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Abstract— Filtered backprojection is an image reconstruction
technique for Compton imaging that provides reasonably high
resolution at much lower computational costs when compared to
iterative methods. This work applies a Wiener filter that has been
derived for spherical harmonics on Compton imaging using the
OrionUM pixelated CdZnTe imaging spectrometer. To regularize
the filter, an investigation is made into the power spectral density
of the signal and noise to develop an appropriate spectral signal-
to-noise ratio model for the restoration process. Experimental
measurements were conducted with two 228Th sources placed
30◦ apart. The resulting filtered image of the two sources has
an average full-width-at-half-maximum (FWHM) of 9.8◦ or 7.5◦
when using a mean squared error and structural similarity
optimization approach, respectively, an improvement from the
29.0◦ FWHM image when using simple backprojection.

Index Terms— Filtered backprojection (FBP), gamma-ray
imaging, spherical harmonics (SHs), Wiener filter.

I. INTRODUCTION

COMPTON imaging is a technique for estimating the
directional origin of incoming gamma rays and has

found applications in many fields such as astronomy [1] and
medicine [2]. There are many image reconstruction techniques,
including both iterative and noniterative methods. Filtered
backprojection (FBP) offers an alternate image reconstruction
technique to simple backprojection (SBP) and is advantageous
in scenarios where high resolution is desired while remaining
computationally cheap when compared to iterative techniques
such as maximum likelihood expectation-maximization [3].

Various approaches have been developed to filter Compton
images. Cree and Bones [4] derived the first inversion formula
for the conical Radon transform and has been followed by
other formulas with various assumptions of cone sets and
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detector geometry [5]–[7]. Basko et al. [8] developed an ana-
lytical inversion method to reconstruct planar projections from
cone surfaces via spherical harmonic (SH) expansions which
can then be further filtered. Parra [9] then extended the model
to use all possible scattering angles with the Klein–Nishina
cross section taken into account. That approach, however, did
not consider that the Compton camera is unlikely to detect the
entire set of scatter angles. Therefore, Parra’s technique was
augmented by Tomitani and Hirasawa [10] to limit the poten-
tial angles used in the analytical point spread function (PSF).
In the above studies, the filtering process was accomplished
via a truncated inverse filter approach. Haefner et al. [11]
introduced a filtering approach that places a 4π sphere in
a 3-D Cartesian space and used 3-D Radon transforms to
complete the filtering process with a Tikhonov regularization
method.

Chu et al. [3] applied the Wiener filter on backprojected
rings that were weighted by the probability of them occurring.
The weighting scheme was applied to reduce the effects of
the shift-variant PSF. We build on that work as they did
not account for proper SH properties in the filter design.
Next, we model a power spectral density (PSD) of the signal
and noise to regularize the process. Section II overviews the
OrionUM CdZnTe imaging system and Section III discusses
the general imaging model. Section IV derives the Wiener
filter for SHs, whereas Section V explores the behavior of
the signal-to-noise ratio (SNR) that is used to regularize the
filter. Section VI describes how the simulated PSF model was
developed and Section VII applies the proposed technique on
experimental data using a 228Th source.

II. UNIVERSITY OF MICHIGAN ORIONUM
4π COMPTON IMAGER

The current University of Michigan CdZnTe platform is
named OrionUM and is composed of nine 2 × 2 × 1.5 cm3

CdZnTe crystals arranged in a 3 × 3 × 1 array [12]. Each
crystal has a planar cathode and an 11 × 11 pixelated anode
array with a 1.72 mm pixel pitch. The depth of interaction
can be estimated using the cathode-to-anode ratio, or drift
time. This allows for the 3-D position reconstruction of each
interaction.

This study uses the 3-MeV dynamic range mode that has
a single-pixel resolution better than 0.4% full-width at half-
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Fig. 1. Diagram of the 3 × 3 × 1 crystal OrionUM system. The normal of
the cathode is pointed toward (90◦, 90◦), or ŷ. The diagram depicts a source
with a yellow star located at (θ, φ) with a Compton cone (red dotted line)
and Compton ring (solid purple ellipse) projected onto it. The gamma ray is
emitted from the source, scatters in a location labeled with a “S” red dot, and
then absorbed in the location labeled by the “A” red dot. The green squiggly
line portrays the gamma-ray’s trajectory. The blue dashed arrow represents
the lever arm and is a vector from “A” to “S.” The spacing between each
crystal is 2.5 cm center-to-center from the neighboring crystal.

maximum (FWHM) at 662 keV, which is a degradation from
0.35% when using the 700-keV dynamic range.

Fig. 1 illustrates the coordinate system along with the
detector layout. The detector’s isocenter, which is normal to
the cathode, is located at (θ, φ) = (90◦, 90◦).

III. INTRODUCTION TO FILTERED BACKPROJECTION

A general linear model for Compton imaging measurements
can be made as

E
[
o
] = Tf (1)

where f is the unknown true source vector of length J that
is to be estimated, E[o] is the expected observation vector of
length I , and T is an I × J -sized system matrix. For “binned
mode” data, I is the number of detection bins.

A. Simple Backprojection

The SBP process can be modeled as

f̂SBP = T�o. (2)

The apostrophe � represents the transpose of the matrix. We are
interested in analyzing the PSF of this method by examining
its expectation

E
[
fSBP

] = T�
E
[
o
] = T�Tf = Bf (3)

where B = T�T and represents the J × J matrix of PSFs. In B,
the j th column is the PSF for a source located in the j th image
pixel. However, in most imaging systems including OrionUM,

T is not an orthogonal matrix yielding a biased SBP estimator
as T�T = B �= I and does not provide a shift-invariant PSF,
where I represents an identity matrix. Section VI discusses the
construction of B.

B. Filtered Backprojection

FBP is designed to recover the true signal by removing the
blur and noise introduced by the measurement system [13].
An example is the inverse filter, used in Compton imaging
by Parra [9], Xu and He [14], and Lee et al. [15]. Using the
model described in (2), the SBP image can be filtered as

f̂FBP = B−1f̂SBP. (4)

We analyze the PSF of the filtered image with the expectation

E
[
fFBP] = B−1

E
[
fSBP] = B−1T�Tf = f . (5)

The structure of T implies that each row is a Compton cone
in the image space. Therefore, T is a very large matrix as
there is a huge number of possible interaction permutations a
gamma ray can undertake while being attenuated in the detec-
tor. Therefore, we use list-mode reconstruction techniques to
construct the observation matrix.

In practice, filtering with B−1 could amplify noise when B
has very small values. Therefore, an advanced filter is required
to perform a more practical reconstruction. This work uses the
Weiner filter, which is designed to minimize the mean square
error (MSE) during the restoration process [16].

IV. FILTERED BACKPROJECTION USING A SPHERICAL

HARMONIC WIENER FILTER

SHs can be used to define a function f (θ, φ) = f (�)
on a 4π spherical surface using a set of basis functions and
therefore present a natural choice with which to perform the
filtering processes for far-field Compton imaging. The SHs
Y m

l (�) are a function of degree l and order m. For each degree,
there are 2l + 1 orders with range −l ≤ m ≤ l. The following
represents an orthonormalized SH function:

Y m
l (�) =

√
(2l + 1)

4π
· (l − m)!
(l + m)! Pm

l (cos θ)eimφ. (6)

There are three main components to the SH. First, the square
root term represents the normalization element. This study
uses the orthonormalized SH such that �Y m�

l� |Y m
l � = δl−l� δm−m� ,

where δl−l� is the Kronecker delta. The second component,
Pm

l (cos θ), is the associated Legendre polynomial [17]. The
last component is a complex exponential. There are many
different normalizations [18], each with different properties.

Similar to the Fourier series, a transform could be made
from the spherical function space to spectral space with

Fm
l =

∫
�

d� f (�)Y m∗
l (�) (7)

where Y m∗
l represents the complex conjugate of Y m

l . The
inverse transform is defined by

f (�) =
∞∑

l=0

l∑
m=−l

Fm
l Y m

l (�). (8)
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A. Notes on SHs

Convolution (�) in spherical space differs from that in
Fourier space [19]. First, the kernel (k(�)) in the convolution
must be circularly symmetric about the North Pole (θ = 0).
Next, the SH transform (SHT) of the convolution is

SHT{ f (�) � k(�)} = 2π

√
4π

2l + 1
Fm

l K 0
l (9)

where capital letters describe the SHT of spherical functions
presented in lower case. Note the loss of order for (K 0

l ) which
is the SHT{k(�)} = K m

l with m = 0. Appendix A presents a
further discussion on convolution in SHs and expands on the
circularly symmetric convolution kernel.

SHs are also Hermitian functions with the following
property [20]:

Y −m
l = (−1)l

(
Y m

l

)∗
. (10)

Therefore, only m ≥ 0 SH coefficients are presented in this
study. The toolbox utilized to complete the SHTs is the SHTns
library [21].

B. SH Wiener Filtering
The objective of the Wiener filter (g) is to estimate the

original signal f (�) by a linear convolution method that
minimizes the mean squared error

MSE = E
[| f (�) − f̂ FBP(�))|2] (11)

where the estimated signal is modeled as f̂ FBP(�) = ( f̂ SBP �
g)(�). The blurred observed image is modeled as f̂ SBP =
( f �h)(�)+n(�), with h denoting the PSF and n the additive
noise. Next, Parseval’s Theorem (25) is used to convert the
estimated FBP image to SHs

F̂FBP
l,m = 2π

√
4π

2l + 1
Gl F̂SBP

l,m (12)

where F̂SBP
l,m and F̂FBP

l,m are the SHT of the image estimates
using simple and FBP techniques, respectively, and Gl is the
SHT of the Wiener filter that deblurrs the SBP image with the
following form:

Gl = H ∗
l

2(2π)3

2l+1 |Hl|2 + R−1
l

; R−1
l = NPSD

l

SPSD
l

(13)

where SPSD
l and NPSD

l denote the power spectral density as a
function of l and Hl denotes the SHT of the PSF. Next, R−1

l
represents a regularizer that is related to the inverse of the
spectral-signal to spectral-noise ratio, which Section V further
discusses.

Note the 2(2π)3/(2l + 1) factor in the denominator that
represents the main difference between the filter derived for
Fourier space and SHs. Appendix B derives the SHs’ Wiener
filter, whereas Appendix C discusses Parseval’s theorem.

V. MODELING OF THE SNR REGULARIZER

The regularizer in the Wiener filter is often referred to as
the inverse of the SNR. It is a function of the object being
imaged and the characteristics of the environment and system.

Fig. 2. Power spectra of delta impulses located in different positions on the
sphere all exhibiting a nearly linear trend with degree l. Note that only m ≥ 0
are considered here.

In this study, it represents the inverse ratio of the PSD of the
signal SPSD

l and noise NPSD
l , modeled as

SPSD
l = Ql

l∑
m=−l

|Fm
l |2; NPSD

l = Ql

l∑
m=−l

|Nm
l |2 (14)

where Ql represents the inner product of the SHs (1 in
this study). Note that there are multiple definitions of the
PSD in SHs. Liu et al. [22] included a 1/(2l + 1) factor to
normalize the summation over all orders m, whereas others
do not [18]. The definition in (14) arises from convenience
when deriving the Wiener filter (see Appendix B). This section
details the model chosen for the power spectra to formulate
the regularizer.

A. Modeling of the Signal PSD (SPSD
l )

From (14), the power spectrum is related to the object
being measured, f (�). This spectrum could be modeled
after the true object if prior information is available, but
presents a challenge when the source is unknown. Therefore,
several spectral responses were calculated for Kronecker delta
impulses at different locations. Fig. 2 plots them and presents
a nearly linear trend as a function of degree l. We, therefore,
model the PSD of the signal to be linear as follows:

SPSD
l = csl (15)

where cs is a constant that is a function of the source
intensity and distribution. Although the plots only represent
power spectral densities of point sources, they can be applied
to more complex sources as SHs exhibit additive linearity
property [23]. Therefore, we model the PSD of the signal as
a linear combination of those linear PSDs.

B. Modeling of the Noise PSD (N PSD
l )

The noise in this study is referred to as additive noise
present in the observed signal f̂ SBP(�) and we model it as
“white.” In SHs, there exist several interpretations of white
noise. In some geophysics applications, a signal is white if
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Fig. 3. SBP image of a simulated 2.6 MeV point source located at the North
Pole of a single 2 × 2 × 2 cm3 crystal. This image is used as the PSF
model in the filtering process.

the average power is constant for every degree of freedom
(l, m) [24]. There, Nm

l = σ , where σ is a constant represen-
tative of noise in the system and results in a power spectrum
that is scaled by (2l + 1). Another interpretation [25] is that
the spectral power is constant in l, and we choose to model
the noise as such in this study

NPSD
l = σ. (16)

C. Ratio of the Signal and Noise Power Spectral Densities
In summary, the signal power spectrum is assumed to be a

linear function of l in this study, whereas the noise is assumed
to be white and constant through l. Taking the ratio between
the two assumptions gives

R−1
l = NPSD

l

SPSD
l

= σ

csl
= c

l
(17)

where c is a constant determined via an optimization process
described in Section VII. The implications of (17) entail that
the filter will attenuate the signal more heavily for larger
degrees l.

VI. POINT SPREAD FUNCTION MODEL

The PSF is the image response to a given point source.
There exist several techniques to model the PSF [3], [9], [10],
[14], [26]. This study models the PSF from a Geant4 simula-
tion [27]. A 2.6-MeV point source was modeled in the North
Pole of a single 2 × 2 × 2 cm3 crystal, which was chosen to
reduce the effects of the shift-variant PSF. Fig. 3 presents the
reconstructed SBP image. As noted before, we assume that
the PSF is shift-invariant even though the OrionUM does not
have that property.

Fig. 4 shows an SHT of the SBP image and that it is mainly
composed of zonal SHs (SH with m = 0). Due to the nature of
spherical convolution, where the convolution kernel is required
to be circularly symmetric about the North Pole, we model
the PSF with only zonal SHs. This function is then stored in
memory and is used during the filtering process. In principle,
the modeled PSF can also be a function of energy to account
for the different physical processes in different energies.

VII. RESULTS FROM APPLYING THE FILTER

This section presents results from an experimental measure-
ment using the OrionUM detector system and a 20 μCi 228Th
source, which emits a 2.6-MeV gamma ray. The experiment

Fig. 4. SHT of the SBP image for a source at the North Pole that is presented
in Fig. 3. Note that the most significant coefficients are zonal and only the
first 30◦ are presented.

Fig. 5. SBP of two 228Th check sources placed 15◦ above and below the
isocenter of the detector.

involved placing the same source 85 cm away from the
isocenter and offset 22.8 cm from it at two different times,
as two sources of equal intensity were not available. This
implies that there is a 30◦ separation between them when
placed at (75◦, 90◦) and (105◦, 90◦). Each measurement loca-
tion culminated in a six-day measurement, and the two data
sets were concatenated to emulate a two-source setup.

Fig. 5 presents an SBP using energies between 2.55 and
2.69 MeV and utilized only two- and three-pixel events. Side-
neighboring events were removed and events with an opening
angle less than 50◦ were cut as they might represent pair
production, charge sharing, or events with Bremsstrahlung
X-rays [28]. Composed of 1.24 × 105 events, the average
FWHM of the SBP image is about 29.0◦, as calculated
via a double Gaussian fit of the bi-modal distribution when
considering φ = 90◦ ± 1. The averaged FWHM is referred
to as the mean FWHM of each of the two sources. Fig. 6
presents the spherical harmonic transform of the SBP image.

A. Filtered Backprojection

When applying the Wiener filter in the spectral space,
there is an associated regularizer that is tied to the SNR of
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Fig. 6. SHT of Fig. 5. Note that the l = 0 SH is removed from this plot as
it is the “breathing” harmonic and represents a dc offset.

Fig. 7. Image metrics associated with the filtering process displaying
(a) FWHM, (b) mean squared error (MSE), and (c) SSIM for different 1/c
values.

the measurement. In this study, the optimized parameter [c
from (15)] is identified by the value that provides the best
MSE or structural similarity (SSIM) [29]. The SSIM image
metric was applied as an index to measure the SSIM of
two images (the estimated and true image) with the addition
of perception-based metrics by accounting for pixel inter-
dependencies [29]. The parameter c is iterated through and
the image metrics are calculated with a synthetic reference
where two Kronecker deltas are modeled at each of the source
locations.

Fig. 7 presents the image metrics associated with the
reconstructed images. The x-axis in the plots is associated
with the inverse of the slope parameter (1/c). The FWHM
plot, which is the average of the two peaks calculated via
geometric interpolation, presents the resolution improving with
larger (1/c) and plateauing to around 7.5◦.

TABLE I

IMAGE METRIC RESULTS FROM THE TWO-SOURCE EXPERIMENT

Fig. 8. FBP images as optimized using (a) SSIM and (b) MSE criteria.

With lessened regularization, the Wiener filter will percolate
the spectra at larger degrees and produce a high-frequency
noise. Therefore, additional image metrics were considered,
such as the mean squared error that has optimized the filter
with a 1/c = 3.3 × 105 to result in an FWHM of 7.5◦.
The SSIM index, which takes additional metrics into account
to quantify structural patterns, selects a parameter of 1/c =
7000 and results in an FWHM of 9.8◦. Table I summarizes
the different image metrics calculated for each optimization
technique.

Fig. 8 plots the SSIM- and MSE-optimized images, whereas
Fig. 9 plots the power spectral densities of the resulting
images. As SSIM takes structured noise into account, it is per-
haps more conservative in the filtering process, which is visible
when comparing Fig. 8(a) and (b). The MSE-optimized image
yields more ringing structures emanating and surrounding the
two sources. The MSE-optimized image, however, produces
a higher resolution image, with an average FWHM of 7.5◦.
Fig. 10 presents the SH coefficients of the filtered image when
using the SSIM maximization criteria.

VIII. DISCUSSION

A. Shift Variant PSF

This work does not address issues arising from the shift-
variant nature of the PSF, a property that the Wiener filter
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Fig. 9. PSDs of the SBP and FBP optimized with the different optimization
criteria.

Fig. 10. SH coefficients of an FBP image using the SSIM maximization
criteria.

cannot accommodate. Moreover, the convolution process in
SHs requires a circularly symmetric convolution kernel. How-
ever, the OrionUM system and perhaps other imagers experi-
ence local shift invariance. So sources near a localized region,
especially near the isocenter of the detector, do not experience
great PSF deformation. Fig. 8 shows this when the sources
are 15◦ off the isocenter as the reconstructed sources are very
circular.

Table II indexes the FWHM values associated with the
azimuth and the altitude of sources located at various locations
using simulated 2.6 MeV data. This demonstrates the shift-
variant nature of the OrionUM detector. The “acceptability”
of using the shift-invariant assumption should be based on the
user’s desired tolerance level.

B. Future Work for More Complex Sources

The proposed filter is designed to provide the minimized
mean squared error of the signal. Since FBP is a linear

TABLE II

AZIMUTH AND ALTITUDE FWHM CHARACTERISTICS OF SBP IMAGES
FOR SOURCES AT DIFFERENT LOCATIONS IN THE IMAGE SPACE. THIS

DEMONSTRATES THE SHIFT-VARIANT NATURE OF

ORIONUM’S PSF

process, we do not expect results to be fiercely different
for extended sources. If different counting statistics were to
be used, the inverse SNR regularizer should scale appropri-
ately. Adaptive parameters could be developed that model the
counting statistics that will select the optimized regularization
parameters.

If there were to be multiple sources in the field of view with
different intensities, the filter will attempt to reconstruct the
minimized mean squared error of all the sources. However,
if one wishes to develop a locally optimized image for a
single source, then a more adaptive filter may be desired. One
could also achieve this by reconstructing images on partial
spheres resulting in interesting future work on partial sphere
convolutions.

Further investigation is required to model actual noise
characteristics of the imager and its Poisson nature as it may
not be white. Finally, all the analyses in this work were done
for a stationary camera. One should give careful consideration
to the coordinates should the work be applied to a mobile
camera.

IX. CONCLUSION

This work applies a Wiener filter that was derived for
SHs in Compton imaging on the OrionUM pixelated CdZnTe
detector. In the process, the power spectral densities of the
signal and noise were modeled to regularize the filter during
the reconstruction process. Experimental measurements using
two 228Th sources placed 30◦ apart resulted in a filtered image
with an average FWHM resolution of 9.8◦ and 7.5◦ when using
an MSE and SSIM optimization approach, respectively. This
is down from the 29.0◦ FWHM when using SBP.

APPENDIX A
ADDITIONAL NOTES ON CONVOLUTION IN SHS

Convolution is a mathematical operation that modifies a
function with a kernel to express the amount of overlap
between the two [30]. Given by the “Convolution Theorem,”
the Fourier transform of the convolution of two functions in
the time or Euclidean domain is simply the product of their
respective Fourier transforms [23].

The comparable SH convolution for functions on the 2-D
sphere differs from that in Euclidean space. It takes the form

SHT{ f (�) � k(�)} = 2π

√
4π

2l + 1
Fm

l K 0
l (18)

where (�) represents the convolution operator, f (�) and k(�)
represent the function and convolution kernel on the sphere,
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respectively, whereas the capital letters reflect their SHT. The
major difference is the additional term that is a function of
order l and the fact that the kernel is reduced to only zonal
components K 0

l . Note that the convolution in (18) is for
orthonormalized SHs.

A. Invalidity of the Standard Convolution Theorem in SHs

The first difference between the Fourier and SH case is the
2π

√
4π/(2l + 1) term which originates from the Funk–Hecke

theorem [20], [31]. This implies that the standard Convolution
Theorem does not apply in SH

( f � k)(�) �= SHT−1{SHT{ f (�)} · SHT{k(�)}}. (19)

B. Circular Symmetric Convolution Kernel (K 0
l )

In (18), the kernel (k(�)) loses all m �= 0 components
and becomes “zonal” (K 0

l ). A function composed of only
zonal SHs is circularly symmetric about the North Pole [32].
This symmetry can be seen as a surface of revolution, where
a function is traced out in the intensity-θ plane and rotated
about the ẑ-axis/North Pole over all φ. Therefore, latitudinal
lines represent isolines. If the kernel k(�) is not circularly
symmetric, such convolution would yield a poor result. In this
work, the kernel is the Wiener filter, Gl in (12).

Fig. 3 presents an example of a near-circularly invariant
function by projecting the image of a source placed in the
North Pole. Fig. 4 presents the SHT of Fig. 3 and is mainly
composed of zonal SHs with minimal influence from m �= 0
SHs.

The reduction to a zonal kernel implies that convolution
in SH is not commutative ( f (�) � k(�) �= k(�) � f (�)).
Therefore, an assumption must be made that one of the
elements is zonal and circularly symmetric over the North
Pole. A derivation of the SH convolution theorem is available
in Theorem 2 of Driscoll and Healy [19].

APPENDIX B
DERIVATION OF THE WIENER FILTER FOR THE SH CASE

This section derives the Wiener Filter [16] for deconvolution
in SH space. We begin with the following definitions:

f̂ SBP = ( f � h)(�) + n(�)

f̂ FBP(�) = (
f̂ SBP � g

)
(�) (20)

where f (�) is the object being imaged, f̂ SBP and f̂ FBP are the
SBP and filtered estimates, respectively, h(�) is the blurring
impulse function, and n(�) is the additive noise. The goal is
to recover the signal via deconvolution with filter g(�). The
convolutions are conducted such that the convolution kernel is
the Wiener filter.

Convolution in SHs can be accomplished as

SHT{ f (�) � h(�)} = Ml Fm
l H 0

l . (21)

The Ml coefficient for an orthonormalized SH is [19]

Ml = 2π

√
4π

2l + 1
. (22)

Therefore, the SHT of (20) is

F̂SBP
l,m = Ml Hl F

m
l + Nm

l

F̂FBP
l,m = Ml Gl FSBP

l,m

= Ml Gl
[
Ml Hl F

m
l + Nm

l

]
. (23)

The objective of the Wiener filter is (F̂FBP
l,m ) to estimate the

original signal (Fm
l ) with a filter that minimizes the mean

squared error

MSE = E
[| f (�) − f̂ FBP(�))|2]. (24)

Next, we utilize Parseval’s Theorem [33] in SH [34]∫
�

| f (�)|2d� =
∞∑

l=0

Ql

l∑
m=−l

|Fm
l |2 (25)

where Ql is a factor that is dependent on the normalization of
the SHs. Appendix C derives (25).

In the following transform of the MSE, the l subscript is
removed for all the variables that do not have an order m
dependence, and F̂FBP

l,m is shortened to F̂m
l . The MSE in terms

of (l, m) is

=
∞∑

l=0

[
Ql

l∑
m=−l

|Fm
l − F̂m

l |2
]

=
∞∑

l=0

[
Ql

l∑
m=−l

|Fm
l |2 − Fm

l F̂m∗
l − Fm∗

l F̂m
l + |F̂m

l |2
]

plugging in the definition for F̂FBP
l,m from (23), we continue

with

=
∞∑

l=0

[
Ql

l∑
m=−l

|Fm
l |2 − Fm

l

[
M2G H Fm

l + MG Nm
l

]∗

−Fm∗
l

[
M2G H Fm

l + MG Nm
l

] + |M2G H Fm
l |2

+ MG H Fm
l

[
MG Nm

l

]∗ + [
MG H Fm

l

]∗
MG Nm

l

+ |MG Nm
l |2

]
.

We assume that the noise is independent of the signal

E
[
Fm

l Nm∗
l

] = E
[
Fm∗

l Nm
l

] = 0

and continue with the MSE derivation

=
∞∑

l=0

[
Ql

l∑
m=−l

|Fm
l |2 − Fm

l

[
M2G H Fm

l

]∗

− Fm∗
l

[
M2G H Fm

l

] + |M2G H Fm
l |2 + |MG Nm

l |2
]
.

Let SPSD
l = Ql

∑l
m=−l |Fm

l |2 and NPSD
l = Ql

∑l
m=−l |Nm

l |2
represent the power spectrum for the signal and noise, respec-
tively. We remind ourselves that the objective of the Wiener
filter is to minimize the MSE. In this case, we will want
to derive Gl such that it minimizes the MSE for a given l.
As several variables might be complex, including Gl , define
the complex function Gl = Gr

l + i Gi
l and take the derivative
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of the MSE derivation with respect to the real and complex
parts and set them equal to zero

Gr
l = SPSD

l Re{H }
M2 H 2Sl + NPSD

l

Gi
l = − SPSD

l Im{H }
M2 H 2Sl + NPSD

l

.

We, therefore, can solve for the final Wiener filter in SHs by
adding the real and complex components

Gl = H ∗
l

2(2π)3

2l+1 |Hl|2 + R−1
l

(26)

with R−1
l = N PSD

l

SPSD
l

. The filtered image is therefore

F̂FBP
l,m = 2π

√
4π

2l + 1
Gl F̂SBP

l,m

= 2π

√
4π

2l + 1

H ∗
l

2(2π)3

2l+1 |Hl|2 + R−1
l

F̂SBP
l,m . (27)

APPENDIX C
DERIVATION OF THE PARSEVAL’S THEOREM IN THE SH

CASE

Parseval’s theorem slightly differs for SH and the chosen
normalization. Let us start with the integral of the square of
the function ∫

�

| f (�)|2d�. (28)

We use (8) for the following derivation:∫
�

| f (�)|2d� =
∫

�

|
∞∑

l=0

l∑
m=−l

Fm
l Y m

l (�)|2d�

=
∫

�

|
∞∑

l=0

F−l
l Y −l

l + F−l+1
l Y −l+1

l

+ F−l+2
l Y −l+2

l + · · · + Fl
l Y l

l |2d�

=
∫

�

|F0
0 Y 0

0 + F−1
1 Y −1

1 + F0
1 Y 0

1

+ F1
1 Y 1

1 + · · · + Fl
l Y l

l |2d�.

Next, we expand the quadratic and remind ourselves of the
following orthogonality identity:∫

�

Y m�∗
l� (�)Y m

l (�)d� = Qlδl−l� δm−m� (29)

where Ql is a factor that depends on the chosen SH normal-
ization. Therefore, all elements l � �= l and m � �= m will be
zeroed (as they are all orthogonal). All we are left with is

= [
Ql |F0

0 |2 + Ql |F−1
1 |2 + Ql |F0

1 |2 + Ql |F1
1 |2 + · · · ]

=
∞∑

l=0

Ql

l∑
m=−l

|Fm
l |2.

Therefore, Parseval’s theorem for SHs is∫
�

| f (�)|2d� =
∞∑

l=0

Ql

l∑
m=−l

|Fm
l |2. (30)
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