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Abstract— Image reconstruction in low-count PET is
particularly challenging because gammas from natural
radioactivity in Lu-based crystals cause high random frac-
tions that lower the measurement signal-to-noise-ratio
(SNR). In model-based image reconstruction (MBIR), using
more iterations of an unregularized method may increase
the noise, so incorporating regularization into the image
reconstruction is desirable to control the noise. New reg-
ularization methods based on learned convolutional opera-
tors are emerging in MBIR. We modify the architecture of
an iterative neural network, BCD-Net, for PET MBIR, and
demonstrate the efficacy of the trained BCD-Net using XCAT
phantom data that simulates the low true coincidencecount-
rates with high random fractions typical for Y-90 PET patient
imaging after Y-90 microsphere radioembolization. Numer-
ical results show that the proposed BCD-Net significantly
improves CNR and RMSE of the reconstructed images
compared to MBIR methods using non-trained regularizers,
total variation (TV) and non-local means (NLM). Moreover,
BCD-Net successfully generalizes to test data that differs
from the training data. Improvements were also demon-
strated for the clinically relevant phantom measurement
data where we used training and testing datasets having
very different activity distributions and count-levels.

Index Terms— Iterative neural network, regularized
model-based image reconstruction, low-count quantitative
PET, Y-90.

I. INTRODUCTION

IMAGE reconstruction in low-count PET is particu-
larly challenging because dominant gammas from natural

radioactivity in Lu-based crystals cause high random fractions,
lowering the measurement signal-to-noise-ratio (SNR) [1].
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To accurately reconstruct images in low-count PET, regu-
larized model-based image reconstruction (MBIR) solves the
following optimization problem consisting of 1) a data fidelity
term f (x) that models the physical PET imaging system, and
2) a regularization term R(x) that penalizes image roughness
and controls noise [2]:

x̂ = arg min
x≥0

f (x) + R(x)

f (x) := 1T (Ax + r̄) − yT log(Ax + r̄). (1)

Here, f (x) is the Poisson negative log-likelihood for measure-
ment y and estimated measurement means ȳ(x) = Ax + r̄,
the matrix A denotes the system model, and r̄ denotes the
mean background events such as scatter and random coin-
cidences. Recently, applying learned regularizers to R(x) is
emerging for MBIR [3].

While there is much ongoing research on machine learning
or deep-learning techniques applied to CT [4]–[8] and MRI
[9]–[13] reconstruction problems, fewer studies have applied
these techniques to PET. Most past PET studies used deep
learning in image space without exploiting the physical imag-
ing model in (1). For example, [14] applied a deep neural
network (NN) mapping between reconstructed PET images
with normal dose and reduced dose and [15] applied a multi-
layer perceptron mapping between reconstructed images using
maximum a posteriori algorithm and a reference (true) image,
and their framework uses the acquisition data only to form the
initial image. Recently, [16] trained a NN to reconstruct a 2D
image directly from PET sinogram and [17], [18] proposed a
PET MBIR framework using a deep-learning based regularizer.
Our proposed MBIR framework, BCD-Net, also uses a regu-
larizer that penalizes differences between the unknown image
and “denoised” images given by a regression neural network in
an iterative manner. In particular, whereas [17], [18] trained
only a single image denoising NN, the proposed method is
an iterative framework that includes multiple trained NNs.
This iterative framework enables the NNs in the later stages
to learn how to recover fine details. Our proposed BCD-Net
also differs from [17], [18] in that our denoising NNs are
defined by an optimization formulation with a mathematical
motivation (whereas, for the trained regularizer, [17], [18]
brought U-Net [19] and DnCNN that were [20] developed for
medical image segmentation and general Gaussian denoising,
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respectively) and characterized by fewer parameters, thereby
avoiding over-fitting and generalizing well to unseen data
especially when training samples are limited.

Iterative NNs [8]–[11], [21]–[24] are a broad family of
methods that originate from an unrolling algorithm for solving
an optimization problem and BCD-Net [25] is a specific exam-
ple of an iterative NN. BCD-Net is constructed by unfolding
a block coordinate descent (BCD) MBIR algorithm using
“learned” convolutional analysis operators [26]–[28], leading
to significantly improved image recovery accuracy in extreme
imaging applications, e.g., low-dose CT [29], dual-energy
CT [30], highly undersampled MRI [25], denoising low-SNR
images [25], etc. A preliminary version of this paper was pre-
sented at the 2018 Nuclear Science Symposium and Medical
Imaging Conference [31]. We significantly extended this work
by applying our proposed method to measured PET data with
newly developed techniques. We also added detailed analysis
of our proposed method as well as comparisons to related
works.

To show the efficacy of our proposed BCD-Net method in
low-count PET imaging, we performed both digital phantom
simulation and experimental measurement studies with activity
distributions and count-rates that are relevant to clinical Y-90
PET imaging after liver radioembolization. Novel therapeutic
applications have sparked growing interest in quantitative
imaging of Y-90, an almost pure beta emitter that is widely
used in internal radionuclide therapy. In addition to the FDA
approved Y-90 microsphere radioembolization and Y-90 ibritu-
momab radioimmunotherapy, there are 50 active clinical trials
for Y-90 labeled therapies (www.clinicaltrials.gov). However,
the lack of gamma photons complicates imaging of Y-90; it
involves SPECT via bremsstrahlung photons produced by the
betas [32] or PET via a very low abundance positron in the
presence of bremsstrahlung that leads to low signal-to-noise
[33]. This paper applies a BCD-Net that is trained for realistic
low-count PET imaging environments and compares its per-
formance with those of non-trained regularizers. Our proposed
BCD-Net applies to PET imaging in general, particularly in
other imaging situations that also have low counts. Using
shorter scan times and lower tracer activity in diagnostic PET
has cost benefits and reduces radiation exposure, but at the
expense of reduced counts that makes traditional iterative
reconstruction challenging.

Section II develops the proposed BCD-Net architecture for
PET MBIR. Section II also explains the simulation studies
in the setting of Y-90 radioembolization and provides details
on how we perform the physical phantom measurement.
Section III presents how the different reconstruction methods
perform with the simulation and measurement data. Section IV
discusses what training and imaging factors most affect gener-
alization performance of BCD-Net. Section V concludes with
future works.

II. METHODS

This section presents the problem formulation of the
BCD-Net and gives a detailed derivation that inspires the
final form of BCD-Net. We also provide several techniques
for BCD-Net that we specifically devised for PET data

where each measurement has different count-level (and noise-
level). Then we review the related works that we compare
with BCD-Net such as MBIR methods using conventional
non-trained regularizers. This section also describes the sim-
ulation setting and details on the measurement data and what
evaluation metrics are used to assess the efficacy of each
reconstruction algorithm.

A. BCD Algorithm for MBIR Using “Learned”
Convolutional Regularization

Conventional PET regularizers penalize differences between
neighboring pixels [34]. That approach is equivalent to assum-
ing that convolving the image with the [1,-1] finite differ-
ence filter along different directions produces sparse outputs.
Using such “hand-crafted” filters is unlikely to be the best
approach. A recent trend is to use training data to learn filters
ck that produce sparse outputs when convolved with images
of interest [26], [27], [35], [36]. Such learned filters can be
used to define a regularizer that prefers images having sparse
outputs, as follows [37]:

R(x) = min{zk } β

(
K∑

k=1

1

2
�ck ∗ x − zk�2

2 + αk �zk�1

)
, (2)

where β is regularization parameter, {ck ∈ R
R : k = 1, . . . , K }

is a set of convolutional filters, {zk ∈ R
n p : k = 1, . . . , K }

is a set of sparse codes, {αk ∈ R : k = 1, . . . , K } is a set of
thresholding parameters controlling the sparsity of {zk}, n p is
the number of image voxels, and R and K denote the size and
number of learned filters, respectively. BCD-Net is inspired by
this type of “learned” regularizer. Ultimately, we hope that the
learned regularizer can better separate true signal from noisy
components compared to hand-crafted filters [29].

A natural BCD algorithm solves (1) with regularizer (2) by
alternatively updating {zk} and x:

{z(n+1)
k } = arg min

{zk}
1

2

∥∥ck ∗ x(n) − zk
∥∥2

2 + αk �zk�1

= T (ck ∗ x(n), αk) (3)

x(n+1) = arg min
x≥0

f (x) + β

2

(
K∑

k=1

∥∥∥ck ∗ x − z(n+1)
k

∥∥∥2

2

)
,

(4)

where T (·, ·) is the element-wise soft thresholding operator:
T (t, q) j := sign(t j ) max(|t j | − q, 0).

Assuming that learned filters {ck} satisfy the tight-frame
condition,

∑K
k=1 �ck ∗ x�2

2 = �x�2
2 ∀x [26], we rewrite the

updates in (3)-(4) as follows:

u(n+1) =
K∑

k=1

c̃k ∗
(
T

(
ck ∗ x(n), αk

))
(5)

x(n+1) = arg min
x≥0

f (x) + β

2

∥∥∥x − u(n+1)
∥∥∥2

2
, (6)

where c̃k denotes a rotated version of ck . The operations
of convolution, soft thresholding and then filtering again
with summation typically have the effect of denoising the
image x(n).
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Algorithm 1 BCD-Net for PET MBIR
Require:

{c(n)
k , d(n)

k , α
(n)
k : n = 1, . . . , T }, y, r̄, A, c

Initialize:
x(0) using EM algorithm

Calculate a j = ∑nd
i=1 ai j

for n = 0, . . . , T − 1 do
u(n+1) = ∑K

k=1 d(n+1)
k ∗

(
T

(
c(n+1)

k ∗ g1
(
x(n)

)
, α

(n+1)
k

))
β(n+1) =

∥∥∥∥a j −∑nd
i=1 ai j

yi
ȳi (x(n))

∥∥∥∥
2�x(n)−g2(u(n+1))�2

· c

for n� = 0, . . . , T � − 1 do
λ = 1

2

(
a j − β(n+1)g2

(
u(n+1)

j

))
ν = x (n�)

j

(∑nd
i=1 ai j

yi

ȳi (x(n�))

)
x (n�+1)

j =
⎧⎨⎩

√
λ2+β(n+1)ν−λ

β(n+1) , λ < 0
ν√

λ2+β(n+1)ν+λ
, λ ≥ 0

end for
x(n+1) = x(T �)

end for

For efficient image reconstruction (6) in PET, we use the
standard EM-surrogate of Poisson log-likelihood function [38]:

f (x) + β

2

∥∥∥x − u(n+1)
∥∥∥2

2

=
nd∑

i=1

[Ax]i +r̄i −yi log([Ax]i + r̄i )+ β

2

n p∑
j=1

(x j − u(n+1)
j )2

≤
n p∑
j=1

{ − e j (x(n�))(x (n�)
j ) log(x j )+a j x j + β

2
(x j − u(n+1)

j )2}
=

n p∑
j=1

Q j (x j )

where n� denotes n�th inner-iteration in (6), e j (x(n�)) =∑nd
i=1 ai j

yi

ȳi (x(n�)) , ai j denotes an element of the system model
at i th row and j th column, and nd is the number of rays.
Equating ∂Q j (x j )

∂x j
to zero is equivalent to finding the root of

the following quadratic formula:
βx2

j +
(

a j − βu(n+1)
j

)
x j − e j (x(n�))x (n�)

j = 0,

and finding the root [39] leads to the minimizer:

x (n�+1)
j =

⎧⎪⎪⎨⎪⎪⎩
√

λ2 + βν − λ

β
, λ < 0

ν√
λ2 + βν + λ

, λ ≥ 0,

where λ = 1
2 (a j − βu(n+1)

j ), ν = e j (x(n�))x (n�)
j , a j =∑nd

i=1 ai j .

B. BCD-Net for PET MBIR and Training
Its Denoising Module

To further improve denoising capability by providing more
trainable parameters, we extend the convolutional image

Fig. 1. Architecture of the proposed BCD-Net for PET. The proposed
BCD-Net has an iterative NN architecture: each BCD-Net iteration uses
three inputs – fixed measurement and mean background { y, r̄}, and the
image x(n−1) reconstructed at the previous BCD-Net iteration – and
provides the reconstructed image x(n). A circular arrow above MAP EM
update indicates inner iterations. g1( · ) and g2( · ) are the normalization
and scaling functions described in Section II-C.

denoiser (CID) in (5) [25], by replacing {c̃k} with separate
decoding filters {dk}. We define BCD-Net to use the following
updates for each iteration:

u(n+1) =
K∑

k=1

d(n+1)
k ∗

(
T

(
c(n+1)

k ∗ x(n), α
(n+1)
k

))
(7)

x(n+1) = arg min
x≥0

f (x) + β

2

∥∥∥x − u(n+1)
∥∥∥2

2
, (8)

where separate encoding and decoding filters {ck} and {dk}
are learned for each iteration. Fig. 1 shows the corresponding
BCD-Net architecture. We refer to the u and x updates in
(7)-(8) as two modules: 1) image denoising module and
2) image reconstruction module. The final output image is
from the reconstruction module.

The image denoising module consists of encoding and
decoding filters {c(n+1)

k }, {d(n+1)
k } and thresholding values

{α(n+1)
k }. We train these parameters to “best map” from noisy

images into high-quality reference images (e.g., true images if
available) in the sense of mean squared error:

arg min
{ck},{dk},{αk }

L∑
l=1

∥∥∥∥∥xtrue,l −
K∑

k=1

dk ∗
(
T

(
ck ∗ x(n)

l , αk

))∥∥∥∥∥
2

2

,

(9)

where L is the total number of training samples, {xtrue,l ∈
R

n p : l = 1, . . . , L} is a set of true images and {x(n)
l ∈

R
n p : l = 1, . . . , L} is a set of images estimated by image

reconstruction module in the nth iteration. We train the set of
filters and thresholding values iteration-by-iteration and do not
include the system matrix or sinograms for training as shown
in (9). Moreover, we do not enforce the tight-frame condition
when training the filters.
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One can further extend the CID in (7) to a general regression
NN, e.g., a deep U-Net [19]. We investigated if the iterative
BCD-Net combined with U-Net denoisers (by replacing the
denoising module in (7) with a U-Net) performs better than
the proposed BCD-Net using CID (7). Section II-G.2 gives the
details of the U-Net implementation.

C. Adaptive BCD-Net Generalizing to Various
Count-Levels

1) Normalizationand Scaling Scheme: Different PET images
can have very different intensity values due to variations in
scan time and activity, and it is important for trained methods
to be able to generalize to a wide range of count levels.
Towards this end, we implemented normalization and scaling
techniques in BCD-Net. Reference [18] extended [17] by
implementing “local linear fitting” to ensure that the denoising
NN output has similar intensity as the input patch from the
current estimated image. Our approach is different in that we
normalize and scale the image with a global approach, not a
patch-based approach. In particular, we modify the architecture
in (7)-(8) as:

u(n+1) =
K∑

k=1

d(n+1)
k ∗

(
T

(
c(n+1)

k ∗ g1(x(n)), α
(n+1)
k

))
(10)

x(n+1) = arg min
x≥0

f (x) + β

2

∥∥∥x − g2(u(n+1))
∥∥∥2

2
, (11)

where the normalization function g1(·) is defined by g1(v) :=
1∑
j v j

v to ensure that 1T g1(v) = 1, and the scaling function

g2(·) is defined by g2(v) := {arg mins f (s ·v)}v. We solve the
optimization problem over s using Newton’s method:

s(n+1) = s(n) − ∇s f (s(n) · v)

∇2
s f (s(n) · v)

= s(n) −
∑nd

i=1[Av]i − yi
[Av]i

s(n)[Av]i+r̄i∑nd
i=1 yi

( [Av]i
(s(n)[Av]i +r̄i )

)2 . (12)

To be consistent with the modified CID in (10), we also apply
this image-based normalization technique when training the
convolutional filters and thresholding values:

arg min
{ck },{dk },{αk }

L∑
l=1

∥∥∥∥∥∥g1(xtrue,l) −
K∑

k=1

dk ∗
(
T

(
ck ∗ g1(x(n)

l ), αk

))∥∥∥∥∥∥
2

2

.

2) Adaptive Regularization Parameter Scheme: The best
regularization parameter value can also vary greatly between
scans, depending on the count level. Therefore, instead of
choosing one specific value for the regularization parameter,
we set the β value for each iteration based on evaluation on
current gradients of data-fidelity term and regularization term:

β(n+1) =
∥∥∇x f (x(n))

∥∥
2∥∥∇xR(x(n))

∥∥
2

· c

=
∥∥a j − e j (x(n))

∥∥
2∥∥x(n) − g2(u(n+1))
∥∥

2

· c, n = 0, . . . , T − 1,

(13)

where c is a constant specifying how we balance between
the data-fidelity term and regularization term and n denotes
nth outer-iteration. Algorithm (1) gives detailed pseudocode
of the proposed method. T denotes the total number of
outer-iterations and T � denotes the number of inner itera-
tions used for (8). We use x(n) as the initial image when
solving (11).

D. Conventional MBIR Methods: Non-Trained
Regularizers

We compared the proposed BCD-Net with two MBIR
methods that use standard non-trained regularizers.

1) Total-Variation (TV): TV regularization penalizes the sum
of absolute value of differences between adjacent voxels:

R(x) = β �C x�1 ,

where C is finite differencing matrix. Recent work [40] applied
Primal-Dual Hybrid Gradient (PDHG) [41] for PET MBIR
using TV regularization and demonstrated that PDHG-TV
is superior than clinical reconstruction (e.g., OS-EM) for
low-count datasets in terms of several image quality evaluation
metrics such as contrast recovery and variability.

2) Non-Local Means (NLM): NLM regularization penalizes
the differences between nearby patches in image:

R(x) = β
∑

i, j∈Si

p
(∥∥N i x − N j x

∥∥2
2

)
,

where p(t) is a potential function of a scalar variable t , Si

is the search neighborhood around the i th voxel, and N i is a
patch extraction operator at the i th voxel. We used the Fair
potential function for p(t):

p(t) = σ 2
f

(√
t

σ 2
f N f

+ log

(
1 +

√
t

σ 2
f N f

))
,

where σ f is a design parameter and N f is the number of
voxels in the patch N i x. Unlike conventional local filters that
assume similarity between only adjacent voxels, NLM filters
can average image intensities over distant voxels. As in [42],
we used ADMM to accelerate algorithmic convergence with
an adaptive penalty parameter selection method [43].

E. Experimental Setup: Digital Phantom Simulation
and Experimental Measurement

1) Y-90 PET/CT XCAT Simulations: We used the XCAT [44]
phantom (Fig. 2) to simulate Y-90 PET following radioem-
bolization. We set the image size to 128 × 128 × 100 with a
voxel size 4.0×4.0×4.0 (mm3) and chose 100 slices ranging
from lung to liver. To simulate extremely low count scans with
high random fractions, typical for Y-90 PET, we set total true
coincidences and random fractions based on numbers from
patient PET imaging performed after radioembolization [45].
To test the generalization capability of the trained BCD-Net,
we changed all imaging factors between training and testing
dataset. Here, imaging factors include activity distribution
(shape and size of tumor and liver background, concentration
ratio between hot and warm region) and count-level (total true
coincidences and random fraction). Fig. 2 and Table I provide
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TABLE I
DETAILS ON XCAT SIMULATION DATA: VARIATIONS BETWEEN

TRAINING AND TESTING DATA

TABLE II
DETAILS ON PHANTOM MEASUREMENT DATA: ACTIVITY

CONCENTRATION RATIO BETWEEN HOT AND WARM

REGIONS AND RANDOMS FRACTIONS FOR

TWO PHANTOM STUDIES

TABLE III
DETAILS ON TYPICAL PATIENT MEASUREMENT DATA:

TOTAL TRUES AND RANDOMS FRACTIONS

details on how we changed the testing dataset from the training
dataset. We trained BCD-Net using five pairs (L = 5) of 3D
true images and estimated images at each iteration (1 true
image, 5 realizations). We generated multiple (5) realizations
to train the denoising NN to deal with the Poisson noise.
We also generated 5 realizations (1 true image, 5 realizations)
as a testing dataset to evaluate the noise across realizations.

2) Y90 PET/CT Physical Phantom Measurements and Patient
Scan: For training BCD-Net, we used PET measurements
of a sphere phantom (Fig. 4) where six ‘hot’ spheres
(2,4,8,16,30 and 113 mL, 0.5 MBq/ml) are placed in a ‘warm’
background (0.057 MBq/ml) with total activity of 0.65 GBq.
The phantom was scanned for 40 (3 acquisitions) - 80 (1 acqui-
sition) (L = 4) minutes on a Siemens Biograph mCT PET/CT.
For testing BCD-Net and other reconstruction algorithms,
we used an anthropomorphic liver/lung torso phantom (Fig. 4)
with total activity and distribution that is clinically realistic for
imaging following radioembolization with Y-90 microspheres:
5% lung shunt, 1.17 MBq/mL in liver, 3 hepatic lesions
(4 and 16 mL spheres, 29 mL ovoid) of 6.6 MBq/ml. The
phantom with total activity of 1.9 GBq was scanned 5 times
(each 30 minutes) on a Siemens Biograph mCT PET/CT.
Fig. 4 and Table II provide details on the count-level (random
fraction) and activity distribution differences between training
(sphere phantom) and testing (liver phantom) dataset. We also
tested BCD-Net with an actual Y-90 patient scan and Table III
provides count-level information.

We acquired all measurement data with time of
flight TOF information. The measurement data size is
200 × 168 × 621 × 13. The last dimension of measurement
indicates the number of time bin. The reconstructed image size

is 200 ×200×112 with a voxel size 4.07 ×4.07×2.03 (mm3).
To reconstruct the image with measurement data, we used
a SIEMENS TOF system model (A in (1)) along with
manufacturer given attenuation/normalization correction, PSF
modelling, and randoms/scatters estimation.

F. Evaluation Metrics

For the XCAT phantom simulation, we evaluated each
reconstruction with contrast recovery (CR) (volume-of-interest
(VOI): cold spot indicated in Fig. 2), noise across realizations,
root mean squared error (RMSE), and contrast to noise ratio
(CNR). For the physical phantom measurement, we used CR
(VOI: hot spheres) and CNR averaged over multiple hot
spheres. We define each VOI’s mask based on attenuation map
interpolated to PET voxel size. For the patient measurement,
we used CNR and the field of view (FOV) activity bias since
the total activity in FOV is known (equal to the injected
activity because the microspheres are trapped) wheareas the
activity distribution is unknown:
CR (VOI: cold spot)

=
(

1 − CVOI

CBKG

)
× 100 (%)

CR (VOI: hot sphere)

=
CVOI
CBKG

− 1

RTrue − 1
× 100 (%)

Noise

=

√
1

JLiver

∑
j∈Liver

(
1

M−1

∑M
m=1(x̂m[ j ]− 1

M

∑M
m�=1 x̂m� [ j ])2

)
1

JLiver

∑
j∈Liver xtrue[ j ]

×100 %

RMSE

=
√∑

j (xtrue[ j ] − x̂[ j ])2

JFOV
× 100 (%)

CNR

= CLesion − CBKG

STDBKG
FOV bias

=
∑

j x̂[ j ] − xtrue[ j ]∑
j xtrue[ j ] × 100 (%),

where CVOI is mean counts in the VOI, RTrue is true ratio
between hot and warm region, x[ j ] denotes the j th voxel
of an image x, M is the number of realizations (M = 5
in both XCAT phantom simulation and physical phantom
measurement) and JLiver is the number of voxels in the volume
of liver, STDBKG is standard deviation between voxel values
in uniform background liver (indicated in Fig. 2), and JFOV
is the total number of voxels in the FOV. As the background
region when calculating the patient CNR, we used a part of
liver region that has relatively uniform activity distribution.

G. Training Details

We trained the denoising network in each iteration with
a stochastic gradient descent method using the PyTorch [46]
deep-learning library.
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Fig. 2. XCAT phantom simulation: (First row) coronal and axial view of attenuation map and true relative activity distribution corresponding to axial
attenuation map. (Second row) reconstructed images of one slice from different reconstruction methods. BCD-Net-CID/UNet is the BCD-Net with
CID/UNet and params indicates the number of trainable parameters.

Fig. 3. (a) Plot of noise in background liver vs contrast recovery in cold spot. (b) RMSE vs iteration. (c) Contrast to noise ratio vs iteration. We initialized
regularized methods with the 10th iterate of EM reconstruction.

1) BCD-Net With CID: We trained a set of CID for the
denoising module in BCD-Net where each iteration has
78 sets of thresholding values and convolutional encod-
ing/decoding filters (K = 78). We set the size of each filter as
3 × 3 × 3(R = 33), and set the initial thresholding values by
sorting the initial estimate of image and getting a 10% largest
value of sorted initial image. We used the Adam optimization
method [47] to train the NN. We applied the learning rate
decay scheme. Due to the large size of 3D input, we set the
batch size as 1.

2) BCD-Net With U-Net: We implemented a 3-D version
of U-Net by modifying a shared code1 (implemented for
denoising 2-D MRI images) for fastMRI challenge [48].
We used a batch normalization layer instead of the instance
normalization layer used in the baseline code. The ‘encoder’
part of U-Net consists of multiple sets of 1) max pooling layer,
2) 3 × 3 × 3 convolutional layer, 3) batch normalization (BN)
layer, 4) ReLU layer and the ‘decoder’ part of U-Net consists
of multiple sets of 1) upsampling with trilinear interpolation
[17], 2) 3 × 3 × 3 convolutional layer, 3) BN layer, 4) ReLU
layer. For training the U-Net, we used the same training
dataset that we used for training the CID. We also used the
Adam optimization method and identical settings (number of

1https://github.com/facebookresearch/fastMRI

epochs, learning rate decay, batch size) as those of the CID.
We trained and tested two different U-Nets sizes. At each
BCD-Net iteration, the U-Net has either about 4 K (similar size
to the CID) or 1.4 M trainable parameters. We set the number
of convolutional filter channels of the first encoder layer as
12 with 4 times of contraction/expansion for the U-Net with
1.4 M parameters and 5 with 1 time of contraction/expansion
for the U-Net with 4 K parameters.

III. RESULTS

A. Reconstruction Setup

We compared the proposed BCD-Net method to the
standard EM (1 subset), TV-based MBIR with PDHG algo-
rithm (PDHG-TV), and NLM-based MBIR with ADMM
algorithm (ADMM-NLM). For regularized MBIR methods
including BCD-Net, we used 10 EM algorithm iterations to
get the initial image x(0). For each regularization method,
we finely tuned the regularization parameter β (within range
[2−15, 215]) by considering the recovery accuracy and noise.
For NLM, we additionally tuned the window and search sizes.
For the XCAT simulation data, we used 40 iterations for EM
and 30 iterations (T = 30) for PDHG-TV, ADMM-NLM,
and BCD-Net. We used 1 inner-iteration (T � = 1) for
the reconstruction module (11) for each outer-iteration of
BCD-Net. For the measured data, we used 20 iterations for
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Fig. 4. Y90 PET/CT physical phantom measurement: (First row: training data, Second row: testing data) Attenuation map, true activity, and x(0) of
regularized methods of sphere and liver phantom used for training and testing BCD-Net. (Third row) Reconstructed images of one slice from different
reconstruction methods.

Fig. 5. Liver phantom measurement: (a) Plot of noise in background liver vs contrast recovery in hot spheres. (b) Contrast to noise ratio vs iteration.
We initialized regularized methods with the 10th iterate of EM reconstruction.

EM and 10 iterations (T = 10) for PDHG-TV, ADMM-NLM,
and BCD-Net. We used 1 inner-iteration (T � = 1) for the
reconstruction module (11). We set c = 0.01 in (13) in the
XCAT simulation study and c = 0.005 in both the phantom
measurement and patient studies.

B. Results: Reconstruction (Testing) on Simulation Data

Fig. 2-3 shows that the proposed iterative NN, BCD-Net,
significantly improves overall reconstruction performance
over the other non-trained regularized MBIR methods.
Fig. 3 reports averaged evaluation metrics over realizations.
Fig. 3 shows that BCD-Net with a trained CID achieves
the best results in most evaluation metrics. In particular,
BCD-Net with a CID improves CNR and RMSE compared
to PDHG-TV and ADMM-NLM. BCD-Net also improved
contrast recovery in the cold region while not increasing noise

compared to the initial EM reconstruction, whereas PHDG-TV
and ADMM-NLM improved noise while degrading the CR.
For Fig. 2, we selected the iteration number for EM to obtain
the highest CNR and the last iteration number for other
methods. Fig. 2 shows that BCD-Net’s reconstructed image
with a CID is closest to the true image whereas PHDG-TV and
ADMM-NLM exceedingly blur the cold region. BCD-Net with
the U-Net denoiser shows good recovery for the cold region,
however, it blurs the hot region. Moreover, the larger sized
U-Net (params: 1.4 M) denoiser worsens the performance of
BCD-Net possibly due to over-fitting the training dataset.

C. Results: Reconstruction (Testing)
on Measurement Data

1) Phantom Study: Similar to the simulation results, Fig. 4-5
shows that, BCD-Net improved overall reconstruction
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Fig. 6. Y90 PET/CT patient measurement: Attenuation map and reconstructed images of one slice (coronal and axial view) using OSEM, TV, NLM,
and BCD-Net. We visualized the reconstructed image of BCD-Net-UNet with 4 K parameters.

Fig. 7. Patient scan: (a) Field of view bias vs iteration. BCD-Net shows similar results compared to other methods. (b) Contrast to noise ratio vs
iteration.

performance over the other reconstruction methods.
Fig. 4 shows that reconstructed images using PHDG-
TV and ADMM-NLM show uniform texture in background
liver compared to EM, however, those exceedingly blur
around hot spheres. The blurred hot region is more evident
in the quantification results in Fig. 5. BCD-Net gives more
visibility for hot spheres with noisier texture in uniform liver
region. Fig. 5 shows that BCD-Net with a CID improves
CNR compared to PDHG-TV and ADMM-NLM. BCD-Net
with CID also improved contrast recovery in hot spheres
while slightly increasing noise compared to the initial EM
reconstruction. In Fig. 5 (a), BCD-Net with U-Net denoiser
shows a fluctuation with iterations, however, the plot trend is
similar to that of BCD-Net with CID.

2) Patient Study: Because of the unknown true activity
distribution, we quantitatively evaluated each reconstruction
method with FOV activity bias. In this quantitative evaluation,

BCD-Net showed similar results compared to other methods.
See Fig. 6-7. Fig. 6 shows that the quality of image using
different methods in patient study is similar to that of phantom
measurement study shown in Fig. 4. Fig. 7 (b) shows that the
CNR trend in the patient study is similar to that of the XCAT
simulation and the liver phantom measurement.

IV. DISCUSSION

In this study we showed the efficacy of trained BCD-Net
on both qualitative and quantitative Y-90 PET/CT imaging and
compared between conventional non-trained regularizers. The
proposed approach uses learned denoising NNs to lift esti-
mated signals and thresholding operations to remove unwanted
signals. In particular, the iterative framework of BCD-Net
enables one to train the filters and thresholding values to
deal with the different image roughness at its each iteration.
We experimentally demonstrate its generalization capabilities
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TABLE IV
IMPACT OF IMAGING VARIABLE ON GENERALIZATION

CAPABILITY OF BCD-NET-CID

with simulation and measurement data. In the XCAT PET/CT
simulation with activity distributions and count-rates mimick-
ing Y-90 PET imaging, total counts in the cold spot were
overestimated with standard reconstruction and other MBIR
methods using non-trained regularization, yet approached the
true value with the proposed approach. Improvements were
also demonstrated for the measurement data where we used
training and testing datasets having very different activity dis-
tribution and count-levels. The architecture and size of denois-
ing NN significantly affect the performance of BCD-Net.
In both simulation and measurement experiments, the CID
outperformed the U-Net architectures. Using a U-Net with
more trainable parameters degraded the performance, espe-
cially in the simulation study, due to the small size of dataset.
Size of the denoising NN should be set with consideration of
training dataset size.

We tested which imaging variable most affects the gener-
alization performance of the proposed BCD-Net. Table IV
shows how BCD-Net performs when training and testing
data had the same activity distribution and count-level (only
difference is Poisson noise) and how the performance of
BCD-Net is degraded when each imaging variable is changed
between training and testing dataset. We changed one of three
factors (shape and size of tumor and liver, concentration ratio,
count-level) in training dataset compared to testing dataset.
The result shows that generalization performance of the pro-
posed BCD-Net depends largely on all imaging variables.
However, training with higher contrast and lower count-level
dataset (compared to testing dataset) gave less degradation
of performance compared to the opposite cases. This result
suggests that it is better to have noisier data in training dataset
than testing dataset. In other words, training for extra noise
reduction than needed is better than less noise reduction than
needed.

We also investigated how each factor in training of
denoising module (7) impacts the generalization capability
of BCD-Net. Fig. 8(a)-(b) show the impact of number and
size of filters on performance. Plots show that the proposed
BCD-Net achieved lower training RMSE when using larger
number and size of filters; however, it did not decrease testing
RMSE compared to smaller number and size of filters and
BCD-Net with larger size of filter exceedingly blurs image
thereby resulting in higher RMSE. See Fig. 8(e). We also
tested l1 training loss to see if it improves the performance
over the l2 loss (MSE) in (9). However, it led to unnaturally
piece-wise constant images and details in small cold regions
were ignored.

Fig. 8. (a)-(b) Impact of number/size of filter and training loss on testing
dataset RMSE. (c) Reconstructed image from BCD-Net-CID with filters
and thresholding values trained with l1-loss.

Fig. 9 shows how the regularization parameter β in (13)
changes with iterations in training and testing datasets. The β
value in each iteration converges to different limits in training
and testing cases. The adaptive scheme automatically increases
the β value when the count-level decreases. This behavior
concurs with the general knowledge that more regularization is
needed when the noise-level increases. These empirical results
underscore the importance of such adaptive regularization
parameter selection schemes proposed in Section II-C.2 in PET
imaging.

Many related works [5], [14], [15], [49] use single image
denoising (deep) NN (e.g., U-Net) as a post-reconstruction
processing and we investigated how the denoising NN
detached from the data-fit term performs compared to iterative
NN. Fig. 10 illustrates u(1) generated by CID and U-Net. As in
the iterative NN, using more trainable parameters degraded
the visual quality and RMSE value in U-Net case and CID
achieved better result than U-Net. In all cases, iterative NN
achieved lower RMSE compared to those post-reconstruction
processed images as shown in Table V.

BCD-Net is trained for a specific number of iterations and
its practical use would be akin to how ML-EM is used with a
fixed number of iterations in clinical systems. If one is inter-
ested in convergence guarantees with running more iterations,
then one can extend the sequence convergence guarantee of
BCD-Net in [23] by setting the nth “adaptive” denoiser as
D̃(n) = g2(D(n)(g1(x(n−1)))) with some nth denoiser D(n)

(e.g., CID (7) and U-Net), ∀n, using sufficient T � (so MAP
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Fig. 9. Efficacy of adaptive selection of regularization parameter β.

Fig. 10. g2(u(1)) generated by (a) CID and (b)-(c) U-Net. Using more
parameters degraded the visual quality and RMSE value as in the
iterative NN.

TABLE V
COMPARISON BETWEEN POST-RECONSTRUCTION

PROCESSING AND ITERATIVE NN

EM finds a critical point), and additionally assuming that β(n)

converges. We empirically observed that the β(n) tends to
converge to some constant in this Y-90 PET as well as another
application of Lu-177 SPECT.

To more practically guarantee the convergence, one could
use training and testing dataset having similar count-level and
a fixed regularization parameter value across iterations using
an initial estimated image and a corresponding denoised image
as follows:

β =
∥∥∇x f (x(0))

∥∥
2∥∥∇xR(x(0))

∥∥
2

· c =
∥∥a j − e j (x(0))

∥∥
2∥∥x(0) − g2(u(1))
∥∥

2

· c.

The convergence properties depend on additional technical
assumptions detailed in [23].

V. CONCLUSION

It is important for a “learned” regularizer to have
generalization capability to help ensure good performance
when applying it to an unseen dataset. For low-count PET
reconstruction, the proposed iterative NN, BCD-Net, showed
reliable generalization capability even when the training
dataset is small. The proposed BCD-Net achieved signifi-
cant qualitative and quantitative improvements over the con-
ventional MBIR methods using “hand-crafted” non-trained
regularizers: TV and NLM. In particular, these conventional

MBIR methods have a trade-off between noise and recovery
accuracy, whereas the proposed BCD-Net improves CR for hot
regions while not increasing the noise when the regularization
parameter is appropriately set. Visual comparisons of the
reconstructed images also show that the proposed BCD-Net
significantly improves PET image reconstruction performance
compared to MBIR methods using non-trained regularizers.

Future work includes investigating performance of BCD-Net
trained with end-to-end training principles and adaptive selec-
tion of trainable parameter numbers depending on the size of
training dataset.
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