, by using such inter-focal stack consis-
tency cues. This approach leads to a much more secure media
format. Someone attempting to manipulate the image would
have to modify every image in the focal stack, and it would be
extremely challenging to accomplish this in a way where the
consistencies of the content and the defocus blur are maintained
across the focal stack. Note that the proposed method is not for
forgery detection of single 2D images, which is probably too
easy to fake. The future of secure imaging could possibly rely on
novel image representations rather than on single 2D images.
We show that using the focal stack as a novel secure image for-
mat, to the best of our knowledge, substantially improves the
performance of forgery detection compared to using a single
conventional 2D image.

To demonstrate the advantage of focal stack image sets over
single 2D images as a tamper-evident image file, we limit our
scope to inpainting types of image manipulation. We gener-
ated inpainted focal stacks using several convolutional neural
network (CNN) based methods [16–18]; we then trained
inpainting region localization CNNs to detect regions in the
focal stack that are inpainted. We show that the focal stack based
method achieves significantly better detection performance
and generalization ability, compared to single image based
methods. We further study how detection performance depends
on the number of images in the focal stack and also whether the
performance gain of using a focal stack might be mainly due to
increased total pixel number.

The paper is organized as follows. Section 2 describes related
work on image inpainting, forgery localization, and focal stack
cameras. Section 3 describes the method we used to generate
inpainted focal stacks and the method to localize inpainted
regions. Section 4 presents multiple numerical experiments

and results. Finally, Section 5 gives a summary and concluding
remarks.

2. RELATED WORK

A. Image Inpainting

Traditional image inpainting methods work well on highly
textured or patterned regions, but fail on inpainted regions with
rich context and semantic meaning, such as natural scenes and
human faces. Simakov et al . proposed a bidirectional similarity
measure, a metric based on nearest neighbor patch search, to
determine if two signals are similar and can be used as the objec-
tive function for image inpainting. PatchMatch [19] accelerated
the patch matching process in the bidirectional similarity meas-
ure using random search and coherence propagation. Shift-Map
[20] achieved inpainting by computing a shift-map, where the
pixels in the inpainting region are sampled from a relative posi-
tion indicated by the shift-map. The shift-map is estimated by a
global optimization objective function that contains a data term
and a smoothness term. The optimization is done in a hierar-
chical way to accelerate the computation, with a low-resolution
shift-map estimated first and then refined by a high-resolution
one.

Deep learning based inpainting methods have better per-
formance for inpainting complex objects and scenes due to
their powerful capability for modeling the high level semantics
presented in the image. The context encoder [21] is an early
approach to image inpainting using deep learning methods. An
encoder extracts semantic information from a masked input
image, and a decoder reconstructs a full image with coherent
contents filled in the inpainting region. Pixel-wise reconstruc-
tion loss and adversarial loss are used as the loss function to train
the network. Later works typically follow this adversarial train-
ing to improve the fidelity of the inpainted region. Generative
multi-column convolutional neural networks (GMCNNs)
[17] uses a multi-column network to inpaint missing regions
at multiple-scale in parallel. A confidence driven pixel recon-
struction loss is used to constrain filling boundary pixels more
strictly, compared to those pixels that are far away from the
boundary. A Markov random fields (MRF) type regularization
promotes content diversity in the inpainting region. As a stand-
ard convolution’s response is conditioned on both valid pixels
and placeholder values in the inpainting region, it also leads to
color discrepancies. To resolve this issue, Liu et al . [22] proposed
partial convolution to reduce these artifacts by introducing a
layer-wise binary valid mask to select out only valid pixels for
convolution computation and to normalize the convolution
output. Gated Convolution [18] further generalized the partial
convolution by having a learnable gating mechanism to select
only proper pixels for convolution. Nazeri et al . [16] divided
the inpainting process into edge generation and colorization
stages. In the first stage, the edges of the inpainting regions are
first generated. Then the colorization network inpaints the
region conditioned on the input image and also the edge map.
Such proposed two-stage inpainting exhibits better details in
the inpainting region. There has been continued progress on
improving inpainting using deep learning methods. Li et al .
proposed to use a recurrent feature reasoning module to improve
the inpainting performance on large continuous holes. Yi et al .
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proposed a contextual residual aggregation mechanism to
inpaint ultrahigh-resolution images with good quality [23].
Peng et al . proposed to use a hierarchical vector quantized varia-
tional auto-encoder (VQ-VAE), to generate diverse inpainting
results [24].

B. Forgery Localization

Early attempts to localize manipulated regions in images relied
on local anomalies of some signatures present in the image.
Johnson et al . [9] analyzed the chromatic aberration presented
in the image and identified image regions where chromatic aber-
rations are inconsistent with other regions in the image. Popescu
et al . [7] showed that the color interpolation algorithm used for
the color filter array in commercial cameras leads to periodic
correlation patterns that can be revealed by Fourier analysis.
They demonstrated that this signature can be used to localize
tampered regions in an image. Assuming a known camera model
or other reference images available, sensor pattern noise can also
be used to localize a forged region by checking whether a region
has such noise patterns [8]. In addition, splicing and copy-move
forgery likely involves several post-processing steps, such as
scaling/rotating the object and blurring the object/background
boundary. These steps can generate re-sampling artifacts and
can also be detected by spectral analysis [25].

Recent deep learning based methods, in contrast, learn dis-
criminating forgery features from the data directly. Salloum
et al . [26] trained a multi-task CNN (MFCN) for splicing
localization. The network estimates both the splicing region
and the splicing boundaries, with partially shared parameters
between two tasks. Such multi-task design leads to better locali-
zation performance, compared to estimating only the splicing
region. Huh et al . detected image splicing by training a classifier
to determine whether two image patches have exchangeable
image file (EXIF) meta consistency [10]. Wang et al . [11]
detected image warping manipulation by training a CNN on
script-generated warped images in Photoshop. Wu et al . [12]
proposed a two-branch CNN model (BusterNet) to localize
copy-move forgery regions. Li et al . [13] localized inpainted
regions by using a CNN model with the first few layers initial-
ized as high-pass filters to enhance the inpainting traces. Despite
these efforts, developing a well performing forgery detection
method with good generalization ability remains as a challenge.

C. Focal Stack

Recently, a focal stack camera employing transparent sensor
arrays has been introduced that enables focal stack capture in a
single camera exposure [27,28]. For static or sufficiently slow-
moving scenes, focal stacks may also be captured by sequential
exposure with refocusing by a conventional camera, or be syn-
thesized from a light field using the add-shift algorithm [29].
There are numerous applications of focal stack imaging. Lien
et al . [27] demonstrated model based light field reconstruction
from focal stacks and 1D ranging. Zhang et al . [28] demon-
strated 3D object localization and orientation estimation from
a focal stack. Hazirbas et al . [30] trained a CNN to estimate
depth maps from focal stack images. To the best of our knowl-
edge, there is no prior work using focal stacks for image forensic

related applications, and this work is the first to propose using
focal stack imaging as a secure image format.

3. METHOD

To demonstrate the effectiveness of using focal stacks as a secure
image format, we generated datasets containing manipulated
focal stacks and trained a detection CNN to localize the forgery
regions. The localization performance is then compared with
single image based methods to show the advantage of focal stacks
over conventional images for image security applications. We
focus on image inpainting forgery where the inpainting is done
by deep learning methods. Section 3.A describes how we gen-
erate inpainted focal stacks using CNN methods. Section 3.B
describes how we localize inpainting regions in the manipulated
focal stack.

A. Generating CNN Inpainted Focal Stack

We first generated a set of authentic focal stacks from the Lytro
flower light field dataset [31], using the add-shift algorithm
[29]. The Lytro flower light field dataset contains 3343 light
fields of flower scenes captured by the Lytro Illum light field
camera. Each light field has a size of 376 × 541 × 14 × 14,
and following [31], we used only the central 8 × 8 sub-aperture
images for focal stack generation. Each generated focal stack
contains nF = 7 images with differing focus positions. The focus
positions are chosen to have their corresponding disparities
evenly distributed in range [−1, 0.3], which covers roughly the
entire possible object depth range. The first row of Fig. 2 shows
example generated authentic focal stacks images.

Then we generated inpainted focal stack datasets, using three
CNN based methods: GMCNN [17], EdgeConnect [16] and
Gated Convolution [18]. GMCNN uses a multi-column net-
work to extract features at different scale levels. A special implicit
diversified Markov random field (ID-MRF) loss is designed
to promote the diversity and realism of the inpainted region.
EdgeConnect is a two-stage inpainting process. In the first stage,
an edge generator generates edges for the inpainting region. In
the second stage, an inpainting network fills the missing region
with the help of the completed edges from the first stage. Gated
Convolution [18] uses a learnable feature gating mechanism to
solve the issue in which a normal convolution treats all pixels
equally and inpaints the image following a two-stage coarse to
fine process. We generate inpainted focal stacks using multiple
methods to test the generalization ability of the network; we
train the detection network using focal stacks inpainted by
one method and then evaluate its performance on focal stacks
inpainted by another method. This investigation mimics the
more realistic scenario where the method used to inpaint the
focal stack is unknown at the time of detection.

We generated random stroke-type regions to be inpainted
for each focal stack. All images in the same focal stack shared
the same spatial inpainting region. The goal of inpainting is
typically trying to hide something in the original image and
hence identical inpainting regions across images in the same
focal stack should be a reasonable assumption. Each image is
then inpainted independently using one of the above CNN
methods.
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Fig. 2. Example real and inpainted focal stacks. Only the first and last images in each focal stack are shown. The region to be inpainted is shown as
white in the second row.

The CNN inpainting models were pre-trained on the places2
[32] dataset using its original implementation and fined tuned
on the flower focal stack dataset. Figure 2 shows example
inpainted focal stacks.

B. Detecting CNN Inpainted Focal Stack

The detection network we used for localizing inpainting regions
is based on DeepLabv3 [33]. DeepLabv3 was originally pro-
posed for semantic segmentation, and we re-purposed it for
region localization due to the similarity in these two tasks. The
Atrous Spatial Pyramid Pooling (ASPP) layer in DeepLabv3
ensures a large receptive field and fine detailed network output
at the same time, which is beneficial for our inpainting region
localization. We used ResNet-18 [34] as the backbone for fea-
ture extraction. A normal input image to the DeepLabv3 is a
3D tensor of shape (C , H, W), whereas the focal stack is a 4D
tensor of shape (nF, C , H, W), so we reshaped the focal stack
to be (nF × C , H, W) by concatenating images along the color
channel. The network outputs a pixel-wise probability map that
indicates whether a pixel is inpainted, and we train the network
using binary cross-entropy loss.

Wang et al . [35] showed that proper data augmentations,
such as applying JPEG compression, lead to a model with
better generalization ability and robustness against common

post-processing. Motivated by this, we followed their approach

and trained our detection network with JPEG augmentation.

Specifically, the training input focal stacks have a 50% proba-

bility of being JPEG compressed, with a JPEG quality factor of

70. For reference, we also trained models without JPEG aug-

mentation; these models performed worse, and we include these

results at the end of the paper.

4. EXPERIMENTS AND RESULTS

A. Implementation

1. Dataset

The inpainted focal stack dataset generated from Lytro flower

light fields contains 3343 focal stacks for each inpainting

method (GMCNN, EdgeConnect, Gated Convolution). Each

focal stack contains nF = 7 images with changing focus depths

and is associated with a ground truth inpainting region for train-

ing and evaluation. We used 2843 focal stacks for fine-tuning

the inpainting networks and also training the detection net-

work. The remaining 500 focal stacks are used for evaluating the

inpainting localization performance.



4034 Vol. 61, No. 14 / 10May 2022 / Applied Optics Research Article

2. Training set-up

We trained the detection network using the Adam optimizer
[36] with batch size three. The models were trained for 110
epochs, with an initial learning rate 10−4 that was reduced to
10−5 after 70 epochs. We used data augmentation in the form
of horizontal flipping with 50% probability, in addition to the
JPEG compression augmentation described above.

3. Evaluation

We counted the true positive (TP), false positive (FP), and false
negative (FN) predictions at the pixel level for each test sample,
with the classification probability threshold set to 0.5. Then the
F1 scores, defined as TP

TP+ 1
2 (FP+FN)

, were computed and averaged

over all test samples to evaluate the network’s inpainting locali-
zation performance.

We additionally tested the models’ robustness against com-
mon post-processing methods including JPEG compression,
gaussian noise, and resizing. Specifically, we added additive
white gaussian noise with σ in range [0, 1.6] to test the robust-
ness against noise. We downsampled test focal stacks using
nearest neighbor interpolation with ratio in range [1,2] to test
the robustness against resizing. We JPEG compressed test focal
stacks with JPEG quality in range [30,100] to test the robustness
against compression. Note that these post-processing processes
are applied only to the test focal stacks; the models were trained
using augmentation based only on horizontal flipping and
JPEG compression with quality 70.

To study the dependence of localization performance on
focal stack size nF, we trained models using inpainted focal stack
datasets with nF = 1, 2, 3, 5, 7. Specifically, the nF = 7 dataset
is the one described in Section 4.A.1. We obtained the nF = 1
dataset by only using the 7th (last) image of each focal stack in
nF = 7 dataset. Similarly, the nF = 2 dataset contains the first
and seventh images, the nF = 3 dataset contains the first, fourth,

and seventh images, and the nF = 5 dataset contains the first,
third, fourth, fifth, and seventh images.

B. Results

Figure 3 shows the localization results trained on the GMCNN
inpainted focal stack dataset and evaluated on testing focal
stacks inpainted by GMCNN, EdgeConnect, and Gated
Convolution. The advantage of using a focal stack (nF ≥ 2)
over a single image (nF = 1) for inpainting region localization
is apparent and significant for every test configuration. Taking
the first row of Fig. 3 for example, both training and testing on
the GMCNN dataset using nF = 1 have a F1 score of about
0.67 and using nF = 2 have a F1 score of about 0.87. The dif-
ference is even more dramatic when training is performed on
the GMCNN dataset and testing is performed on the Gated
Convolution dataset (top-right subplot): nF = 1 has a F1 score
of about 0.11 and using nF = 2 has a F1 score of about 0.80.
Increasing nF further improves the F1 score, though not signifi-
cantly. Although the single image (nF = 1) localization method
performs fairly well when the testing data are generated by the
same inpainting method as the training data, it performs poorly
when the testing data are inpainted by a different method. On
the other hand, there is only a very small performance drop for the
focal stack based method when testing on focal stacks inpainted
by a method different from training . These results show that
the focal stack based method has a much better generalization
ability across different inpainting methods. This benefit can be
understood as follows: for single image based inpainting region
localization, the network relies heavily on detecting inpainting
method specific artifacts, such as checkerboard patterns pro-
duced by transpose convolutions [37] or unnatural transitions
between inpainted and not inpainted regions, to determine
whether a region is inpainted. However, these criteria cannot be
universal for detecting inpainting because a different method
will likely have a different checkerboard pattern or a different
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Fig. 3. Localization F1 scores for focal stack data with the network trained on (Lytro flower) GMCNN dataset with JPEG augmentation and tested
on (Lytro flower) GMCNN data (first column), EdgeConnect (second column), and Gated Convolution (third column) datasets. The robustness
against Gaussian noise (first row), resizing (second row), and JPEG compression (third row) are shown for each model. Symbol * on x axis indicates
the result without JPEG compression.
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Scene G.T. Inpainting Region Prediction ( F = 1) Prediction ( F = 2) Prediction ( F = 7)

1 = 0.47 1 = 0.90 1 = 0.93

1 = 0.49 1 = 0.82 1 = 0.90

1 = 0.33 1 = 0.83 1 = 0.90

Fig. 4. Example localization results of the model trained on GMCNN dataset and tested on Gated Convolution dataset. Probability threshold of
0.5 is used for classification. F1 scores are indicated in green for each prediction.

transition artifact between inpainted and not inpainted regions.

On the other hand, the focal stack based method has a much

more inpainting method agnostic clue to determine whether a

region is inpainted or not: it can check whether the content and

the defocus blur across a focal stack in a region are physically and

semantically consistent. Such consistency checks do not depend

on the methods used for inpainting, and hence it should better

generalize across different inpainting methods.

Figure 4 shows example predicted inpainting regions, using

a model trained on GMCNN inpainted focal stacks and tested

on Gated Convolution inpainted focal stacks. The single image

based inpainting localization performs poorly, whereas using a

focal stack of only nF = 2 greatly improves the prediction, and

the nF = 7 model has the best performance.

We also trained models using EdgeConnect inpainted focal

stacks, and using Gated Convolution inpainted focal stacks,

to verify that the trends above are not specific to the particular

training dataset. Figures 5 and 6 show the results. The gen-
eral findings are similar to those in Fig. 3, with some minor
differences: the advantage of a focal stack over a single image for
the model trained and tested on the EdgeConnect inpainted
dataset is smaller, as shown in the middle column of Fig. 5. This
is likely because the EdgeConnect inpainted images contain
more visually apparent inpainting artifacts. Indeed, when we
inspect closely some EdgeConnect inpainted regions, they
tend to be darker, compared to non-inpainted regions. This
makes inpainting localization using a single image easier, so
the additional images in the focal stack do not help much.
However, when the model is evaluated on the dataset inpainted
by a method different from the training data, the single image
localization performance degrades severely, as shown in the first
and third columns of Fig. 5, while the focal stack based models
retain high performance in these cases. This is again because the
focal stack based method uses the more generalizable inter-focal
stack consistency check to localize the inpainting region. For
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Fig. 5. Localization F1 scores for focal stack data with the network trained on (Lytro flower) EdgeConnect dataset with JPEG augmentation and
tested on (Lytro flower) GMCNN (first column), EdgeConnect (second column), and Gated Convolution (third column) datasets. Symbol * on x
axis indicates the result without JPEG compression.
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Fig. 6. Localization F1 scores for focal stack data with the network trained on (Lytro flower) Gated Convolution dataset with JPEG augmentation
and tested on (Lytro flower) GMCNN (first column), EdgeConnect (second column), and Gated Convolution (third column) datasets. Symbol * on
x axis indicates the result without JPEG compression.
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Fig. 7. Localization F1 scores for focal stack data with the network trained on (Lytro flower) GMCNN dataset with JPEG augmentation and tested
on (Lytro flower) GMCNN (first column), EdgeConnect (second column), and Gated Convolution (third column) datasets, showing the total pixel
dependence. Symbol * on x axis indicates the result without JPEG compression.

models trained on Gated Convolution, the single image based
method performs poorly (third column of Fig. 6), even when
tested on focal stacks inpainted by the same method. This is
because the Gated Convolution inpainted images contain fewer
artifacts and are more visually realistic. This makes the single
image based method struggle to find discriminating forgery
traces.

All results presented in Fig. 3, Fig. 6, and Fig. 5 demonstrate
good robustness against several post-processing methods,
including Gaussian noise (first row), image resizing (second
row), and JPEG compression (third row), showing that our
proposed method would be useful in practical cases, such as in
determining whether an Internet image file is authentic or not,
where these post-processing operations are common.

To verify that the advantage of a focal stack over a single image
is not simply due to the increase in the number of total pixels,
we trained additional models for nF = 2, using focal stacks

downsampled by factors of
√

2 and two. Figure 7 shows the

results. The nF = 2, downsampling ratio =
√

2 system has the
same total number of pixels as the nF = 1 system without down-
sampling, and the nF = 2, downsampling ratio = 2 model has
two times fewer total pixels, compared to the system of nF = 1,
without downsampling. Figure 7 shows that reducing the total
pixel numbers in the focal stack system only slightly reduces the
localization performance; the main performance gain of using
a focal stack for inpainting localization is due to the multiple
sensor plane nature of the focal stack system that encodes robust
inter-focal stack consistency clues for forgery detection.
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Table 1. F1 Scores of the Model Trained on GMCNN

Inpainted Focal Stacks with Focusing Disparity Range

[−1, 0.3], and Evaluated on Focal Stacks Inpainted by

GMCNN, EdgeConnect, and Gated Convolution
a

nF GMCNN EdgeConnect Gated Convolution

1 0.68/0.66/0.66 0.40/0.37/0.37 0.11/0.10/0.10
2 0.88/0.87/0.87 0.83/0.82/0.81 0.80/0.79/0.79
3 0.91/0.91/0.85 0.88/0.87/0.82 0.87/0.86/0.80
5 0.91/0.92/0.89 0.89/0.89/0.86 0.88/0.89/0.85
7 0.92/0.92/0.90 0.90/0.89/0.87 0.89/0.89/0.87

aThree values in each field correspond to the results on focal stacks with

focusing disparity ranges [−1, 0.3], [−0.8, 0.5], and [−1.2, 0.5], respectively.

In practical applications, the testing focal stack to be authen-
ticated may have a focus setting different from the training time
focus setting. Thus, in Table 1, we also evaluate our model using
inpainted focal stacks having a different focus setting compared
to the training time. Specifically, the model is trained using
GMCNN inpainted Lytro flower focal stacks, with focusing dis-
parity evenly distributed in range [−1, 0.3], and tested on Lytro
flower focal stacks with focusing disparity evenly distributed in
range [−1, 0.3] (same setting as training), and in ranges [−0.8,
0.5] and [−1.2, 0.5]. The case of [−0.8, 0.5] corresponds to the
scenario where every image in the testing focal stack is focusing
closer to the camera, and the case of [−1.2, 0.5] corresponds to
the scenario where the focus depth range is larger for the testing
data compared to the training data. The table shows that there is
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Fig. 8. Localization F1 scores for focal stack data with the network trained on (Lytro flower) Gated Convolution dataset with JPEG augmentation
and tested on (DUTLF) GMCNN data (first column), EdgeConnect (second column), and Gated Convolution (third column) datasets. The robust-
ness against Gaussian noise (first row), resizing (second row), and JPEG compression (third row) are shown for each model. Symbol * on x axis indi-
cates the result without JPEG compression.
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Fig. 9. Localization F1 scores for focal stack data with the network trained on (Lytro flower) GMCNN dataset without JPEG augmentation and
tested on (Lytro flower) GMCNN (first column), EdgeConnect (second column), and Gated Convolution (third column) datasets. Symbol * on x
axis indicates the result without JPEG compression.
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only a slight drop in inpainting localization performance when
testing the trained focal stack based model on focal stacks with
different focus settings. This excellent generalization ability
across camera focus settings is due to the fact that the focal
stack based model relies on the inter-focal stack consistency for
detection, which is insensitive to the focus of each image.

To evaluate the model’s generalization potential, i.e., its per-
formance on an unseen dataset, we took the detection networks
trained on the Lytro flower dataset with JPEG augmentation
and tested their forgery localization performance directly on a
new unseen dataset [38] [Dalian University of Technology Light
Field (DUTLF)] without any additional network fine-tuning.
The DUTLF dataset is a Lytro light field dataset, and the focal
stack of each light field is also available. It is a challenging dataset
with a diverse scene distribution. Figure S1 in Supplement 1
shows some example scenes. Figure 8 shows the generaliza-
tion performance of the detection model trained on the Gated
Convolution inpainted Lytro flower dataset, when evaluating
on the inpainted DUTLF dataset. The F1 scores of the focal
stack based method are about twice as high as those of the sin-
gle image based method (nF = 1), demonstrating its superior
generalization ability. Additional generalization performance
experiments of the models trained on the GMCNN and on
the EdgeConnect inpained Lytro flower dataset show similar
results, and are included in Supplement 1 Figs. S2 and S3.

We also repeated the experiments in Figs. 3, 5, and 6 using
the DUTLF dataset, and included these results in Fig. S4–6 of
Supplement 1. We also found a dramatic localization accuracy
gain when using the proposed focal stack based method, indi-
cating that the performance improvement is not peculiar to a
particular dataset.

Finally, to show the effect of JPEG augmentation during
training, we include additional results of models trained without
JPEG augmentation (Section 3.B). Comparing Figs. 3 and
9 shows that including JPEG augmentation during training
leads to a model more robust against post-processing perturba-
tions and better performance. The benefit is more significant
for gaussian noise perturbation (first row of Fig. 9) and JPEG
compression (third row of Fig. 9). The F1 score of the model
trained without JPEG augmentation will degrade quickly when
the images are JPEG compressed or noise is added. Regardless,
the advantage of using focal stacks over the single image based
method is still significant for this training scheme as well.

5. CONCLUSION

We proposed a novel system and method, to the best of our
knowledge, of using a focal stack for localizing image inpainting
regions in manipulated images. We trained CNN models for
inpainting localization and showed that using an image focal
stack, instead of a single image, leads to significantly better
localization performance and significant robustness to common
post-processing image perturbations. The proposed method
also shows excellent generalization ability across different
inpainting methods and different camera focus settings.

Although we focused on the inpainting type of forgery, we
expect the findings are applicable to many other types of forgery
detection as well. We hope this work can lead to a new direction

for image forgery detection and make images in the future more
secure.
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Fig. S2. Localization �1 scores for focal stack data with the network trained on (Lytro

flower) GMCNN dataset with JPEG augmentation and tested on (DUTLF) GMCNN

data (1st column), EdgeConnect (2nd column) and Gated Convolution (3rd column)

datasets. The robustness against Gaussian noise (1st row), resizing (2nd row) and JPEG

compression(3rd row) are shown for each model. Symbol ‘*’ on x-axis indicates the

result without JPEG compression.
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Fig. S3. Localization �1 scores for focal stack data with the network trained on (Lytro

flower) EdgeConnect dataset with JPEG augmentation and tested on (DUTLF) GMCNN

data (1st column), EdgeConnect (2nd column) and Gated Convolution (3rd column)

datasets. The robustness against Gaussian noise (1st row), resizing (2nd row) and JPEG

compression(3rd row) are shown for each model. Symbol ‘*’ on x-axis indicates the

result without JPEG compression.
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Fig. S4. Localization �1 scores for focal stack data with the network trained on

(DUTLF) GMCNN dataset with JPEG augmentation and tested on (DUTLF) GMCNN

data (1st column), EdgeConnect (2nd column) and Gated Convolution (3rd column)

datasets. The robustness against Gaussian noise (1st row), resizing (2nd row) and JPEG

compression(3rd row) are shown for each model. Symbol ‘*’ on x-axis indicates the

result without JPEG compression.
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Fig. S5. Localization �1 scores for focal stack data with the network trained on

(DUTLF) EdgeConnect dataset with JPEG augmentation and tested on (DUTLF)

GMCNN data (1st column), EdgeConnect (2nd column) and Gated Convolution (3rd

column) datasets. The robustness against Gaussian noise (1st row), resizing (2nd row)

and JPEG compression(3rd row) are shown for each model. Symbol ‘*’ on x-axis

indicates the result without JPEG compression.
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Fig. S6. Localization �1 scores for focal stack data with the network trained on

(DUTLF) Gated Convolution dataset with JPEG augmentation and tested on (DUTLF)

GMCNN data (1st column), EdgeConnect (2nd column) and Gated Convolution (3rd

column) datasets. The robustness against Gaussian noise (1st row), resizing (2nd row)

and JPEG compression(3rd row) are shown for each model. Symbol ‘*’ on x-axis

indicates the result without JPEG compression.


