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Neural network based 3D tracking with a graphene
transparent focal stack imaging system
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Recent years have seen the rapid growth of new approaches to optical imaging, with an

emphasis on extracting three-dimensional (3D) information from what is normally a two-

dimensional (2D) image capture. Perhaps most importantly, the rise of computational ima-

ging enables both new physical layouts of optical components and new algorithms to be

implemented. This paper concerns the convergence of two advances: the development of a

transparent focal stack imaging system using graphene photodetector arrays, and the rapid

expansion of the capabilities of machine learning including the development of powerful

neural networks. This paper demonstrates 3D tracking of point-like objects with multilayer

feedforward neural networks and the extension to tracking positions of multi-point objects.

Computer simulations further demonstrate how this optical system can track extended

objects in 3D, highlighting the promise of combining nanophotonic devices, new optical

system designs, and machine learning for new frontiers in 3D imaging.
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E
merging technologies such as autonomous vehicles demand
imaging technologies that can capture not only a 2D image
but also the 3D spatial position and orientation of objects.

Multiple solutions have been proposed, including LiDAR
systems1–3 and light-field cameras4–7, though existing approaches
suffer from significant limitations. For example, LiDAR is con-
strained by size and cost, and most importantly requires active
illumination of the scene using a laser, which poses challenges of
its own, including safety. Light-field cameras of various config-
urations have also been proposed and tested. A common
approach uses a microlens array in front of the sensor array of a
camera4,5; light emitted from the same point with different angles
is then mapped to different pixels to create angular information.
However, the mapping to a lower dimension carries a tradeoff
between spatial and angular resolution. Alternatively, one can use
optical masks6 and camera arrays7 for light field acquisition.
However, the former method sacrifices the signal-to-noise ratio
and might need a longer exposure time in compensation; the
latter device size could become a limiting factor in developing
compact cameras. Single-element position-sensitive detectors,
such as recently developed graphene-based detectors8–10 can
provide high speed angular tracking in some applications, but do
not provide full 3D information.

To have its highest possible sensitivity to light, a photodetector
would ideally absorb all the light incident upon it in the active
region of the device. It is possible, however, to design a detector
with a photoresponse sufficiently large for a given application,
that nevertheless does not absorb all the incident light11–16.
Indeed, we have shown that a photodetector in which the active
region consists of two graphene layers can operate with quite high
responsivities, while absorbing only about 5% of the incident
light17. By fabricating the detector on a transparent substrate, it is
possible to obtain responsivities of several A/W while transmit-
ting 80–90% of the incident light, allowing multiple sensor planes

to be stacked along the axis of an optical system. We have pre-
viously demonstrated a simple 1D ranging application using
single pixel of such detectors18. We also showed how focal stack
imaging is possible in a single exposure if transparent detector
arrays can be realized, and developed models showing how light-
field imaging and 3D reconstruction could be accomplished.

While the emphasis in ref. 18 was on 4D light field imaging and
reconstruction from a focal stack, some optical applications, e.g.,
ranging and tracking, do not require computationally expensive
4D light field reconstruction19,20. The question naturally arises as
to whether the focal stack geometry will allow optical sensor data
to provide the necessary information for a given application,
without reconstructing a 4D light field or estimating a 3D scene
structure via depth map. The simple intuition behind the focal
stack geometry is that each sensor array will image sharply a
specific region of the object space, corresponding to the depth of
field for each sensor plane. A stack of sensors thus expands the
total system depth of field. The use of sophisticated algorithms,
however, may provide useful information even for regions of the
object space that are not in precise focus.

The concept of a focal-stack imaging system based on simul-
taneous imaging at multiple focal planes is shown in Fig. 1a. In
the typical imaging process, the camera lens projects an arbitrary
object (in this case a ball-and-stick model) onto a set of trans-
parent imaging arrays stacked at different focal planes. With the
sensor arrays having a typical transparency on the order of 90%,
sufficient light propagates to all planes for sensitive detection of
the projected light field. (Of course the final sensor in the stack
need not be transparent, and could be a conventional opaque
sensor array). Each of the images in the stack records the light
distribution at a specific depth, so that depth information is
encoded in the image stack. We can then use neural networks to
process the 3D focal stack data and estimate the 3D position and
configuration of the object.

(a) (b)

Fig. 1 Concept of focal stack imaging system enabled by focal stacks of transparent all-graphene photodetector arrays. a Schematic showing

simultaneous capture of multiple images of a 3D object (ball-and-stick model) on different focal planes. Transparent detector arrays (transparent blue

sheets) are placed after the lens (green oval) to form the camera system. The depth information is encoded in the image stacks. Artificial neural networks

process the image data and extract important 3D configuration information of the object. Inset: photograph of imaging system used in experiments with

two transparent focal planes. b Upper panel: Optical image of a 4 × 4 transparent graphene photodetector array, scale bar: 500 μm. Upper-left corner is

with false color and enhanced contrast in order to highlight the patterns. Lower panel: Schematic of the all-graphene phototransistor design. It includes a

top graphene layer as transistor channel and a bottom graphene patch as floating gate, separated by a 6-nm silicon tunneling barrier (purple). The device is

fabricated on transparent glass substrate (blue), and the active detector region is wired out with wider graphene stripes as interconnects.
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This work demonstrates a transparent focal stack imaging
system that is capable of tracking single and multiple point
objects in 3D space, without the need for light field reconstruc-
tion. The proof-of-concept experiment is demonstrated with a
vertical stack of two 4 × 4 (16-pixel) graphene sensors and feed-
forward neural networks that have the form of a multilayer
perceptron (MLP)21. We also acquired focal stack data sets using
a conventional CMOS camera with separate exposures for each
focal plane. The simulations demonstrate the capability of future
higher-resolution sensor arrays for tracking extended objects. Our
experimental results show that the graphene-based transparent
photodetector array is a scalable solution for 3D information
acquisition, and that a combination of transparent photodetector
arrays and machine learning algorithms can lead to a compact
camera design capable of capturing real-time 3D information
with high resolution. This type of optical system is potentially
useful for emerging technologies such as face recognition,
autonomous vehicles and unmanned aero vehicle navigation, and
biological video-rate 3D microscopy, without the need for an
integrated illumination source. Graphene-based transparent
photodetectors can detect light with a broad bandwidth from
visible to mid-infrared. This enables 3D infrared imaging for even
more applications.

Results
All-graphene transparent photodetector arrays. Photodetector
arrays with high responsivity and high transparency are central to
realizing a focal stack imaging system. To this end, we fabricated
all-graphene transparent photodetector arrays as individual sen-
sor planes. Briefly, CVD-grown graphene on copper foil was wet
transferred22 onto a glass substrate and patterned into floating
gates of phototransistors using photolithography. We then sput-
tered 6 nm of undoped silicon on top as a tunneling barrier,
followed by another layer of graphene transferred on top and
patterned into the interconnects and device channels. (Fig. 1b
bottom inset; Details in Supplementary Information 1) In parti-
cular, using an atomically thin graphene sheet for the inter-
connects reduces light scattering when compared to using ITO or
other conductive thin films, which is crucial for recording pho-
tocurrent signal across all focal stacks. As a proof-of-concept, we
fabricated 4 × 4 (16-pixel) transparent graphene photodetector
arrays, as shown in Fig. 1b. The active region of each device, the
interconnects, and the transparent substrate are clearly differ-
entiated in the optical image due to their differing numbers of
graphene layers. The device has an overall raw transparency
> 80%; further simulation shows that the transparency can be
improved to 96% by refractive index compensation (see Supple-
mentary Information 1). The devices are wired out separately and
connected to metal pads, which are then wire-bonded to a cus-
tomized signal readout circuit. During normal operation, a bias
voltage is applied across the graphene channel and the current
flowing across the channel is measured; light illumination induces
a change in the current, producing photocurrent as the readout
(details in Supplementary Fig. 1(a)). The photodetection
mechanism of our device is attributed to the photogating
effect17,21,23 in the graphene transistor.

The yield and uniformity of devices were first characterized by
measuring the channel conductance. Remarkably, the use of
graphene interconnects can still lead to high device yield; 99% of
the 192 devices tested show good conductivities (see Supplemen-
tary Fig. 1c). The DC photoresponsivity of an individual pixel
within the array can reach ~3 A/W at a bias voltage of 0.5 V,
which is consistent with the response of single-pixel devices
reported previously18. We also notice the large device-to-device
variation that is intrinsic to most nanoelectronics. Normalization

within the array, however, can compensate for this uniformity
issue, which is a common practice even in a commercial
CCD array.

To reduce the noise and minimize device hysteresis, the AC
photocurrent of each pixel is recorded for 3D tracking and
imaging. This measurement scheme sacrifices responsivity but
makes the measurement faster and more reliable. As shown in
Fig. 2a, a chopper modulates the light and a lock-in amplifier
records the AC current at the chopper frequency. The power
dependence of the AC photocurrent is also examined (see
Supplementary Fig. 1e). The responsivity remains constant in the
power range that we use to perform our test. Hence only a single
exposure is required to calibrate the nonuniformity between the
pixels. We note that the graphene detector speed is currently
limited by the charge traps within the sputtered silicon tunneling
barrier17, which can be improved through better deposition
techniques and design, as well as higher quality materials24.

Focal stack imaging with transparent sensors. The concept of
focal stack imaging was demonstrated using two vertically stacked
transparent graphene arrays. As shown in Fig. 2a, two 4 × 4 sen-
sor arrays were mounted vertically along the optical axis, sepa-
rated at a controlled distance, to form a stack of imaging planes.
This double-focal-plane stack essentially serves as the cam-
era sensor of the imaging system. A convex lens focuses a 532 nm
laser beam, with the beam focus serving as a point object. The
focusing lens was mounted on a 3D-motorized stage to vary the
position of the point object in 3D. The AC photocurrent is
recorded for individual pixels on both front and back detector
arrays while the point object is moving along the optical axis.

Figure 2b shows a representative set of images captured
experimentally by the two detector arrays when a point object is
scanned at different positions along the optical axis (12 mm, 18
mm, 22 mm) respectively, corresponding to focus shifting from
the back plane toward the front plane (Fig. 2c). The grayscale
images show the normalized photoresponse, with white (black)
color representing high (low) intensity. As the focus point shifts
from the back plane toward the front plane, the image captured
by the front plane shrinks and sharpens, while the image captured
by the back plane expands and blurs. Even though the low pixel
density limits the image resolution, these results nevertheless
verify the validity of simultaneously capturing images at multiple
focal planes.

3D tracking of point objects. While a single image measures the
lateral position of objects as in conventional cameras, differences
between images captured in different sensor planes contain the
depth information of the point object. Hence focal stack data can
be used to reconstruct the 3D position of the point object. Here
we consider three different types of point objects: a single-point
object, a three-point object, and a two-point object that is rotated
and translated in three dimensions.

First, we consider single-point tracking. In this experiment, we
scanned the point source (dotted circle in Fig. 2a) in a 3D spatial
grid of size 0.6 × 0.6 mm (x, y axes) × 20 mm (z axis, i.e., the
longitudinal direction). The grid spacing was 0.06 mm along the
x, y axes, and 2 mm along the z axis, leading to 1331 grid points in
total. For each measurement, two images were recorded from the
graphene sensor planes. We randomly split the data into two
subsets, training data with 1131 samples (85% of total samples)
and testing data with 200 samples (15% of total samples); all
experiments used this data splitting procedure. To estimate three
spatial coordinates of the point object from the focal stack data,
we trained three separate MLP25 neural networks (one for each
spatial dimension) with mean-square error (MSE) loss. The
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results (Fig. 3a, b) show that even with the limited resolution
provided by 4 × 4 arrays, and only two sensor planes, the point
object positions can be determined very accurately. We used the
root-mean-square error (RMSE) to quantify the estimation
accuracy on the testing dataset; we obtained RMSE values of
0.012 mm, 0.014 mm, and 1.196 mm along the x, y, and z
directions, respectively.

Given the good tracking performance with the small-scale (i.e.,
4 × 4 arrays) graphene transistor focal stack, we studied how the
tracking performance scales with array size. We determined the
performance advantages of larger arrays by using conventional
CMOS sensors to acquire the focal stack data. For each point
source position, we obtained multi-focal plane image stacks by
multiple exposures with varying CMOS sensor depth (note that
focal stack data collected by CMOS sensors with multiple
exposures would be comparable to that obtained by the proposed
transparent array with a single exposure, as long as the scene
being imaged is static), and down-sampled the resolution of high
resolution (1280 × 1024) images captured by CMOS sensor to 4 ×
4, 9 × 9, and 32 × 32. We observed that tracking performance
improves as the array size increases; results are presented in
Supplementary Table 1.

We next considered the possibility of tracking multi-point
objects. Here, the object consisted of three point objects, and
these three points can have three possible relative positions to
each other. We synthesized 1880 3-point objects images as the
sum of single-point objects images from either the graphene
detectors or the CMOS detectors (see details of focal stack
synthesis in Supplementary Information 2). This synthesis
approach is reasonable given that the detector response is
sufficiently linear and it avoids the complexity of precisely
positioning multiple point objects in the optical setup. To
estimate the spatial coordinates of the 3-point synthetic objects,
we trained an MLP neural network with MSE loss that considers
the ordering ambiguity of the network outputs (see Supplemen-
tary Information 2, Equation (1)). We used 3-point object’s data
synthesized from the CMOS-sensor readout in the single-point
tracking experiment (with each CMOS image smoothed by spatial
averaging and then down-sampled to 9 × 9). We found that the
trained MLP neural network can estimate a multi-point object’s
position with remarkable accuracy; see Fig. 3c, d. The RMSE
values calculated from the entire test set are 0.017 mm, 0.016 mm,
0.59 mm, along x-, y-, z-directions, respectively. Similar to the
single-point object tracking experiment, the multi-point object
tracking performance improves with increasing sensor resolution
(see Supplementary Tables 2–4).

Finally, we considered tracking of a two-point object that is
rotated and translated in three dimensions. This task aims to
demonstrate 3D tracking of a continuously moving object, such
as a rotating solid rod. Similar to the 3-point object tracking
experiment, we synthesized a 2-point object focal stack from
single-point object focal stacks captured using the graphene
transparent transistor array. The two points are located at the
same x-y plane and are separated by a fixed distance, as if tied by
a solid rod. The rod is allowed to rotate in the x-y plane and
translate along the z-axis, forming helical trajectories, as shown in
Fig. 3e. We trained an MLP neural network with 242 training
trajectories using MSE loss to estimate the object’s spatial
coordinates and tested its performance on 38 test rotating
trajectories. Figure 3e shows the results of one test trajectory. The
neural network estimated the orientation (x- and y-coordinates)
and depth (z-coordinate) of test objects with good accuracy:
RMSE along x-, y-, and z-directions for the entire test set are
0.016 mm, 0.024 mm, 0.65 mm, respectively.

Supplementary Information 2 gives further details on the MLP
neural network architectures and training.

3D extended object tracking. The aforementioned objects con-
sisted of a few point sources. For non-point-like (extended)
objects, the graphene 4 × 4 pixel array fails to accurately estimate
the configuration, given the limited information available from
such a small array. To illustrate the possibilities of 3D tracking of
a complex object and estimating its orientation, we used a lady-
bug as an extended object and moved it in a 3D spatial grid of size
8.5 × 8.5 × 45 mm. The grid spacing was 0.85 mm along both x-
and y-directions, and 3 mm along z-direction. At each grid point,
the object took 8 possible orientations in the x-z plane, with 45°
angular separation between neighboring orientations (see
experiment details in Supplementary Information 2). We
acquired 15,488 high-resolution focal stack images using the
CMOS sensor (at two different planes) and trained two con-
volutional neural networks (CNNs), one to estimate the ladybug’s
position and the other for estimating its orientation, with MSE
loss and the cross-entropy loss, respectively. Figure 4 shows the
results for five test samples. The CNNs correctly classified the
orientation of all five samples and estimated their 3D position
accurately. For the entire test set, the RMSE along x-, y-, and

(a)

)c()b(

Fig. 2 Experimental demonstration of focal stack imaging using double

stacks of graphene detector arrays. a A schematic of measurement setup.

A point object (dotted circle) is generated by focusing a green laser beam

(532 nm) with the lens. Its position is controlled by a 3D motorized stage.

Two detector arrays (blue sheets) are placed behind the lens. An objective

and CMOS camera are placed behind the detector array for sample

alignment. A chopper modulates the light at 500Hz and a lock-in amplifier

records the AC current at the chopper frequency. b Images captured by the

front and back photodetector planes with objects at three different

positions along the optical axis (12 mm, 18 mm, 22mm, respectively). The

grayscale images are generated using responsivities for individual pixels

within the array, normalized by the maximum value for better contrast. The

point source is slightly off-axis in the image presented, leading to the shift

of spot center. c The illustrations of the beam profiles corresponding to the

imaging planes in (b). The focus is shifting from the back plane (top panel)

toward the front plane (bottom panel).
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Fig. 3 3D point object tracking using focal stack data for three different types of point objects. a, b Tracking results for single point object (only 10 test

samples are shown). Results are based on images captured with the graphene photodetector arrays. c, d Tracking results for three-points objects (only 4

test samples are shown). Results are based on data synthesized from multi-focal-plane CMOS images (downsampled to 9 × 9) of single point source. e

Tracking results for rotating two-point objects on one testing trajectory. The object is rotating counter-clockwise (viewed from left) while moving from

z ¼ �10mm to z ¼ 10mm. Results are based on data synthesized from single point source images captured with graphene photodetector arrays.

x z

y x

Fig. 4 3D extended-object tracking and its orientation estimation using focal stack data collected by a CMOS camera. (a) Results in the x-y-plane

perspective and (b) in the x-z-plane perspective. The estimated (true) ladybug’s position and orientation are indicated by green (orange) dots and green

(orange) overlaid ladybug images. Note that the ladybug images are not a part of the neural network output and are shown for illustration only.
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z-directions is 0.11 mm, 0.13 mm, and 0.65 mm, respectively, and
the orientation is classified with 99.35% accuracy. We note that at
least two imaging planes are needed to achieve good estimation
accuracy along depth (z)-direction: when the sensor at the front
position is solely used, the RMSE value along z-direction is 2.14
mm, and when the sensor at the back position is solely used, the
RMSE value along z-direction is 1.60 mm.

Supplementary Fig. 6 describes the CNN architectures and
training details.

Discussion
In conclusion, we designed and demonstrated a focal stack ima-
ging system enabled by graphene transparent photodetector
arrays and the use of feedforward neural networks. Even with
limited pixel density, we successfully demonstrated simultaneous
imaging at multiple focal planes, which can be used for 3D
tracking of point objects with high speed and high accuracy. Our
computer model further proves that such an imaging system has
the potential to track an extended object and estimate its orien-
tation at the same time. Future advancements in graphene
detector technology, such as higher density arrays and smaller
hysteresis enabled by higher quality tunnel barriers, will be
necessary to move beyond the current proof-of-concept demon-
stration. We also want to emphasize that the proposed focal
stacking imaging concept is not limited to graphene detectors
alone. Transparent (or semi-transparent) detectors made from
other 2D semiconductors and ultra-thin semiconductor films can
also be implemented as the transparent sensor planes within the
focal stacks. The resulting ultra-compact, high-resolution, and
fast 3D object detection technology can be advantageous over
existing technologies such as LiDAR and light-field cameras. Our
work also showcases that the combination of nanophotonic
devices, which is intrinsically high-performance but non-
deterministic, with machine learning algorithms can complement
and open new frontiers in computational imaging.

Data availability
The data that support the findings of this study are available from the corresponding

authors upon reasonable request.

Code availability
The code is accessible at https://zenodo.org/record/4282790#.X7gKPshKguU.
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Supplementary Information 

 

Supplementary Information 1: System Hardware 

I. Graphene Transparent Photodetector Device Fabrication: 

We first transferred a layer of graphene onto a commercial glass substrate. The graphene layer was grown 

on copper foil with chemical vapor deposition (CVD), and a standard wet transfer process produced a 

decent coverage of the monolayer graphene on the centimeter scale1. We patterned the graphene layer 

into isolated squares (as the floating gate) using photolithography. Then we etched away the exposed 

graphene with oxygen plasma. A 6-nm layer of sputtered silicon was sputtered on top of the graphene 

layer as the tunneling barrier. Another layer of graphene was transferred on top of the barrier immediately 

after silicon sputtering to minimize surface oxidation. We annealed the sample in Ar at 300 C for 15 mins 

to enhance graphene’s adhesion with the substrate, so that there is less stripping-off in the subsequent 

process. This graphene layer was lithographically patterned into the channel of the phototransistor as well 

as interconnects. The individual device pixels were spaced 0.3 mm away from each other. Cr/Au metal 

contacts were then deposited and connected to the graphene interconnects, leaving a 2.5 mm by 2.5 mm 

transparent window for light to pass through. The Cr/Au pads were then wire bonded to a sample holder 

in the readout circuit. The readout circuit was a scanning line that selectively applies bias to different 

pixels and collects the photocurrent in the target pixel. 

 

II. Graphene Photodetector Characterization: 

The fabricated all-graphene devices in general showed good coverage over the entire die. To check the 

uniformity and device yield, we applied a 0.5 V bias voltage across every pixel and measured the current 

across the graphene channel (see Supplementary Fig. 1(c)). Of all 192 devices tested, only 2 devices 

showed open circuit. This DC conductance test result shows 99% graphene device yield and negligible 

graphene peeling-off during the nanofabrication process. 

The detector photoresponse is characterized using a 532 nm Verdi V10 CW laser under 0.22 𝜇𝜇W 

illumination on a single pixel. For the responsivity calibration of both detector layers, we first align the 

lateral position of the imaging chip to maximize the photocurrent readout from the center pixel. This 

ensures that the optical beam is centered on the chip. Then we move the lens of the camera system along 



the optical axis to provide a beam spot with a diameter > 4 mm. The large spot size provides nearly 

uniform illumination in the 0.9-mm-wide detector array. The beam sizes are measured using a power 

meter and a blade as the moving mask. Then we measure the photocurrent from the array. By calculating 

the illumination power per device area, we calculate the responsivities of the devices. 

The responsivity is 3 A/W under 0.5 V source-drain bias. It is slightly smaller than previously reported 

values due to a relatively small bias voltage applied, lower doping level of graphene, and the geometry of 

the device. The DC photocurrent shows both a fast response on the scale of seconds and a slow response 

in hundreds of seconds, which is due to the charge trapping effect of the highly defective silicon barrier. 

By changing the dielectric material, the response time of such a structure can be decreased to the sub-

millisecond level2.To increase the speed of measurement and remove effects from drifting dark currents, 

we adopted an AC photocurrent measurement scheme to measure the smaller but fast component, as 

discussed in the main text. Supplementary Fig. 1(e) shows a linear dependence of AC photocurrent with 

respect to illumination power. A linear power dependence of the AC photocurrent was observed. 

We also characterize the transparency of the graphene detector array with a light focused on the detector 

plane. Transmission of a 532 nm laser beam through the array is measured to be 81%, while the reflection 

of the uncoated glass substrate contributes to a transmission of 86%, as measured in the graphene-free 

area of the device. The graphene detector array contributes to only 5% of decrease in transmission. If the 

application requires, the transparency can be significantly improved to >95% using an antireflection 

coating, and by replacing the silicon layer with ALD-grown Al2O3 of the same thickness.  



 

Supplementary Figure 1. Optical and electrical measurements on the all-graphene transparent 

photodetector. (a) measurement setup. A point object (dotted circle) is generated by focusing a green laser 

beam (532 nm) with the lens. Its position is controlled by a 3D motorized stage. Two detector arrays (blue 

sheets) are placed behind the lens. An objective and CCD camera are placed behind the detector array for 

sample alignment. A chopper modulates the light at 500 Hz and a lock-in amplifier records the AC 

current at the chopper frequency. (b) Optical microscope image and layout diagram (inset) of a single 

pixel. Blue: top layer graphene channel; green: bottom layer floating gate. The overlapped channel region 

(separated by the tunneling barrier) is 30 𝜇𝜇m by 10 𝜇𝜇m. The lower floating gate layer is 20 𝜇𝜇m by 20 𝜇𝜇m, 

intentionally made larger to avoid peeling-off. Scale bar: 20 𝜇𝜇m. (c) Histogram of the DC currents across 

graphene channels for individual detector devices. Bias voltage applied is 0.5 V. (d) DC temporal 

photoresponse of a typical graphene detector following light illumination. Both a fast and a slow 



component were observed, while the background current also showed drifting over time. (e) Power 

dependence of AC photocurrent, which measures the fast component and suppress the background drift. 

A linear power dependence (red line) is observed. 

 

III. Use of Graphene for Interconnects 

In our transparent detector array design, graphene is used not only as the active pixel material but also as 

the passive interconnect. Compared with other transparent electrode materials, such as indium-tin oxide 

(ITO), graphene is atomically thin while maintaining similar conductivity. This ultimate thin-ness 

minimizes optical interference patterns generated from the interconnect patterning, and also suppresses 

edge scatterings from normal metal wires. Supplementary Fig. 2 compares the optical transmission 

images of detector arrays fabricated using graphene interconnects versus ITO interconnects under 532 nm 

laser illumination. Even though the interference and scattering effect from ITO interconnects can be 

reduced with a refractive index compensation layer, this would add more complexity to the sensor array.  

 

Supplementary Figure 2. Array design (a) and optical images of photodetector arrays captured by CMOS 

camera. Samples using graphene interconnects (b) showed significantly weaker effects of interference and 

scattering than samples with ITO interconnects (c). 

 

IV. Readout of Single Pixel in 3D Ranging 

Before using the graphene devices as an imaging array, an imaging hardware reliability test is performed 

(Supplementary Fig. 3). The single-pixel photocurrent is measured while the light source moves both in-

plane and along the optical axis. For each pixel tested, the photocurrent always shows a single peak when 

the object is translated in 3 dimensions. The peak positions and FWHMs of peaks match the relative 

positions of pixels tested, confirming that the graphene detector array can indeed accurately “image” the 

focus of a point light source. 



 

 

 

Supplementary Figure 3. 3D ranging test of single detector pixels. Left: Photocurrents from two pixels 

(Device 13 and 33) spaced laterally in the X direction. When the point light source moves in X direction, 

the devices are illuminated sequentially and give peaks at two different X positions. When the point 

source is off focus on the device plane, a broader peak is observed corresponding to de-focusing. Right: 

Photocurrents from two pixels at front and back planes along the optical path (Z direction), respectively. 

As the point source moves from front to back along Z direction, the focus shifts from front to back 

detector plane accordingly, resulting in the observed photocurrent peaks at different Z positions. 

Deviation from the Gaussian fit stems from imperfect beam quality and possible off-axis alignment. 

V. Noise Analysis 

The noise equivalent power (NEP) is a good measure to discuss the SNR in realistic applications. The 

NEP of the device has been discussed in the supporting information of our previous work (Liu C H, et al. 

Nature Nanotechnology, 2014, 9(4): 273-278.). We collect our data with a modulation frequency of 500 

Hz. At this frequency, the noise spectral density is 10-9 A/Hz1/2. The noise level is consistent with the 1/f 

noise of graphene transistors observed3. This indicates that the channel’s 1/f noise dominates over the shot 

noise of dark currents in the tunneling barrier. With an AC responsivity of 10 mA/W (Supplementary Fig. 

1 (e)), the NEP is 0.1 𝜇𝜇W/Hz1/2. The value is small compared with our test illumination power of ~10 𝜇𝜇W 

per device. 

We can also compare this with realistic illumination powers in a camera system. Assume a camera system 

with a 20-mm aperture and a numerical aperture of 0.7. When using it to image a white Lambertian 



surface under sunlight, the estimated optical power per pixel is 0.05 μW. This indicates a relatively low 

SNR for our current device. 

The low SNR is largely due to the slow response of our photodetectors, which is caused by the large 

density of charge traps in the tunneling barrier. Charge traps capture the tunneling charges and 

compensate the local field that motivates more interlayer hopping. One of our previous work replaced 

amorphous silicon with high quality Al2O3. The responsivity at 1 kHz is as high as 60 A/W at 532 nm2. 

Taking all the corresponding design variations, including increased noise due to a larger channel current, 

we expect a NEP of 0.1 nW/Hz1/2, which is more than enough for realistic applications. In this 

experiment, we did not adopt the Al2O3 barrier due to fabrication yield considerations, as the thin material 

is vulnerable to the base used in lithography. Nevertheless, there are no fundamental limitations that 

prevent us from fabricating transparent devices with higher speed and responsivity. 

In the above discussion, experimental results suggest that the tunneling current is not the major 

contribution of noise. For a more complete discussion, we can further analyze the tunneling noise’s order 

of magnitude. The shot noise’s current spectral density is S = 2eI when the interlayer bias V >> kT/e 4. 

The current is the total of the dark current and the photocurrent, which is around 10 pA in our device. 

Hence the noise current density of the tunneling photodiode (before amplification) is around 1.8 fA/Hz1/2. 

The value is much smaller than the photocurrent at any realistic illumination power. Also notice that 1/f 

noise is not considered here, so that the estimation only sets the lower limit for the noise amplitude 

contributed by the tunneling current before amplified with the photogating effect. 

Moreover, neural networks can be trained to be robust against input noises. This further lifts the SNR 

requirements for the reported application. 

In conclusion, the device’s noise is dominated by the 1/f noise in the channel. The photoconductive gain 

amplifies the noise from the vertical tunneling diode. However, it does not dominate the device noise 

based on both tests and order-of-magnitude estimation. Better implementation of the device to image 

ambient objects needs an increase in responsivity. One promising way is to improve the tunneling barrier 

quality, which is also supported by previous work. 

 

Supplementary Information 2: Data Processing and Machine Learning 

I. Single-Point Object Focal Stack from CMOS Camera 

We recorded 1,331 single-point object focal stacks using the transparent graphene transistor array and 

separately using a CMOS sensor (Thorlab DCC1645C); see the right part of the Fig. 2(a) in the main text. 



By moving the CMOS sensor along 𝑧𝑧 to focus either closer to or farther away from the lens, we captured 

focal stacks from CMOS camera. This data allows us to test how the image resolution and image quality 

of the graphene sensors affect the 3D ranging performance of a machine-learning algorithm.  

 

We applied the following procedure to each high-resolution (1280 × 1024) color image captured by the 

CMOS camera: we convert the captured color image to gray image and optionally smooth it by spatial 

averaging and generate low resolution single-point object focal stacks of spatial size 4 × 4, 9 × 9 or 32 × 

32. We used the processed images in either single-point tracking (to investigate the effects of imaging 

resolution to the tracking performance) or synthesizing multi-point object focal stacks.  

 

II. Synthesizing Multi-Point Object Focal Stack 

We synthesized multi-point object focal stacks by combining focal stacks from the scanned single point 

object (either from transparent graphene transistor array or from CMOS camera). The synthesis assumes 

that the detector’s response is linear, i.e., suppose 𝐼𝐼𝑖𝑖 is the sensor image of the single point object at 

location (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖). Then the sensor image 𝐼𝐼multi consisting of multiple points is synthesized as 𝐼𝐼multi =∑ 𝐼𝐼𝑖𝑖𝑁𝑁𝑖𝑖=1 , where 𝑁𝑁 is the number of point objects. 

We constructed an 𝑀𝑀-point object focal stack dataset, where the dataset consists of multiple subsets, and 

each subset consists of 𝐾𝐾 possible shapes (relative position between points), by synthesizing each shape 

independently and then combining them. We translated an object to all possible locations (i.e., no point of 𝑀𝑀-point object is off the 3D grid) in the 3D 11 × 11 × 11 scanning grid; at each location, we synthesize 

the corresponding focal stack according to the summation above. The number of synthesized datasets 

with (M = 2, K = 2), (M = 2, K = 3), (M = 3, K = 2), (M = 3, K = 3) were 1600, 2320, 1232, and 1880, 

respectively.  

 

We constructed the rotating 2-point object focal stack dataset by selecting focal stacks from the M-point 

focal stack with K possible shapes dataset, with 𝑀𝑀 = 2,𝐾𝐾 = 4. Four shapes of a 2-point object (i.e., 𝑀𝑀 =

2,𝐾𝐾 = 4) were chosen to have same inter-point distance but rotated by different angles (26.5°, 63.5°, 

116.5°, and 153.5°) about 𝑧𝑧 axis (e.g., (1,0,0) means 0° rotation about 𝑧𝑧axis and (0,1,0) means 90° 

rotation about 𝑧𝑧axis). To form the helical trajectory in the 𝑀𝑀 = 2,𝐾𝐾 = 4 setup, we selected an angle from 

the set {26.5°, 63.5°, 116.5°, and 153.5°} at each 𝑧𝑧 position in the following sequence: 63.5°, 

26.5°,153.5°, 116.5°, 63.5°, 26.5°, 153.5°,116.5°, 63.5°, 26.5°, 153.5°, for 𝑧𝑧 =-10 mm, -8 mm, …, 10 mm. 

See graphical illustration in Fig. 3(e) of the main paper. 

 

III. Extended Object Focal Stack 



We captured extended object focal stacks using the CMOS sensor. The experimental setup is shown in 

Supplementary Fig. 4. We used a ladybug as the extended object and moved it in a 3D spatial grid of size 

8.5 mm × 8.5 mm × 45 mm. The grid spacing is 0.85 mm along both 𝑥𝑥 and 𝑦𝑦, 3 mm along 𝑧𝑧. At each 

grid point, the object has 8 possible orientations in the x-z plane, with 45° angular separation between 

neighboring orientations. This led to a total of 1,5488 focal stacks, where each focal stack consists of two 

images captured by the CMOS sensor positioned at different 𝑧𝑧 positions. Similar to Part B-III, all images 

are converted to gray images before feeding to the neural networks.  

 

Supplementary Figure 4. Experimental set-up for capturing the extended object (ladybug) focal stack, 

using CMOS sensor. 

 

IV. Neural Network Architectures and Training 

We implemented all neural networks in Pytorch (ver. 1.0). The network architectures and training details 

are described below. 

 

For single-point object tracking, separate neural networks were trained for estimating the three spatial 

coordinates 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧, respectively. Supplementary Fig. 5(a) shows the network architecture used for 

estimating coordinates 𝑥𝑥 and 𝑦𝑦, and Supplementary Fig. 5(b) shows the network architecture used for 

estimating 𝑧𝑧. For multi-point object tracking, a single neural network (Supplementary Fig. 5(c)) is trained 

to estimate all points’ coordinates. 

In point object tracking cases (Supplementary Fig.5 (a-c)), the focal stack data is flattened into a one-

dimensional vector and subsequently passed through multilayer perceptron (MLP)5 using Rectified Linear 

Unit (ReLU) as the activation function. 

 



 

Supplementary Figure 5. Neural network architectures for 3D ranging. 𝐵𝐵 is the general batch size of the 

data (e.g., in training, 𝐵𝐵 is the training batch size; in testing with a single sample, 𝐵𝐵 = 1). (a) Network for 

estimating single point object’s 𝑥𝑥 or 𝑦𝑦 coordinate. (b) Network for estimating single point object’s 𝑧𝑧 

coordinate. (c) Network for estimating M-point object’s (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) coordinates tuple. 

 

For single-point object tracking, the network outputs a single coordinate value for each focal stack, and 

the networks are trained by minimizing the following mean-square error (MSE) loss 

1𝑁𝑁��𝑠𝑠^𝑖𝑖 − 𝑠𝑠𝑖𝑖�2 ,

𝑁𝑁
𝑖𝑖=1   

where 𝑁𝑁 is the number of training samples, 𝑠𝑠𝑖𝑖 is the true spatial coordinate (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖, or 𝑧𝑧𝑖𝑖) and 𝑠𝑠^𝑖𝑖 is the 

estimated spatial coordinate from a neural network. We trained networks using the Adam6 optimizer with 

the learning rate of 10-2, the training batch size of 50, and 2000 epochs.  

 

For training multi-point object tracking neural networks, we defined the following MSE loss that 

considers the ordering ambiguity of the network outputs in training: 

1𝑁𝑁� 𝑚𝑚𝑚𝑚𝑚𝑚
(𝑝𝑝1,...,𝑝𝑝𝑀𝑀)∈𝑃𝑃

𝑁𝑁
𝑖𝑖=1 ��𝑥𝑥^𝑖𝑖(𝑗𝑗) − 𝑥𝑥𝑖𝑖(𝑝𝑝𝑗𝑗)�2 + �𝑦𝑦^𝑖𝑖(𝑗𝑗) − 𝑦𝑦𝑖𝑖(𝑝𝑝𝑗𝑗)�2 + �𝑧𝑧^𝑖𝑖(𝑗𝑗) − 𝑧𝑧𝑖𝑖(𝑝𝑝𝑗𝑗)�2𝑀𝑀

𝑗𝑗=1 , (1) 

 



where 𝑀𝑀 is the number of points of the object, 𝑃𝑃 is the set containing all possible permutations of the 

tuple (1,2, . . .𝑀𝑀), 𝑥𝑥𝑖𝑖(𝑗𝑗)
 and 𝑥𝑥^𝑖𝑖(𝑗𝑗)

 are the true and estimated coordinate of the 𝑚𝑚𝑡𝑡ℎ data sample, 𝑗𝑗𝑡𝑡ℎ point. The 

network outputs a coordinates tuple for all the points of the object as 

{(𝑥𝑥^ (1),𝑦𝑦^ (1), 𝑧𝑧^(1)), … , (𝑥𝑥^ (𝑀𝑀),𝑦𝑦^ (𝑀𝑀), 𝑧𝑧^(𝑀𝑀))}. To consider the ordering ambiguity of the network outputs in 

training, e.g., for (𝑥𝑥(1),𝑦𝑦(1), 𝑧𝑧(1)), the network cannot determine which estimate gives lower MSE,  

between (𝑥𝑥^ (1),𝑦𝑦^ (1), 𝑧𝑧^(1)) and (𝑥𝑥^ (2),𝑦𝑦^ (2), 𝑧𝑧^(2)), we found proper orders by minimizing MSE over the 

permutation set 𝑃𝑃 in (1) . With the help of minimization over 𝑃𝑃, the loss will be low as long as a trained 

network predicts the overall shape of the object, regardless of the order of the network estimates. In the 

training, we scaled down the true 𝑧𝑧 coordinate values by 33.3 so that it is in the same range as coordinates 𝑥𝑥 and 𝑦𝑦. This avoids the loss (1) from being dominated by 𝑧𝑧 component of MSE loss, i.e., avoids training 

from being biased to 𝑧𝑧-coordinate estimation. We trained the network using Adam optimizer with the 

learning rate of 10-3, the training batch size of 100, and 2000 epochs.  

 

For tracking the two-point rotating object, we also trained the network by (1) and scaled the z coordinate 

values by 33.3. For training the network, we used Adam optimizer with the learning rate of 10-3, the 

training batch size of 100, and 2000 epochs.  

 

For extended object tracking and orientation estimation, we use two convolutional neural networks 

(CNNs) (Supplementary Fig. 6) similar to VGG-167. The CNN shown in Supplementary Fig. 6(a) is used 

for the tracking. For each focal image, we first extract high-level feature maps with multiple convolution-

batch normalization (BN)-ReLU-pooling layers. Then we apply the following procedure to extracted 

feature maps from all focal images: 1) concatenation of all feature maps along channel dimension, 2) 

average pooling, 3) flattening, and 4) feeding the output into fully connected layers (FC) that lead to final 

coordinates. The network is trained by minimizing the following MSE loss: 

1

3𝑁𝑁��𝑥𝑥^𝑖𝑖 − 𝑥𝑥𝑖𝑖�2 + �𝑦𝑦^𝑖𝑖 − 𝑦𝑦𝑖𝑖�2 + �𝑧𝑧^𝑖𝑖 − 𝑧𝑧𝑖𝑖�2𝑁𝑁
𝑖𝑖=1 , 

where 𝑁𝑁 is the number of training samples. In the training, we scaled the true 𝑧𝑧 coordinate values to have 

the same range as x and y coordinates, for the same reason as in the multi-point object tracking. The CNN 

shown in Supplementary Fig. 6(b) is used for object orientation estimation. We consider the problem as a 

multi-class classification problem: the CNN takes focal stack as input and output scores that are used to 

classify the object orientations with eight different orientations. The network is trained by minimizing the 

cross-entropy loss.  



We trained both CNNs with 13,188 training samples, using Adam optimizer with the initial learning rate 

of 10-4 (with learning rate decay by 0.3 at epoch 3, 5, 10, 20), the training batch size of 20, and 60 epochs 

and tested trained CNNs with 2,300 test samples. Due to the nondeterministic behavior of PyTorch8, the 

training/testing is repeated three times for the orientation classification network and the best model is 

used. The orientation classification accuracies of the three runs are 95.35%, 96.61% and 99.35%. 

 

Supplementary Figure 6. Convolutional neural network architectures for extended object tracking and 

orientation estimation. 𝐵𝐵 is the general batch size of the data (e.g., in training, 𝐵𝐵 is the training batch size; 

in testing with a single sample, 𝐵𝐵 = 1). (a) Network for estimating extended object’s spatial coordinates 

(𝑥𝑥,𝑦𝑦, 𝑧𝑧). (b) Network for estimating extended object’s orientation. 

 

V. Ranging Performance Comparison 



We studied the effect of the detector resolution and spatial smoothing on the single-point object 3D 

ranging performance. Supplementary Table 1 summarizes the results. The resolution of the CMOS focal 

stack is varied to see its effect on the ranging performance: it can be seen by comparing horizontally the 

root mean square error (RMSE) in the 2nd, 3rd and 4th columns or in the 5th and 6th columns that higher 

resolution focal stack gives lower loss. Besides, note that spatially averaged results have lower loss, 

compared to those without averaging. This is because the noise from interference fringes is suppressed 

after applying spatial averaging. 

 
4 × 4 

Graphene 

4 × 4  

CMOS 

9 × 9 

CMOS 

32 × 32 

CMOS 

4 × 4  

(Avg. 20) 

CMOS 

9 × 9  

(Avg. 20) 

CMOS 

RMSE x 
0.012 0.031 0.020 0.021 0.014 0.009 

RMSE y 
0.014 0.028 0.017 0.012 0.012 0.010 

RMSE 𝑧𝑧 1.196 1.304 1.192 0.480 0.616 0.458 

 

Supplementary Table 1. Single-point object 3D ranging RMSE (unit: mm) table on testing set. Avg. 20 

means spatial averaging with window size 20 is performed on the raw high-resolution focal stack.  

 
4 × 4 

Graphene 

4 × 4  

CMOS 

9 × 9 CMOS 32 × 32 

CMOS 

4 × 4  

(Avg. 20) 

CMOS 

9 × 9  

(Avg. 20) 

CMOS 

2p2s 0.017 0.036 0.025 0.013 0.020 0.013 

2p3s 0.019 0.033 0.022 0.013 0.019 0.012 

3p2s 0.019 0.042 0.027 0.025 0.021 0.016 

3p3s 0.021 0.041 0.029 0.028 0.022 0.017 

 



Supplementary Table 2. Multi-point object 3D ranging RMSE (unit: mm) table of 𝑥𝑥 on testing set. Avg. 

20 means spatial averaging with window size 20 is performed on the raw high-resolution focal stack. First 

column encodes different object configurations, e.g., 2p3s means 2-point object with 3 possible shapes. 

 

 
4 × 4 

Graphene 

4 × 4  

CMOS 

9 × 9 CMOS 32 × 32 

CMOS 

4 × 4  

(Avg. 20) 

CMOS 

9 × 9  

(Avg. 20) 

CMOS 

2p2s 0.022 0.045 0.033 0.019 0.026 0.017 

2p3s 0.025 0.039 0.028 0.018 0.025 0.015 

3p2s 0.010 0.019 0.013 0.016 0.011 0.007 

3p3s 0.019 0.035 0.026 0.027 0.021 0.016 

 

Supplementary Table 3. Multi-point object 3D ranging RMSE (unit: mm) table of 𝑦𝑦 on testing set. Avg. 

20 means spatial averaging with window size 20 is performed on the raw high-resolution focal stack. First 

column encodes different object configurations, e.g., 2p3s means 2-point object with 3 possible shapes. 

 
4 × 4 

Graphene 

4 × 4  

CMOS 

9 × 9 CMOS 32 × 32 

CMOS 

4 × 4  

(Avg. 20) 

CMOS 

9 × 9  

(Avg. 20) 

CMOS 

2p2s 0.685 1.073 0.759 0.349 0.557 0.371 

2p3s 1.164 1.573 1.142 0.788 0.983 0.641 

3p2s 0.793 1.328 0.876 0.715 0.750 0.470 

3p3s 0.894 1.444 1.004 0.895 0.850 0.594 

 



Supplementary Table 4. Multi-point object 3D ranging RMSE (unit: mm) table of 𝑧𝑧 on a testing set. Avg. 

20 means spatial averaging with window size 20 is performed on the raw high-resolution focal stack. First 

column encodes different object configurations, e.g., 2p3s means 2-point object with 3 possible shapes. 

Supplementary Tables 2, 3, 4 summarize the study of the effect of the detector resolution and spatial 

smoothing on the multi-point object 3D ranging performance. Similar to the single-point object case, 

more pixels are useful in reducing the ranging error, as can be seen by comparing horizontally the RMSE 

in 2nd, 3rd and 4th columns or in the 5th and 6th columns. The spatial averaging is again helpful, as in the 

single object case, in reducing the estimation error.  

The numerical results summarized in Supplementary Table 1-4 above are also illustrated graphically in 

Supplementary Fig. 7-11 below.  



 

Supplementary Figure 7. Single-point object tracking performance (only 10 test samples are shown). 

Focal stack data from: (a-b) 4×4 transparent graphene detector. (c-d) 4×4 CMOS sensor. (e-f) 9×9 



CMOS sensor. (g-h) 32×32 CMOS sensor. (i-j) 4×4 Avg. 20 CMOS sensor. (k-l) 9×9 Avg. 20 CMOS 

sensor. 

 



Supplementary Figure 8. 2-point object with 2 possible shapes tracking performance (only 7 test samples 

are shown). Focal stack data from: (a-b) 4×4 transparent graphene detector. (c-d) 4×4 CMOS sensor. (e-

f) 9×9 CMOS sensor. (g-h) 32×32 CMOS sensor. (i-j) 4×4 Avg. 20 CMOS sensor. (k-l) 9×9 Avg. 20 

CMOS sensor. 

 



Supplementary Figure 9. 2-point object with 3 possible shapes tracking performance (only 7 test samples 

are shown). Focal stack data from: (a-b) 4 × 4 transparent graphene detector. (c-d) 4 × 4 CMOS sensor. 

(e-f) 9 × 9 CMOS sensor. (g-h) 32 × 32 CMOS sensor. (i-j) 4 × 4 Avg. 20 CMOS sensor. (k-l) 9 × 9 

Avg. 20 CMOS sensor. 



 

Supplementary Figure 10. 3-point object with 2 possible shapes tracking performance (only 4 test samples 

are shown). Focal stack data from: (a-b) 4 × 4 transparent graphene detector. (c-d) 4 × 4 CMOS sensor. 



(e-f) 9 × 9 CMOS sensor. (g-h) 32 × 32 CMOS sensor. (i-j) 4 × 4 Avg. 20 CMOS sensor. (k-l) 9 × 9 

Avg. 20 CMOS sensor. 

 

Supplementary Figure 11. 3-point object with 3 possible shapes tracking performance (only 4 test samples 

are shown). Focal stack data from: (a-b) 4 × 4 transparent graphene detector. (c-d) 4 × 4 CMOS sensor. 



(e-f) 9 × 9 CMOS sensor. (g-h) 32 × 32 CMOS sensor. (i-j) 4 × 4 Avg. 20 CMOS sensor. (k-l) 9 × 9 

Avg. 20 CMOS sensor. 

VI. Inference Time 

Supplementary Table 4 shows the network inference time for point object tracking. The inference times 

for extended object position tracking and orientation estimation are 9.538 ms and 6.001 ms, respectively. 

We measured the inference time using a 1531 MHz Nvidia GeForce 1080 Ti GPU with 11G RAM. 

 
4 × 4  9 × 9  32 × 32  

Single-point object  0.503 ms 0.512 ms 0.539 ms 

2-point object 0.187 ms 0.190 ms 0.192 ms 

3-point object 0.190 ms 0.189 ms 0.189 ms 

 

Supplementary Table 4. Point object tracking inference time for different input focal stack resolutions. 
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