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Abstract
This paper optimizes the step coefficients of first-order methods for smooth convex
minimization in terms of the worst-case convergence bound (i.e., efficiency) of the
decrease in the gradient norm. This work is based on the performance estimation
problem approach. The worst-case gradient bound of the resulting method is optimal
up to a constant for large-dimensional smooth convex minimization problems, under
the initial bounded condition on the cost function value. This paper then illustrates
that the proposed method has a computationally efficient form that is similar to the
optimized gradient method.

Keywords First-order methods · Gradient methods · Smooth convex minimization ·
Worst-case performance analysis
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1 Introduction

Large-dimensional optimization problems arise in various modern applications of
signal processing, machine learning, control, communication, and many other areas.
First-order methods are widely used for solving such large-scale problems as their
iterations involve only function/gradient calculations and simple vector operations.
However, they can require many iterations to achieve the given accuracy level. There-
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fore, developing efficient first-order methods has received great interest, which is the
main motivation of this paper. In particular, this paper targets the decrease in the gra-
dient for smooth convex minimization, under the initial bounded condition on the cost
function value. This paper uses the performance estimation problem (PEP) in [1] and
constructs a new method called OGM-G.

Among first-order methods for smooth convex minimization, Nesterov’s fast gra-
dient method (FGM) [2,3] has been used widely because its worst-case cost function
inaccuracy bound (i.e., the cost function efficiency) is optimal up to a constant, under
the initial bounded distance condition [3,4]. Recently, the optimized gradient method
(OGM) [5] (that was numerically first identified in [1] using PEP) has been found
to exactly achieve the optimal worst-case rate of decreasing the smooth convex cost
functions [6], leaving no room for improvement in the worst case. On the other hand,
first-ordermethods that decrease the gradient at an optimal rate in [4] are yet unknown,
even up to a constant. The proposedOGM-Gmethod has such an optimal rate under the
initial bounded function condition. After the initial version of this paper was posted
online [7], a simple method using OGM-G was constructed in [8] that also has an
optimal rate under the initial bounded distance condition.

Gradient rate analysis is useful both in theory (e.g., for a dual approach [9] and a
matrix scaling problem [10]) and in practice (e.g., can be used as a stopping criterion).
In addition, unlike smooth convex minimization, a worst-case gradient inaccuracy
and an initial bounded function condition are standard choices for analyzing gradient
methods for smooth nonconvex minimization [11]. Therefore, this work can provide
a step towards better understanding the convergence behavior of gradient methods for
nonconvex minimization.

There is recent interest in developing accelerated methods for decreasing the gradi-
ent (in convex minimization) [9,10,12–14]. The best knownworst-case gradient rate is
achieved by FGMwith a regularization technique in [9] that is optimal up to a logarith-
mic factor. However, a practical limitation of that method is that it requires knowledge
of a bound on a value such as the distance between the initial and optimal points. In [14]
we used PEP to derive efficient first-order methods that do not need knowledge of such
unavailable values. However, the methods in [14] are far from achieving the optimal
rate (not even up to a logarithmic factor), due to strict relaxations introduced to PEP
in [14]. The methods in [9,13–16] also achieve a similar nonoptimal rate. Thus, there
is still room to improve the worst-case gradient convergence bound of the first-order
methods for smooth convex minimization.

This paper optimizes the step coefficients of first-order methods in terms of the
worst-case gradient decrease using PEP [1,17], yielding OGM-G. The new analysis
avoids the (unnecessary) strict relaxations on PEP in [14]. This paper then shows
that OGM-G has an equivalent efficient form that is similar to OGM, and thus has
an inexpensive per-iteration computational complexity. OGM-G attains the optimal
bound of the worst-case gradient norm up to a constant under the initial bounded
function condition [4]. On the way, this paper also provides a new exact worst-case
gradient bound for the gradient method (GM).

The initial bounded condition on the distance between initial and optimal points
is a standard assumption, whereas the initial condition on the cost function value of
interest in this paper is less popular. However, sometimes a constant for the latter
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bounded condition is known, while a constant for the former condition is either not
known or difficult to compute, making the latter condition more useful. In addition,
there are cases where the latter initial bounded function condition holds, but the former
condition does not. One such example is an unregularized logistic regression of an
overparameterized model for separable datasets [18,19], which does not have any
finite minimizer. Therefore, this paper’s analysis under the initial bounded condition
has value for such cases.

Section 2 reviews a smooth convex problem and first-order methods. Section 3
reviews the efficiency of first-order methods and its lower bound. Section 4 studies
the PEP approach [1] and provides relaxations for analyzing the worst-case gradient
decrease. Section 5uses the relaxedPEP to provide the exactworst-case gradient bound
for GM. Section 6 optimizes the step coefficients of the first-order methods using the
relaxed PEP, and develops an efficient first-order method named OGM-G under the
initial function condition. Section 7 concludes the paper.

2 Problems andMethods

2.1 Smooth Convex Problems

We are interested in efficiently solving the following smooth and convex minimization
problem:

f∗ := inf
x∈Rd

f (x), (M)

where we assume that the function f : Rd → R is a convex function of the type
C1,1
L (Rd), i.e., its gradient ∇ f (x) is Lipschitz continuous:

||∇ f (x) − ∇ f ( y)|| ≤ L||x − y||, ∀x, y ∈ Rd (1)

with a Lipschitz constant L > 0, where || · || denotes the standard Euclidean norm.

Definition 2.1 The class of smooth convex functions satisfying the two above condi-
tions is denoted by FL(Rd).

Definition 2.2 The optimal set of f is defined by

X∗( f ) := argmin
x∈Rd

f (x) = {x ∈ Rd : f (x) = f∗}. (2)

We further assume one of the following two initial conditions, where the latter is
especially useful when (M) does not have a finite minimizer, i.e., X∗( f ) = ∅.
Assumption 1 (IFC) The set X∗( f ) is nonempty, and an initial point x0 satisfies

f (x0) − f∗ ≤ 1

2
LR2 for a constant R > 0. (IFC)
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Assumption 2 (IFC′) An initial point x0 and the N th iterate xN of a given method
satisfy

f (x0) − f (xN ) ≤ 1

2
LR2

N for a constant RN > 0. (IFC′)

Note that f (x0) − f (xN ) ≤ f (x0) − f∗ for any xN .

2.2 First-Order Methods

To solve a large-dimensional problem (M), we consider first-order methods that iter-
atively gain first-order information, i.e., values of the cost function f and its gradient
∇ f at any given point in Rd . The computational effort for acquiring those values
depends mildly on the problem dimension. We are interested in developing a first-
order method that efficiently generates a point xN after N iterations (starting from an
initial point x0) that minimizes the worst-case absolute gradient inaccuracy under the
initial function condition (IFC).

Definition 2.3 The gradient efficiency is defined as the worst-case absolute gradient
inaccuracy

sup
f ∈FL (Rd )

||∇ f (xN )||2. (3)

For simplicity in Sects. 4, 5 and 6 that use the PEP approach (as in [1]), we consider
the following fixed-step first-order methods (FSFOM):

xi+1 = xi − 1

L

i∑

k=0

hi+1,k∇ f (xk) i = 0, . . . , N − 1, (4)

where h := {hi+1,k} ∈ RN (N+1)/2 is a tuple of fixed-step coefficients that do not
depend on f , x0 and R (or RN ). This FSFOM class includes (fixed-step) GM (i.e.,
hi+1,k = 0 for k < i), (fixed-step) FGM [2,3] (see [1]), OGM [5], and the proposed
OGM-G, but excludes line-search approaches, such as a backtracking version of FGM
in [20] and an exact line-search version of OGM in [21].

3 Efficiency of First-Order Methods

This paper seeks to improve the efficiency of first-order methods, where the efficiency
consists of the following two parts: the computational effort for selecting a search
point (e.g., computing xi+1 in (4) given xi and {∇ f (xk)}ik=0), and the number of
evaluations of the cost function value and gradient at each given search point to reach
a given accuracy. This paper considers both parts of the efficiency, particularly focusing
on the latter part, as also detailed in this section. Regarding the former aspect of the
efficiency, we later show that the proposed method has an efficient form, similar to
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(fixed-step) FGM and OGM, requiring computational effort comparable to that of a
(fixed-step) GM.

An efficiency estimate of an optimization method is defined by the worst-case
absolute inaccuracy. One popular choice of the worst-case absolute inaccuracy is the
worst-case absolute cost function inaccuracy.

Definition 3.1 The cost function efficiency is defined as the worst-case absolute cost
function inaccuracy

sup
f ∈FL (Rd )

f (xN ) − f∗. (5)

When analyzing the cost function efficiency, we usually consider the following initial
condition.

Assumption 3 (IDC) The set X∗( f ) is nonempty, and an initial point x0 satisfies

||x0 − x∗|| ≤ R for a constant R > 0, (IDC)

for some x∗ ∈ X∗( f ).

Under (IDC), GM has an O(1/N ) cost function efficiency (5) [3], and this rate was
improved to O(1/N 2) rate by FGM [2,3]. This efficiency was further optimized by
OGM [1,5], which was shown to exactly achieve the optimal efficiency in [6].

Compared to the worst-case cost function inaccuracy (5), the worst-case absolute
gradient inaccuracy (3) has received less attention [4,9,17,22]. For the initial distance
condition (IDC), GM has an O(1/N 2) gradient efficiency [9], while FGM with a
regularization technique [9] that requires the knowledge of (practically unavailable)
R achieves O(1/N 4) up to a logarithmic factor. This is the best known rate, where
the rate O(1/N 4) is the optimal gradient efficiency for given (IDC) [4]. On the other
hand, the papers [9,13–16] studied first-order methods that do not require knowing R
and that have O(1/N 3) gradient efficiency, but none of them (including [9]) have the
optimal efficiency (even up to a constant).

On the other hand, gradient efficiency with the initial function condition (IFC) has
received even less attention [4,22]. It is known to have O(1/N 2) optimal efficiency
[4]. Section 5 provides the exact O(1/N ) rate of GM, which was studied numerically
for the more general nonsmooth composite convex problems in [22]. The paper [12]
discusses that FGM with a regularization technique [9] with (IFC) also achieves the
optimal worst-case gradient rate O(1/N 2) up to a logarithmic factor. This is the best
previously known rate, and this paper provides a better rate.

In short, none of the existing first-order methods achieve the optimal rate for the
gradient inaccuracy even up to a constant, and thus this paper focuses on optimizing the
gradient efficiency of first-order methods for smooth convex minimization with (IFC)
and (IFC′). Table 1 summarizes the efficiency of first-ordermethods and illustrates that
the proposedOGM-G attains the optimalworst-case gradient rate O(1/N 2)with (IFC)
and (IFC′).
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Remark 3.1 After the initial version of this paper was posted online [7], the paper
[8, Remark 2.1] constructed a simple method using OGM-G that achieves O(1/N 4)

under the initial distance condition (IDC). The method runs an accelerated method
such as Nesterov’s FGM and OGM for the first half of the iterations and then runs
OGM-G for the rest. That approach (built upon the proposed OGM-G) further closes
the open problem of developing an optimal method for decreasing the gradient, under
the initial distance condition (IDC).

As Table 1 demonstrates, worst-case rates of any given method and optimal worst-
case rates depend dramatically on the initial condition. In particular, the worst-case
gradient rates for (IFC) tend to be slower than those for (IDC). At first glance, this
situation might hinder one’s interest on the initial function condition (IFC) studied
in this paper. However, one should also consider the constants R and R for a fair
comparison of the worst-case rates. In particular, consider a problem instance ( f , x0)
where f ∈ FL(Rd) and X∗( f ) 
= ∅. Then, choose R and R such that

f (x0) − f∗ = 1

2
LR2 and ||x0 − x∗|| = R (6)

for some x∗ ∈ X∗( f ). Using the inequality f (x0) − f∗ ≤ L
2 ||x0 − x∗||2 due to the

smoothness of f in (1), we have the relationship:

R ≤ R. (7)

For any optimization method, including GM and OGM-G, the ratio R
R can be in the

order of N or beyond, for a given N , and should not be neglected. Section 6.5 gives
one such example.

4 Performance Estimation Problem (PEP) for theWorst-Case Gradient
Decrease

This section studies PEP [1] and its relaxations for the worst-case gradient analysis
under the condition (IFC).

4.1 Exact PEP

The papers [1,17] suggest that for any given step coefficients h := {hi,k} of a FSFOM,
total number of iterations N , problem dimension d, and constants L , R, the exact
worst-case gradient bound under (IFC) is given by

BP(h, N , d, L, R) := max
f ∈FL (Rd )

max
x0,...,xN∈Rd

1

L2R2 ||∇ f (xN )||2 (P)

s.t

{
xi+1 = xi − 1

L

∑i
k=0 hi+1,k∇ f (xk), i = 0, . . . , N − 1,

f (x0) − f∗ ≤ 1
2 LR

2, x∗ ∈ X∗( f ) 
= ∅,
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where ||∇ f (xN )||2 is multiplied by 1
L2R2 for convenience in later analysis. However,

as noted in [1], it is intractable to solve (P) due to its infinite-dimensional function
constraint. Thus the next section employs relaxations introduced in [1].

4.2 Relaxing PEP

As suggested by [1,17], to convert (P) into an equivalent finite-dimensional prob-
lem, we replace the infinite-dimensional constraint f ∈ FL(Rd) by a finite set of
inequalities satisfied by f ∈ FL(Rd) [3, Theorem 2.1.5]:

1

2L
||∇ f (xi ) − ∇ f (x j )||2 ≤ f (xi ) − f (x j ) − 〈∇ f (x j ), xi − x j 〉 (8)

on each pair (i, j) for i, j = 0, . . . , N , ∗. For simplicity in the proofs, we further nar-
row down the set1 of inequalities (8), specifically the pairs {(i −1, i) : i = 1, . . . , N },
{(N , i) : i = 0, . . . , N − 1} and {(N , ∗)}.2 This relaxation leads to

BP1(h, N , d) := max
G∈R(N+1)×d ,

δ∈RN+1

Tr
{
GuNu

NG
}

(P1)

s.t

⎧
⎪⎨

⎪⎩

Tr
{
GAi−1,i (h)G

} ≤ δi−1 − δi , i = 1, . . . , N ,

Tr
{
GBN ,i (h)G

} ≤ δN − δi , i = 0, . . . , N − 1,

Tr
{
GCNG

} ≤ δN , δ0 ≤ 1
2 ,

where we define

gi := 1

LR
∇ f (xi ), i = 0, . . . , N , G := [g0, . . . , gN ],

δi := 1

LR2 ( f (xi ) − f∗), i = 0, . . . , N , δ := [δ0, . . . , δN ],

ui := [0, . . . , 0, 1︸︷︷︸
(i+1)th entry

, 0, . . . , 0] ∈ RN+1, i = 0, . . . , N , (9)

and

Ai−1,i (h) := 1

2
(ui−1 − ui )(ui−1 − ui ) + 1

2

i−1∑

k=0

hi,k(uiu
k + uku

i ),

i = 1, . . . , N ,

1 We found that the set of constraints in (P1) is sufficient for the exact worst-case gradient analysis of
GM and OGM-G for (IFC), as illustrated in later sections. In other words, the resulting worst-case rates of
GM and OGM-G in this paper are tight with our specific choice of the set of inequalities. Note that this
relaxation choice in (P1) differs from the choice in [1, Problem (G′)].
2 The inequality (8) for the pair {(N , ∗)} simplifies to 1

2L ||∇ f (xN )||2 ≤ f (xN )− f∗ under the condition
X∗( f ) 
= ∅. Such inequality is not used under the assumption (IFC′) in Corollaries 5.1 and 6.1.
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BN ,i (h) := 1

2
(uN − ui )(uN − ui ) − 1

2

N∑

l=i+1

l−1∑

k=0

hl,k(uiu
k + uku

i ),

i = 0, . . . , N − 1,

CN := 1

2
uNu

N . (10)

As in [17], we further relax (P1) by introducing the Gram matrix Z := GG as

BP2(h, N , d) := max
Z∈SN+1+ ,

δ∈RN+1

Tr
{
uNu

N Z
}

(P2)

s.t

⎧
⎪⎨

⎪⎩

Tr
{
Ai−1,i (h)Z

} ≤ δi−1 − δi , i = 1, . . . , N ,

Tr
{
BN ,i (h)Z

} ≤ δN − δi , i = 0, . . . , N − 1,

Tr{CN Z} ≤ δN , δ0 ≤ 1
2 .

This problem has the following Lagrangian dual:

BD(h, N ) := min
(a,b,c,e)∈R2N+2+

1

2
e (D)

s.t

{
S(h, a, b, c) � 0, −a1 + b0 + e = 0, aN −∑N−1

i=0 bi − c = 0,

ai − ai+1 + bi = 0, i = 1, . . . , N − 1.

where

S(h, a, b, c) :=
N∑

i=1

ai Ai−1,i (h) +
N−1∑

i=0

bi BN ,i (h) + cCN (h) − uNu
N

= 1

2

N∑

i=1

ai (ui−1 − ui )(ui−1 − ui ) + 1

2

N−1∑

i=0

bi (uN − ui )(uN − ui )

+ 1

2
(c − 2)uNu

N

+ 1

2

N∑

i=1

i−1∑

k=0

ai hi,k(uiu
k + uku

i )

− 1

2

N−1∑

i=0

N−1∑

k=0

⎛

⎜⎜⎝bi

N∑

l=max
{
i+1,
k+1

}
hl,k

⎞

⎟⎟⎠ (uiu
k + uku

i ). (11)

For given h and N , a semidefinite programming (SDP) problem (D) can be solved
numerically using an SDP solver (e.g., CVX [23,24]). The next two sections analyti-
cally specify feasible points of (D) for GM and OGM-G, which were numerically first
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identified to be solutions of (D) for each method by the authors. These feasible points
provide the exact worst-case analytical gradient bounds for GM and OGM-G.

5 Applying the Relaxed PEP to GM

Inspired by the numerical solutions of (D) for GMusing CVX [23,24], we next specify
a feasible point of (D) for GM.

Lemma 5.1 For GM, i.e. the FSFOM with hi+1,k having 1 for k = i and 0 otherwise,
the following set of dual variables:

ai = 2(N + i)

(N − i + 1)(2N + 1)
= N + i

N − i + 1
e, i = 1, . . . , N ,

bi =
{

2
N (2N+1) = 1

N e, i = 0,
2

(N−i)(N−i+1) , i = 1, . . . , N − 1,

c = e = 2

2N + 1
, (12)

is a feasible point of (D).

Proof Obviously, (12) satisfies the equality conditions of (D), and the rest of proof
shows the positive semidefinite condition of (D).

For any h and (a, b, c, e) ∈ �, the (i, j)th entry of the symmetric matrix (11) can
be rewritten as

[2S(h, a, b, c)]i j

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 + b0
(
1 − 2

∑N
l=1 hl,0

)
, i = 0, j = i,

ai + ai+1 + bi
(
1 − 2

∑N
l=i+1 hl,i

)
, i = 1, . . . , N − 1, j = i,

aN +∑N−1
l=0 bl + c − 2 = 2(aN − 1), i = N , j = i,

ai (hi,i−1 − 1) − bi
∑N

l=i+1 hl,i−1 − bi−1
∑N

l=i+1 hl,i , i = 1, . . . , N − 1, j = i − 1,

aN (hN ,N−1 − 1) − bN−1, i = N , j = i − 1,

ai hi, j − bi
∑N

l=i+1 hl, j − b j
∑N

l=i+1 hl,i , i = 2, . . . , N − 1,

j = 0, . . . , i − 2,

aN hN , j − b j , i = N , j = 0, . . . , i − 2.

(13)

Substituting the step coefficients h for GM and the dual variables (12) in (13) yields

[2S(h, a, b, c)]i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1 − b0 = e, i = 0, j = i,

ai + ai+1 − bi = 2ai , i = 1, . . . , N − 1, j = i,

2(aN − 1), i = N , j = i,

−b j , i = 1, . . . , N , j = 0, . . . , i − 1.
(14)
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The matrix (14) has nonnegative diagonal entries, and thus showing the diagonal
dominance of the matrix (14) implies its positive semidefiniteness.

A sum of absolute values of nondiagonal elements for each row is

N∑

j=0
j 
=i

∣∣[2S(h, a, b, c)]i j
∣∣ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Nb0, i = 0,

b0 + (N − 1)b1 i = 1,∑i−1
j=0 bl + (N − i)bi i = 2, . . . , N − 1,

∑N−1
j=0 b j i = N ,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
2N+1 , i = 0,

2
N (2N+1) + 2

N = 4(N+1)
N (2N+1) , i = 1,

2
N (2N+1) + 2

N−i+1 − 2
N + 2

N−i+1 = 4(N+i)
(N−i+1)(2N+1) , i = 2, . . . , N − 1,

2
N (2N+1) + 2 − 2

N = 2(2N−1)
2N+1 , i = N ,

=

⎧
⎪⎨

⎪⎩

e, i = 0,
2(N+i)

(N−i+1)e, i = 1, . . . , N − 1,

2(2Ne − 1), i = N ,

(15)

and this satisfies [2S(h, a, b, c)]i = ∑N
j=0
j 
=i

∣∣[2S(h, a, b, c)]i j
∣∣ for all i , i.e., the

matrix (14) is diagonally dominant, and this concludes the proof. ��
The next theorem provides the worst-case convergence gradient bound of GM.

Theorem 5.1 Assume that f ∈ FL(Rd), X∗( f ) 
= ∅, and f (x0)− f∗ ≤ 1
2 LR

2 (IFC).
Let x0, . . . , xN ∈ Rd be generated by GM, i.e., the FSFOM with hi+1,k having 1 for
k = i and 0 otherwise. Then, for any N ≥ 1,

||∇ f (xN )||2 ≤ L2R2

2N + 1
. (16)

Proof Using Lemma 5.1 for the step coefficients h of GM, we have

||∇ f (xN )||2 ≤ L2R2BD(h, N ) ≤ L2R2 1

2N + 1
.

��
The PEP proof of Theorem 5.1, using Lemma 5.1, can be used to construct a con-

ventional proof that derives inequality (16) by a weighted sum of the inequalities (8).
Specifically, one can use a weighted sum of inequalities using the dual variables
(a, b, c, e) in (12) as weights:

1

2L
||∇ f (xi−1) − ∇ f (xi )||2 ≤ f (xi−1) − f (xi ) − 〈∇ f (xi ), xi−1 − xi 〉 : ai
1

2L
||∇ f (xN ) − ∇ f (xi )||2 ≤ f (xN ) − f (xi ) − 〈∇ f (xi ), xN − xi 〉 : bi

123



Journal of Optimization Theory and Applications (2021) 188:192–219 203

1

2L
||∇ f (xN )||2 ≤ f (xN ) − f∗ : c

f (x0) − f∗ ≤ 1

2
LR2 : e, (17)

which simplifies to

1

L
||∇ f (xN )||2 +

N∑

i=1

i−1∑

j=0

b j

2L

∣∣∣∣∇ f (xi ) − ∇ f (x j )
∣∣∣∣2 ≤ LR2

2N + 1
, (18)

and this yields (16).
We next show that the bound (16) is exact by specifying a certain worst-case func-

tion. This implies that the feasible point in (12) is an optimal point of (D) for GM.

Lemma 5.2 For the following Huber function in FL(Rd) for all d ≥ 1:

φ(x) =
{

LR√
2N+1

||x|| − LR2

2(2N+1) , ||x|| ≥ R√
2N+1

,

L
2 ||x||2, otherwise,

(19)

GM exactly achieves the bound (16) with x0 satisfying φ(x0) − φ∗ = 1
2 LR

2.

Proof Starting from x0 = N+1√
2N+1

Rν that satisfies φ(x0)−φ∗ = 1
2 LR

2 (IFC) for any
unit-norm vector ν, the iterates of GM are as follows:

xi = x0 − 1

L

i−1∑

k=0

∇φ(xk) =
(

N + 1√
2N + 1

− i√
2N + 1

)
Rν, i = 0, . . . , N ,

where all the iterates stay in the affine region of the function φ(x) with the same
gradient ∇φ(xi ) = LR√

2N+1
ν, i = 0, . . . , N . Therefore, after N iterations of GM, we

have ||∇φ(xN )||2 = L2R2

2N+1 , which concludes the proof. ��
Remark 5.1 For f ∈ FL(Rd), and for some x∗ ∈ X∗( f ) and ||x0 − x∗|| ≤ R (IDC),
the N th iterate xN of GM has the following exact worst-case cost function bound [1,
Theorems 1 and 2]:

f (xN ) − f (x∗) ≤ LR
2

2(2N + 1)
, (20)

where this exact upper bound is equivalent to the exact worst-case gradient bound (16)

of GM up to a constant R
2

2LR2 . A similar relationship appears in [22, Table 3] for
nonsmooth composite convex minimization.

The preceding results in this section assume that there is a finite minimizer. There
are applications that do not have a finite minimizer x∗ ∈ X∗( f ), e.g., an unregularized
logistic regression of an overparameterized model for separable datasets [18,19]. The
following corollary extends the analysis to such cases.
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Corollary 5.1 For f ∈ FL(Rd), let x0, . . . , xN ∈ Rd be generated by GM. Assume
that f (x0) − f (xN ) ≤ 1

2 LR
2
N (IFC′). Then, for any N ≥ 1,

||∇ f (xN )||2 ≤ L2R2
N

2N
. (21)

Proof Equation (18) consists of a weighted sum of the third and fourth inequalities
of (17), scaled by c = e = 2

2N+1 in (12):

c

2L
||∇ f (xN )||2 + c( f (x0) − f (xN )) ≤ c

2
LR2.

The third inequality of (17) assumes X∗( f ) 
= ∅ (see footnote 2), so we derive a
bound without the above inequality. Replacing the above inequality in the weighted
summation for deriving (18) by (IFC′) scaled by c, c( f (x0) − f (xN )) ≤ c

2 LR
2
N ,

yields

1

L

(
1 − c

2

)
||∇ f (xN )||2 +

N∑

i=1

i−1∑

j=0

b j

2L

∣∣∣∣∇ f (xi ) − ∇ f (x j )
∣∣∣∣2 ≤ LR2

N

2N + 1
,

which concludes the proof. ��

6 Optimizing FSFOMUsing the Relaxed PEP

This section optimizes the step coefficients of FSFOM using the relaxed PEP (D) to
develop an efficient first-order method for decreasing the gradient of smooth convex
functions.

6.1 Numerically Optimizing FSFOMUsing the Relaxed PEP

To optimize the step coefficients of h of FSFOM for each given N , we are interested
in solving

h̃ := argmin
h

BD(h, N ), (HD)

which is nonconvex.However, the problem (HD) is bi-convexover h and (a, b, c, e, γ ),
so for each given N we numerically solved (HD) by an alternating minimization
approach using CVX [23,24]. Inspired by those numerical solutions, the next section
specifies a feasible point of (HD).

6.2 A Feasible Point of the Relaxed PEP

The following lemma specifies a feasible point of (HD).
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Lemma 6.1 The following step coefficients of FSFOM:

h̃i+1,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ̃k+1−1
θ̃k

h̃i+1,k+1, k = 0, . . . , i − 2,
θ̃k+1−1

θ̃k
(h̃i+1,i − 1), k = i − 1,

1 + 2θ̃i+1−1
θ̃i

, k = i,

(22)

and the following set of dual variables:

ai = 1

θ̃2i

, i = 1, . . . , N , bi = 1

θ̃i θ̃
2
i+1

, i = 0, . . . , N − 1, c = e = 2

θ̃20

, (23)

constitute a feasible point of (HD) for the parameters:

θ̃i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1+
√
1+8θ̃2i+1

2 , i = 0,
1+
√
1+4θ̃2i+1

2 , i = 1, . . . , N − 1,

1, i = N .

(24)

Proof The appendix first derives properties of the step coefficients h̃ = {h̃i,k} (22)
that are used in the proof:

h̃i, j = θ̃2i (2θ̃i − 1)

θ̃ j θ̃
2
j+1

, i = 2, . . . , N , j = 0, . . . , i − 2, (25)

N∑

l=i+1

h̃l, j =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 (θ̃0 + 1), i = 0, j = i,

θ̃i , i = 1, . . . , N − 1, j = i,
θ̃4i+1

θ̃ j θ̃
2
j+1

, i = 1, . . . , N − 1, j = 0, . . . , i − 1.

(26)

By definition of θ̃i (24), we also have

θ̃2i =
{

θ̃i + 2θ̃2i+1, i = 0,

θ̃i + θ̃2i+1, i = 1, . . . , N − 1.
(27)

Obviously, (23) satisfies the equality conditions of (D), and the rest of proof shows
the positive semidefinite condition of (D). Substituting the step coefficients h̃ (22) and
the dual variables (23) with their properties (25), (26) and (27) in (13) yields
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[2S(h, a, b, c)]i j

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
θ̃21

+ 1
θ̃0 θ̃

2
1
(1 − (θ̃0 + 1)), i = 0, j = i,

1
θ̃2i

+ 1
θ̃2i+1

+ 1
θ̃i θ̃

2
i+1

(
1 − 2θ̃i

)
= θ̃2i+1+θ̃i−θ̃2i

θ̃2i θ̃2i+1
, i = 1, . . . , N − 1, j = i,

2

(
1

θ̃2N
− 1

)
, i = N , j = i,

1
θ̃2i

2θ̃i−1
θ̃i−1

− 1
θ̃i θ̃

2
i+1

θ̃4i+1

θ̃i−1 θ̃
2
i

− 1
θ̃i−1 θ̃

2
i
θ̃i = (2θ̃i−1)θ̃i−θ̃2i+1−θ̃2i

θ̃i−1 θ̃
3
i

, i = 1, . . . , N − 1, j = i − 1,

1
θ̃2N

2θ̃N−1
θ̃N−1

− 1
θ̃N−1 θ̃

2
N

, i = N , j = i − 1,

1
θ̃2i

θ̃2i (2θ̃i−1)

θ̃ j θ̃
2
j+1

− 1
θ̃i θ̃

2
i+1

θ̃4i+1

θ̃ j θ̃
2
j+1

− 1
θ̃ j θ̃

2
j+1

θ̃i = (2θ̃i−1)θ̃i−(θ̃i−1)2 θ̃2i −θ̃2i

θ̃ j θ̃
2
j+1 θ̃i

, i = 2, . . . , N − 1,

j = 0, . . . , i − 2,
1

θ̃2N

1
θ̃ j θ̃

2
j+1

− 1
θ̃ j θ̃

2
j+1

, i = N , j = 0, . . . , i − 2,

= 0,

which concludes the proof. ��
The next theorem provides the worst-case convergence gradient bound of FSFOM

with step coefficients (22).

Theorem 6.1 Assume that f ∈ FL(Rd), X∗( f ) 
= ∅, and f (x0)− f∗ ≤ 1
2 LR

2 (IFC).
Let x0, . . . , xN ∈ Rd be generated by FSFOM with step coefficients (22). Then, for
any N ≥ 1,

||∇ f (xN )||2 ≤ L2R2

θ̃20

≤ 2L2R2

(N + 1)2
. (28)

Proof Using Lemma 6.1, we have ||∇ f (xN )||2 ≤ L2R2BD(h, N ) ≤ L2R2 1
θ̃20

. We

can easily show that θ̃i (24) satisfies θ̃i ≥ N−i+2
2 for i = 1, . . . , N by induction, and

this then yields θ̃0 ≥ N+1√
2
, which concludes the proof. ��

Similar to (18), the PEP proof of Theorem 6.1, using Lemma 6.1, can be used to
construct a conventional proof by a weighted sum of inequalities (17) using the dual
variables (a, b, c, e) in (23) as weights. This weighted sum leads to

1

L
||∇ f (xN )||2 ≤ LR2

θ̃20

(29)

and yields (28).
The bound (28) of FSFOMwith (22) is optimal up to a constant becauseNemirovsky

shows in [4] that theworst-case rate for the gradient decrease of large-dimensional con-
vex quadratic function is O(1/N 2) under (IFC). This result fills in Table 1, improving
upon best known rates.

The following corollary examines the rate of FSFOM with (22) for cases where a
finite minimizer might not exist.
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Corollary 6.1 For f ∈ FL(Rd), let x0, . . . , xN ∈ Rd be generated by FSFOM with
step coefficients (22). Assume that f (x0) − f (xN ) ≤ 1

2 LR
2 (IFC′). Then, for any

N ≥ 1,

||∇ f (xN )||2 ≤ L2R2
N

θ̃20 − 1
(30)

Proof Equation (29) consists of a weighted sum of the third and fourth inequalities
of (17), scaled by c = e = 2

θ̃20
in (23):

c

2L
||∇ f (xN )||2 + c( f (x0) − f (xN )) ≤ c

2
LR2. (31)

The third inequality of (17) assumes X∗( f ) 
= ∅ (see footnote 2), so we derive a
bound without the above inequality. Replacing the above inequality in the weighted
summation for deriving (29) by (IFC′) scaled by c, c( f (x0) − f (xN )) ≤ c

2 LR
2
N ,

yields

1

L

(
1 − c

2

)
||∇ f (xN )||2 ≤ LR2

N

θ̃20

,

which concludes the proof. ��
The per-iteration computational complexity of the FSFOM with (22) would be

expensive if implemented directly via (4), compared to GM, FGM and OGM, so the
next section provides an efficient form.

6.3 An Efficient Form of the Proposed OptimizedMethod: OGM-G

This section develops an efficient form of FSFOM with the step coefficients (22),
named OGM-G. This form is similar to that of OGM [5], which is further studied in
Sect. 6.6.
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OGM-G

Input: f ∈ FL(Rd), x0 = y0 ∈ Rd , N ≥ 1.

θ̃i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1+
√
1+8θ̃2i+1

2 , i = 0,
1+
√
1+4θ̃2i+1

2 , i = 1, . . . , N − 1,

1, i = N ,

For i = 0, . . . , N − 1,

yi+1 = xi − 1

L
∇ f (xi ),

xi+1 = yi+1 + (θ̃i − 1)(2θ̃i+1 − 1)

θ̃i (2θ̃i − 1)
( yi+1 − yi )

+ 2θ̃i+1 − 1

2θ̃i − 1
( yi+1 − xi ).

Proposition 6.1 The sequence {x0, . . . , xN } generated by FSFOM with (22) is iden-
tical to the corresponding sequence generated by OGM-G.

Proof We first show that the step coefficients {h̃i+1,k} (22) are equivalent to

h̃′
i+1,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(θ̃i−1)(2θ̃i+1−1)
θ̃i (2θ̃i−1)

h̃′
i,k, k = 0, . . . , i − 2,

(θ̃i−1)(2θ̃i+1−1)
θ̃i (2θ̃i−1)

(h̃′
i,i−1 − 1), k = i − 1,

1 + 2θ̃i+1−1
θ̃i

, k = i .

(32)

Obviously, h̃i+1,i = h̃′
i+1,i , i = 0, . . . , N − 1, and we have

h̃i+1,i−1 = θ̃i − 1

θ̃i−1
(h̃i+1,i − 1) = (θ̃i − 1)(2θ̃i+1 − 1)

θ̃i−1θ̃i
= (θ̃i − 1)(2θ̃i+1 − 1)

θ̃i (2θ̃i − 1)

2θ̃i − 1

θ̃i−1

= (θ̃i − 1)(2θ̃i+1 − 1)

θ̃i (2θ̃i − 1)
(h̃′

i,i−1 − 1) = h̃′
i+1,i−1

for i = 1, . . . , N − 1.
We next use induction by assuming h̃i+1,k = h̃′

i+1,k for i = 0, . . . , n − 1, k =
0, . . . , i . We then have

h̃n+1,k = θ̃k+1 − 1

θ̃k
h̃n+1,k+1 =

⎛

⎝
n−1∏

j=k

θ̃l+1 − 1

θ̃l

⎞

⎠ (h̃n+1,n − 1)

=
⎛

⎝
n−2∏

j=k

θ̃l+1 − 1

θ̃l

⎞

⎠ (h̃n,n−1 − 1)
θ̃n − 1

θ̃n−1

h̃n+1,n − 1

h̃n,n−1 − 1

123



Journal of Optimization Theory and Applications (2021) 188:192–219 209

= h̃n,k
θ̃n − 1

θ̃n−1

(2θ̃n+1 − 1)θ̃n−1

θ̃n(2θ̃n − 1)
= (θ̃n − 1)(2θ̃n+1 − 1)

θ̃n(2θ̃n − 1)
h̃′
n,k = h̃′

n+1,k

for k = 0, . . . , n−2, where the fourth equality uses the definition of h̃n,k . This proves
the first claim that the step coefficients {h̃i+1,k} (22) and {h̃′

i+1,k} (32) are equivalent.
We finally use induction to show the equivalence between the generated sequences

of FSFOM with (32) and OGM-G. For clarity, we use the notation x′
0, . . . , x

′
N and

y′
0, . . . , y

′
N for OGM-G. Obviously, x0 = x′

0, and we have

x1 = x0 − 1

L
h̃′
1,0∇ f (x0) = x0 − 1

L

(
1 + 2θ̃1 − 1

θ̃0

)
∇ f (x0)

= y′
1 − 1

L

(2θ̃0 − 1)(2θ̃1 − 1)

θ̃0(2θ̃0 − 1)
∇ f (x′

0)

= y′
1 − 1

L

(
(θ̃0 − 1)(2θ̃1 − 1)

θ̃0(2θ̃0 − 1)
+ 2θ̃1 − 1

2θ̃0 − 1

)
∇ f (x′

0) = x′
1.

Assuming xi = x′
i for i = 0, . . . , n, we have

xn+1 = xn − 1

L
h̃′
n+1,n∇ f (xn) − 1

L
h̃′
n+1,n−1∇ f (xn−1) − 1

L

n−2∑

k=0

h̃′
n+1,k∇ f (xk)

= xn − 1

L

(
1 + 2θ̃n+1 − 1

θ̃n

)
∇ f (xn)

− 1

L

(θ̃n − 1)(2θ̃n+1 − 1)

θ̃n(2θ̃n − 1)
(h̃n,n−1 − 1)∇ f (xn−1)

− 1

L

(θ̃n − 1)(2θ̃n+1 − 1)

θ̃n(2θ̃n − 1)

n−2∑

k=0

h̃n,k∇ f (xk)

= xn − 1

L

(
1 + 2θ̃n+1 − 1

2θ̃n − 1

)
∇ f (xn)

+ (θ̃n − 1)(2θ̃n+1 − 1)

θ̃n(2θ̃n − 1)

(
− 1

L
∇ f (xn) + 1

L
∇ f (xn−1) − 1

L

n−1∑

k=0

h̃n,k∇ f (xk)

)

= y′
n+1 + (θ̃n − 1)(2θ̃n+1 − 1)

θ̃n(2θ̃n − 1)
( y′

n+1 − y′
n) + 2θ̃n+1 − 1

2θ̃n − 1
( y′

n+1 − x′
n) = x′

n+1.

��
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6.4 TwoWorst-Case Iterative Behaviors of OGM-G

This section specifies two worst-case problem instances for OGM-G, associated with
Huber and quadratic functions, respectively, that make the bound (28) exact. These
examples imply that the feasible point in (23) is an optimal point of (D) for OGM-G.

Lemma 6.2 For the following Huber and quadratic functions inFL(Rd):

φ1(x) =
{

LR
θ̃0

||x|| − LR2

2θ̃20
, ||x|| ≥ R

θ̃0
,

L
2 ||x||2, otherwise,

and φ2(x) = L

2
||x||2, (33)

for all d ≥ 1, OGM-G exactly achieves the bound (28) with an initial point x0
satisfying φ1(x0) − φ1,∗ = φ2(x0) − φ2,∗ = 1

2 LR
2.

Proof Wefirst considerφ1(x). Starting froman initial point x0 = θ̃20+1

2θ̃0
Rν that satisfies

φ1(x0) − φ1,∗ = 1
2 LR

2 (IFC) for any unit-norm vector ν, we have

xN = x0 − 1

L

N∑

j=1

j−1∑

k=0

h̃ j,k∇ f (xk) =
(

θ̃20 + 1

2θ̃0
− θ̃20 − 1

2θ̃0

)
Rν,

since

N∑

j=1

j−1∑

k=0

h̃ j,k = 1

2
(θ̃0 + 1) +

N−1∑

j=1

θ̃ j = 1

2
(θ̃0 + 1 + 2θ̃21 − 2) = 1

2
(θ̃20 − 1)

that uses (26) and (27). Here, all the iterates stay in the affine region of the function
φ1(x) with the same gradient ∇φ1(x) = LR

θ̃0
ν, i = 0, . . . , N . Therefore, after N

iterations of OGM-G, we have ||∇φ1(xN )||2 = L2R2

θ̃20
.

We next consider φ2(x). Starting from an initial point x0 = Rν that satisfies
φ2(x0) − φ2,∗ = 1

2 LR
2 (IFC) for any unit-norm vector ν, we have

x1 = − 1

L

2θ̃1 − 1

θ̃0
∇ f (x0) = −2θ̃1 − 1

θ̃0
x0,

and we have

xi+1 = − 1

L

2θ̃i+1 − 1

2θ̃i − 1
∇ f (xi ) = −2θ̃i+1 − 1

2θ̃i − 1
xi = (−1)i

2θ̃i+1 − 1

2θ̃1 − 1
x1,

i = 1, . . . , N − 1,

using yi = 0, i = 1, . . . , N . Therefore, we have ||∇φ2(xN )||2 = L2||xN ||2 = L2R2

θ̃20
.

��
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The iterates of OGM-G for the Huber worst-case function φ1 stay in one side of
the affine region of the function, while those for the quadratic worst-case function
φ2 always overshoot the optimum. These are extreme cases, and it is notable that
some other first-order methods also have two such worst-case iterative behaviors.
Specifically, in [17,25], first-order methods that have such two types of worst-case
iterative behaviors in Lemma 6.2, associated with Huber and quadratic functions,
respectively, were found to have an optimal worst-case bound among a certain subset
of first-order methods. This leads us to conjecture that the exact worst-case bound (28)
of OGM-G may be optimal, but proving it remains an open problem.

6.5 Worst-Case Rate Behaviors of OGM-G under Initial Distance Condition

This section further studies the worst-case rate behaviors of OGM-G under initial
distance condition (IDC). Table 2 presents exact numerical worst-case rates of OGM-
G (under a large-dimensional condition), using the performance estimation toolbox,
named PESTO3 [28], based on PEP [1,17].

Table 2 illustrates that the worst-case gradient rates of OGM-G are equivalent
numerically under both (IDC) and (IFC). This is because the worst-case problem
instance of OGM-G in Lemma 6.2 associated with the quadratic function under (IFC)
also serves as a worst-case of OGM-G under (IDC), as formally discussed next.

Corollary 6.2 Let x0, . . . , xN ∈ Rd be generated by OGM-G. Then, for any N ≥ 1,

L2R
2

θ̃20

≤ min
f ∈FL (Rd ),
x∗∈X∗( f ),

||x0−x∗||≤R

||∇ f (xN )||2. (34)

Proof Consider the quadratic function φ2(x) = L
2 ||x||2 in Lemma 6.2 associated with

the initial point x0 = Rν for any unit-norm vector ν. This initial point x0 satisfies
||x0 − x∗|| = R as well as φ2(x0) − φ2,∗ = 1

2 LR
2, which implies the inequality (34)

based on Lemma 6.2. ��
We conjecture that the lower bound (34) of OGM-G under (IDC) is exact, based

on numerical evidence in Table 2. This is a bit disappointing, because it appears that
a method that is optimal under one initial condition is far from optimal for another
initial condition. It is also unfortunate that OGM-G has a poor worst-case rate for
decreasing the cost function under (IDC). An open problem is finding a method that
achieves optimal rates invariant to worst-case rate measures and initial conditions.

In addition, we study how the worst-case rate under (IFC) transfers to that
under (IDC) for given problem instance ( f , x0). We particularly focus on two worst-
case problem instances of OGM-G in Lemma 6.2, while similar analysis can be done
for the worst-case problem instance of GM in Lemma 5.2. For the worst-case of OGM-
G associated with the Huber function φ1(x), the constants R and R in (IFC) and (IDC)

3 In PESTO toolbox [28], we used the SDP solver SeDuMi [26] interfaced through Yalmip [27]. The
OGM-G method is implemented in the PESTO toolbox.
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have the following relationship:

R = ||x0 − x∗|| = θ̃20 + 1

2θ̃0
R ≥ θ̃0

2
R ≥ N + 1

2
√
2

R. (35)

We can then show the following upper bound associated with R after N iterations of
OGM-G:

||∇φ1(xN )||2 = L2R2

θ̃20

≤ 2L2R2

(N + 1)2
≤ 16L2R

2

(N + 1)4
, (36)

yielding O(1/N 4), instead of theOGM-G rate O(1/N 2), expressed by using R instead
of R. On the other hand, for the worst-case of OGM-G associated with the quadratic
function φ2(x) in Lemma 6.2, we have the relationship R = R, as mentioned in
Corollary 6.2. These examples illustrate that comparing the worst-case rates under
different initial conditions is subtle, and it would be incomplete to treat R and R as
just arbitrary constants (unrelated to N ) in Table 1.

6.6 RelatedWork: OGM

This section shows that the proposed OGM-G has a close relationship with the fol-
lowing OGM [5] (that was numerically first identified in [1]).

OGM [5] (37)

Input: f ∈ FL(Rd), x0 = y0 ∈ Rd , N ≥ 1, θ̂0 = 1.

For i = 0, . . . , N − 1,

yi+1 = xi − 1

L
∇ f (xi ),

θ̂i+1 =

⎧
⎪⎨

⎪⎩

1+
√
1+4θ̂2i
2 , i < N − 1,

1+
√
1+8θ̂2i
2 , i = N − 1,

xi+1 = yi+1 + θ̂i − 1

θ̂i+1
( yi+1 − yi ) + θ̂i

θ̂i+1
( yi+1 − xi ).

We can easily notice the symmetric relationship of the parameters

θ̂i = θ̃N−i , i = 0, . . . , N , (38)

and the fact that OGM and OGM-G have forms that differ in the coefficients of the
terms yi+1 − yi and yi+1 − xi .

For f ∈ FL(Rd), x∗ ∈ X∗( f ) and ||x0 − x∗|| ≤ R (IDC), the final N th iterate
xN of OGM has the following exact worst-case cost function bound [5, Theorems 2
and 3]:
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f (xN ) − f (x∗) ≤ LR
2

2θ̂2N
≤ LR

2

(N + 1)2
, (39)

where this exact upper bound is equivalent to the exact worst-case gradient bound (28)

of OGM-G up to a constant R
2

2LR2 . This equivalence is similar to the relationship
between the exact worst-case bounds (16) and (20) of GM discussed in Remark 5.1.
The worst-case rate (39) of OGM is exactly optimal for large-dimensional smooth
convex minimization [6].

OGM is equivalent to FSFOM with the step coefficients [5, Proposition 4]:

ĥi+1,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ̂i−1
θ̂i+1

ĥi,k, k = 0, . . . , i − 2,

θ̂i−1
θ̂i+1

(ĥi,i−1 − 1), k = i − 1,

1 + 2θ̂i−1
θ̂i+1

, k = i .

(40)

for i = 0, . . . , N − 1. The following proposition shows the symmetric relationship
between the step coefficients {ĥi+1,k} (40) and {h̃i+1,k} (22) of OGM and OGM-G,
respectively.

Proposition 6.2 The step coefficients {ĥi+1,k} (40) and {h̃i+1,k} (22) of OGM and
OGM-G, respectively, have the following relationship

ĥi+1,k = h̃N−k,N−i−1, i = 0, . . . , N − 1, k = 0, . . . , i . (41)

Proof We use induction. Obviously, ĥ1,0 = h̃N ,N−1. Then, assuming ĥi+1,k =
h̃N−k,N−i−1 for i = 0, . . . , n − 1, we have

ĥn+1,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ̃N−n−1
θ̃N−n−1

h̃N−k,N−n, k = 0, . . . , n − 2,
θ̃N−n−1
θ̃N−n−1

(h̃N−n+1,N−n − 1), k = n − 1,

1 + 2θ̃N−n−1
θ̃N−n−1

, k = n,

= h̃N−k,N−n−1.

��

Building upon the relationships (38) and (41) between OGM and OGM-G, we
numerically study the momentum coefficient values βi and γi of OGM and OGM-G
in the following form, to characterize the convergence behaviors of the methods.
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Fig. 1 Comparison of momentum coefficients (βi , γi ) of OGM and OGM-G

Accelerated First-Order Method

Input: f ∈ FL(Rd), x0 = y0 ∈ Rd , N ≥ 1.

For i = 0, . . . , N − 1,

yi+1 = xi − 1

L
∇ f (xi ),

xi+1 = yi+1 + βi ( yi+1 − yi ) + γi ( yi+1 − xi ).

Figure 1 compares the momentum coefficients (βi , γi ) of OGM and OGM-G for
N = 100. It is notable that having increasing values of (βi , γi ) as i increases, except
for the last iteration, yields the optimal (fast) worst-case rate for decreasing the cost
function, whereas having decreasing values of (βi , γi ), except for the first iteration,
yields the fast worst-case rate (that is optimal up to a constant) for decreasing the
gradient. We leave further theoretical study on such choices of coefficients as future
work.

We next compare OGM and OGM-G with their other equivalent efficient forms.
Similar to [5, Algorithm OGM2] one can easily show that the last line of OGM is
equivalent to

zi+1 = yi+1 + (θ̂i − 1)( yi+1 − yi ) + θ̂i ( yi+1 − xi ),

xi+1 =
(
1 − 1

θ̂i+1

)
yi+1 + 1

θ̂i+1
zi+1, (42)

while that of OGM-G is equivalent to

zi+1 = yi+1 + (θ̃i − 1)( yi+1 − yi ) + θ̃i ( yi+1 − xi ),

xi+1 =
(
1 − 2θ̃i+1 − 1

θ̃i (2θ̃i − 1)

)
yi+1 + 2θ̃i+1 − 1

θ̃i (2θ̃i − 1)
zi+1. (43)
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This interpretation stems from a variant of FGM [29] that involves a convex combina-
tion of two points as above. [5] already showed that similar interpretation is possible for
OGM, and the expression here also implies that decreasing gradient can be achieved
via some convex combination of two points. Further analysis is left as future work.

7 Conclusions

This paper developed a first-order method named OGM-G that has an inexpensive
per-iteration computational complexity and achieves the optimal worst-case bound
for decreasing the gradient of large-dimensional smooth convex functions up to a
constant, under the initial bounded function condition. A simple method in [8], using
the OGM-G, also achieves the optimal worst-case gradient bound up to a constant,
under the initial bounded distance condition. The OGM-G was derived by optimizing
the step coefficients of first-order methods in terms of the worst-case gradient bound
using the performance estimation problem (PEP) approach [1]. On the way, the exact
worst-case gradient bound for a gradient method was studied.

A practical drawback of OGM-G is that onemust choose the number of iterations N
in advance. Finding a first-order method that achieves the optimal worst-case gradient
bound (up to a constant), but that does not depend on selecting N in advance, remains
an open problem. In addition, extending the approaches based on PEP in this paper to
the initial bounded distance condition (IDC) will be interesting future work; this PEP
approach with a strict relaxation (unlike this paper) has been studied in [14]. Further
extensions of this paper to nonconvex problems and composite problems are also of
interest.
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Appendix: Proof of Eqs. (25) and (26)

This proof shows the properties (25) and (26) of the step coefficients {h̃i, j } (22).
We first show (25). We can easily derive

h̃i,i−2 = (θ̃i−1 − 1)(2θ̃i − 1)

θ̃i−2θ̃i−1
= θ̃2i (2θ̃i − 1)

θ̃i−2θ̃
2
i−1

for i = 2, . . . , N using (27). Again using the definition of (22) and (27), we have
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h̃i, j = θ̃ j+1 − 1

θ̃ j
h̃i, j+1 = · · · =

⎛

⎝
i−2∏

l= j+1

θ̃l − 1

θ̃l−1

⎞

⎠ h̃i,i−2 =
⎛

⎝
i−1∏

l= j+1

θ̃l − 1

θ̃l−1

⎞

⎠ 2θ̃i − 1

θ̃i−1

= 1

θ̃ j

1

θ̃ j+1

θ̃ j+1 − 1

θ̃ j+2
· · · θ̃i−3 − 1

θ̃i−2
(θ̃i−2 − 1)(θ̃i−1 − 1)

2θ̃i − 1

θ̃i−1

= 1

θ̃ j

1

θ̃ j+1

θ̃ j+2

θ̃ j+1
· · · θ̃i−2

θ̃i−3
(θ̃i−2 − 1)(θ̃i−1 − 1)

2θ̃i − 1

θ̃i−1

= θ̃i−2(θ̃i−2 − 1)(θ̃i−1 − 1)(2θ̃i − 1)

θ̃ j θ̃
2
j+1θ̃i−1

= θ̃2i (2θ̃i − 1)

θ̃ j θ̃
2
j+1

,

for i = 2, . . . , N , j = 0, . . . , i − 3, which concludes the proof of (25).
We next prove the first two lines of (26) using the induction. For N = 1, we have

θ̃1 = 1 and

h̃1,0 = 1 + 2θ̃1 − 1

θ̃0
= 1 + θ̃21

θ̃0
= 1 +

1
2 (θ̃

2
0 − θ̃0)

θ̃0
= 1

2
(θ̃0 + 1),

where the third equality uses (27). For N > 1, we have

h̃N ,N−1 = 1 + 2θ̃N − 1

θ̃N−1
= 1 + θ̃2N

θ̃N−1
= 1 + θ̃2N−1 − θ̃N−1

θ̃N−1
= θ̃N−1,

where the third equality uses (27). Assuming
∑N

l= j+1 h̃l, j = θ̃ j for j = n, . . . , N −1
and n ≥ 1, we get

N∑

l=n

h̃l,n−1 = 1 + 2θ̃n − 1

θ̃n−1
+ θ̃n − 1

θ̃n−1
(h̃n+1,n − 1) + θ̃n − 1

θ̃n−1

N∑

l=n+2

h̃l,n

= 1 + θ̃n

θ̃n−1
+ θ̃n − 1

θ̃n−1

N∑

l=n+1

h̃l,n = θ̃n−1 + θ̃n + (θ̃n − 1)θ̃n
θ̃n−1

= θ̃n−1 + θ̃2n

θ̃n−1

=
{

1
2 (θ̃0 + 1), n = 0,

θ̃n, n = 1, . . . , N − 1,

where the last equality uses (27), which concludes the proof of the first two lines
of (26).

We finally prove the last line of (26) using the induction. For i ≥ 1, we have

N∑

l=i+1

h̃l,i−1 =
N∑

l=i

h̃l,i−1 − h̃i,i−1 = θ̃i−1 −
(
1 + 2θ̃i − 1

θ̃i−1

)
= (θ̃i − 1)2

θ̃i−1
= θ̃4i+1

θ̃i−1θ̃
2
i

,
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where the third and fourth equalities use (27). Then, assuming
∑N

l=i+1 h̃l, j = θ̃4i
θ̃ j θ̃

2
j+1

for i = n, . . . , N − 1, j = 0, . . . , i − 1 with n ≥ 1, we get:

N∑

l=n

h̃l, j =
N∑

l=n+1

h̃l, j + h̃n, j = θ̃4n+1

θ̃ j θ̃
2
j+1

+ θ̃2n (2θ̃n − 1)

θ̃ j θ̃
2
j+1

= θ̃2n (θ̃n − 1)2 + θ̃2n (2θ̃n − 1)

θ̃ j θ̃
2
j+1

= θ̃4n

θ̃ j θ̃
2
j+1

,

where the second and third equalities use (25), which concludes the proof. ��
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