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Abstract— Low-dose CT image reconstruction has been
a popular research topic in recent years. A typical recon-
struction method based on post-log measurements is called
penalized weighted-least squares (PWLS). Due to the under-
lying limitations of the post-log statistical model, the PWLS
reconstruction quality is often degraded in low-dose scans.
This paper investigates a shifted-Poisson (SP) model based
likelihood function that uses the pre-log raw measurements
that better represents the measurement statistics, together
with a data-driven regularizer exploiting a Union of Learned
TRAnsforms (SPULTRA). Both the SP induced data-fidelity
term and the regularizer in the proposed framework are non-
convex. The proposed SPULTRA algorithm uses quadratic
surrogate functions for the SP induced data-fidelity term.
Each iteration involves a quadratic subproblem for updating
the image, and a sparse coding and clustering subproblem
that has a closed-formsolution.The SPULTRA algorithm has
a similar computational cost per iteration as its recent coun-
terpart PWLS-ULTRA that uses post-log measurements, and
it provides better image reconstruction quality than PWLS-
ULTRA, especially in low-dose scans.

Index Terms— Inverse problems, sparse representation,
transform learning, shifted-Poisson model, nonconvex opti-
mization, efficient algorithms, machine learning.

I. INTRODUCTION

RECENT years have witnessed the growing deployment
of X-ray computed tomography (CT) in medical appli-

cations. Simultaneously there has been great concern to reduce
the potential risks caused by exposure to X-ray radiation.
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Strategies for reducing the X-ray radiation in CT include
reducing the photon intensity at the X-ray source, i.e., low-
dose CT (LDCT), or lowering the number of projection views
obtained by the CT machine, i.e., sparse-view CT. In the case
where the X-ray radiation is extremely low, the CT image may
not be suitable for medical diagnosis, but it is still quite helpful
for non-diagnostic applications such as attenuation correction
for PET/CT imaging [1]–[3] and virtual CT colonoscopy
screening [4]. Reconstructing CT images with reduced radi-
ation is challenging, and many reconstruction methods have
been proposed for this setting. Model-based iterative recon-
struction (MBIR) is widely used [5] among these approaches.
Based on maximum a posteriori (MAP) estimation, MBIR
approaches form a cost function that incorporates the statistical
model for the acquired measurements and the prior knowledge
(model) of the images. This section first reviews some of
the statistical models for CT measurements along with recent
works on extracting prior knowledge about images for LDCT
image reconstruction, and then presents our contributions.

A. Background

Accurate statistical modeling of the measurements in CT
scanners is challenging, especially in low-dose imaging, when
the electronic noise in the data acquisition system (DAS)
becomes significant [6]–[12]. Approximations of the measure-
ment statistics can be categorized into post-log and pre-log

models [13], which are detailed next.
The post-log models work on data obtained from the

logarithmic transformation of the raw measurements, which
is often assumed Gaussian distributed. Since the logarith-
mic transformation approximately linearizes the raw measure-
ments, methods based on post-log data can readily exploit
various optimization approaches and regularization designs
with efficiency and convergence guarantees for this reconstruc-
tion problem [14]–[16]. The post-log methods however have
a major drawback: the raw measurements may contain non-
positive values on which the logarithmic transformation cannot
be taken (or near-zero positive measurements whose logarithm
can be very negative), particularly when the electronic noise
becomes significant as compared to the photon statistical noise
in low-dose cases.

There are many pre-correction approaches to deal with
non-positive raw measurements for post-log methods. Exam-
ples of such approaches include using a statistical weight of
zero for such measurements [17], replacing the non-positive
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measurements with a small positive value [18] and filtering
neighboring measurements [6]. Thibault et al. [19] proposed
a recursive filter which preserves the local mean to pre-process
noisy measurements, but still used a non-linear function
to map all noisy measurements to strictly positive values.
Chang et al. [20] applied the local linear minimum mean-
square error (LLMMSE) filter to pre-process the raw measure-
ments, but the LLMMSE filter does not guarantee positivity in
its output sinograms and introduces correlations among neigh-
bouring channels. This correlation violates the assumption of
independence of sinogram data on which MAP reconstruction
formulations rely. Chang et al. [20] also proposed a pointwise
Bayesian restoration (PBR) approach, which better preserves
the independence of sinogram data while reducing bias for
photon-starved CT data. When pre-processing a large per-
centage of non-positive values for LDCT measurements, these
pre-correction methods may still introduce bias in the recon-
structed image and can degrade image quality [13], [19]. The
logarithmic transformation itself causes a positive bias in the
line integrals from which the image is reconstructed [13], [21].
A typical method for reconstructing images from the post-
log data is penalized weighted least squares (PWLS) [18] that
optimizes an objective consisting of a weighted least squares
data fidelity term and a regularization penalty. However, the
pre-correction process and non-linear logarithmic operation
create challenges in estimating the statistical weights for the
PWLS methods [19], [22].

Contrary to the post-log methods, the pre-log methods
work directly with the raw measurements. A robust statistical
model for the pre-log raw CT measurements is the shifted-
Poisson (SP) model. This model shifts the measurements
by the variance of the electric readout noise. The shifted
measurement has its variance equal to its mean, so that it could
be approximated to be Poisson distributed. Since the shifted-
Poisson model is a better approximation for CT measurement
statistics compared to the Gaussian model [13], [23]–[26], and
no pre-correction of the data is needed for most LDCT dose
levels [13], this paper uses this SP model for LDCT image
reconstruction.

There has been growing interest in improving CT image
reconstruction by extracting prior knowledge from previous
patient scans. Many methods have been proposed in this
regard, such as prior image constrained compressed sensing
methods (PICCS) [27]–[29], or the previous normal-dose scan
induced nonlocal means method [30], [31]. More recently,
inspired by the success of learning-based methods in image
processing and computer vision, researchers have incorpo-
rated data-driven approaches along with statistical models for
LDCT image reconstruction. One such approach proposed
by Xu et al. [32] combined dictionary learning techniques
with the PWLS method for LDCT image reconstruction. The
dictionary they used was either pre-learned from a training
image set (consisting of 2D images) and fixed during recon-
struction, or adaptively learned while reconstructing the image.
The 2D dictionary model for image patches was later extended
to a 2.5D dictionary (where different dictionaries were trained
from 2D image patches extracted from axial, sagittal, and
coronal planes of 3D data) [33], and then to a 3D dictionary

trained from 3D image patches [34]. These dictionary learn-
ing and reconstruction methods are typically computation-
ally expensive, because they involve repeatedly optimizing
NP-hard problems [35] for estimating the sparse coefficients
of patches. The learning of sparsifying transforms (ST) was
proposed in recent works [36], [37] as a generalized analy-
sis dictionary learning method, where the sparse coefficients
are estimated directly by simple and efficient thresholding.
Pre-learned square sparsifying transforms have been recently
incorporated into 2D LDCT image reconstruction with both
post-log Gaussian statistics [38] and pre-log SP measurement
models [39]. Especially, Zheng et al. [38] showed promise for
PWLS with a union of pre-learned sparsifying transforms [40]
regularization that generalizes the square sparsifying transform
approach.

In addition to the dictionary learning-based approaches,
some works have incorporated neural networks in CT image
reconstruction. Adler and Öktem proposed a learned primal-
dual reconstruction method [41], that uses convolutional neural
networks (CNNs) to learn parameterized proximal operators.
This method was applied to relatively simple 2D phantoms.
Wu et. al [42] proposed a k-sparse autoencoder (KSAE) based
regularizer for LDCT image reconstruction, where they trained
three independent KSAEs from axial, sagittal and coronal
slices for 3D reconstruction via artificial neural networks.
Chen et al. [43] proposed to unfold the classical iterative
reconstruction procedure into a CNN-based recurrent residual
network so that the original fixed regularizers and the bal-
ancing parameters within the iterative scheme can vary for
each layer. The reconstruction with this network was only
performed slice by slice. He et al. proposed a parameter-
ized plug-and-play alternating direction method (3pADMM)
for PWLS model based low-dose CT image reconstruction
[44]. By regarding the ADMM optimization steps as net-
work modules, this method can optimize the 3p prior and
the related parameters simultaneously. These methods are
fully supervised learning methods requiring large datasets
consisting of both undersampled images or measurements and
the corresponding high-quality images. Some post-processing
approaches involving neural networks such as a U-Net or a
residual net also improve CT image quality [45], [46], but
such post-processing methods usually construct an image-to-
image mapping without fully incorporating the physics of the
imaging process. Additionally, the generalization of supervised
learning methods may be limited in the sense that the trained
model may only work well on the data that is similar to the
training set.

B. Contributions

Considering the robustness and accuracy offered by the
SP statistics, and inspired by the data-driven image modeling
methods not requiring paired training data or previous reg-
istered normal-dose images, here we propose a new LDCT
image reconstruction method named SPULTRA that combines
robust SP measurement modeling with a union of learned
sparsifying transforms (ULTRA) based regularizer. Since the
SP model leads to a nonconvex data-fidelity term, we design
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a series of quadratic surrogate functions for this term in our
optimization. For each surrogate function combined with the
ULTRA regularizer (a majorizer of the SPULTRA objective),
we optimize it by alternating between an image update step

and a sparse coding and clustering step. The proposed SPUL-
TRA scheme is proved to converge to the critical points of the
overall nonconvex problem. In the experiments, we compare
SPULTRA with the recent PWLS-ULTRA scheme [38] under
different incident photon intensity levels for 3D XCAT phan-
tom simulations. The results demonstrate that the proposed
method avoids bias in image regions caused by the PWLS-
ULTRA method, especially for low X-ray doses. At the
same time, SPULTRA achieves better image reconstruction
quality than PWLS-ULTRA given the same number of iter-
ations, or alternatively, SPULTRA achieves a desired image
reconstruction quality much faster than the competing PWLS-
ULTRA scheme, especially for low X-ray doses. We verify
the bias avoidance property of SPULTRA on a synthesized 3D
clinical chest scan, and an ultra low-dose 2D shoulder phantom
scan simulated from standard-dose raw measurements that
also involve beam-hardening effects. We compared SPULTRA
with a recent deep-learning based denoising framework [46]
on the 2D data demonstrating the better reconstruction and
generalization ability of SPULTRA.

This paper significantly extends our previous conference
work [39] by incorporating the ULTRA regularizer and
proposing a faster optimization procedure with convergence
guarantees. We performed extensive numerical evaluations
compared to the 2D LDCT XCAT phantom results in [39].

C. Organization

The rest of this paper is organized as follows. Section II
presents the proposed problem formulation for low-dose
CT image reconstruction. Section III briefly reviews the
ULTRA learning method and describes the proposed SPUL-
TRA image reconstruction algorithm. Section IV discusses
the convergence properties of the SPULTRA methodology.
Section V presents detailed experimental results and compar-
isons. Section VI presents conclusions.

II. PROBLEM FORMULATION FOR SPULTRA

The goal in LDCT image reconstruction is to estimate the
linear attenuation coefficients x ∈ R

Np from CT measurements
y ∈ R

Nd . We propose to obtain the reconstructed image by
solving a SP model-based penalized-likelihood problem:

x̂ = arg min x∈X G(x), G(x) = L(x) + R(x), (P0)

where X = {x|0 ≤ x j ≤ xmax}, xmax is a large constant.
The objective function G(x) is composed of a negative log-
likelihood function L(x) based on the SP model for the
measurements, and a penalty term R(x) that is based on the
ULTRA model [38], [47]. The SP model can be described
as Yi ∼ Poisson{I0e− fi ([Ax]i ) + σ 2}, where Yi is the shifted
quantity of the i th measurement for i = 1, . . . , Nd , σ 2 is the
variance of the electronic noise, I0 is the incident photon count
per ray from the source, fi (·) models the beam-hardening
effect, and A ∈ R

Nd ×Np is the CT system matrix. Denoting

li (x) � [Ax]i (or li in short), the data-fidelity term L(x) can
be written as

L(x) =

Nd
∑

i=1

hi (li (x)), (1)

where

hi (li ) � (I0e− fi (li ) + σ 2) − Yi log(I0e− fi (li ) + σ 2). (2)

The beam-hardening model fi (·) is usually approximated as
a polynomial [13]. For simplicity, we use a second order
polynomial, i.e., fi (li ) = s1i li + s2i l

2
i , where s1i and s2i are

coefficients of the polynomial for the i th measurement.
The ULTRA regularizer R(x) has the following form [38]:

R(x) � min
{z j ,Ck}

β

K
∑

k=1

{

∑

j∈Ck

τ j {‖�kP j x − z j‖
2
2 + γ 2

c ‖z j‖0}

}

s.t. {Ck} ∈ G, (3)

where G denotes the set consisting of all possible partitions
of {1, 2, . . . , Np} into K disjoint subsets, K is the number of
classes and Ck denotes the set of indices of patches belonging
to the kth class. The operator P j ∈ R

v×Np is the patch
extraction operator that extracts the j th patch of v voxels for
j = 1, . . . , Ñ , from x, where Ñ is the number of extracted
patches. The learned transform corresponding to the kth class
�k ∈ R

v×v maps the patches to the transform domain. Vector
z j ∈ R

v denotes the sparse approximation of the transformed
j th patch, with the parameter γ 2

c (γc > 0) controlling its
sparsity level. We use the ℓ0 “norm” (that counts the number
of nonzero elements in z j ) to enforce sparsity. The patch-
based weight τ j is defined as ‖P j κ‖1/v [38], [48], where
κ ∈ R

Np is defined to help encourage resolution uniformity as

κ j �

√

∑Nd

i=1 ai j w̃i

∑Nd

i=1 ai j [49, eq(39)], with ai j denoting

the entries of A, and w̃i is approximated as w̃i = ḟi (l̃i )
2 y2

i

yi+σ 2

[13, eq(10)], where l̃i is the beam-hardening corrected, post-
log sinogram data. To balance the data-fidelity term and the
regularizer in the formulation, R(x) is scaled by a positive
parameter β.

III. ALGORITHM

The proposed SPULTRA algorithm is based on a pre-
learned union of sparsifying transforms. The process of learn-
ing such a union of transforms from a dataset of image
patches has been detailed in [38]. The learning problem
in [38] simultaneously groups the training patches into K

classes and learns a transform in each class along with the
sparse coefficients (in the transform domain) of the patches.
This learning is accomplished by an alternating algorithm
(see [38]). This section focuses on describing the algorithm
in the reconstruction stage for SPULTRA, i.e., for (P0).

The data-fidelity term L(x) in (P0) is nonconvex when
the electronic noise variance σ 2 is nonzero. It is challenging
to directly optimize such a logarithmic nonconvex function.
We propose to iteratively design quadratic surrogate functions
for this data-fidelity term L(x). In each iteration, we opti-
mize the surrogate function that is a quadratic data-fidelity
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term together with the ULTRA regularizer using alternating
minimization that alternates between an image update step
and a sparse coding and clustering step that has closed-form
solution [40]. We use the relaxed OS-LALM algorithm for
the image update step [50]. We perform only one alternation
between the two steps for each designed surrogate function,
which saves runtime and works well in practice.

A. Surrogate Function Design

We design a series of quadratic surrogate functions for L(x)

as follows:

φ(x; xn) = L(xn) + dh(ln)A(x − xn)

+
1

2
(x − xn)T AT WnA(x − xn), (4)

where (·)n denotes values at the nth iteration and dh(ln) ∈ R
Nd

is a row vector capturing the gradient information and is
defined as dh(ln) � [ḣi (l

n
i )]

Nd

i=1. The curvatures of the
nth updated parabola (surrogate) are described by Wn �

diag{ci (l
n
i )}. In this paper, we use the optimum curvatures

[51] that are defined as follows:

ci (l
n
i ) =

⎧

⎪

⎨

⎪

⎩

[

2
hi (0) − hi (l

n
i ) + (ln

i )ḣi (l
n
i )

(ln
i )2

]

+
, ln

i > 0
[

ḧi (0)
]

+
, ln

i = 0,

(5)

where ḧi is the second-order derivative, and operator [·]+ sets
the non-positive values to zero. In practice, we replace negative
values with a small positive number so that the diagonal
matrix Wn is invertible. Due to numerical precision, (5) might
become extremely large when ln

i is nonzero but small. To avoid
this problem, we use an upper bound of the maximum second
derivative

[

ḧi (0)
]

+
for the curvature ci (l

n
i ) when ln

i > 0 [51].
By ignoring the terms irrelevant to x in (4), we get the

following equivalent form of φ(x; xn):

φ(x; xn) ≡
1

2
||ỹn − Ax||2Wn , (6)

where “≡” means equal to within irrelevant constants of x, and
ỹn � Axn −

(

Wn
)−1

[dh(ln)]T . The overall surrogate function
at the nth iteration for the penalized-likelihood objective
function G(x) in (P0) is then


(x; xn) =
1

2
||ỹn − Ax||2Wn + R(x), s.t. x ∈ X . (7)

We descend the surrogate function 
(x; xn) in (7) by alternat-
ing once between an image update step, and a sparse coding
and clustering step.

B. Image Update Step

In the image update step, we update the image x with fixed
sparse codes {z j } and class assignments {Ck}. The relevant
part of the majorizer for this step is


1(x; xn) = φ(x; xn) + β

K
∑

k=1

∑

j∈Ck

τ j‖�kP j x − z j‖
2
2. (8)

Although we have a box constraint on x, i.e., x ∈ X ,
in practice, the upper bound xmax can be set high such that

it will not be active. We applied the relaxed OS-LALM algo-
rithm [50] to minimize (8) with the constraint. This algorithm
is shown in Algorithm 1 (steps 7-10). The OS-LALM method
uses majorizing matrices. In particular, the matrix AT WnA is
majorized by DA � diag{AT WnA1}, where 1 denotes a vector
of ones. Denoting the regularization term in (8) as R2(x), its
gradient is

∇R2(x) = 2β

K
∑

k=1

∑

j∈Ck

τ j P
T
j �T

k (�kP j x − z j ). (9)

The Hessian of R2(x) is majorized by the following diagonal
matrix:

DR � 2β

{

max
k

‖�T
k �k‖2

} K
∑

k=1

∑

j∈Ck

τ j P
T
j P j . (10)

The (over-)relaxation parameter α ∈ [1, 2) and the parameter
ρt > 0 decreases with iterations t in OS-LALM according to
the following equation [50]:

ρt (α) =

⎧

⎨

⎩

1, t = 0
π

α(t + 1)

√

1 −
( π

2α(t + 1)

)2
, otherwise.

(11)

C. Sparse Coding and Clustering Step

Here, with x fixed, we jointly update the sparse codes and
the class memberships of patches. The relevant part of the cost
function for the sparse coding and clustering step is

min
{z j ,Ck}

K
∑

k=1

{

∑

j∈Ck

τ j {‖�kP j x − z j‖
2
2 + γ 2

c ‖z j‖0}

}

. (12)

Problem (12) is separable in terms of the patches, so each
patch is clustered and sparse coded independently in parallel.
The optimal sparse code z j in (12) is obtained by hard-
thresholding, i.e., z j = Hγc(�k j P j x), where Hγc(·) represents
a vector hard-thresholding operator that zeros out elements
whose magnitudes are smaller than γc, and leaves other entries
unchanged. Then the optimized class k̂ j for the j th patch is
computed as follows [38]:

k̂ j = argmin
1≤k≤K

‖�kP j x−Hγc(�kP j x)‖2
2+γ 2

c ‖Hγc(�kP j x)‖0.

(13)

We compute the cost values on the right hand side of (13)
for each k = 1, · · · , K , and determine the k̂ j ∈ {1, · · · , K }

that gives the minimal cost value, i.e., patch P j x is grouped
with the transform that provides the smallest value of the
cost in (13). Then, the corresponding optimal sparse code is
ẑ j = Hγc(�k̂ j

P j x).
Algorithm 1 illustrates the proposed optimization algorithm

for Problem (P0).
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Algorithm 1 SPULTRA Algorithm

Input:

1: initial image x̂0; α = 1.999 ; ρ0 = 1;
2: pre-computed DR according to (10);
3: number of outer iterations N , number of inner iterations

P , and number of ordered-subsets M .
Output: reconstructed image x̂N .
4: for n = 0, 1, 2, · · · , N − 1 do

5: (1) Image Update: Fix ẑn
j and Ĉn

k ;
6: Initializations:

1) x(0) = x̂n ,
2) Determine ci (l

n
i ) according to (5),

3) Wn = diag{ci (l
n
i )},

4) DA = diag{AT WnA1},
5) dh(ln) = [I0e− fi (l

n
i ) ḟi (l

n
i )( Yi

I0e
− fi (l

n
i

)
+σ 2

− 1)]
Nd

i=1,

6) ỹn = Ax(0) − (Wn)−1[dh(ln)]T ,
7) ζ (0) = g(0) = MAT

M Wn
M (AM x(0) − ỹn

M ),

8) η(0) = DAx(0) − ζ (0),
9) compute ∇R2(x) according to (9).

7: for p = 0, 1, 2, 3, · · · , P − 1 do

8: for m = 0, 1, 2, 3, · · · , M − 1 do

t = pM + m;
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

s(t+1) = ρt (DAx(t)−η
(t))+(1−ρt)g

(t)

x(t+1) = [x(t)−(ρt DA+DR)−1(s(t+1)+∇R2(x
(t)))]C

ζ (t+1) = MAT
mWn

m(Amx(t+1)−ỹn
m)

g(t+1) =
ρt

ρt +1
(αζ (t+1)+(1−α)g(t))+

1

ρt +1
g(t)

η(t+1) = α(DAx(t+1)−ζ (t+1))+(1−α)η(t)

Decrease ρt according to (11);

9: end for

10: end for

11: x̂n+1 = x(t+1);
12: (2) Sparse Coding and Clustering: Fix x̂n+1, compute

class assignments k̂n+1
j using (13), and sparse codes ẑn+1

j =

Hγc(�k̂n+1
j

P j x̂
n+1), ∀ j .

13: end for

D. Computational Cost

The SPULTRA algorithm has a similar structure in each
iteration as the recent PWLS-ULTRA [38], except for sev-
eral initializations in the image update step. Since forward
and backward projections are used to compute DA and ỹn

during initialization, the image update step of SPULTRA
is slightly slower than PWLS-ULTRA. In our experiments,
we observed that the initializations took around 20% of the
runtime in each outer iteration. However, in practice, espe-
cially for low doses, SPULTRA reconstructs images better
than PWLS-ULTRA for a given number of outer iterations.
Or alternatively, SPULTRA takes much fewer outer itera-
tions (and runtime) to achieve the same image reconstruc-
tion quality as PWLS-ULTRA. These results are detailed
in Sec. V.

IV. CONVERGENCE ANALYSIS

The objective function (P0) of SPULTRA is highly non-
convex due to the nonconvexity of the data-fidelity term and
the regularizer. The proposed algorithm efficiently optimizes
it by using surrogate functions and alternating minimization.
This section provides a convergence analysis for the general
optimization approach. While a recent work [47] analyzed
the convergence of a related optimization method, it did not
involve the use of surrogate functions and involved adaptive
learning of transforms.

In the proposed method, the sparse coding and clustering
step is solved exactly. For the image update step, where the
cost function is quadratic as in (8), many approaches may be
used to optimize it, e.g., [16], [50], [52]. Our convergence
proof in the supplement assumes for simplicity that the image
update step is solved exactly.

The convergence result uses the following notation. We use
Z for the sparse code matrix concatenated by column vectors
z j , and use a vector Ŵ ∈ R

Ñ , whose elements represent the
classes indices for the patches, i.e., Ŵ j ∈ {1, · · · , K }. For an
initial (x0, Z0, Ŵ0), we let {xn, Zn, Ŵn} denote the sequence
of iterates generated by alternating algorithm. The objective
function in (P0) is denoted as G(x, Z, Ŵ) and includes the
constraint on x as an added barrier penalty (which takes
the value +∞ when the constraint is violated and is zero
otherwise). The convergence result is as follows.

Theorem 1: Assume the image update step is solved exactly.

For an initial (x0, Z0, Ŵ0), iterative sequence {xn, Zn, Ŵn}

generated by the SPULTRA algorithm is bounded, and the

corresponding objective sequence {G(xn, Zn , Ŵn)} decreases

monotonically and converges to G∗ � G∗(x0, Z0, Ŵ0). More-

over, all the accumulation points of the iterate sequence are

equivalent and achieve the same value G∗ of the objective.

Each accumulation point (x∗, Z∗, Ŵ∗) also satisfies the fol-

lowing partial optimality conditions:

0 ∈ ∂xG(x, Z∗, Ŵ∗)|x=x∗,

(Z∗, Ŵ∗) ∈ arg min
Z,Ŵ

G(x∗, Z, Ŵ), (14)

where ∂x denotes the sub-differential operator for the function

G with respect to x [53]–[55]. Finally, ‖xn+1 − xn‖2 → 0 as

n → ∞.

The above theorem implies that for each initial (x0, Z0, Ŵ0),
the objective sequence converges (although the limit may
depend on initialization) and the iterate sequence in the
optimization framework converges to an equivalence class
of accumulation points (i.e., all accumulation points have
the same objective value G∗) that are also partial optimiz-
ers satisfying (14). Moreover, the image sequence satisfies
‖xn+1 − xn‖2 → 0.

When K = 1, (14) readily implies that the iterate sequence
in the algorithm converges to an equivalence class of critical
points [53] (that are generalized stationary points) of the
nonconvex cost G(x, Z, Ŵ).

A detailed proof is included in the supplement.1

1Supplementary material is available in the multimedia tab.
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V. EXPERIMENTAL RESULTS

Here we present numerical experiments demonstrating the
behavior of SPULTRA. We evaluated the proposed SPULTRA
method on the 3D XCAT phantom [56] and synthesized
clinical data at multiply X-ray doses, as well as an ultra
low-dose 2D shoulder phantom scan simulated from real
raw data, and compared its performance with that of the
state-of-the-art PWLS-ULTRA [38]. We computed the root
mean square error (RMSE) and structural similarity index
(SSIM) [32], [57] of XCAT images reconstructed by vari-
ous methods in a region of interest (ROI). The RMSE is

defined as
√

∑

i∈ROI(x̂i − x∗
i )2/Np,RO I , where Np,RO I is

the number of pixels in the ROI, x̂ is the reconstructed
image, and x∗ is the ground-truth image. We also com-
pared to PWLS reconstruction with an edge-preserving reg-

ularizer (PWLS-EP) R(x) =
∑Np

j=1

∑

k∈N j
κ jκkϕ(x j − xk),

where N j represents the neighborhood of the j th pixel,
κ j and κk are elements of κ that encourages reso-
lution uniformity [49]. The potential function for 3D
reconstruction was ϕ(t) = δ2(|t/δ| − log(1 + |t/δ|)) with2

δ = 10 HU, and that for 2D shoulder phantom simulations was
ϕ(t) = δ2(

√

1 + |t/δ|2 − 1) with δ = 100 HU. The results
obtained by PWLS-EP were taken as initial images for other
methods we compared with in this section.

The SPULTRA method shifts uncorrected pre-log data by
the variance of electronic noise. Such un-preprocessed pre-
log data and the variance of the electronic noise on a CT
scanner are proprietary to CT vendors, especially for LDCT.
In our experiments of XCAT phantom simulations and the
synthesized clinical data, we generated pre-log data ŷ from
the XCAT phantom as well as from a clinical image x̃

reconstructed by the PWLS-ULTRA method as follows:

ŷi = Poisson{I0 e−[Ax̃]i } + N {0, σ 2}, (15)

where N {µ, σ 2} denotes a Gaussian distribution with mean µ

and variance σ 2. We refer to the image x̃ used for generating
the synthesized clinical data as the “true” clinical image.
We also simulated an ultra low-dose scan from raw (pre-
log) measurements of a standard-dose scan of a 2D shoulder
phantom as:

ŷi = Poisson{
1

α
yis } + N {0, σ 2}, (16)

where α is a scale factor we used to lower the dose from
standard-dose measurements, and yis denotes the raw standard-
dose measurements. We set σ = 5 for all the simulations,
as suggested in prior works [13], [38]. We implemented
the system model A via the separable footprint projector
methods [58]. MATLAB code to reproduce the results in this
work is released at http://web.eecs.umich.edu/ fessler/. Some
additional results are included in the supplement.

A. XCAT Phantom Results

1) Framework: We pre-learned a union of 15 square trans-
forms from 8 × 8 × 8 overlapping patches extracted from a

2“HU” used in this paper is the shifted Hounsfield unit, where air is 0 HU
and water is 1000 HU.

TABLE I

PERCENTAGES OF NON-POSITIVE MEASUREMENTS UNDER

DIFFERENT DOSE LEVELS FOR XCAT PHANTOM SIMULATIONS

Fig. 1. Reconstruction targeted ROI of the true XCAT phantom displayed
with central slices along the axial, sagittal and coronal directions. The
display window is [800, 1200] HU.

420 × 420 × 54 XCAT phantom with a patch stride 2 × 2 × 2.
These transforms were initialized during training [38] with 3D
DCT, and the clusters were initialized randomly. We simulated
3D axial cone-beam scans using a 840 × 840 × 96 XCAT
phantom with �x = �y = 0.4883 mm and �z = 0.625 mm.
We generated sinograms of size 888 × 64 × 984 using GE
LightSpeed cone-beam geometry corresponding to a mono-
energetic source with I0 = 1×104, 5 × 103, 3 × 103, and
2 × 103 incident photons per ray and no scatter, respectively.
Tab. I shows percentages of non-positive measurements under
different dose levels. We set these non-positive measurements
to 1 × 10−5 for generating the post-log sinogram that PWLS-
based methods rely on [13]. We reconstructed the 3D volume
with a size of 420 × 420 × 96 at a coarser resolution of
�x = �y = 0.9766 mm and �z = 0.625 mm. The patch
size during reconstruction was 8 × 8 × 8 and the stride was
3×3×3. For evaluating reconstruction performance, we chose
an ROI that was composed of the central 64 out of 96 axial
slices, and refer to it as the reconstruction targeted ROI .
Fig. 1 shows the central slices of the true XCAT phantom
inside this ROI along three directions. In the reconstruction
stage of PWLS-ULTRA and SPULTRA, we used 4 iterations
for the image update step, i.e., P = 4, for a good trade-
off between algorithms’ convergence and computational costs.
We used 12 ordered subsets, i.e., M = 12, to speed up the
algorithm. The initial image for the ULTRA methods was
reconstructed by PWLS-EP, whose regularization parameter
was set empirically to ensure good reconstruction quality as
βep = 213 for all the experimented dose cases. We used an
analytical filtered back-projection (FBP) method FDK [59] to
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Fig. 2. The three rows correspond to the 1st, 13th, and 14th classes respectively. The first column displays three voxel-level clustered images of the
central axial slice. Each of them is formed by image patches lie in the corresponding class. The second column displays part of the transforms for the
corresponding classes. The third, fourth and fifth columns show the central axial slice of the sparse coefficient maps obtained by applying specific
filters (shown in the top left corner) to patches belonging to the corresponding classes. The patch stride for plotting these figures was 1 × 1 × 1.

TABLE II

RMSE (HU) AND SSIM OF THE RECONSTRUCTION TARGETED ROI AT VARIOUS DOSE LEVELS (I0 ) USING THE PWLS-EP, PWLS-ULTRA, AND

SPULTRA METHODS FOR THE XCAT PHANTOM SIMULATIONS

initialize PWLS-EP. The FDK images of XCAT phantom for
all the dose levels are shown in the supplement. Due to the fact
that SPULTRA has a similar cost function as PWLS-ULTRA
in each outer iteration, we used the same parameter settings
for both methods: β = 4 × 104 and γc = 4 × 10−4, which we
observed worked well for all the dose levels we tested.

2) Behavior of the Learned ULTRA Models: The learned
union of transforms contributes to the clustering and sparsifica-
tion of image patches. To illustrate the behavior of the learned
transforms, we selected 3 of the 15 transforms that capture
important structures/features of the reconstructed image (with
I0 = 1 × 104) in their classes.

Fig. 2 (first column) shows three voxel-level classes (voxels
are clustered by majority vote among patches overlapping
them) for the reconstructed central axial slice. The top image
only contains soft tissues, whereas the middle image shows
some edges and bones in the vertical direction, and the bottom
image captures some high-contrast structures. Fig. 2 (second
column) shows the transforms for the corresponding classes.

Each learned transform has 512 8×8×8 filters, and we show
the first 8 × 8 slice of 256 of these filters that show gradient-
like and directional features. Fig. 2 also shows the central axial
slice of the sparse coefficient maps (volumes) for different
filters of the transforms in the third, fourth and fifth columns.
Each voxel value in a sparse coefficient map is obtained by
applying the specific 3D filter to a 3D patch (whose front top
left corner is at that voxel) and hard-thresholding the result.
Coefficients for patches not belonging to the specific class
are set to zero (masked out). The sparse code maps capture
different types of image features (e.g., edges at different
orientations or contrasts) depending on the filters and classes.

3) Numerical Results: We compare the RMSE and the
SSIM for SPULTRA with those for PWLS-EP and PWLS-
ULTRA. Tab. II lists the two metrics for the reconstruction
targeted ROI after sufficient iterations (800 iterations) for
convergence of PWLS-EP, PWLS-ULTRA, and SPULTRA,
for various dose levels. The results show that SPULTRA
achieves significant improvements in RMSE and SSIM in
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Fig. 3. RMSE comparison of SPULTRA and PWLS-ULTRA. The cursors indicate the RMSEs (Y) at specific number of outer iterations (X).

low-dose situations. Notably, compared to PWLS-ULTRA,
SPULTRA further decreases the RMSE by up to 1.3 HU when
I0 = 3 × 103, and by around 3.3 HU when I0 = 2 × 103.

The RMSE improvement of SPULTRA over PWLS-ULTRA
can be more clearly observed from Fig. 3 that shows the
RMSE evolution with the number of outer iterations under
different dose levels. At low-doses, SPULTRA decreases the
RMSE more quickly (from the same initial value) and to much
lower levels than PWLS-ULTRA. Fig. 3 shows that to achieve
the same RMSE as PWLS-ULTRA at 600 outer iterations,
SPULTRA takes 487, 365, 251 and 133 outer iterations under
I0 = 1×104, 5 × 103, 3 × 103, and 2 × 103, respectively.

4) Computational Costs: As discussed in Sec. III-D, SPUL-
TRA has a similar computational cost per iteration as PWLS-
ULTRA, except for computing some initializations for image
update. Fig. 3 shows that the SPULTRA method requires
much fewer number of outer iterations than PWLS-ULTRA
to achieve the same RMSE for the reconstruction, especially
at low doses.

When the dose is very low, e.g., when I0 = 2 × 103,
SPULTRA takes only a quarter the number of outer iterations
as PWLS-ULTRA to achieve the same RMSE. Thus, the total
runtime to achieve a specific reconstruction quality at low
doses is typically much lower for SPULTRA than for PWLS-
ULTRA. When the dose is not very low, for example when
I0 = 1×104, the SPULTRA and the PWLS-ULTRA methods
have similar computational costs and runtimes. To achieve
RMSE of 29.26 HU [see Fig. 3(a)], PWLS-ULTRA requires
600 outer iterations, while SPULTRA requires 487×120% ≈

584 effective outer iterations where the additional 20%
runtime is associated with initializations in each SPULTRA
outer iteration.

5) Visual Results and Image Profiles: Fig. 4 shows the
reconstructed images and the corresponding error images for
PWLS-EP, PWLS-ULTRA, and SPULTRA, at I0 = 3 × 103

and I0 = 2 × 103. Compared to the PWLS-EP result, both
PWLS-ULTRA and SPULTRA achieved significant improve-
ments in image quality in terms of sharper reconstructions
of anatomical structures such as bones and soft tissues, and
suppressing the noise. However, the PWLS-ULTRA method
introduces bias in the reconstructions, which leads to larger
reconstruction errors compared to the proposed SPULTRA
method. In Fig. 4, we marked three 3D ROIs in the axial
plane, i.e., ROI 1, ROI 2, and ROI 3. Fig. 5 shows the zoom-
in images of a 3D plot of ROI 1, and those of ROI 2 and
ROI 3 are shown in the supplement. We also plot the evolution

of RMSE through the axial slices of the three 3D ROIs
in Fig. 6. The figures demonstrate that SPULTRA clearly
outperforms the competing PWLS-EP and PWLS-ULTRA
schemes.

The above advantages of SPULTRA can be seen more
clearly when observing the image profiles. Fig. 7 plots the
image profiles for the three methods together with that of the
ground-truth image. Fig. 4 shows the horizontal green solid
line and the vertical red dashed line, whose intensities are
plotted in Fig. 7. It is obvious that the profiles for SPULTRA
are closest to the ground-truth among the three compared
methods. The gap between the profiles of the PWLS-based
methods and the ground-truth shows the bias caused by the
compared PWLS methods.

B. Synthesized Clinical Data

1) Framework: We used the pre-learned union of 15 square
transforms from the XCAT phantom simulations to recon-
struct the synthesized helical chest scan volume of size
420 × 420 × 222 with �x = �y = 1.1667 mm and
�z = 0.625 mm. The sinograms were of size 888×64×3611.
Since the clinical data is synthesized via the PWLS-ULTRA
reconstruction, the noise model for this synthesized data is
obscure, making it difficult to determine appropriate low-dose
levels for such data. We tested the radiation dose of I0 =

1×104 with an electronic noise variance the same as the XCAT
phantom simulation, i.e., σ 2 = 25. The percentage of non-
positive pre-log measurements for the synthesized clinical data
in this case was around 0.14%. Such non-positive values were
replaced by 1×10−5 for PWLS-based methods. Fig. 8a shows
the “true” clinical image that was reconstructed from real clin-
ical regular-dose sinogram using the PWLS-ULTRA method.
Similar to the XCAT phantom simulation, the initial image
for both SPULTRA and PWLS-ULTRA was a reconstruction
obtained using PWLS-EP. We set the regularizer parameter
βep for PWLS-EP to 215 to generate a smoother (with less
noise) initial image, which led to good visual image quality
for the SPULTRA and PWLS-ULTRA reconstructions. Since
the optimization problem for PWLS-EP is strictly convex,
we simply initialized PWLS-EP with a zero image. Fig. 8b
shows the PWLS-EP reconstructed image for I0 = 1 × 104.
We set the regularizer parameters for both PWLS-ULTRA and
SPULTRA as γc = 5 × 10−4, and β = 1.5 × 104.

2) Reconstruction Results for the Synthesized Clinical Data:

Fig. 9 shows three axial slices from the 3D reconstructions
with SPULTRA and PWLS-ULTRA at I0 = 1 × 104: the
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Fig. 4. Comparison of reconstructions and reconstruction errors at (a) I0 = 3 × 103 and (b) I0 = 2 × 103 dose levels. The 3D images are displayed
with the central slices along the axial, sagittal, and coronal directions. The unit of the display windows is HU.

middle slice (No. 67) and two slices located farther away from
the center (No. 90 and No. 120). The image profiles along a
horizontal line (shown in green) in the displayed slices are also

shown in Fig. 9. The reconstructed slices using PWLS-ULTRA
appear darker around the center compared to the “true” clinical
image and the reconstructions with SPULTRA. This means

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 05,2020 at 12:14:48 UTC from IEEE Xplore.  Restrictions apply. 



738 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 3, MARCH 2020

Fig. 5. 3D displays of reconstructions of ROI 1 defined in Fig. 4. The
display windows are [900, 1200] HU.

Fig. 6. RMSE (HU) for each axial slice of the 3D ROIs (ROI 1, ROI 2, and
ROI 3). The X-axis shows slice indices of the central 64 out of 96 axial
slices. Left plot: I0 = 3 × 103. Right plot: I0 = 2 × 103.

PWLS-ULTRA produces a strong bias in the reconstruction.
The bias can be observed more clearly in the profile plots: the
pixel intensities for the SPULTRA reconstruction better follow
those of the “true” clinical image, while those for the PWLS-
ULTRA reconstruction are much worse than the “true” values.
Moreover, SPULTRA achieves sharper rising and failing edges
compared to PWLS-ULTRA. In other words, SPULTRA also
achieves better resolution than PWLS-ULTRA. Fig. 9 also
shows a zoomed-in ROI for each of the chosen slices, and

Fig. 7. Image profiles along the horizontal and vertical lines indicated
in Fig. 4. Left plot: I0 = 3 × 103. Right plot: I0 = 2 × 103.

Fig. 8. (a) “true” clinical image (HU), (b) the reconstruction (HU) of the

synthesized data with PWLS-EP for I0 = 1 × 104 with βep = 215. The
central axial, sagittal, and coronal slices of the volume are shown.

highlights some small details with arrows. It is clear that in
addition to reducing the bias, SPULTRA reconstructs image
details better than PWLS-ULTRA.

C. Ultra Low-Dose Experiments With Raw Data

1) Framework: We obtained from GE a 2D fan-beam raw
(pre-log) scan of a shoulder phantom, which included the
beam-hardening effect. The provided 200 mA with 1 sec-
ond scan can be viewed as a standard-dose scan and all
the raw measurements are positive. Based on this standard-
dose scan, we simulated an ultra low-dose scan as shown in
(16) with α = 200, and added Poisson and Gaussian noise
(σ = 5) to the measurements. The simulated measurements
have about 0.4% non-positive values. The sinograms were
of size 888 × 984, and reconstructed images were of size
512 × 512 with �x = �y = 0.9766 mm.

For PWLS-ULTRA and SPULTRA, we pre-learned a union
of five square transforms using 8 × 8 overlapping image
patches with stride 1 × 1 from five 512×512 XCAT phantom
slices [38]. Here, we also compared SPULTRA with a
recent deep-learning based low-dose CT denoising framework
“WavResNet” combined with an RNN architecture [46]. The
iterative RNN version of WavResNet was pre-trained based on
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Fig. 9. Reconstructed images (columns 1 to 3) and the image profiles (the 4th column) along the green line in the “true” clinical image for the
synthesized clinical data with I0 = 1×104 and σ2 = 25. (a) Results for axial slice No. 67, (b) results for slice No. 90, and (c) results for slice
No. 120. We selected one ROI for each of these three slices and the arrows point out some small structures in the image. The display windows for
reconstructed images are [800, 1200] HU, and those for the zoomed-in ROIs are [950, 1200] HU.

Fig. 10. Reconstructions for ultra low-dose 2D scan simulated from raw measurements. The leftmost image is the PWLS-EP reconstructed
image for the 200 mA scan. The second image is the PWLS-EP reconstruction for the simulated ultra low-dose scan, and it is the initial image for
WavResNet [46], PWLS-ULTRA [38], and SPULTRA. The display windows are [800, 1400] HU.

the 2016 Low-Dose CT Grand Challenge data set [46]. During
reconstruction, WavResNet, PWLS-ULTRA, and SPULTRA
were initialized with the image reconstructed by PWLS-EP
with βep = 0.1. The parameters (β, γc) for both PWLS-
ULTRA and SPULTRA were set as (0.05, 80). These values
worked well in our experiment. In the supplement, we discuss
in detail the parameter selection procedure of (β, γc) for

both PWLS-ULTRA and SPULTRA. Parameters for testing
WavResNet were set according to [46], and the pixel values
of the input to WavResNet were converted to match the
network required scalings. Since the WavResNet was trained
with images reconstructed with the filtered backprojection
(FBP) method [46], we also tested on this shoulder phantom
that initialized WavResNet with an FBP reconstructed image.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 05,2020 at 12:14:48 UTC from IEEE Xplore.  Restrictions apply. 



740 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 3, MARCH 2020

TABLE III

MEAN (HU) AND STANDARD DEVIATION (STD) (HU) OF THE ROIs FOR ULTRA LOW-DOSE SHOULDER PHANTOM SIMULATIONS

Although initializing WavResNet with an FBP reconstructed
image better matches the trained model than the PWLS-EP
reconstructed image does, the latter still provided better
results. We included in the supplement the denoised image
initialized with the FBP reconstruction.

2) Results: Fig. 10 shows the reconstructions for the
200 mA scan (reference image) along with the reconstruc-
tions for the simulated ultra low-dose scan obtained with
PWLS-EP, WavResNet, PWLS-ULTRA, and SPULTRA. Visu-
ally, WavResNet fails to reconstruct the image but improves
over the initial PWLS-EP reconstruction, while PWLS-
ULTRA and SPULTRA provide better image quality. This
indicates that the ULTRA-based methods may have a better
generalization property than WavResNet, since they learn more
fundamental features of CT images (also see [38]). We selected
three smooth ROIs, where the pixel values are approximately
constant. Tab. III shows the mean and the standard deviation
of pixel values for these ROIs for various methods and the
standard-dose reference. Since the iterative RNN version of
WavResNet only has small improvements over PWLS-EP,
the pixel values do not change much compared with PWLS-EP.
PWLS-ULTRA however reduces the bias in the central region
of the image (ROI 2), but fails to correct the bias in the regions
near the bones (ROI 1 and ROI 3). SPULTRA reduces the
bias in the central region of the image, and also significantly
corrects the bias near the bone regions. The standard deviations
of the ROIs reconstructed by SPULTRA are comparable to
those reconstructed by PWLS-ULTRA, and are close to those
of the reference ROIs. Additionally, SPULTRA reconstructs
the bone (indicated by the magenta arrow in the last two
subfigures of Fig. 10) better than PWLS-ULTRA.

VI. CONCLUSIONS

This paper proposes a new LDCT reconstruction method
dubbed SPULTRA that combines the shifted-Poisson statistical
model with the union of learned transforms or ULTRA regular-
izer. To deal with the nonconvex data-fidelity term arising from
the shifted-Poisson model, we iteratively designed quadratic
surrogate functions for this term in the proposed algorithm.
In each surrogate function update iteration, the overall cost
function (i.e., majorizer) has a similar structure as in the
very recent PWLS-ULTRA method, and is optimized by
performing an image update step with a quadratic cost and a
sparse coding and clustering step with an efficient closed-form
update. We evaluated the proposed SPULTRA scheme with

numerical experiments on the XCAT phantom, synthesized
clinical data, and beam-hardened ultra low-dose raw mea-
surement simulations. SPULTRA outperformed prior methods
in terms of eliminating bias and noise in the reconstructed
image while maintaining the resolution of the reconstruction
under very low X-ray doses. SPULTRA was also much faster
than PWLS-ULTRA in achieving a desired reconstruction
quality for low-doses, and it had better generalization prop-
erty than the WavResNet based denoising scheme. Moreover,
we investigated the convergence guarantees of the proposed
surrogate function based alternating minimization scheme. We
will investigate variations or generalizations of the SPULTRA
model such as exploiting unions of overcomplete or tall
transforms, or rotationally invariant transforms in future
work.
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Here, we present additional proofs and experimental results

to accompany our manuscript [1]. First, we present a sketch

of the proof for the convergence theorem in Section IV of [1].

Then, we include some additional experimental results.

VII. PROOF SKETCH FOR CONVERGENCE THEOREM

As stated in Section IV, the objective function is written as

follows:

G(x,Z,Γ) = L(x) + R(x,Z,Γ) + X(x), (P0)

where X(x) is a barrier function that takes the value 0

when the constraint on x is satisfied and is +∞ other-

wise, and L(x) is the data fidelity function of the form

L(x) =
∑Nd

i=1 hi([Ax]i) in which A ∈ R
Nd×Np is the CT

system matrix. Z is the sparse code matrix concatenated

by column vectors zj , and Γ ∈ R
Ñ is a vector whose el-

ements represent the classes indices for the patches, i.e.,

Γj ∈ {1, · · · ,K}. With li , [Ax]i, hi(li) was defined as

hi(li) , (I0e
−fi(li) + σ2)− Yi log(I0e

−fi(li) + σ2). (2)

The regularizer R(x,Z,Γ) was defined as

R(x,Z,Γ) , β

Ñ∑

j=1

{

‖ΩΓjPjx− zj‖
2
2 + γ2

c‖zj‖0

}

, (16)

where β > 0 is a parameter for balancing the data-fidelity and

regularizer penalties, and Ñ is the number of patches.

Theorem 1. Assume the image update step is solved exactly.

For an initial (x0,Z0,Γ0), iterative sequence {xn,Zn,Γn}
generated by the SPULTRA algorithm is bounded, and the

corresponding objective sequence {G(xn,Zn,Γn)} decreases

monotonically and converges to G∗ , G∗(x0,Z0,Γ0). More-

over, all the accumulation points of the iterate sequence are

equivalent and achieve the same value G∗ of the objective.

Each accumulation point (x∗,Z∗,Γ∗) also satisfies the fol-

lowing partial optimality conditions:

0 ∈ ∂xG(x,Z∗,Γ∗)|x=x∗ ,

(Z∗,Γ∗) ∈ argmin
Z,Γ

G(x∗,Z,Γ), (14)

where ∂x denotes the sub-differential operator for the function

G with respect to x [2]–[4]. Finally, ‖xn+1 − xn‖2 → 0 as

n → ∞.

A. Preliminaries

1) Surrogate Function design: To optimize the non-convex

function G(·), we design a series of quadratic majorizers for

each hi(li):

q(li; l
n
i ) = hi(l

n
i ) + ḣi(l

n
i )(li − lni ) +

1

2
ci(l

n
i )(li − lni )

2.

(17)

Here, ci(li) is the curvature defined in (5) of [1]. According

to [5], such a choice of ci(li) is an optimum curvature that

ensures majorizer conditions:

hi(li) ≤ q(li; l
n
i ), ∀li ≥ 0, (18a)

hi(l
n
i ) = q(lni ; l

n
i ). (18b)

In general, when minimizing a majorizing function or

updating li, let

ln+1
i = argmin q(li; l

n
i ). (19)

Then, using (18a) and (18b) yields

hi(l
n+1
i ) ≤ qi(l

n+1
i ; lni ) ≤ q(lni ; l

n
i ) = hi(l

n
i ). (20)

Thus, in general, minimizing a majorizer monotonically de-

creases the original cost.

Clearly, (17) can be rewritten as follows:

q(li; l
n
i ) =

1

2

[(
ci(l

n
i )

1

2 (li − lni )
)2

+ 2ḣi(l
n
i )(li − lni )

+
(
ci(l

n
i )

−
1

2 ḣi(l
n
i )
)2]

+ hi(l
n
i )−

1

2
ci(l

n
i )

−1ḣi(l
n
i )

2

=
ci(l

n
i )

2

[
(li − lni ) + ci(l

n
i )

−1ḣi(l
n
i )
]2

+ qnc .

(21)

When optimizing q(li; l
n
i ), q

n
c is a constant that can be ignored,

and we can optimize

ϕn(li) ,
ci(l

n
i )

2

[
(li − lni ) + ci(l

n
i )

−1ḣi(l
n
i )
]2
. (22)

The minimizer of (22) also solves (19), which makes (20)

hold for every iteration.

Since in SPULTRA, we majorize the entire function L(x),
its majorizer is therefore

Q(x;xn) = φ(x;xn) + L(xn)−
1

2
||dh(l

n)||2(Wn)−1

︸ ︷︷ ︸

Qn
c

, (23)
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where

φ(x;xn) ,
1

2
||ỹn −Ax||2

Wn , (24)

and dh(l
n) ∈ R

Nd is the row vector whose entries are ḣi(l
n
i ),

Wn , diag{ci(l
n
i )}, ỹn , Axn −

(
Wn

)
−1

[dh(l
n)]T .

Adding the regularizer R(x,Z,Γ) to Q(x;xn), we obtain

the following majorizer for G(x,Z,Γ):

F (x,Z,Γ;xn) , φ(x;xn) +Qn
c + R(x,Z,Γ) + X(x).

(25)

Dropping the constant term Qn
c , the overall surrogate function

for G(x,Z,Γ) in the nth iteration becomes

Φ(x,Z,Γ;xn) = φ(x;xn) + R(x,Z,Γ) + X(x). (26)

B. Proof of Theorem 1 - Part 1

Here, we show that for an initial (x0,Z0,Γ0), iterative

sequence {xn,Zn,Γn} generated by the SPULTRA algo-

rithm is bounded, and the corresponding objective sequence

{G(xn,Zn,Γn)} decreases monotonically and converges to

G∗ , G∗(x0,Z0,Γ0).

1) Boundedness of the sequence {xn,Zn,Γn}: It is obvi-

ous that the sequences {xn} and {Γn} are bounded, because

of the constraints in (P0). Since znj = Hγc
(ΩΓn

j
Pjx

n) is

obtained by hard-thresholding a bounded input, the sequence

{Zn} is also bounded.

2) Monotone decrease of the objective function G(x,Z,Γ):
First, we discuss the objective behavior in each step of the

algorithm.

a) Image update step: With Z and cluster assignments

Γ fixed, the cost function for the image update step is

Φ(x,Zn,Γn;xn). Φ(·) as in (26) is a sum of quadratic

functions and the simple barrier function X(x), and many

approaches can be used to minimize it. Assuming it is solved

exactly, we have

xn+1 ∈ argmin
x

Φ(x,Zn,Γn;xn), (27)

or equivalently, xn+1 ∈ argminx F (x,Zn,Γn;xn).
Since F (x,Z,Γ;xn) is the majorizer of G(x,Z,Γ), we

have
G(xn+1,Zn,Γn) ≤ F (xn+1,Zn,Γn;xn)

≤ F (xn,Zn,Γn;xn) = G(xn,Zn,Γn)
(28)

b) Sparse coding and clustering step: With x fixed,

the relevant part of the cost function for the sparse coding

and clustering step is R(xn+1,Z,Γ). Since the solution with

respect to (Z,Γ) is computed exactly as described in Sec-

tion III. C in [1], we have

(Zn+1, Γn+1) ∈ argmin
Z, Γ

R(xn+1,Z,Γ). (29)

This then implies

(Zn+1, Γn+1) ∈ argmin
Z, Γ

G(xn+1,Z,Γ). (30)

Therefore, G(xn+1,Zn+1,Γn+1) ≤ G(xn+1,Z,Γ). Com-

bining this with (28) implies that the objective decreases

in each outer iteration. In other words, the objective se-

quence {Gn , G(xn,Zn,Γn)} is monotonically decreas-

ing. Moreover, the objective G is readily lower bounded by

Ndσ
2 − (

∑Nd

i=1 Yi) log(I0 + σ2). Therefore, it converges to

some limit G∗ , G∗(x0,Z0,Γ0).

C. Proof of Theorem 1 - Part 2

Here, we show that all the accumulation points of the iterate

sequence are equivalent and achieve the same value G∗ of the

objective function.

Since the sequence {xn,Zn,Γn} is bounded, it follows

from the Bolzano-Weierstrass Theorem that there exists a

convergent subsequence and a corresponding accumulation

point. In order to show that all the accumulation points of

{xn,Zn,Γn} achieve the same value of G∗, we consider

an arbitrary convergent subsequence {xqm ,Zqm ,Γqm}, and

show that G(x∗,Z∗,Γ∗) = G∗ for the accumulation point

(x∗,Z∗,Γ∗).

First, the objective satisfies

Gqm , G(xqm ,Zqm ,Γqm) = L(xqm) + R(xqm ,Zqm ,Γqm).
(31)

Clearly, {Gqm} converges to G∗. Since xqm → x∗ and

Zqm → Z∗ as m → ∞, and L(x) is a continuous function,

therefore, L(xqm) → L(x∗). Since Zqm does not contain any

non-zero entries with magnitude less than γc and Zqm → Z∗,

clearly, the support (i.e., locations of non-zeros) of Zqm must

coincide with the support of Z∗ after finitely many iterations.

Similarly, because {Γqm}is an integer-vector sequence, Γqm

converges to Γ∗ in a finite number of iterations. Therefore,

taking the limit m → ∞ term by term in G(xqm ,Zqm ,Γqm)
yields

lim
m→∞

G(xqm ,Zqm ,Γqm) = G(x∗,Z∗,Γ∗). (32)

Combining (32) with the fact that Gqm → G∗, we obtain

G(x∗,Z∗,Γ∗) = G∗. (33)

Thus, any accumulation point of {xn,Zn,Γn} achieves the

value G∗ for the cost.

D. Proof of Theorem 1 - Part 3

Here, we show that each accumulation point (x∗,Z∗,Γ∗)
satisfies the partial optimality conditions in (14). The proof

uses the following Lemma 1.

Lemma 1. Consider the subsequence {xqm ,Zqm−1,Γqm−1}
that converges to the accumulation point (x∗,Z∗∗,Γ∗∗), then

the subsequence {xqm−1} also converges to x∗, with x∗ being

the unique minimizer of F (x,Z∗∗,Γ∗∗;x∗) with respect to x.

Proof of Lemma 1:

Since {xqm−1} is bounded, there exists a convergent subse-

quence {xqmt
−1} which converges to x∗∗.
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The following inequalities follow from (28) and (30):

Gqmt = G(xqmt ,Zqmt ,Γqmt ) ≤ G(xqmt ,Zqmt
−1,Γqmt

−1)

≤ F (xqmt ,Zqmt
−1,Γqmt

−1;xqmt
−1)

≤ F (xqmt
−1,Zqmt

−1,Γqmt
−1;xqmt

−1)

= G(xqmt
−1,Zqmt

−1,Γqmt
−1) = Gqmt

−1.
(34)

Since Gqmt and Gqmt
−1 are successive elements from the

sequence {Gn}, and {Gn} converges to G∗, then taking the

limit t → ∞ throughout (34) yields

G∗ ≤ F (x∗,Z∗∗,Γ∗∗;x∗∗) ≤ F (x∗∗,Z∗∗,Γ∗∗;x∗∗) ≤ G∗.

(35a)

Thus,

F (x∗,Z∗∗,Γ∗∗;x∗∗) = F (x∗∗,Z∗∗,Γ∗∗;x∗∗) = G∗.

(35(b))

Since (25) is a quadratic cost with simple box constraints

on x, the Hessian of the quadratic terms with respect to x is

H(x) = ATWnA+ 2β

N∑

j=1

PT
j Ω

T
ΓjΩΓjPj . (36)

Clearly, ATWnA is non-negative definite, and
∑N

j=1 P
T
j Ω

T
ΓjΩΓjPj is positive definite [4], [6]. Since

β is a positive scalar, the Hessian in (36) is positive definite.

This implies that the minimization of F (·) (quadratic with

a box constraint) has a unique solution [7]–[9]. Moreover,

since the following inequality holds for all x satisfying the

problem constraints

F (xqmt ,Zqmt−1 ,Γqmt−1 ;xqmt
−1)

≤ F (x,Zqmt−1 ,Γqmt−1 ;xqmt
−1),

(37)

taking the limit t → ∞ above and using similar arguments as

for (32) yields

F (x∗,Z∗∗,Γ∗∗;x∗∗) ≤ F (x,Z∗∗,Γ∗∗;x∗∗), (38)

implying that x∗ is a minimizer of F (x,Z∗∗,Γ∗∗;x∗∗). Since

the minimizer of F (x,Z∗∗,Γ∗∗;x∗∗) with respect to x is

unique, and using (35(b)) immediately implies x∗∗ = x∗.

Since {xqmt
−1} is an arbitrary subsequence of {xqm−1},

x∗ is the limit of any convergent subsequence of {xqm−1}.

In other words, x∗ is the unique accumulation point of the

bounded sequence, i.e., {xqm−1} itself converges to x∗.

This completes the proof of the Lemma.

We have shown in the proof of Lemma 1 that x∗∗ is a unique

minimizer of the quadratic function F (x,Z∗∗,Γ∗∗;x∗∗).
This means that 0 ∈ ∂xF (x,Z∗∗,Γ∗∗;x∗∗)|x=x∗∗ . It is easy

to show that we can equivalently consider the sequence

{xqm ,Zqm ,Γqm} converging to (x∗,Z∗,Γ∗) for which

0 ∈ ∂xF (x,Z∗,Γ∗;x∗)|x=x∗ . (39)

Based on the definition of the majorizer of L(x), we have

∇φ(x;x∗)|x=x∗ = ∇L(x)|x=x∗ , (40)

where ∇ is the gradient operator on continuous functions.

Since the quadratic surrogate and regularizer components of

F (·) have exact gradients, combining (40) with (39) yields

0 ∈ ∂xG(x,Z∗,Γ∗)|x=x∗ . (41)

In other words, x∗ is a critical point of G(x,Z∗,Γ∗).
To show the partial optimality condition for (Z∗,Γ∗) as in

(14), we first use (30) for the subsequence {xqm ,Zqm ,Γqm}
yielding

G(xqm ,Zqm ,Γqm) ≤ G(xqm−1 ,Z,Γ), ∀(Z,Γ). (42)

Then, taking the limit m → ∞ above and using (32) and

Lemma 1, we get

G(x∗,Z∗,Γ∗) ≤ G(x∗,Z,Γ), ∀(Z,Γ), (43)

which can be equivalently written as

(Z∗,Γ∗) ∈ argmin
Z,Γ

G(x∗,Z,Γ). (44)

E. Proof of Theorem 1 - Part 4

Here, we show that ‖xn+1 − xn‖2 → 0 as n → ∞.

Since {xn} is bounded, ‖xn‖2 ≤ C for some C > 0
and all n. Therefore, the sequence {en} is also bounded,

with en , ‖xn+1 − xn‖2 ≤ 2C, ∀ n. Hence, there exists

a convergent subsequence {eqm} of {en}. For the bounded

sequence {xqm+1,Zqm ,Γqm}, there exists a convergent sub-

sequence {xqmt
+1,Zqmt ,Γqmt } converging to (x∗,Z∗,Γ∗).

Moreover, by Lemma 1, the sequence {xqmt } also con-

verges to x∗. Therefore, clearly the subsequence {eqmt } with

eqmt , ||xqmt
+1 − xqmt ||2 converges to 0. Since {eqmt } is

a subsequence of the convergent {eqm}, then {eqm} has the

same limit, i.e., 0. As the convergent subsequence {eqm} is

chosen arbitrarily from {en}, we conclude that 0 is the only

accumulation point of {en}. Thus, ||xn+1 − xn||2 → 0 as

n → ∞.

VIII. ADDITIONAL EXPERIMENTAL RESULTS

A. Behavior of the Learned ULTRA Models

Here, we further illustrate the sparse coefficient maps gen-

erated by SPULTRA. The sparse code vectors zj in (3) can

0
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1000

1500

2000

2500

Figure 11: Sum of the disjoint sparse coefficient maps gener-

ated by the 81st filter from all classes.
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be concatenated as columns of a sparse code matrix Z. Fig. 2

in [1] displays the axial slice of the sparse coefficient volume

obtained from the 81st row of Z. This represents the effective

map for the 81st filter of all classes (composed as the sum

of the 81st filter’s map from each class). Fig. 12 shows the

underlying maps for the 81st filter for all classes obtained

by masking out (or setting to zero) pixels in Fig. 11 that

correspond to patches not in the class. The filters are shown

at the top left corner of the sparse coefficient images. Thus,

in the ULTRA model, several filters with different properties

and different features or edges collaboratively help form the

“effective” sparse coefficient maps.
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Figure 12: Sparse coefficient map (axial slice) for the 81st

filter of each class.

B. Clustering results in low-dose situations

Fig. 2 in the manuscript showed 3 out of 15 voxel-level clus-

tering results of the reconstructed image at I0 = 1×104. Here,

Fig. 13 is a binary image showing clustering memberships of

all the classes for the reconstruction at I0 = 2 × 103. The

white regions indicate pixels assigned to the corresponding

class. The voxel-level clustering results (that display the pixels

using their reconstructed intensities) at I0 = 2 × 103 are

actually similar to the ones shown in Fig. 2 (first column)

in the manuscript. Specifically, Tab. IV shows the percentages

of pixels assigned to Class 1, 13 and 14 respectively. Although

I0 = 2×103 is a much lower dose compared with I0 = 1×104,

the clustering results only have slight changes. This illustrates

that the voxel clustering based on majority vote of overlapping

patches is robust in low-dose situations.

滚滚长江东逝水

Class 1 Class 2 Class 3 

Class 4 Class 5 Class 6 

Class 7 Class 8 Class 9 

Class 10 Class 11 Class 12 

Class 13 Class 14 Class 15 

Figure 13: Binary images showing the clustering memberships

of pixels in the central axial slice of the XCAT phantom

reconstructed at I0 = 2× 103.

Table IV: Percentages of pixels belonging to Class 1, Class 13,

and Class 14.

I0 Class 1 Class 13 Class 14

1× 104 18.7 % 6.6 % 65.5 %

2× 103 18.0 % 6.9 % 64.4 %

C. Zoom-ins of ROI 2 and ROI 3 in the XCAT phantom

simulations

Fig. 14 and Fig. 15 plot the zoom-ins and the corresponding

error images of ROI 2 and ROI 3 for the XCAT phantom

simulations in Section V.A, with I0 = 3 × 103 and I0 =
2 × 103, respectively. In Fig. 15, we highlighted a region in

the axial slice with small red arrows. We show the zoom-ins
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of the ground-truth ROI 2 and ROI 3 of the XCAT phantom

in Fig. 16. The results show that SPULTRA improves image

quality over PWLS-EP and PWLS-ULTRA by reducing bias

and improving image edges.

900

1100

PWLS-EP PWLS-ULTRA SPULTRA 

0
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PWLS-EP

   error  

PWLS-ULTRA

       error 
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    error 

(a) I0 = 3× 103

PWLS-EP PWLS-ULTRA SPULTRA 

900

1100

0

200

PWLS-EP

   error  

PWLS-ULTRA

       error 

SPULTRA

    error 

(b) I0 = 2× 103

Figure 14: Plots of the ROI 2 (central axial, sagittal, and

coronal slices of the 3D volume). The display windows for

the reconstructed ROI and the corresponding error image are

[900, 1100] HU and [0, 200] HU, respectively.

D. FBP images of XCAT phantom simulations

In XCAT phantom simulations, the PWLS-EP algorithm

was initialized with an image reconstructed by the FDK [10]

method. Fig. 17 shows the FDK reconstructed images for all

the tested doses in Section V.A. These images have substantial

streak artifacts and noise.

E. Ultra Low-dose 2D Shoulder Data Simulations

1) Initialize WavResNet with the FBP image: In [1], we

presented the denoised image obtained using the iterative RNN

version of WavResNet with the PWLS-EP reconstructed image

as input. Since we used the optimal parameters reported in [11]

for WavResNet, wherein the inputs are reconstructed images

using the filtered backprojection (FBP) method, here we also

show the result obtained by using the FBP reconstructed

900

1200

PWLS-EP PWLS-ULTRA SPULTRA 

PWLS-EP

   error  

PWLS-ULTRA

      error 

SPULTRA

   error 

0

200

(a) I0 = 3× 103
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PWLS-ULTRA
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SPULTRA

   error 

(b) I0 = 2× 103

Figure 15: Plots of the ROI 3 (central axial, sagittal, and

coronal slices of the 3D volume). The display windows for

the reconstructed ROI and the corresponding error image are

[900, 1100] HU and [0, 200] HU, respectively.

900

1200

900

1100

ROI 2 ROI 3 

Figure 16: 3D plots of the ground-truth ROI 2 and ROI 3. The

display windows for ROI 2 and ROI 3 are [900, 1100] HU

and [900, 1200] HU, respectively.

shoulder phantom as input to WavResNet. Fig. 18 shows the

initial FBP image and the denoised image using the RNN

versioned WavResNet with 6 iterations (as reported in [11],

and more iterations did not provide much improvements in

this case). As we see from Fig. 18, the denoised image is still

quite noisy, and the image quality is clearly worse than the

result with the PWLS-EP input shown in [1]. Hence, we used

the PWLS-EP reconstruction as the input to WavResNet in the

comparisons.

2) Regularizer Parameters Selection Procedure: In tuning

the regularizer parameters for 2D shoulder data simulations

where the beam-hardening model is involved, we considered

the sparsity level, i.e., the percentage of non-zero entries in

the sparse coefficients Z corresponding to the reconstructed
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(a) I0 = 1× 104 (b) I0 = 5× 103

(c) I0 = 3× 103 (d) I0 = 2× 103

Figure 17: FDK reconstructions for XCAT phantom

simulations at different doses. The display window is

[800, 1200] HU.

(a) FBP input (b) RNN versioned WavResNet

Figure 18: Iterative RNN versioned WavResNet result with an

FBP image input. The display window is [800, 1400] HU.

image, and the trade-off among the bias, image resolution,

and noise. Based on our heuristic parameters tuning in the

XCAT and synthesized clinical data experiments, well re-

constructed images usually have sparsity levels around 3%
or 4%. Therefore, we first roughly chose β = 0.05 that

reconstructed a reasonable image, and swept over several γc
values, which controls the sparsity level for both PWLS-

ULTRA and SPULTRA, e.g. γc = 40, 60, 80, and 120.

Tab. V (the second column) reports the sparsity levels of

reconstructions with different (β, γc) values. The reconstructed

images corresponding to sparsity levels larger than 5% are

shown in Fig. 19a (PWLS-ULTRA) and Fig. 20a (SPULTRA).

These figures clearly have some artifacts (pointed by red

arrows), which verifies the rationale for picking γc based on

the sparsity level. Among γc = 60, 80, and 120, we compared

the mean values and standard deviations of the selected ROIs

(marked in Fig. 10 in [1]), and observed that γc = 120 made

the reconstructions blurry (see Fig. 19d and Fig. 20d), while

γc = 60 and γc = 80 can provide good resolution-noise trade-

off for reconstructed images. Hereafter, we fixed γc = 80 and

swept over several β values. Taking β = 0.05 as a baseline,

we selected β = 0.03 and β = 0.1, which are (approximately)

0.5× and 2× of the baseline value. From both numerical

results (Mean and STD in Tab. V) and visual results (Fig. 19

and Fig. 20), we found that β = 0.05 gave the good bias-

resolution-noise trade-off. In the manuscript [1], we showed

the results with β = 0.05 and γc = 80.

(a) (0.05, 40) (b) (0.05, 60)

(c) (0.05, 80) (d) (0.05, 120)

(e) (0.03, 80) (f) (0.1, 80)

Figure 19: PWLS-ULTRA reconstructions with different

(β, γc) values. The red arrows point to some blurry areas

or artifacts.
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