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Abstract— Dual-energy computed tomography (DECT)
imaging plays an important role in advanced imaging
applications due to its material decomposition capabil-
ity. Image-domain decomposition operates directly on CT
images using linear matrix inversion, but the decomposed
material images can be severely degraded by noise and
artifacts. This paper proposes a new method dubbed
DECT-MULTRA for image-domain DECT material decom-
position that combines conventional penalized weighted-
least squares (PWLS) estimation with regularization based
on a mixed union of learned transforms (MULTRA) model.
Our proposed approach pre-learns a union of common-
material sparsifying transforms from patches extracted
from all the basis materials, and a union of cross-material
sparsifying transforms from multi-material patches. The
common-material transforms capture the common prop-
erties among different material images, while the cross-
material transforms capture the cross-dependencies. The
proposed PWLS formulation is optimized efficiently by alter-
nating between an image update step and a sparse coding
and clustering step, with both of these steps having closed-
form solutions. The effectiveness of our method is validated
with both XCAT phantom and clinical head data. The results
demonstrate that our proposed method provides superior
material image quality and decomposition accuracy com-
pared to other competing methods.

Index Terms— Image-domain decomposition, sparsifying
transform learning, machine learning, cross-material mod-
els.
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I. INTRODUCTION

X
-RAY computed tomography (CT) is a popular imag-

ing technique used in many clinical applications. Com-

pared to conventional X-ray CT, dual-energy CT (DECT)

provides two sets of attenuation measurements by exploiting

two different energy spectra. DECT enables enhanced tissue

characterization due to its ability to produce images of dif-

ferent constituent materials such as soft-tissue and bone in

scanned objects, known as material decomposition [1], [2].

This decomposition of a mixture into multiple basis materials

depends on the principle that the attenuation coefficient is

material and energy dependent. DECT is of great interest

in many clinical and industrial applications such as iodine

quantification [3], [4], kidney stone characterization [5], virtual

monoenergetic imaging [6], and security inspection [7]. DECT

measurements are also used to obtain element decompositions

(of hydrogen, carbon, nitrogen, oxygen, etc.) for radiation

therapy applications that require atomic compositions and

densities for treatment planning [8]–[10].

A. Background

Methods for DECT material decomposition can be charac-

terized into direct decomposition [11], projection-domain [12],

and image-domain [13] methods. Direct decomposition greatly

reduces the noise and cross-talk artifacts in the reconstructed

basis material images and improves decomposition accuracy,

but it is computationally expensive because of the repeated

forward and back-projections required between basis material

images and DECT sinograms. Projection-domain decompo-

sition converts the low- and high-energy measurements into

sinograms of basis materials, from which the material images

are then reconstructed. Although these methods have the

theoretical advantage of avoiding beam-hardening artifacts,

they require accurate system calibrations that use nonlin-

ear models [14]. Projection-domain and direct decomposition

methods require sinograms that are not available to users

of current commercial DECT scanners. Image-domain meth-

ods directly decompose the readily available reconstructed

high- and low-energy attenuation images into basis material

images, and are more efficient than projection-domain and

direct decomposition techniques in terms of computational
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cost, but their efficacy may be limited due to sensitivity

to noise and artifacts. Image-domain DECT methods may

be substantially improved by exploiting learned or adapted

prior information from existing big databases of CT images.

Many related methods have been proposed in this regard,

such as spectral prior image constrained compressed sensing

(PICCS) [15].

Xu et al. [16] developed dictionary learning (DL) methods

for conventional low-dose CT (LDCT) image reconstruc-

tion by combining the PWLS approach with regularization

involving a pre-learned redundant dictionary. Later, dictio-

nary learning was applied to DECT for denoising [17] and

reconstruction [18], [19]. Recently, a tensor dictionary learning

(TDL) [20] method was proposed for spectral CT reconstruc-

tion by accommodating sparsity in both spatial and spectral

dimensions. Although the TDL-based scheme showed promise

in preserving fine tissue features, it underperformed in terms

of preserving edge information and removing artifacts and

noise. To overcome the limitations of the TDL approach, an `0

“norm” of the image gradient was incorporated (`0TDL) [21]

to recover edge information by penalizing the number of non-

zeros in the gradient domain rather than the image gradient

magnitudes. However, the sparse coding step in the dictio-

nary model is computationally expensive, and the dictionary

learning problem is typically NP-Hard in general. Recently,

a generalized analysis dictionary model called sparsifying

transform (ST) model was investigated in [22], [23], where

sparse coefficients are efficiently obtained in the transform

domain by thresholding-type operations. Learned sparsifying

transforms have recently shown promise for LDCT image

reconstruction compared to nonadaptive methods [24], [25].

Zheng et al. [26] generalized the single square sparsifying

transform learning-based reconstruction approach to a union

of sparsifying transforms scheme and showed its promise for

LDCT reconstruction. That approach pre-learned a collection

of sparsifying transforms such that image patches are adap-

tively assigned (clustered) to their best-matching sparsifying

transforms during the reconstruction process. Apart from

dictionary and sparsifying transform learning-based methods,

deep learning techniques have received attention in the field

of DECT material decomposition recently. Deep learning

algorithms usually learn deep filtering models to achieve

high image quality for specific datasets. Liao et al. [27]

proposed a deep learning-based framework to obtain basis

material images via cascaded deep convolutional neural net-

works (CD-ConvNet) that approximately capture a non-linear

mapping from the measured energy-specific CT images to the

desired decomposed basis material images. Zhang et al. [28]

developed a model-based butterfly network to perform image-

domain material decomposition for DECT. This network has a

double-entry double-output crossover architecture that exploits

the relationship between the CT data model and the neural

network. These methods are all fully supervised learning

methods requiring long time and large datasets for training

and also tend to be less generalizable, which may limit

their use. These approaches also do not consider material

models and properties. In this work, we explicitly exploit the

common properties and cross-dependencies between different

basis materials to improve the performance of conventional

DECT decomposition.

B. Contributions

Considering the common properties (e.g., each material

image could be modeled as piece-wise smooth) and cross-

dependencies (e.g., the material images share similar boundary

structures) among different basis material images, here we

propose a new image-domain DECT material decomposition

method dubbed DECT-MULTRA that combines conventional

PWLS estimation with regularization based on a mixed union

of learned sparsifying transforms (MULTRA) model. In this

MULTRA framework, we first efficiently pre-learn unions of

sparsifying transforms from image patches extracted from a

dataset of material density images. One group of transforms

(dubbed common-material transforms) is learned to spar-

sify features common across different basis material density

images, and another group (dubbed cross-material transforms)

is learned to sparsify the dependencies between such material

density maps. The DECT-MULTRA formulation effectively

incorporates the pre-learned material models in a clustering-

based framework. We propose an exact and efficient alter-

nating minimization algorithm for the image-domain DECT-

MULTRA decomposition problem that alternates between an

image update step and a sparse coding and clustering step,

each of which has closed-form solutions.

We compare our proposed DECT-MULTRA method with

recent image-domain techniques such as DECT-ST [29] as

well as other related methods. Numerical experiments with

XCAT phantom and patient data demonstrate that the proposed

method significantly improves the quality of decomposed

material images compared to other techniques. Moreover,

material models learned with the XCAT phantom generalize

well to patient data.

C. Organization

The rest of this paper is organized as follows. Section II

describes the formulations for image-domain DECT decompo-

sition with regularization based on learned sparsifying trans-

forms. Section III derives the algorithms for learning the mixed

union of sparsifying transforms model and for material image

decomposition. Section IV presents detailed results on XCAT

phantom and patient data along with comparisons. Section V

concludes the paper and mentions areas of future work.

II. PROBLEM FORMULATION FOR MATERIAL IMAGE

DECOMPOSITION

This section discusses the proposed formulation for image-

domain decomposition incorporating the MULTRA model and

its variations.

A. DECT-MULTRA Formulation

For image-domain DECT, we start with two scanner recon-

structed images at each energy and form a stacked two-channel

image vector y = (yT
H , yT

L )T ∈ R
2Np , where yH and yL are the

attenuation maps (images) at high and low energy, respectively,
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and Np is the number of pixels in each map. Vector x =
(xT

1 , xT
2 )T ∈ R

2Np denotes the stacked material density images

(unknown), where xl = (xl1, . . . , xln, . . . , xlNp )
T ∈ R

Np rep-

resents the lth material for l = 1, 2.1 The stacked attenuation

maps are related to the stacked densities as y ≈ Ax, where

A ∈ R
2Np×2Np is a mass attenuation coefficient matrix that is

a Kronecker product of A0 and the identity matrix INp [13],

i.e., A = A0⊗INp , where A0 is a 2×2 material decomposition

matrix defined as follows:

A0 =
(

ϕ1H ϕ2H

ϕ1L ϕ2L

)
, (1)

where ϕl H and ϕlL denote the mass attenuation coefficient of

the lth material at high and low energy, respectively. In this

paper, we obtain these four values (for two materials) as ϕl H =
µl H /ρl and ϕlL = µlL/ρl , where µl H and µlL denote the

linear attenuation coefficient of the lth material at high and

low effective energy, respectively, and ρl denotes the density

of the lth material. For the density ρl , we use the theoretical

value 1 g/cm3 for water and 1.92 g/cm3 for bone. To obtain

the value of µl H and µlL , we manually select two uniform

areas in yH and yL that contain the basis materials and then

compute the average pixel values in these areas [30].

Directly solving for x in y ≈ Ax, called direct matrix

inversion decomposition, would produce significant noise in

the result. Our proposed approach models the underlying

basis material densities using a common-material and a cross-

material image sparsity model. The models apply to image

patches, where we say that a patch q is sparsifiable by a

transform or operator � if �q ≈ z, where z has many

zeros and the error in the sparse approximation is small [23].

In the common-material model, we extract patches from all

basis materials’ images independently and assume they are

sparse under a common union (or collection) of sparsifying

transforms [31].2 Every patch extracted from some material

image is assumed to be best sparsified (or best matched)

by a particular transform in the collection. The common-

material transforms capture features that sparsify the common

properties among various basis materials. In the cross-material

model, we extract patches from the same spatial location

of different basis materials and stack them to form larger

multi-material (3D) patches,3 that we assume are sparsified

by a collection of cross-material sparsifying transforms. These

transforms sparsify the cross-dependencies among the material

images, and may be particularly suited for patches that straddle

the boundaries between multiple materials, whereas spatial

regions where only one material is present may be less suited

to the cross-material model (or more suited to the common-

material model).

Based on the above model, we propose to obtain the image-

domain DECT decomposed images by solving the following

1This work focuses on decomposing a mixture of two materials.
2Such unions of transforms provide enhanced sparsification of images and

are a richer model than a single transform.
3We focus on 2D images here, and 3D means 2D with one more channel

direction consisting of the different materials.

optimization problem:

min
x∈R

2Np

1

2
ky − Axk2

W + R(x), (P0)

where we define the regularizer R(x) as

min
{z j ,C

r
kr

}

2∑

r=1

Kr∑

kr =1

∑

j∈Cr
kr

βr

{ ∥∥�r,kr P j x − z j

∥∥2

2
+ γ 2

r

∥∥z j

∥∥
0

}
, (2)

and r = 1, 2, represent the common-material and cross-

material models, respectively. The operator P j ∈ R
2m×2Np

is the patch extraction operator that extracts the j th patch

of materials as a vector P j x. The patch is constructed by

stacking together the 2D patches extracted from the same

spatial location of different basis materials. Each such multi-

material patch is grouped with the best matching (sparsfiying)

transform in either the common- or cross-material models.

Parameter Kr denotes the number of clusters in the r th

model and Cr
kr

denotes the indices of all the patches matched

to the kr th transform (class) in the r th model. {�1,k1}
K1

k1=1

denotes a pre-learned union of common-material transforms

and {�2,k2}
K2

k2=1 denotes a union of cross-material trans-

form matrices, where each individual transform is assumed

unitary. 4 For r = 1, each transform �1,k1 ∈ R
2m×2m is

a block diagonal matrix that sparsifies individual material

images’ patches independently without mixing them. All the

smaller constituent block matrices are of size m×m, which are

learned from vectorized individual material patches and then

used to form the larger matrix �1,k1 . On the other hand, for

r = 2, each sparsifying transform �2,k2 ∈ R
2m×2m is a general

matrix learned from stacked material patches, and is used to

sparsify the entire 3D patches. Each patch P j x is mapped to

the best matching transform domain, where it is approximated

by the sparse vector z j ∈ R
2m . The `0 “norm” enforces

sparsity by penalizing the number of non-zeros in z j , with

γr (a different sparsity penalty weight for each r ) controlling

the sparsity level. The parameters βr > 0 control the balance

between noise and image resolution in the decomposition.

We model the acquired attenuation maps y with additive

Gaussian distributed noise ǫ ∈ R
2Np as y = Ax + ǫ.

Assuming that the noise is uncorrelated between the high-

and low-energy attenuation images [32], the statistical weight

matrix W ∈ R
2Np×2Np in (P0) is a block-diagonal matrix.

We also approximate the noise in each attenuation image

as being independent and identically distributed (i.i.d.) over

pixels [30]. Thus, W is expressed as W = W j ⊗ INp , where

W j = diag(σ 2
H , σ 2

L)
−1

, and σ 2
H and σ 2

L denote the noise

variances for pixels in the high- and low-energy attenuation

maps, respectively.

B. Variations of (P0)

While (P0) uses a mixed (common and cross material)

model, a simpler alternative formulation would involve only

the cross-material component (dubbed DECT-CULTRA), with

R(x) defined as follows:

R(x)=min
{z j ,Ck2

}
β2

K2∑

k2=1

∑

j∈Ck2

{∥∥�2,k2 P j x − z j

∥∥2

2
+ γ 2

2

∥∥z j

∥∥
0

}
, (3)
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Fig. 1. First to second column: material images decomposed by
DECT-ST and DECT-CULTRA, respectively. Water and bone images are
in the top and bottom rows with display windows [0.7 1.3] g/cm3 and
[0 0.8] g/cm3 , respectively.

where the multi-material patches are all sparsified by cross-

material transforms, i.e., β1 = 0 in (2).

Another simpler regularizer was proposed in our recent

conference work [29], dubbed DECT-ST, where

R(x) � min
{zl j }

2∑

l=1

Np∑

j=1

βl

{∥∥�lPl j x − zl j

∥∥2

2
+ γ 2

l

∥∥zl j

∥∥
0

}
. (4)

This regularizer employs one transform for the 2D patches

of each material, with Pl j x denoting the j th patch of the lth

material, zl j denoting the sparse vector for the j th patch of

the lth material, and �1 and �2 denoting the transforms for

patches of the two materials, respectively. DECT-ST does not

exploit cross-dependencies between material images. Rather

it involves a common-material model with two transforms

(corresponding to K1 = 2 and K2 = 0 in (2)) and a specific

clustering of the 2D patches (i.e., patches from each material

are grouped together).

Compared to the regularizers in (3) and (4), the MULTRA

regularizer (2) simultaneously promotes both the common-

and cross-material models with an adaptive patch-dependent

clustering. To motivate the benefits of the richer MULTRA

model better, Fig. 1 shows example decomposition results

obtained by DECT-ST and DECT-CULTRA (K2 = 10) for

the XCAT phantom [33]. The parameters were empirically

chosen as {β, γ } = {70, 0.07} for DECT-CULTRA and

{β1, β2, γ1, γ2} = {50, 70, 0.03, 0.04} for DECT-ST. The

pros and cons of the two cases are clearly observed in the

result. In particular, compared to DECT-ST, DECT-CULTRA

successfully removes the artifacts at the boundaries of the

basis materials and also preserves some details. However,

the edges in the soft tissue-only regions in the water image for

DECT-CULTRA looks quite undistinguishable compared to

DECT-ST. This suggests that the common- and cross-material

models by themselves may not provide a good trade-off in

material decomposition, since they capture different properties

of the materials. The proposed DECT-MULTRA approach

exploiting both a mixed material model and unions of

sparsifying transforms can effectively alleviate the drawbacks

of these variants. Section IV shows the numerical results

and comparisons.

III. ALGORITHMS

This section describes the algorithms for pre-learning

the mixed union of transforms from datasets, and for

optimizing (P0).

A. Algorithm for Training a Mixed Union of Sparsifying
Transforms

We pre-learn a union of 2D common-material unitary

transform matrices {�̃1,̃k1
}K̃1

k̃1=1
, and a union of 3D cross-

material unitary transform matrices {�̃2,̃k2
}K̃2

k̃2=1
separately

from a dataset of material images. For learning the common-

material transforms, where each transform �̃1,̃k1
∈ R

m×m

acts on 2D patches, we extract vectorized 2D patches from

across all basis materials’ images. We also extract vectorized

3D or multi-material patches for training the various cross-

material transforms �̃2,̃k2
∈ R

2m×2m , where each patch is

formed from the basis material components of an object by

stacking 2D patches from the same spatial location in the

different basis material images. Fig. 2(a) shows a schematic

of this learning model. When optimizing (P0), the K̃1 2D

common-material transform matrices {�̃1,̃k1
} above are used to

independently form the blocks of the block-diagonal matrices

{�1,k1}. In particular, K1 = K̃ 2
1 . However, {�2,k2} are identical

to {�̃2,̃k2
} (K2 = K̃2). 5 The operation of the pre-learned

transforms during the material decomposition process is shown

in Fig. 2(b).

The unions of common- and cross-material transforms are

learned by solving the following problem for r = 1, 2:

arg min
{�̃r,̃kr

}
min

{Cr
k̃r

,Zr
ir

}

K̃r∑

k̃r =1

∑

ir ∈Cr
k̃r

{
k�̃r,̃kr

Yr
ir

− Zr
ir
k2

2 + η2
r kZr

ir
k0

}

s.t. �̃T
r,̃kr

�̃r,̃kr
= I, 1 ≤ k̃r ≤ K̃r , (P1)

where I denotes the identity matrix of appropriate size, ηr > 0

is a scalar parameter controlling sparsity, Y1
i1

∈ R
m and

Y2
i2

∈ R
2m denote the i1th and i2th training vectors for r = 1

and r = 2, respectively, and Z1
i1

∈ R
m and Z2

i2
∈ R

2m

denote the corresponding sparse coefficient vectors. The term

k�̃r,̃kr
Yr

ir
− Zr

ir
k2

2 in (P1) is called sparsification error [22]

and captures the deviation of the transformed patches from

their sparse approximations. Each patch in (P1) is matched to

a specific transform, and the goal in (P1) is to simultaneously

learn the collection of K̃r transforms and cluster the training

vectors, and also estimate the sparse coefficient vectors. We

5The notation difference is because the training phase works with both 2D
and 3D patches, whereas Problem (P0) uses a single unified notation for
patches (i.e., the multi-material patches P j x).
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Fig. 2. Schematic of the MULTRA model: (a) and (b) illustrate the
learning process for MULTRA and the operation of the pre-learned
transforms during the decomposition process, respectively. K2 = K̃2.

optimize (P1) by using the approach in [34] and alternating

between updating {Cr
k̃r

, Zr
ir
} (sparse coding and clustering

step) and {�̃r,̃kr
} (transform update step), with efficient updates

in each step (involving thresholding or small singular value

decompositions).

B. MULTRA Material Image Decomposition Algorithm

We propose an iterative algorithm for the image-domain

DECT material decomposition problem (P0) with regularizer

(2) that alternates between updating x (image update step)

and updating {z j , Cr
kr

} (sparse coding and clustering step).

We exploit such an exact alternating minimization scheme

for (P0) as it leads to efficient updates, and does not involve

additional algorithm parameters.

1) Image Update Step: Here, we solve for x in (P0) with

fixed {z j , Cr
kr

}, using the following PWLS sub-problem:

arg min
x∈R

2Np

1

2
ky−Axk2

W+
2∑

r=1

Kr∑

kr =1

∑

j∈Cr
kr

βr

∥∥�r,kr P j x−z j

∥∥2

2
. (5)

The exact solution to (5) is obtained efficiently as follows.

First, denoting the regularizer component of the cost in (5) by

R2(x), its gradient is given as follows:

∇R2(x) = 2

2∑

r=1

Kr∑

kr =1

∑

j∈Cr
kr

βr PT
j �T

r,kr
(�r,kr P j x − z j ). (6)

Since the transform matrices are all unitary, (6) is equivalent

to

∇R2(x) = 2

2∑

r=1

Kr∑

kr =1

∑

j∈Cr
kr

βr PT
j

(
P j x − �T

r,kr
z j

)
. (7)

The second term in (7) is independent of x, and the matrix

pre-multiplying x in the first term in (7) is diagonal and can

in fact be pre-computed. Owing to the structure in A (it acts

independently across pixels) and the diagonal structure of W

and using (6), the x update in (5) can be separated into Np

pixel-wise updates. The update at each pixel j is given as

follows:

x̂T
j =H−1

j (AT
0 W j y j +2M j

2∑

r=1

Kr∑

kr =1

∑

j∈Cr
kr

βr PT
j �T

r,kr
z j ), (8)

where x̂ j =
(
x̂1 j , x̂2 j

)
, M j ∈ R

2×2Np is an opera-

tor that extracts elements corresponding to the j th pixels,

and the 2 × 2 Hessian matrix H j = AT
0 W j A0 +

2 diag
(

M j

∑2
r=1

∑Kr

kr =1

∑
j∈Cr

kr
βr PT

j P j 1
)

, where 1 ∈ R
2Np

denotes a column vector of ones.

2) Sparse Coding and Clustering Step: Here, we update

{z j , Cr
kr

} with fixed x in (P0), using the following sub-

problem:

arg min
{z j ,C

r
kr

}

2∑

r=1

Kr∑

kr =1

∑

j∈Cr
kr

βr

{∥∥�r,kr P j x − z j

∥∥2

2
+ γ 2

r

∥∥z j

∥∥
0

}
.

(9)

The exact solution to (9) can be obtained efficiently. For

a fixed clustering, the optimal sparse code for each patch

is obtained by hard-thresholding as z j = Hγr (�r,kr P j x),

where the operator Hγr (·) zeros out vector elements with

magnitudes less than γr , and leaves other elements unchanged.

Substituting this in (9) yields the following equivalent problem

for clustering each patch:

(r̂ j , k̂ j ) = arg min
1≤kr ≤Kr
r∈{1,2}

βr

{ ∥∥�r,kr P j x − Hγr (�r,kr P j x)
∥∥2

2

+γ 2
r

∥∥Hγr (�r,kr P j x)
∥∥

0

}
. (10)

Solving (10) requires computing the cost with respect to each

transform in the two models to determine the minimum value

(or best match). This can be done efficiently as follows. For

r = 1, each block of �1,kr can assume any of the K̃1

transforms in {�̃1,̃kr
}. Because the cost for the 3D patch in

(10) for r = 1 equals the sum of the corresponding costs

for the constituent 2D material patches, the best matching

transform for each of those 2D patches is found independently

(by searching over the smaller set of K̃1 transforms) and the
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best material-wise transforms are then combined (into a block

diagonal matrix) to provide the best matching transform within

r = 1. Comparing the smallest cost value for r = 1 with the

smallest value within r = 2 yields the best matched model

and corresponding transform (cluster). The patches can be

optimally clustered in parallel and the optimal sparse codes

are then given as ẑ j = Hγr̂ j
(�

r̂ j ,k̂ j
P j x), ∀ j .

The proposed alternating minimization algorithm for (P0)

belongs to the broad class of block coordinate descent (BCD)

optimization algorithms, that are guaranteed to decrease the

objective function over the iterations. Since the objective in

(P0) is lower bounded, it converges in the proposed algorithm.

More detailed theoretical convergence results for the iterates

(convergence to critical points or partial global minimizers,

etc.) can also be shown for DECT-MULTRA similar to the

results shown in recent work [34] (cf. Theorems 1 and 2 in

[34]) for related BCD schemes. Algorithm 1 describes the

proposed iterative scheme for optimizing Problem (P0).

Algorithm 1 DECT-MULTRA Algorithm for (P0)

Input: initial material image x̂(0), pre-learned {�r,kr }, para-

meters βr and γr for r = 1, 2, number of iterations I .

Output: decomposed material images x̂(I ).

1: for i = 0, 1, 2, · · · , I − 1 do

2: (1) Image update: With {ẑ(i)
j , Ĉr(i)

kr
} fixed,

3: compute x̂
(i+1)
j at each pixel j according to (8).

4: (2) Sparse Coding and Clustering: with x̂(i+1) fixed,

update the cluster assignment (r̂
(i+1)
j , k̂

(i+1)
j ) for each

patch using (10), and the updated sparse codes are

ẑ
(i+1)
j = Hγ

r̂
(i+1)
j

(�
r̂
(i+1)
j ,k̂

(i+1)
j

P j x̂
(i+1)) ∀ j .

5: end for

6: return x̂(I )

C. Computational Cost

The computational cost per outer iteration of the proposed

algorithm for (P0) scales as O(m2(
√

K1 + K2)Np), and

is dominated by matrix-vector multiplications in the sparse

coding and clustering step. Importantly, being an image-

domain decomposition scheme, the proposed algorithm does

not involve expensive forward and back-projections.

IV. RESULTS

We employed both numerical simulations with phantoms

and clinical DECT data to evaluate the proposed methods,

namely DECT-MULTRA, DECT-CULTRA, and DECT-ST.

This section describes the experiments evaluating the perfor-

mance of the proposed methods in comparison with competing

methods. Additional experimental results of DECT-MULTRA

and other methods are provided in the supplement.6 A link

to software to reproduce our results will be provided at

http://web.eecs.umich.edu/ fessler/irt/reproduce/.

6Supplementary material is available in the supplementary files/multimedia
tab.

A. Methods for Comparison

1) Direct matrix inversion [30]: solving (P0) by matrix

inversion, i.e., without regularization.

2) DECT-EP [13]: optimizes (P0) with an edge-preserving

regularizer, which is defined as R(x) =
∑2

l=1 βlRl(xl),

where the regularizer for the lth material is Rl(xl) =∑K
k=1 ψl([Cxl]k), where K = Np Nl j , with Nl j denot-

ing the number of neighbors for each pixel xl j , C ∈
R

K×Np is the 2D finite difference matrix and ψl(t) �
δ2

l

3

(√
1 + 3(t/δl)2 − 1

)
[13], where δl is the edge-

preserving parameter for the lth material.

3) DECT-TDL [20]: DECT image-domain decomposition

with regularization based on a learned tensor dictionary

that is trained by K-CPD (an extension of the K-SVD

algorithm [35] to incorporate tensor models). During the

image decomposition process, the tensor sparse codes

are updated using the multilinear orthogonal matching

pursuit (MOMP) method [36].

All the cross-compared methods in the image-domain have

the same data-fidelity term but differ in the regularizer. In

particular, the direct matrix inversion method and DECT-EP

are recent non-adaptive (i.e., not involving learning) methods.

They are quite distinct from the proposed transform learning-

based methods, which rely on a learned sparsification oper-

ator �. The proposed DECT-ST and DECT-CULTRA are

simpler forms of DECT-MULTRA, while the regularizer for

the recent DECT-TDL exploits a tensor synthesis dictionary

model and is quite different from the proposed method. These

methods are recent works in the image-domain decomposition

literature and thus form an important subset of methods to

compare with.

B. Training the Image Models for DECT

We pre-trained dictionaries for DECT-TDL and trans-

forms for the proposed DECT-ST, DECT-CULTRA (see

Section II-B), and DECT-MULTRA. We first chose five train-

ing slices (different from the test slices in our experiments)

of the XCAT phantom [33] and seperated each slice into

water and bone density images according to the table of linear

attenuation coefficients for organs provided for the XCAT

phantom. We grouped water, fat, muscle, and blood into the

water density image, and spine bone and rib bone into the

bone density image. For DECT-MULTRA, we pre-learned a

union of common-material transforms (K̃1 = 15) from 8 × 8

patches with a patch stride of 1 ×1, extracted separately from

the five slices of water images and bone images. A union of

cross-material transforms (K̃2 = 10) was also learned from

8 × 8 × 2 overlapping multi-material patches with a spatial

(2D) patch stride of 1 × 1 that were extracted from five

stacked water+bone (3D) images. The sparsity parameter ηr

was set as 0.21 and 0.17 for the common-material (r = 1) and

cross-material (r = 2) models, respectively. For DECT-ST,

we pre-learned two different transform matrices for water

and bone from 8 × 8 overlapping patches (with patch stride

1 × 1) extracted from the five water and five bone train-

ing images, respectively. The training parameters {λ, η} for

DECT-ST [29] were empirically set as {5.28 ×108, 0.12} and
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Fig. 3. The first row shows the true water and bone material images
(cropped) for a test slice. The second row shows the corresponding
attenuation images (cropped) at high and low energies, respectively.

{9.74×107, 0.15} for water and bone, respectively. For DECT-

CULTRA, we used the same collection of cross-material

transforms as learned for the DECT-MULTRA method. We

ran 2000 iterations of all the transform learning methods to

ensure convergence.

For DECT-TDL, we pre-learned a tensor dictionary from

8 × 8 × 2 overlapping multi-material patches with a spatial

(2D) patch stride of 1 × 1, extracted from the five stacked

water+bone images (the same training slices as used for

DECT-MULTRA and DECT-CULTRA). We used a maximum

patch-wise sparsity level of 50 along with a error tolerance of

1 during sparse coding. We used the above learned transforms

and dictionaries in all experiments.

C. XCAT Phantom Results and Analysis

1) Framework and Data: We evaluated the proposed DECT-

MULTRA, DECT-CULTRA, and DECT-ST methods for

image-domain material decomposition of three test slices of

the XCAT phantom [33]. We compared the image quality of

the decomposed material images obtained with the proposed

methods with those for direct matrix inversion, DECT-EP, and

DECT-TDL.

Fig. 3 shows the true water and bone density images for a

test slice (central slice of the XCAT phatom). The true density

images are of size 1024×1024, with the pixel size being 0.49×
0.49 mm2. We generated noisy (Poisson noise) sinograms of

test slices of the XCAT phantom of size 888 × 984 (radial

samples × angular views) using GE LightSpeed X-ray CT

fan-beam system geometry corresponding to a poly-energetic

source at 140 kVp and 80 kVp with 1 × 106 and 1.86 × 105

incident photons per ray, respectively. We used filtered back

projection (FBP) to reconstruct 512×512 high- and low-energy

attenuation images (Fig. 3 displays them for the central test

slice) with a pixel size of 0.98×0.98 mm2, which are used as

inputs for the image-domain material decomposition methods.

Note that although each pixel of the XCAT phantom has

only one material, our proposed method is quite general and

capable of handling mixed materials in image pixels, which is

demonstrated for the clinical data case in Section IV-D.

To evaluate the performance of various methods quantita-

tively, we computed the root mean square error (RMSE) for

the decomposed material images in a region of interest (ROI).

The ROI was a circular (around the center) region that removed

all the black background area that was not interesting. For a

decomposed material density image x̂l , the RMSE in density

(g/cm3) is defined as

√∑NRO I

j=1 (x̂l j − x?
l j )

2/NRO I , where x?
l j

denotes the downsampled7 true density of the lth material

at the j th pixel location and NRO I is the number of pixels

in a ROI.

2) Decomposition Results and Comparisons: We first

obtained basis material images from the attenuation images

at high and low energies using the direct matrix inversion

method, which were then used to initialize the DECT-EP

method (that uses a convex regularizer). We ran sufficient

(500) iterations of the DECT-EP algorithm, with parameters

{β1 , β2} and {δ1, δ2} being {28, 28.5} and {0.01, 0.02} g/cm3,

respectively. For DECT-ST, DECT-CULTRA, DECT-TDL

and DECT-MULTRA, we initialized the algorithms with the

DECT-EP decompositions. For DECT-TDL, we set a maxi-

mum sparsity level of 50 during sparse coding along with an

error tolerance of 0.3, and set the regularization parameter as

30. For the DECT-ST scheme, the parameters {β1, β2,γ1, γ2}
were set as {50, 70, 0.03, 0.04}. For DECT-CULTRA (K2 =
10), the parameters β and γ were set as 70 and 0.07, respec-

tively. For DECT-MULTRA (
√

K1 = 15, K2 = 10), the para-

meters {β1, β2, γ1, γ2} were set as {50, 50, 0.13, 0.09}. We

empirically selected these optimal parameter combinations for

the various methods to achieve the best image quality and

decomposition accuracy in our experiments.

Table I shows the RMSE values of material images decom-

posed by various methods for different test slices. DECT-

MULTRA clearly achieves the smallest RMSE values in

Table I, followed by DECT-CULTRA, and then the RMSE

values increase gradually from DECT-TDL, DECT-ST, DECT-

EP to direct matrix inversion. To capture the rich features of

basis material images, DECT-CULTRA uses a union of learned

cross-material sparsifying transforms, DECT-TDL uses a pre-

learned overcomplete tensor-based dictionary, and DECT-

MULTRA uses a mixed union of learned transforms. These

three methods achieve smaller RMSE than DECT-ST that

uses only two square sparsifying transforms to sparsify the

two basis materials. Moreover, compared to DECT-TDL and

DECT-CULTRA that exploit only a cross-material model,

DECT-MULTRA learns both common-material properties and

cross-material dependencies, which enables it to outperform

the former methods.

Fig. 4 shows the material density images decomposed by

the direct matrix inversion method, DECT-EP, DECT-TDL,

7The 1024×1024 true density images were downsampled to size 512×512
by linear averaging.
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Fig. 4. Left to right: basis material images decomposed by direct matrix inversion, DECT-EP, DECT-TDL, and DECT-MULTRA. The top and bottom
rows show the water and bone images with display windows [0.7 1.3] g/cm3 and [0 0.8] g/cm3 , respectively.

Fig. 5. Pixel-level clustering in slice 77 with the DECT-MULTRA cross-material model: The top row shows the individual cross-material transforms
for classes 4, 5, 7, and 8, with the transform rows shown as 8 × 16 patches. The middle and bottom rows show the corresponding water and bone
pixels (using estimated densities in the decomposition) grouped into each class, with display windows [0.7 1.3] g/cm3 and [0 0.8] g/cm3 , respectively.

and DECT-MULTRA for a test slice (Slice 77). DECT-EP

reduces the severe streak artifacts and noise observed in

the decomposed water and bone images obtained by direct

matrix inversion. Compared to DECT-EP, DECT-MULTRA

and DECT-TDL further reduce the artifacts and improve edge

details at the boundaries of different materials. However,

compared to DECT-EP, the DECT-TDL result suffers from

poor soft-tissue contrast in the water image. DECT-MULTRA

that exploits both common- and cross-material learned mod-

els removes artifacts while improving image features and
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TABLE I

RMSE OF DECOMPOSED IMAGES OF BASIS MATERIALS FOR DIRECT

MATRIX INVERSION, DECT-EP, DECT-ST, DECT-TDL,

DECT-CULTRA (K2 = 10), AND DECT-MULTRA

(
√

K1 = 15,K2 = 10), RESPECTIVELY, FOR MULTIPLE SLICES OF THE

XCAT PHANTOM. THE UNIT FOR RMSE IS 10−3 g/cm3

Fig. 6. Objective function in (P0) plotted over the iterations of the DECT-
MULTRA algorithm when decomposing the central slice (Slice 77) of the
XCAT phantom.

sharpness of soft-tissue edges, which is clearly noticeable

in the zoom-ins of the water and bone images. The total

runtime for the 500 iterations (using unoptimized Matlab

code on a machine with two 2.70 GHz 12-core Intel Xeon

E5-2697 v2 processors) was 181.9 minutes for DECT-TDL,

whereas it was only 72.1 minutes for DECT-MULTRA. Unlike

DECT-TDL that involves expensive and approximate sparse

coding, DECT-MULTRA performs cheap and closed-form

sparse coding and clustering leading to low runtimes. Addi-

tional comparisons between decomposition error images are

included in the supplement.

3) Clustering and Convergence Behavior of DECT-MULTRA:

To better illustrate the effect of the learned models in DECT-

MULTRA, Fig. 5 shows examples of pixel-level clustering

of water and bone pixels in Slice 77 for the cross-material

model (K1 = 225, K2 = 10). Since each pixel in the

stacked water+bone result of DECT-MULTRA belongs to

many overlapping (3D) patches, it is clustered into either the

common- or cross-material model and further to a specific

transform (class) in the model, by a majority vote among the

(already clustered) patches overlapping it.

Fig. 7. RMSE for the central slice of the XCAT phantom plotted over
the iterations of the DECT-TDL, DECT-ST, DECT-CULTRA, and DECT-
MULTRA algorithms. (a) and (b) show the RMSE of water and bone
images, respectively.

The clustering results show that the cross-material model

effectively captures pixels straddling the boundary regions of

materials. The clustering captures various oriented edges, with

class 4 contains many vertical edges; classes 5 and 7 contain

many oriented edges (e.g., at 45-degree and 135-degree orien-

tations); and class 8 contains mostly horizontal edges. Fig. 5

also illustrates the cross-material transforms for each class,

which show various directional and gradient-like features that

jointly sparsify the water and bone dependencies. Additional

clustering results for the common-material model and the

corresponding transforms are shown in the supplement.

Fig. 6 shows that the objective function of DECT-MULTRA

monotonically decreases and converges quickly over iterations

for decomposing the central slice of the XCAT phantom.

Fig. 7 shows the convergence of the RMSE of water and

bone images for DECT-ST, DECT-TDL, DECT-CULTRA

and DECT-MULTRA over their iterations. DECT-MULTRA

achieves the lowest RMSE and also converges faster than the

other methods.

4) Study of Different Weights for the Common-Material and

Cross-Material Models: The common-material and cross-

material parts of the DECT-MULTRA regularizer in (2)

receive weight β1 and β2, respectively. Here, we tuned β1

and β2 to study the effects of the common-material and cross-

material models. Fig. 8 shows the water and bone mater-

ial images decomposed by DECT-MULTRA using different

weights for the common-material and cross-material models.

A smaller weight β1 for the common-material model and

a correspondingly larger weight β2 for the cross-material
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Fig. 8. Material image decomposition results for DECT-MULTRA with different weights for the common-material and cross-material models. From
left to right: {β1 , β2} are set as {1, 99}, {25, 75}, {50, 50}, {75, 25}, and {90, 10}. The top and bottom rows show the water and bone images with
display windows [0.7 1.3]g/cm3 and [0 0.8]g/cm3 , respectively.

TABLE II

RMSE VALUES OF DECOMPOSED BASIS MATERIAL IMAGES FOR

DIFFERENT CHOICES OF WEIGHTS FOR THE COMMON-MATERIAL AND

CROSS-MATERIAL MODEL TERMS IN (P0). THE UNIT

OF RMSE IS 10−3 g/cm3

model leads to lower contrast and streak artifacts in water

images, but can remove artifacts near boundaries of water

and bone materials (first column of Fig. 8). A larger β1 and

smaller β2 can improve the contrast and eliminate artifacts

in water images, but leads to artifacts in mixed material

regions (forth and fifth columns of Fig. 8). Table II shows

the RMSE values of material images decomposed by DECT-

MULTRA with different weights for the common-material

and cross-material models in (P0). The equal weights case

{β1 = 50, β2 = 50} and the weight combination {β1 =
25, β2 = 75} achieved lower RMSE values compared to the

other weight combinations. Fig. 15 in the supplement shows

the water and bone images obtained by DECT-MULTRA with

β1 = 99 and β2 = 1, which have high RMSE. Thus, we can

infer that in the MULTRA model, both the cross-material and

common-material components are important, but the cross-

material model is slightly more important than the common-

material model.

D. Clinical Data Study

1) Framework and Data: We evaluated the proposed methods

using clinical DECT head data. The patient data was collected

by a Siemens SOMATOM Definition flash CT scanner using

dual-energy CT imaging protocols with dual-source at 80 kVp

and 140 kVp for dual-energy data acquisition. Table III lists the

Fig. 9. Head CT images at 140 kVp (left) and 80 kVp (right). The display
window is [0.1 0.35] cm−1.

TABLE III

DATA ACQUISITION PARAMETERS APPLIED IN HEAD DATA ACQUISITION

protocols of the patient data acquisition. Fig. 9 shows the head

CT images at 140 kVp and 80 kVp. The filtered back projection

method was used to reconstruct these attenuation maps.

2) Decomposition Results: We initialized the DECT-EP

method with the results obtained by direct matrix inversion.

We ran the DECT-EP algorithm for 500 iterations and used

its results to initialize DECT-TDL and DECT-MULTRA.

For DECT-EP, we chose the parameters {β1, δ1, β2, δ2} as

{210.5, 0.008, 211, 0.015}. For DECT-TDL, we set the maxi-
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Fig. 10. First to fourth column: material images obtained by direct matrix inversion, DECT-EP, DECT-TDL, and DECT-MULTRA, respectively. The
top and bottom rows show the water and bone images with display windows [0.5 1.3] g/cm3 and [0.05 0.905] g/cm3 , respectively.

mum sparsity level during sparse coding to 60 along with an

error tolerance of 0.2, and the regularization parameter was

40. We set the DECT-MULTRA parameters {β1, β2, γ2} as

{180, 180, 0.018}. Moreover, for r = 1, we used different

sparsity regularization parameters 0.006 and 0.03 for the water

and bone components of z j in (2), which provided better image

quality.

Fig. 10 shows the water and bone material images decom-

posed by direct matrix inversion, DECT-EP, DECT-TDL, and

DECT-MULTRA. DECT-MULTRA reduces artifacts at the

boundaries of different materials and suppresses noise in

the material images much better than the other methods.

One clearly noticeable improvement is seen in the rightmost

zoom-ins in the water images, where direct matrix inversion

and DECT-EP both missed a dark spot (pointed by the red

arrow numbered 1), while DECT-TDL and DECT-MULTRA

preserved this feature that exists in the high and low energy

attenuation maps in Fig. 9. The structure of the “dark spot”

is an artery (see the high and low attenuation images in

Fig. 9) that contains diluted iodine solution caused by the

angiogram. Iodine is grouped into the bone image, while

in the water image there are only some pixels with tiny

values or values close to zero, thus it is a “dark spot”. More-

over, DECT-MULTRA substantially improves the sharpness

of edges in the soft tissues compared to DECT-TDL. The

rightmost zoom-ins in Fig. 10 show that the marrow structures

have sharper edges in the DECT-MULTRA water image than

for DECT-TDL (pointed by the red arrow numbered 2). The

clinical patient data is much more complex than the XCAT

phantom, and has more structures (e.g., gum, teeth, artery, and

so on). The results obtained by DECT-MULTRA demonstrate

its ability to decompose pixels with mixed materials, and

also the MULTRA model learned from the XCAT phantom

generalized well to clinical head DECT data and outper-

formed the previous techniques. The supplement additionally

illustrates the superior performance of DECT-MULTRA over

DECT-ST and DECT-CULTRA.

V. CONCLUSIONS

This paper presented a new image-domain method dubbed

DECT-MULTRA for DECT decomposition, and evaluated

it relative to several competing methods. The proposed

DECT-MULTRA framework combines conventional PWLS

estimation with regularization based on a mixed union

of learned sparsifying transforms model that exploits both

the common properties among basis material images and

their cross-dependencies. The various investigated sparsifying

transform-based methods (DECT-MULTRA, DECT-CULTRA,

and DECT-ST) reduce the high noise and artifacts observed in

the decompositions obtained by nonadaptive methods such as

direct matrix inversion decomposition and DECT-EP. DECT-

MULTRA successfully combines the advantages of both

DECT-CULTRA and DECT-ST and reduces the artifacts at

the boundaries of different materials and provides improved

sharpness of edges in the soft tissue. In future work, we plan to

apply DECT-MULTRA to more general multi-material (with

several materials) decompositions. In a very recent work,

we showed promise for DECT-CULTRA for this problem [37].

We also plan to study the joint adaptation of the MULTRA

model during the decomposition process, and explore exten-

sions of the proposed approach to low-rank8 + learned sparse

models [38] in future work. Finally, improving image-domain

decomposition methods to match the decomposition quality of

the more accurate direct decomposition methods [11], while

8While low-rank methods constrain a signal to lie in a low-dimensional
subspace, sparsity-based methods often assume the signal lies approximately
in a union of subspaces (a richer model).

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 05,2020 at 02:28:47 UTC from IEEE Xplore.  Restrictions apply. 



1234 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 4, APRIL 2020

retaining the low runtimes of image-domain methods is an

important area for future research.
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VII. ADDITIONAL RESULTS

A. Decomposition Error Images for the XCAT Phantom

Section IV.C of [1] compared the performance of various

methods for decomposing several slices of the XCAT phantom.

Fig. 11 compares the decomposition error images (shown

for Slice 77) for DECT-TDL and DECT-MULTRA. DECT-

MULTRA produces smaller decomposition errors than DECT-

TDL that are clearly noticeable in the regions pointed by the

red arrows in the water and bone error images.

1 1

2 2

Fig. 11: Material decomposition error images (cropped)

for DECT-MULTRA (left column) and DECT-TDL (right

column). The top and bottom rows show the error images

for water and bone with display windows [0.03 0.5] and [0

0.3] g/cm3, respectively.

Fig. 12: Material images decomposed by DECT-ST (top row),

DECT-CULTRA (middle row), and DECT-MULTRA (bottom

row), respectively. The left and right columns show the water

and bone images with display windows [0.5 1.3] g/cm3 and

[0.05 0.905] g/cm3, respectively.

B. Decompositions of Head Data Using ST-based Methods

Section IV.D of [1] evaluated multiple image-domain mate-

rial decomposition methods using clinical DECT head data.

Here, we show further comparisons of decompositions ob-

tained by DECT-ST, DECT-CULTRA, and DECT-MULTRA

for the clinical head data. For DECT-ST, the parameters {β, γ}
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Fig. 13: (a) Selected four ROIs indicated by red squares on the true water image. (b) Left to right: NPS measured within ROIs

of water error images obtained by direct matrix inversion, DECT-EP, DECT-TDL, and DECT-MULTRA. The first to the fourth

rows in (b) show the NPS of the first to fourth ROIs respectively, with display windows [0 0.5] g2/cm6.

Class 1 Class 3 Class 7 Class 11

Fig. 14: Pixel-level clustering in slice 77 with the DECT-MULTRA common-material model: The top row shows the individual

common-material transforms for classes 1, 3, 7, and 11, with the transform rows shown as 8 × 8 patches. The bottom row

shows the corresponding water pixels (using estimated densities in the decomposition) grouped into each class, with display

windows [0.7 1.3] g/cm3.

were set as {150, 0.012} and {200, 0.024} for water and bone,

respectively. For DECT-CULTRA, the parameters {β, γ} were

set as {200, 0.024}. These parameters provided good visual

quality of the decompositions. Fig. 12 shows the material

density images decomposed by DECT-ST, DECT-CULTRA,

and DECT-MULTRA. DECT-MULTRA reduces artifacts (e.g.,

blocky artifacts) at the boundaries of different materials com-

pared to DECT-ST. It also improves the sharpness and contrast

of edges in the soft-tissue compared to DECT-CULTRA.

C. NPS of Water Images Obtained by Different Methods

To evaluate the noise texture with DECT-MULTRA, we

selected several areas (whose positions are indicated by red

squares in Fig. 13a) in the water error image as regions

of interest (ROIs). The noise power spectrum (NPS) is then

measured within each ROI of 30 by 30 pixels. The 2D NPS is

defined as NPS = |DFT2{f}|
2, where f denotes the ROI of

the error image in which gray values are offset to achieve zero

mean, and DFT2{f} is the 2D Discrete Fourier Transform

(DFT) of f . The NPS comparison for different method is

shown in Fig. 13b. It is obvious that DECT-MULTRA achieves

a better NPS than DECT-TDL, especially in ROI #1 and ROI

#2. What’s more, the overall noise in the ROIs of the DECT-

MULTRA decomposition is much less than that for DECT-

EP, and the direct matrix inversion method. This shows the
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superiority of the proposed MULTRA approach.

D. Examples of Common-material Transforms and Corre-

sponding Clustering Results

Fig. 14 shows common-material transforms for four classes

along with the pixels grouped with them in slice 77. Common-

material transforms clearly appear different from the cross-

material transforms, and they capture most of the water areas.

Because patches overlapping the bone areas usually also over-

lap water areas, obviously these areas are mainly grouped with

the cross-material transforms (e.g., clustering results shown in

Fig. 5 of the main paper [1]). So the clustering results for the

common-material classes primarily show one material rather

than mixed materials.

E. Decompositions of XCAT phantom obtained by DECT-

MULTRA with β1 = 99 and β2 = 1

Fig. 15 shows water and bone material images decomposed

by DECT-MULTRA with β1 = 99 and β2 = 1. The weight

combination {β1 = 99, β2 = 1} improves the contrast but

leads to artifacts near the boundaries of water and bone.

Fig. 15: Material images decomposed by DECT-MULTRA

with {β1 , β2} set as {99, 1}. The water and bone images

are shown with display windows [0.7 1.3] g/cm3 and [0

0.8] g/cm3, respectively. The RMSE of water and bone images

are 55.2× 10
−3 g/cm3 and 61.0× 10

−3 g/cm3, respectively.
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