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Abstract— The goals of fMRI acquisition include high
spatial and temporal resolutions with a high signal to noise
ratio (SNR). Oscillating Steady-State Imaging (OSSI) is a
new fMRI acquisition method that provides large oscillating
signals with the potential for high SNR, but does so at the
expense of spatial and temporal resolutions. The unique
oscillation pattern of OSSI images makes it well suited
for high-dimensional modeling. We propose a patch-tensor
low-rank model to exploit the local spatial-temporal low-
rankness of OSSI images. We also develop a practical
sparse sampling scheme with improved sampling inco-
herence for OSSI. With an alternating direction method
of multipliers (ADMM) based algorithm, we improve OSSI
spatial and temporal resolutions with a factor of 12 acqui-
sition acceleration and 1.3 mm isotropic spatial resolution
in prospectively undersampled experiments. The proposed
model yields high temporal SNR with more activation than
other low-rank methods. Compared to the standard grad-
ient echo (GRE) imaging with the same spatial-temporal res-
olution, 3D OSSI tensor model reconstructiondemonstrates
2 times higher temporal SNR with 2 times more functional
activation.

Index Terms— High-resolution fMRI, oscillating steady-
state imaging (OSSI), patch-tensor, low-rank reconstruction,
low-rank plus sparse, prospective undersampling.

I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) mea-

sures neural activity based on blood-oxygenation-level-

dependent (BOLD) contrast and the hemodynamic correlations

[1] by acquiring a time series of T ∗
2 -weighted brain images.

BOLD signal change from fMRI images acquired with the

standard gradient echo (GRE) imaging is small and can

be easily buried in noise. Furthermore, as signal to noise

ratio (SNR) is proportional to voxel size and functional units
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of the brain are on the order of 1 mm or smaller, high SNR is

critical for high-resolution and high-quality fMRI. However,

current methods for SNR improvements are limited: multi-coil

head arrays suffer from diminished returns for deep brain

structures, and high magnetic field systems are costly. This

article focuses on Oscillating Steady-State Imaging (OSSI)

[2], a new fMRI acquisition method that has the potential

to provide 2 times higher SNR than the standard GRE

approach.

OSSI combines balanced gradients and a quadratic RF

phase progression with large phase increments, and leads to a

combination of high SNR of the balanced steady state and

T ∗
2 -weighting of GRE imaging. The quadratic RF phase

cycling is φ(n) = πn2/nc, where n is the RF index and nc

is the cycle length. For nc = 1, 1φ between RF pulses is

180◦, which is balanced steady-state free precession (bSSFP).

For nc ≥ 120 with very small 1φ, the mechanism leads to

bSSFP-like contrast [3]. OSSI acquisitions use 1 < nc < 120

that produce large and oscillating signals. Specifically,

by selecting a short TR with nc = 10, OSSI demonstrates

a similar T ∗
2 -weighted contrast mechanism as GRE with

additional T 0
2-weighting of about 15 ms immediately after the

RF pulse. Details on how the SNR and T ∗
2 -sensitivity vary

with nc and other acquisition parameters can be found in [2].

The OSSI signal oscillates with a periodicity dictated by the

quadratic RF phase cycling, and OSSI images have a periodic

oscillation pattern that repeats every nc images as illustrated

in Figs. 1, S1 and S2. Thus, one must acquire and combine

nc as many images to get images that are free of oscillations

and suitable for fMRI analysis. With standard reconstruction

methods, this need would compromise temporal resolution

by a factor of nc, and the short TR requirement necessary

for steady-state imaging (e.g., TR = 15 ms) limits the time

for traversing k-space and thus limits the single-shot spatial

resolution. We aspire to improve the spatial and temporal

resolutions by designing a sparse sampling scheme and an

accurate reconstruction method.

Past works on reconstructing fMRI time series use models

such as low-rank [4], low-rank and sparse [5], and low-rank

plus Fourier domain sparsity [6], [7] that impose low-rankness

and/or sparsity on matrices of the vectorized space dimen-

sion and time. We found them insufficient for OSSI, as the

oscillations in OSSI images make them neither low-rank nor

sparse along the time dimension. To simultaneously exploit

redundancy in the oscillation pattern of OSSI and the repeated

acquisition for fMRI time courses, we structure OSSI images
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Fig. 1. OSSI images with periodic oscillation patterns are structured along “fast time” and “slow time” dimensions. Every nc = 10 fast time images
can be 2-norm combined to generate fMRI images that are free of oscillations and have T∗

2-sensitivity comparable to standard GRE imaging.

to have two time dimensions and develop a patch-based tensor

model.

Based on the n-rank definition [8] and tensor nuclear norm

[9] for tensor competition [9], [10], global tensor low-rank or

low-rank plus sparse reconstruction models have been applied

to dynamic MRI via space x × space y × time [11], cardiac

MRI via space × time × cardiac phases [12], and quantitative

cardiovascular magnetic resonance multitasking with multiple

time dimensions [13].

Instead of tensor nuclear norm, global tensor low-rank

models have also been explored via Tucker decomposi-

tion or higher-order SVD (HOSVD) [8], [14] for dynamic

MRI with sparse core tensors [15], high-dimensional MR

imaging with sparsity constraints and tensor subspace esti-

mated from navigator data [16], multi-dimensional dynamic

phosphorus-31 magnetic resonance spectroscopy and imag-

ing [17], and electron paramagnetic resonance oxygen

imaging [18] with specialized sparse sampling strategies.

Furthermore, the CANDECOMP/PARAFAC (CP) decompo-

sition [8] was exploited for multi-contrast dynamic cardiac

MRI denoising [19] and for tensor completion with designed

regular sub-Nyquist sampling with applications for fMRI

acceleration [20].

Previous patch-wise tensor low-rank models impose

low-rank constraints on spatial submatrices of the tensor

unfoldings [21], [22], select patches with both local and

non-local similarities and exploit patch-tensor low-rankness

using HOSVD for multi-contrast MRI reconstruction [23],

or compare CP and Tucker decompositions for local and

global low-rank tensor denoising [19]. Because both CP

and Tucker decompositions require selection of tensor ranks,

our work focuses on tensor nuclear norm minimization

that avoids explicit selection of tensor ranks, and structures

local patch-tensors to exploit the local and high-dimensional

spatial-temporal low-rankness. We further design a sparse sam-

pling scheme that prospectively undersamples the data with

a 12-fold acceleration for 2D and a 10-fold acceleration for

3D. The proposed model provides high-resolution reconstruc-

tions with high temporal SNR (tSNR) and more functional

activation than global tensor or matrix low-rank models.

Patch-tensor low-rank (patch-tensor LR) reconstruction and

the sparse sampling schemes are new for fMRI, and the

application to OSSI fMRI data is also new. Compared to

standard GRE imaging, the proposed OSSI tensor model

demonstrates a factor of 2 tSNR improvement for fMRI with

2 times larger functional activation.

The article is organized as follows. Section II presents

notations and definitions for tensors. Section III proposes the

patch-tensor model and optimization algorithm. Section IV

develops the incoherent undersampling and describes the

experimental setup for OSSI fMRI studies. Section V

demonstrates the improved functional performance using the

proposed approach compared to other reconstruction and

acquisition methods. Section VI discusses future directions,

and Section VII concludes the article.

II. BACKGROUND AND NOTATION

A tensor is a multidimensional array [8]. We denote tensors

according to their dimensions. One-dimensional tensors or

vectors are denoted by bold lowercase letters, e.g., x, and

tensors of dimension two or higher are denoted by bold

capital letters, e.g., X. Scalars are denoted by italic letters,

e.g., x .

The inner product of two tensors X, Y ∈ CI1×I2×···×IN is

defined as the sum of the element-wise products [14],

hX, Yi =
I1

∑

i1=1

I2
∑

i2=1

· · ·
IN
∑

iN =1

y∗
i1 i2 ···iN

xi1 i2 ···iN ,

where ∗ denotes the complex conjugate. Naturally, the norm

of tensor X is kXk =
√

hX, Xi.
The process of reforming a tensor to matrices by reordering

the vectors of the tensor is known as matricization or unfold-

ing. Each dimension of a tensor is known as a mode, and

the number of modes is known as the tensor’s order or

number of dimensions. After unfolding, the tensor becomes

matrices of different modes, and the number of these matri-

ces equals the number of dimensions. Figure 2 illustrates

unfolding a three-dimensional tensor to three matrices. The

mode-n unfolding of tensor X is denoted by X(n), accordingly,

refolding the mode-n matrix back to X is REFOLDn

(

X(n)

)

.

As seen in [8] and [14], different articles may use different

permutations of the vectors to get the unfoldings; the specific

order is unimportant as long as it is consistent.

The n-rank of X is the column rank of X(n) and is denoted

by rank
(

X(n)

)

= rn . Therefore, X is a rank-(r1, r2, . . . , rN )

tensor.
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Fig. 2. A 3D patch-tensor (left), its three matrix unfoldings of different modes (top right), and the singular values of the unfoldings demonstrating
the patch-tensor low-rank (bottom right).

III. RECONSTRUCTION METHODS

This section introduces the patch-tensor LR model based

reconstruction problem, the optimization algorithm, important

implementation details, and other reconstruction methods for

comparison.

A. Tensor Model Problem Formulation

fMRI involves acquiring a time series of images to track

brain activity. In OSSI fMRI, the images periodically oscillate

with every nc time points along with the regular fMRI time

course as shown in Fig. 1. Typically, we 2-norm combine

every nc consecutive and non-overlapping images to get

uniform images for fMRI analysis [2]. To simultaneously

exploit the redundancy in OSSI oscillatory patterns and

the repetition along fMRI time series, we structure OSSI

fMRI images into two time dimensions. The fast oscillation

dimension is called “fast time”, and the fMRI time dimension

is called “slow time”.

To improve both spatial and temporal resolutions for OSSI

fMRI, and to model the reproducibility in both fast and slow

time dimensions, we propose a tensor low-rank model for the

undersampled reconstruction. The tensor dimensions include

vectorized space, fast time = nc, and slow time. Since the

exact form of the oscillations is resonant frequency dependent

and resonant frequency usually varies slowly across space,

low-rankness involving the fast oscillations is a local feature

(more similarities among neighboring pixels than between

non-local pixels or over the whole image). Furthermore, due to

the complexity of functional activity, imposing low-rankness

on temporal blocks instead of the whole fMRI time series

improves the modeling accuracy. Therefore, we propose a

patch-tensor LR model with limited spatial and temporal

extent, and impose low-rankness on all the unfoldings of the

patch-tensor.

The whole fMRI time series is broken into non-overlapping

time blocks. For each block, we reshape 3D (space x ×
space y × time t) or 4D (space x × space y × space z × time t)

OSSI images into 4D (x × y × fast time nc × slow time ts )

or 5D (x × y × z × fast time nc × slow time ts ) tensors. We

partition the 4D or 5D tensors into patches, and vectorize

all the spatial dimensions to form 3D low-rank patch-tensors

(vectorized space sp × nc × ts ). Figure 2 visualizes an in vivo

3D patch-tensor, its three unfoldings, and the corresponding

singular values demonstrating the low-rankness of the unfold-

ings. The patch-tensor is from the center of a brain with no

activation, and Fig. S5(a) plots the corresponding log-scale

singular values. Figure S5(b) presents low-rank unfoldings of

a different patch-tensor in an activated region.

The proposed patch-tensor LR model based reconstruction

problem with non-overlapping patches is

arg min
X

M
∑

m=1

3
∑

i=1

λi rank (Pmi (X)) + 1

2
kA(X) − yk2

2, (1)

where X ∈ Cx×y (×z)×t is a complex OSSI fMRI time block to

be reconstructed. Linear operator P(·) partitions and reshapes

its input into M locally low-rank patch-tensors with Pm(X) ∈
C

sp×nc×ts , m = 1, . . . , M . Pmi (X) = Pm(X)(i) denotes

the mode-i unfolding of the mth tensor patch Pm(X). λi is

the regularization parameter for low-rankness of the mode-i

unfolding. Linear operator A represents the MRI physics; it

consists of coil sensitivities and the non-uniform Fourier trans-

form (NUFFT) including undersampling. y denotes sparsely

sampled k-space measurements.

We focus on the following convex relaxation of (1):

arg min
X

M
∑

m=1

3
∑

i=1

λikPmi (X)k∗ + 1

2
kA(X) − yk2

2. (2)

This formulation encourages low-rankness of all the

patch-tensor unfoldings by minimizing the sum of their sin-

gular values. Meanwhile, the data fidelity term encourages

correspondence between the images and the acquired k-space

samples.

B. Optimization Algorithm

The regularizers in the unconstrained cost function (2) can

be handled via the alternating direction method of multipliers
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(ADMM) [10], [24] applied to the equivalent constrained

optimization problem:

arg min
Z

min
{Xi }

M
∑

m=1

3
∑

i=1

λikPmi (Xi )k∗ + 1

2
kA

(

Z
)

− yk2
2

subject to Xi = Z, i = 1, 2, 3, (3)

with Xi ∈ Cx×y (×z)×t , i = 1, 2, 3 constrained to be equal

to Z ∈ Cx×y (×z)×t . The scaled form of the corresponding

augmented Lagrangian is

L ({Xi }, Z, {Ui })

=
M

∑

m=1

3
∑

i=1

λikPmi (Xi )k∗

+ 1

2
kA(Z) − yk2

2 + ρ

2

3
∑

i=1

kXi − Z + Uik2 − ρ

2

3
∑

i=1

kUik2.

(4)

We update the variables {Xi }, Z and scaled dual variables {Ui }
sequentially, holding the other variables fixed.

For non-overlapping patch-tensors, the update step for each

patch of {Xi }3
i=1 is:

Pm(Xk+1
i ) = arg min

Pm (Xi )

Lmi

(

Pm(Xi ), Zk , Uk
i

)

(5)

for m = 1, . . . , M and i = 1, . . . , 3 at iteration k + 1, where

Lmi = λikPmi (Xi )k∗ + ρ

2
kPm(Xi ) − Pm(Zk − Uk

i )k2

= λikPmi (Xi )k∗ + ρ

2
kPmi (Xi ) − Pmi

(

Zk − Uk
i

)

k2
F .

(6)

Because Pmi (Xi ) and Pmi

(

Zk − Uk
i

)

are matrices, patch

update Pmi

(

Xk+1
i

)

is easily obtained with a singular value

soft-thresholding operator SVT(·) with threshold λi/ρ,

Pmi

(

Xk+1
i

)

= arg min
Pmi(Xi )

Lmi

(

Pmi (Xi ) , Zk , Uk
i

)

= SVTλi/ρ

(

Pmi

(

Zk − Uk
i

))

. (7)

Therefore, the update for the patches of {Xi } becomes

Pm(Xk+1
i ) = REFOLDi

(

Pmi

(

Xk+1
i

))

. (8)

We parallelize this step over all the unfoldings and patches.

The Z update simplifies to:

Zk+1 = arg min
Z

L

(

{Xk+1
i }, Z, {Uk

i }
)

= arg min
Z

(

1

2
kA(Z) − yk2

2

+ ρ

2

3
∑

i=1

kZ −
(

Xk+1
i + Uk

i

)

k2

)

. (9)

We use the conjugate gradient method for this least-squares

minimization.

The scaled dual variables {Ui }3
i=1 are updated in the usual

ADMM way by

Uk+1
i = Uk

i + Xk+1
i − Zk+1. (10)

C. Practical Considerations
1) Random Cycle Spinning: The singular value soft-

thresholding operation for non-overlapping patch-tensors leads

to blocking artifacts at the boundaries of the patches. Using

overlapping patches would be computationally intensive, so

instead we apply random cycle spinning in every iteration as

in [25], [26]. We perform a randomly chosen circular shift

along each dimension of the input tensor before partitioning

and reshaping, and unshift the tensor back after updating

and placing the patch-tensors together. Accordingly, the actual

update for the patches of each Xi is

Pm

(

SHIFT

(

Xk+1
i

))

= REFOLDi

(

SVTλi/ρ

(

Pmi

(

SHIFT

(

Zk − Uk
i

))))

. (11)

2) Overlapping Time Blocks: We reconstruct each fMRI time

block separately to lighten the memory burden, so random

cycle spinning only removes patch boundary artifacts within

each block. To further reduce potential artifacts at the temporal

boundaries of the blocks, we reconstruct overlapping time

blocks and discard additional time points near the boundaries

for all the methods. Figure S9 illustrates how the ranges and

discarded portions of the time blocks are selected.

3) ADMM Implementation Details: We scale the k-space data

to have maximum magnitude of 1 before applying ADMM.

With this normalization, simply setting the regularization

parameters λ1 = λ2 = 1 works well. Because X(3) has lower

rank thanX(1) and X(2) as shown in Fig. 2, we choose λ3 = 2

to provide more weighting to the low-rankness of X(3).

For ADMM penalty parameter ρ, we investigated a range

of ρ values and found ρ = 121 empirically to be a good

initialization. Furthermore, for our application, using varying

penalty parameter or increasing ρ after a number of inner

iterations contributes to a faster convergence. After T inner

iterations updating variables {Xi }, Z, and {Ui }, the following

updates are performed in the outer iteration:
ρ 7→ rρ

Ui 7→ Ui/r. (12)

We chose rate r = 3, and rescale the scaled dual variable

Ui after updating ρ. This scheme is adapted from [10], [24].

Algorithm 1 summarizes the method.

D. Other Reconstruction Approaches

We compare the proposed reconstruction method to matrix

local low-rank (MLLR) [27], global tensor low-rank (GTLR),

patch-tensor low-rank plus sparse (patch-tensor L+S), and

conjugate gradient SENSE [28], [29] with an edge-preserving

regularizer (regularized CG-SENSE).

MLLR imposes low-rank constraints on space × time matri-

ces by vectorizing image patches for the spatial dimension.

The cost function for MLLR is the same as setting i = 1

in (2). GTLR enforces low-rankness on all the unfoldings of

the tensor of size space xy × nc × ts without taking patches.

The cost function is the same as (2) with M = 1 and without

spatial partitioning. GTLR reconstructs fMRI time blocks and

is global in spatial sense but not in temporal sense. It is

less convenient for computation to impose low-rankness on

a temporal global tensor.
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Algorithm 1 Patch-Tensor Low-Rank Reconstruction

Input: A, y, {λi } = [1 1 2], ρ = 121, r = 3, S = 2, T = 11

Output: OSSI images Zk+1

1: for s = 0, . . . , S − 1 do

2: for t = 0, . . . , T − 1 do

3: k = s ∗ T + t

4: Update Zk+1 using (9)

5: for i = 1, 2, 3 do

6: Update Xk+1
i using (11)

7: Uk+1
i = Uk

i + Xk+1
i − Zk+1

8: end for

9: end for

10: Update ρ and each Ui using (12)

11: end for

12: return Zk+1

The optimization problem for patch-tensor L+S is

arg min
L,S

1

2
kA(L + S) − yk2

2 +
M

∑

m=1

3
∑

i=1

λikPmi (L)k∗

+ µk8(S)k1,

where L, S ∈ Cx×y×t denote the image components to be

reconstructed and 8 denotes 2D Fourier transform along both

fast and slow time dimensions to enhance the Fourier domain

sparsity of the sparsity component S. The low-rank component

L has the same regularization as in (2), and λi and µ are

regularization parameters.

The optimization problem for regularized CG-SENSE is

arg min
X

1

2
kA(X) − yk2

2 +
J

∑

j=1

ψ
(

[CX] j

)

,

where X ∈ Cxy denotes one vectorized image of the time

series, C ∈ RJ×xy is the 2D spatial finite difference matrix

with J = 2xy, and ψ is the Huber potential function.

We used ADMM to perform the MLLR, GTLR, and

patch-tensor L+S reconstructions. The ADMM parameters

for patch-tensor L+S were the same as (12) for patch-tensor

LR. The CG update in the ADMM inner iterations and the

regularized CG-SENSE reconstruction were implemented with

the Michigan Image Reconstruction Toolbox [30].

IV. ACQUISITION METHODS

Each oscillating state (index n) of OSSI was acquired with

quadratic RF phases φ(n) = πn2/nc, cycle length nc = 10,

TR = 15 ms, and flip angle = 10◦ for the desired SNR and

T ∗
2 -sensitivity [2]. The short TR of 15 ms limits the readout,

and nc = 10 compromises temporal resolution. Hence, sparse

sampling is important for improving OSSI spatial and temporal

resolutions.

This section develops practical sparse sampling schemes

with increased sampling incoherence for OSSI, and

describes human fMRI studies. We collected 2D “mostly

sampled” with retrospective undersampling, 2D prospectively

undersampled, and 3D prospectively undersampled data.

With FOV = 220 mm, slice thickness = 2.5 mm, and matrix

size = 168×168, the spatial resolution = 1.3×1.3×2.5 mm3

for all experiments.

A. Variable-Density Spiral Sampling Trajectory

We focus on variable-density (VD) spiral trajectories that

travel quickly through k-space. The sampling density of

VD spirals varies at different k-space radii. By dense sampling

in the center of k-space where the MR energy concentrates

and sparse sampling at outer k-space, VD spirals can reduce

imaging time and off-resonance blur [31], [32] compared to

uniform-density (UD) spirals. We design VD spirals based

on [33], [34] with uniform density and over-sampling in the

k-space center, and then linearly decrease the sampling density

as the spirals approach the outer part of k-space. The trajectory

is parameterized by (ni , a, b, d), where ni = number of

interleaves, a = effective FOV (in mm) at k-space center,

b = effective FOV at the edge of k-space, and d denotes

the number of central k-space points with uniform sampling

density determined by a.

We used (ni , a, b, d) = (9, 310, 110, 300) for the retro-

spective sampling pattern with spiral-out readouts. The effec-

tive FOV for ni = 9 interleaves was a = 310 mm at the

center of k-space for the first d = 300 sampling points, then

decreased linearly to b = 110 mm at the edge of k-space. The

readout length for each interleave was 8.3 ms. The k-space of

each image can be mostly covered with all the 9 interleaves.

However, due to the variable-density nature of the trajectories,

the 9-interleave trajectory was still undersampled by approxi-

mately a factor of 1.5, and we refer to this sampling pattern as

“mostly sampled”. We chose a = 300 mm and b = 80 mm for

prospective undersampling with spiral-in readouts to increase

T ∗
2 -sensitivity, and the readout length was 7.4 ms.

We took 1 interleave out of ni = 9 VD spirals as the

undersampled trajectory. Compared to a UD spiral with the

same FOV and matrix size, the single-shot undersampled

trajectory provided a factor of 12 acceleration in-plane as

presented in Fig. 3 (a). We selected the VD spiral parameters

for a good balance between the undersampling factor and

reconstruction performance.

B. Incoherent Sampling for Time Dimensions and 3D

The proposed spiral trajectory provides aggressive under-

sampling in-plane and would introduce reconstruction artifacts

if used without regularization. As we are using a tensor model

with two time dimensions for the undetermined reconstruction

problem, we prefer the sampling pattern to be incoherently

varying along the two dimensions for artifact reduction [35].

Therefore, we rotate the VD spiral using a golden-angle

based approach for each temporal frame to avoid overlapping

trajectories in both fast and slow time dimensions.

We define an interleave index k = 0, . . . , K − 1 for a time

series of OSSI images with K interleaves in total. For 2D

retrospective sampling with multi-shot acquisition, the rotation

angle for each interleave k was

ga · k + 2 · ga · bk/nc/nic , (13)

where ga = 111.246◦ is the golden angle, nc = 10 is the size

of fast time dimension, ni is the number of interleaves, and b·c
denotes the floor function. The acquisition for the interleaves
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Fig. 3. (a) Compared to the fully sampled trajectory, the designed single-shot variable-density spiral trajectory for each time frame or kz plane
enables a 12-fold acquisition acceleration. (b) Prospective 2D undersampling pattern with the incoherent rotations between fast time (the oscillation
dimension) and slow time (the fMRI time dimension). (c) 3D undersampled stack-of-spirals providing a 10-fold acceleration with one spiral for the
outer kz planes, two spirals for the two central kz planes, and golden-angle rotations between kz planes.

first looped through OSSI oscillation states 1 to nc, then looped

through multi-shot 1 to ni , and after that proceeded to the next

slow time point.

For 2D prospective undersampling, only 1 VD interleave

was collected for each image, and the rotation angle was

ga · k + ga · bk/ncc . (14)

The index k looped through OSSI fast time oscillations for

every slow time point. Figure 3 (b) presents the prospective

sampling pattern. The baseline rotation was determined by the

golden angle. The second terms in (13) and (14) were designed

specifically to increase sampling incoherence along slow time

as shown in Figs. S6 and S7 for prospective undersampling

and retrospective undersampling, respectively.

For 3D prospective undersampling, we used a stack of

VD spirals with 2-shot acquisition at the 2 central kz

planes and single-shot acquisition at other kz locations as in

Fig. 3 (c), providing a 10-fold acceleration compared to the

fully sampled k-space. Rotations in (14) were applied, where

k looped through OSSI oscillations, then kz planes, and finally

the slow time points.

Because of the increased sampling incoherence in the two

time dimensions, the angular dimension of k-space can be

mostly covered with sampling trajectories of 9 or 10 consecu-

tive time frames. We used this feature and combined k-space

data of every 10 slow time points to compute data-shared

initialization for reconstruction, which helped decrease the

number of CG iterations and computation time.

C. Human fMRI Studies

We implemented the OSSI pulse sequence and the proposed

sampling scheme using GE’s standard pulse programming

environment EPIC. All the data were collected on a 3T

GE MR750 scanner (GE Healthcare, Waukesha, WI) with

a 32-channel head coil (Nova Medical, Wilmington, MA)

using the proposed retrospective and prospective undersam-

pling schemes. Prospectively undersampled OSSI studies

were further compared to standard GRE fMRI with matched

spatial-temporal resolution.

The human studies were carried out under IRB approval.

The fMRI task was a left vs. right reversing-checkerboard

visual stimulus of 210 s with 10 s rest, 5 cycles of left or

right stimulus of 20 s (20 s L/20 s R × 5 cycles).

2D OSSI used an oblique slice passing through the visual

cortex. The 2D mostly sampled data were acquired with

multi-shot VD spirals with number of interleaves ni = 9,

volume TR = 1.35 s (TR ·nc ·ni ), and spiral-out TE = 2.7 ms.

The rotation angles between interleaves and time frames were

determined by (13). The number of time frames (both fast time

nc and slow time) was 1490 with 10 s discarded acquisition to

ensure the steady state. The retrospectively undersampled data

only contained the first VD interleave of every 9 interleaves.

The 2D prospectively undersampled data were col-

lected with single-shot VD spirals (ni = 1) with volume

TR = 150 ms (TR ·nc) and spiral-in TE = 11.7 ms. The rota-

tion angles of the spirals were selected by (14). The number

of fast time frames was 13340 with 10 s discarded acquisition.

As every nc images were 2-norm combined for fMRI analysis,

the temporal resolution for the prospectively undersampled

data was 150 ms. 2D GRE fMRI images with the same spatial

resolution and temporal resolution of 150 ms as OSSI were

also acquired for comparison. Specifically, GRE imaging used

multi-shot spiral acquisition with ni = 3, TR = 50 ms, Ernst

flip angle = 16◦, and spiral-in TE = 30 ms. Each interleave

was VD spiral with (ni , a, b, d) = (3, 240, 120, 300) and

readout length = 21.9 ms.

For 3D imaging, an oblique slab was selected. Prospectively

undersampled OSSI was compared to GRE imaging with

matched spatial resolution and matched temporal resolution

of 2.1 s. The number of 3D volumes was 96 for the 200 s

task. For OSSI, the number of kz planes nz = 12, volume TR

= 2.1 s (TR · nc · nz), and spiral-in TE = 10.3 ms. For GRE,

multi-slice TR = 700 ms with 14 slices, multi-shot acquisition

with ni = 3, spiral-in TE = 30 ms, Ernst flip angle = 16◦,
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and same VD spiral trajectories for each slice as in 2D GRE

imaging were used.

For calculation of coil sensitivity maps, we collected

images with a standard spin-warp sequence at TR = 50 ms,

TE = 6.3 ms, and Ernst flip angle = 16◦. The 32-channel

coil images were compressed to 16 virtual coils for 2D and

24 virtual coils for 3D via PCA [36], and coil sensitivity maps

were calculated using ESPIRiT [37], [38]. We also created

coil-combined images for extraction of the brain region using

the Brain Extraction Tool [39].

D. Performance Evaluation

The reconstruction and functional performances were eval-

uated with normalized root-mean-square difference (NRMSD)

for retrospectively undersampled data, activation maps, and

tSNR maps.

The retrospectively undersampled reconstruction X̂

was compared to Xref reconstruction from “mostly

sampled” data by regularized CG-SENSE, using the metric

NRMSD = kXref − X̂k/kXrefk.
Every nc = 10 reconstructed images of OSSI were combined

via 2-norm for functional analysis. The data from the first

cycle (40 s) of the task were discarded to avoid the modeling

error in the initial rest period. To reduce scanner drift effects,

we detrended the data using the first 4 discrete cosine trans-

form basis functions for both OSSI combined and GRE fMRI

images.

The background of the activation map was the mean of

reconstructed fMRI images. The activated regions were deter-

mined by correlation coefficients above a 0.45 threshold.

Correlation coefficients were defined by correlating the fMRI

time course for each voxel with the task-related reference

waveform, and the reference waveform was given by con-

volving the task with the canonical hemodynamic response

function [40]. The tSNR maps were generated by dividing

the time course mean by the standard deviation of the time

course residual (without the mean and the task) for each voxel.

NMRSD within the brain (excluding the scalp and skull) from

reconstructed images, number of activated voxels at the lower

third of the brain (where the visual activation concentrates),

and averaged tSNR within the brain were calculated for

quantitative evaluations.

V. RECONSTRUCTION AND RESULTS

This section compares OSSI undersampled reconstructions

using the proposed tensor model and other low-rank related

approaches. 3D OSSI reconstruction is further compared to

multi-slice GRE to demonstrate the SNR advantage of OSSI.

A. Regularization Parameter Adjustment

To ensure that different reconstructions have similar

spatial-temporal resolutions, we compared the local impulse

responses [41], [42] of the reconstruction methods. Specifi-

cally, we added an impulse perturbation εA
(

δ j,t

)

to the under-

sampled k-space data y and reconstructed the perturbed data

with different models. We selected j and t to be in the spatial

and temporal center of the time block being reconstructed,

respectively, and we chose ε = 1 (about 10% of the OSSI

signal magnitude). Accordingly, the local impulse response is

h( j, t) =
(

B
(

εA
(

δ j,t

)

+ y
)

− B(y)
)

/ε, where B(·) denotes a

reconstruction method.

Profiles of the impulse response along spatial dimension

and temporal dimensions can help assess the spatial-temporal

sharpness of the reconstructions for B 6= A−1. As shown

in Fig. S8, we selected regularization parameters to ensure

that impulse responses of different reconstructions had similar

peaks and were close to the magnitude for the regularized

CG-SENSE reconstruction. Based on the ratios for the λi

values in (2), the final 2D reconstruction parameters were

{λi } = [1 1 2] ∗ 0.4 for patch-tensor LR, λ3 = 1.6 for MLLR,

{λi } = [1 1 2] ∗ 4 for GTLR, {λi } = [1 1 2] ∗ 0.3 and µ = 3

for patch-tensor L+S.

Furthermore, with carefully adjusted regularization

parameters, reconstructing overlapping time blocks or

non-overlapping time blocks for the fMRI time series led to

similar results, as demonstrated by example time courses and

spectra of the patch-tensor LR reconstruction in Fig. S10.

B. Retrospective and Prospective 2D Reconstructions

OSSI 2D retrospectively and prospectively undersampled

data were reconstructed using the proposed method and the

comparison methods. OSSI 2D mostly sampled data were

reconstructed using regularized CG-SENSE. For the proposed

retrospectively undersampled reconstructions, the number of

time points before combination = 330 for every overlapping

time block, and the patch-tensor size = 64 (8 ∗ 8) × 10 × 33.

Similarly for prospectively undersampled data, the number

of time points = 420 for each overlapping time block, and

the patch-tensor size = 64 (8 ∗ 8) × 10 × 42. We used

S = 2 outer iterations, T = 11 inner iterations for ADMM,

and 4 iterations for the CG update of Z. The number of

iterations for regularized CG-SENSE reconstruction was 19.

All the OSSI reconstructions were initialized with data-shared

images.

Figure 4 shows reconstructions from mostly sampled data,

the proposed patch-tensor LR, MLLR, GTLR, regularized

CG-SENSE, and patch-tensor L+S models. The fast time

image reconstructed using the proposed approach is less noisy

compared to the mostly sampled reference and other recon-

structions. The oscillatory patterns and the high-resolution

details of the fMRI image (after 2-norm combination of the

fast time images) are also well preserved. The difference maps

after combination is presented in Fig. S11.

Figure 5 gives functional results including activation maps

and tSNR maps. The proposed model enables high-resolution

fMRI with larger activated regions than other undersampled

reconstructions, and maintains the SNR advantage of OSSI

with tSNR values that are comparable to the mostly sam-

pled reconstruction. patch-tensor LR regularization and the

patch-tensor L+S model present similar results, suggesting

that L+S decomposition and Fourier sparsity along the two

time dimensions were not critical given the patch-tensor

modeling of the data.

The quality of the retrospectively undersampled

reconstructions was further assessed with ROC analysis. ROC

curves for the activation maps of different reconstruction
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Fig. 4. Fast time images from the retrospectively undersampled reconstructions are compared to the mostly sampled results. The proposed approach
outperforms other methods with less noisy fast time images, less structure in the difference maps before combination, and high-resolution 2-norm
combined images.

Fig. 5. Activation maps and temporal SNR maps from retrospectively undersampled reconstructions. A contiguity (cluster-size) threshold of 2 was
applied for the activated regions. The proposed model provides more functional activation than other approaches and a high temporal SNR, and
shows similar results as the patch-tensor low-rank plus sparse model.

approaches were compared with mostly sampled activation

at the lower third of the brain as ground truth. Figure S12

shows that the proposed approach leads to the largest area

under the ROC curve.

Figure 6 presents prospectively undersampled reconstruc-

tions. Compared to OSSI regularized CG-SENSE reconstruc-

tion and standard GRE fMRI, the proposed approach yields

more functional activity, less noisy time courses, and higher

tSNR with the largely improved spatial and temporal resolu-

tions. Other qualitative and quantitative comparisons for 2D

prospectively undersampled reconstructions are in Fig. S15

and Table S1.

Table I summarizes quantities from different reconstructions

including NRMSD for the whole dataset before and after fast

time combination, number of activated voxels, and average

tSNR within the brain. The proposed patch-tensor modeling

outperforms other reconstruction methods with more func-

tional activation and a high average tSNR.

Reconstruction comparisons of a different subject are

presented in Figs. S18, S19, S20, and Table S3 for retro-

spectively undersampled data, and Fig. S21 and Table S4 for

prospectively undersampled data.

C. 3D OSSI to GRE Comparison

The 3D OSSI prospectively undersampled data were recon-

structed using the proposed model with number of time points

before combination = 120 for each non-overlapping time

block. The patch-tensor size = 108 (6 ∗ 6 ∗ 3) × 10 × 12,

and {λi } = [1 1 2]. Number of ADMM outer iterations S = 2,

inner iterations T = 11, and number of CG iterations = 7 for
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TABLE I

QUANTITATIVE COMPARISONS OF OSSI RETROSPECTIVELY

UNDERSAMPLED RECONSTRUCTIONS

Fig. 6. OSSI tensor model prospectively undersampled reconstruction
demonstrating high-resolution and high SNR fMRI with high-resolution
background and larger activated regions for the activation map, less noisy
time course (red curve showing the reference waveform), and higher SNR
for the temporal SNR map.

every Z update. We used data-shared images to initialize each

Xi and Z. The multi-slice GRE data were reconstructed with

regularized CG-SENSE with 19 CG iterations for each slice.

Figure 7 shows the activation maps of 3D OSSI and

multi-slice GRE. The proposed tensor model almost fully

recovers the high-resolution structures of the OSSI images

with a factor of 10 acquisition acceleration, and presents larger

activated regions than multi-slice Ernst angle GRE.

Figure 8 shows the 3D tSNR maps, where OSSI provides

higher average tSNR than GRE. The OSSI acquisition com-

bined with the proposed undersampling design and tensor

model reconstruction enable high-resolution and high SNR

fMRI.

Quantitatively as presented in Table II, the proposed 3D

OSSI tensor reconstruction improves the amount of functional

activity and average tSNR within the brain by a factor of

2 more than standard GRE imaging at matched spatial and

temporal resolutions.

VI. DISCUSSION

To our knowledge, the patch-tensor LR model is new for

fMRI data. Reshaping and partitioning the data to patch-

tensors facilitates exploiting high-dimensional structures, and

considering all the unfoldings of the tensors better uses

spatial-temporal low-rankness. Therefore, the model is flexible

and adaptive to other high-dimensional image reconstruction

problems that satisfy the patch-tensor LR constraints. Local

models may be more valid than assuming low-rankness of the

whole dataset.

Other reconstruction methods such as MLLR account for

the locality of low-rank representations while treating the time

dimension as a whole. GTLR separates the fast and slow

time dimensions but enforces the low-rankness globally on the

images. The proposed patch-tensor LR model combines the

advantages of both methods by exploiting local low-rankness

with two time dimensions, and improved the reconstruction

and functional performances.

Another feature of the work is an incoherent sparse

sampling scheme formed by properly rotating VD spirals along

fast time and slow time. The angular dimension of the k-space

can be mostly covered with different frames, and the trajectory

is well accommodated with the spatial-temporal regularizers

used here. Moreover, we noticed that for 3D undersampling,

increasing number of interleaves in the central kz planes

greatly improves the amount of functional activation recovered

and reduces false positives. The sampling pattern is practical,

and the prospective undersampling is easy to implement.

We selected and vectorized patches of spatial size 8 × 8

(2D) or 6 × 6 × 3 (3D) based on the empirical reconstruction

performance. The choice of spatial patch size is still an

open question. At one extreme, the spatially global GTLR

preserves little activation for 2D retrospectively undersampled

reconstruction as presented in Fig. 5 and Table I, but performs

similar to the proposed method for 2D prospective undersam-

pling as in Fig. S15 and Table S1. In both cases, GTLR used

temporal patches.

We investigated multi-scale low-rank decomposition [26]

with multi-scale patch-tensors of the OSSI images to explore

the idea that different parts of the data may have different den-

sity and different low-rankness; however, it provided limited

performance improvement and made the reconstruction more

time-consuming. We also tested a 4D patch-tensor LR model

with two spatial dimensions and two temporal dimensions. The

cost function is the same as (2) without vectorizing spatial

dimensions in Pm . That model gave similar results as the 3D

patch-tensor LR approach, making it well suited for potential

applications such as GRE fMRI. The comparison results of

the new models including functional maps, ROC curves, and

quantitative evaluations are in Figs. S16, S17, and Table S2.

We imposed low-rankness on all the unfoldings of all the

patch-tensors. However, some unfoldings of some patches are

not very low-rank, especially for the second unfolding that

is greatly affected by the nonlinear fast time oscillations.

Therefore, nonlinear mapping approaches such as kernel meth-

ods or neural networks, that map the fast time data to a

low-dimensional linear subspace [44], may further improve

the model capacity, which might also help optimize combina-

tion of the OSSI fast time images instead of combing with

2-norm to yield band-free post-combined images. Because

OSSI images are not very sparse in the Fourier domain, as

shown in Figs. S3 and S4, the patch-tensor L+S reconstruction
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Fig. 7. 3D OSSI (prospectively undersampled) and GRE activation maps of the central 10 slices. A contiguity (cluster-size) threshold of 2 was
applied for the activated regions. With matched spatial and temporal resolutions, 3D OSSI acquired and reconstructed using the proposed method
presents 2 times more activated voxels compared to multi-slice Ernst angle GRE imaging at TE = 30 ms.

Fig. 8. 3D OSSI (prospectively undersampled) and GRE temporal SNR maps of the central 10 slices. At the same spatial-temporal resolution, 3D
OSSI acquired and reconstructed using the proposed method presents at least 2 times higher temporal SNR than standard multi-slice GRE imaging.

results in a very small sparse component seen in Fig. S14.

Therefore, future work on adaptive sparsity [45] might be

beneficial.

Because low-rank approaches might cause spatial-temporal

smoothing that makes tSNR comparisons less compelling, we

assessed and matched the amount of regularization for fast

time image reconstructions based on their impulse responses.

To evaluate spatial resolutions of the fMRI dynamics for dif-

ferent reconstructions after combination, we compared spatial

autocorrelations of the different correlation maps (at the center

of the brain without activation). Figure S13 demonstrates that

the proposed approach has similar autocorrelation profiles
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TABLE II

FUNCTIONAL PERFORMANCES OF PROPOSED OSSI PROSPECTIVELY

UNDERSAMPLED RECONSTRUCTION AND STANDARD GRE IMAGING

as the mostly sampled reconstruction and preserves fMRI

spatial resolution. We also compared ROC curves of different

approaches with varying activation thresholds; these curves are

invariant to the degrees of freedom for performance evaluation.

The effective degrees of freedom calculation for the nonlinear

reconstructions will be explored in the future as in [43].

The proposed sparse sampling uses fast VD spirals

with designed rotations along the two time dimensions to

increase sampling incoherence for the spatial-temporal models.

However, the sampling incoherence from VD spirals is limited

by the shape of the spiral, and the non-Cartesian nature

requires NUFFT that needs more computation than FFT for

Cartesian sampling. More importantly, designing the sampling

pattern according to reconstruction models can improve the

performance [46], [47], so we will further explore joint

optimization of the sampling pattern and the reconstruction

model.

VII. CONCLUSION

We proposed a novel fMRI reconstruction method based

on patch-tensor low-rank for the oscillating nature of OSSI

images. We also introduced an incoherent variable-density

sampling pattern that is easy to implement, and retrospectively

and prospectively undersampled the multi-coil data with less

than 10% of the fully sampled k-space. By exploiting the

inherent high-dimensional structure and local spatial-temporal

low-rankness of OSSI images, the proposed model was able

to recover high-resolution images and preserve functional

signals compared to matrix local low-rank and tensor low-rank

methods. It further enabled 3D high SNR fMRI with 2 times

more functional activity and 2 times higher tSNR compared

to standard GRE imaging.
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High-Resolution Oscillating Steady-State fMRI using Patch-Tensor Low-Rank Reconstruction

Supplementary Material

Shouchang Guo, Jeffrey A. Fessler, and Douglas C. Noll

This supplemental material presents: (1) OSSI signal properties including example OSSI images and time courses before

and after Fourier transform, and tensor low-rankness for patch-tensors at different regions of the brain; (2) the incoherent

trajectory rotation schemes for both retrospective and prospective undersampling; (3) reconstruction details including effects of

overlapping time blocks and regularization parameter selection based on impulse perturbation; (4) reconstruction comparisons

for 2D retrospective and prospective undersampling; (5) other reconstruction methods including 4D patch-tensor low-rank and

multi-scale tensor low-rank; (6) reconstruction results of a different subject.

I. OSSI SIGNAL PROPERTIES

This section presents in-vivo OSSI images and time courses, and demonstrates local low-rankness of OSSI fMRI time-series.

Figure S1 shows 2 cycles of OSSI fast time images with periodic oscillation patterns. Figure S2 provides example time courses

from non-activated and activated ROIs of the OSSI images. Figure S3 gives 1D Fourier transformed (along fast time) results

for the complex time series corresponding to the images in Figure S1, and Figure S4 presents the Fourier transformed time

courses of Figure S2. OSSI images are not very sparse before or after Fourier transform due to the nonlinear oscillations.

Figure S5 gives log-scale singular value plots of non-activated and activated 3D patch-tensors from an OSSI fMRI time block.

Fig. S1. Example OSSI fast time magnitude images for 2 cycles of the periodic oscillations.

Fig. S2. OSSI fast-time time courses (magnitudes) of 4 different voxels within a brain region that is not activated (left) or activated (right). The
signal oscillation pattern repeats every nc = 10 TRs, as indicated by the vertical green dashed line.
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Fig. S3. Results after taking 1D Fourier transform along fast time of the OSSI images shown in Figure S1. Magnitude is shown and temporal
frequency 0 is in “middle” (6th image from left). OSSI fast time images are not very sparse in the Fourier domain.

Fig. S4. Results after taking 1D Fourier transform along fast time (every nc = 10 TRs) of the OSSI time courses in Figure S2. Magnitude of one
cycle is shown and temporal frequency 0 is in “middle”. OSSI fast time signals are not very sparse in the Fourier domain.

Fig. S5. Log-scale singular value plots for all 3 unfoldings of a 3D patch-tensor (a) at the center of the brain with no activation (b) at the activation
region. For both activated and non-activated patch-tensors, the unfoldings show a similar pattern that X(3) has lower rank than X(1) and X(2).
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II. INCOHERENT SAMPLING PATTERN

This section illustrates how the proposed spiral rotations help increase temporal incoherence for OSSI acquisition. For

prospective undersampling, the baseline rotation of ga · k for frame k leads to an angle difference of 10ga mod 360◦ = 32◦

between consecutive slow time points. With the additional angle of ga · ⌊k/nc⌋, the angle difference becomes 11ga mod
360◦ = 144◦, which increases sampling incoherence along slow time as compared in Figure S6. Similarly for retrospective

undersampling, the angle difference between undersampled slow time points changes from 90ga mod 360◦ = −68◦ to

92ga mod 360◦ = 155◦ with improved incoherence as in Figure S7.

Fig. S6. Demonstration of the incoherent rotations for 2D prospective undersampling. The proposed scheme of ga · k + ga · ⌊k/nc⌋ in (a)
increases the sampling incoherence along slow time compared to a baseline rotation scheme of ga · k in (b).
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Fig. S7. Demonstration of the incoherent rotations for 2D retrospective undersampling. The proposed scheme of ga · k + 2 · ga · ⌊k/nc/ni⌋ in
(a) increases the sampling incoherence along slow time compared to a baseline rotation scheme of ga · k in (b).
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III. RECONSTRUCTION ADJUSTMENT

This section presents practical adjustments to the reconstruction methods including local impulse responses for regularization

parameter selection and structuring overlapping time blocks for the OSSI fMRI time course.

A. Regularization Parameter Selection

The local impulse response profiles in Figure S8 demonstrate that we have tuned the different reconstruction methods so

that they are regularizing the data by similar amounts without excessive spatial or temporal smoothing.

Fig. S8. Impulse responses of different reconstructions along spatial dimension (left) and temporal dimension (right). Enlarging the central part
of the impulse responses (bottom left and right) shows that impulse responses for different reconstruction models are of similar magnitudes and
preserve spatial and temporal resolution with relatively small tails. Because the perturbation of δ(j, t) added to the image domain is real, and the
imaginary parts of the impulse responses are small enough to be neglected, the real parts of the impulse responses are shown.

B. Overlapping Time Blocks

Figure S9 illustrates ranges of overlapping time blocks and the formation of the entire reconstructed time course after

discarding the overlapping portions. Figure S10 compares activated time courses and spectra from reconstructions using

non-overlapping time blocks or overlapping time blocks. With carefully adjusted regularization parameters, reconstructing

overlapping blocks or non-overlapping blocks led to similar results.
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Fig. S9. The OSSI fMRI time course is broken into overlapping time blocks of about 300 time points (denoted by black horizontal lines) for
reconstruction. The overlapping portion of 20 time points at both ends of the time blocks (denoted by red crosses) are discarded after reconstruction
except for the beginning and ending portions of the whole time series.

Fig. S10. For both prospectively and retrospectively undersampled data, reconstructing overlapping time blocks or non-overlapping time of the
whole OSSI fMRI time course leads to very similar time courses and spectra.
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IV. COMPARISON AND RESULTS

This section presents additional reconstruction results for 2D retrospectively and prospectively undersampled data.

A. 2D Retrospectively Undersampling

Figure S11 shows difference maps of 2-norm combined reconstructions compared to the mostly sampled case. ROC curves

for the activation maps of different reconstruction approaches in Figure S12 shows that the proposed approach leads to the

largest area under the ROC curve (AUC). Mostly sampled activation at the lower third of the brain was used as ground truth, and

the activation threshold ranges from -0.1 to 0.99 with a 0.001 spacing. Figure S13 presents autocorrelations of the correlation

maps for different reconstructions. It verifies that the proposed approach preserves spatial resolution for fMRI. Figure S14

shows the low-rank and sparse components (10 fast time points) of the patch-tensor low-rank plus sparse reconstruction. The

sparse component is small and contains little information.

Fig. S11. Reconstructed images and difference maps (compared to the mostly sampled reconstruction) of different models after 2-norm
combination. The proposed approach presents less residual in the difference map.

Fig. S12. ROC curves of different reconstruction approaches with mostly sampled activation at the lower third of the brain as ground truth. The
proposed method outperforms other approaches with the largest area under the ROC curve (left). The ROC curve of the proposed approach is also
the closest to the top left corner, especially for the reasonable range with false positive rate less than 0.05 (right).
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Fig. S13. Correlation maps and normalized autocorrelations of the correlation map for the different reconstructions at the center of the brain
without activation. The proposed model results in similar autocorrelation profiles along diagonal as the mostly sampled reconstruction.

Fig. S14. The low-rank and sparse components (first 10 fast time points) of the patch-tensor low-rank plus sparse reconstruction with 2D
retrospectively undersampled data. The sparse component is very small and contain limited structural information.
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B. 2D Prospectively Undersampling

Figure S15 and Table S1 give qualitative and quantitative results for 2D prospectively undersampled data reconstructed

using patch-tensor LR, MLLR, GTLR, CG-SENSE, and patch-tensor L+S approaches with comparison to GRE fMRI. The

patch-tensor LR, GTLR, and patch-tensor L+S models result in similar performances. The 2D prospectively undersampled

data have better temporal resolution (by a factor of 9) than the 2D retrospectively undersampled data, which helps improve

the quality of the data-shared initialization and thus the reconstructions.

Fig. S15. Activation maps, temporal SNR maps, and time courses in the activated regions from prospectively undersampled reconstructions and
GRE fMRI. A contiguity threshold of 2 was applied for the activation maps. The patch-tensor low-rank, global tensor low-rank, and patch-tensor
low-rank plus sparse reconstructions outperform other approaches with more functional activation and cleaner time courses.

TABLE S1

QUANTITATIVE COMPARISONS OF OSSI 2D PROSPECTIVELY UNDERSAMPLED RECONSTRUCTIONS

Proposed MLLR GTLR
CG-

SENSE
Patch
L+S

GRE

# Activated
Voxels

322 233 311 149 324 83

Average
tSNR

32.8 25.6 32.1 18.2 32.4 9.8
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V. 4D PATCH-TENSOR AND MULTI-SCALE PATCH-TENSOR LOW-RANK MODELS

This section focuses on comparisons to other models including 4D patch-tensor low-rank and multi-scale patch-tensor low-

rank. Instead of vectorizing the spatial dimensions as for the proposed 3D patch-tensor low-rank, 4D (or 5D for 3D OSSI fMRI

with 2 time dimensions) patch-tensor low-rank model keeps all the spatial dimensions of the tensor for imposing low-rank

constrains. The cost function is the same as equation (2) without vectorization of spatial dimensions in Pm. The cost function

for the multi-scale low-rank model we tested can be expressed as

argmin
X

3
∑

n=1

Mn
∑

m=1

3
∑

i=1

λi

∥
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∥
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∥

∥

∥
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where Xn is composed of scale-n patch-tensors. Specifically, we imposed tensor low-rank on patches of different spatial

dimension 4× 4, 8, and 14. Here, P(·) partitions and reshapes the input into Mn low-rank patch-tensors for different scale n.

The regularization parameters for the new models were also selected based on their impulse responses with similar magnitudes

to the 3D patch-tensor LR model.

All three models are of similar reconstruction and functional performance. Figure S16 provides activation maps and tSNR

maps of 3D patch-tensor LR, 4D patch-tensor LR, and multi-scale patch-tensor LR with comparison to the mostly sampled

reconstruction. Quantitative evaluations including NRMSD and functional activation are in Table S2. Figure S17 shows the

ROC curves for the models.

Fig. S16. Activation maps and temporal SNR maps from retrospectively undersampled data and reconstruction models including the proposed 3D
patch-tensor low-rank, 4D patch-tensor low-rank, and multi-scale tensor low-rank. A contiguity threshold of 2 was applied for the activated regions.
All three approaches perform well with similar amounts of activation and temporal SNR.
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TABLE S2

QUANTITATIVE COMPARISONS OF OTHER OSSI 2D RETROSPECTIVELY UNDERSAMPLED RECONSTRUCTIONS

Mostly
Sampled

3D Patch 4D Patch Multi-Scale

NRMSD
Before Comb

- 0.17 0.19 0.17

NRMSD
After Comb

- 0.05 0.06 0.05

# Activated
Voxels

229 168 145 146

Average
tSNR

37.1 43.6 41.4 41.2

Fig. S17. ROC curves of different reconstruction models including the proposed 3D patch-tensor low-rank, 4D patch-tensor low-rank, and multi-
scale tensor low-rank. The activation of the mostly sampled data at the lower third of the brain is used as ground truth. All three models perform
well with large areas under the ROC curve (left), and the ROC curve of the 4D patch-tensor low-rank model is slightly closer to the top left corner
than other approaches, especially for the reasonable range with false positive rate less than 0.05 (right).
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VI. OTHER SUBJECTS

This section presents 2D reconstruction results of a different subject. Both retrospectively and prospectively undersampled

data were acquired with spiral-out trajectories. Retrospectively undersampled reconstruction results before and after 2-norm

combination, and difference maps compared to the mostly sampled data are in Figure S18. Figure S19 presents functional

activation maps and tSNR maps demonstrating that the proposed model outperforms other approaches with more activation.

Table S3 summarises quantitative values of different reconstructions. Figure S20 provides ROC curves of the activation maps.

2D prospectively undersampled reconstruction results including activation maps, tSNR maps, and example time courses are

given in Figure S21. Table S4 gives the corresponding quantitative evaluations.

Fig. S18. The retrospectively undersampled reconstructions of a different subject are compared to the mostly sampled results. The proposed
approach outperforms other methods with less noisy fast time images and less structure in the difference maps before and after combination.

TABLE S3

RETROSPECTIVELY UNDERSAMPLED RECONSTRUCTIONS OF A DIFFERENT SUBJECT

Mostly
Sampled

Proposed MLLR GTLR
CG-

SENSE
Patch
L+S

NRMSD
Before Comb

- 0.19 0.28 0.2 0.36 0.2

NRMSD
After Comb

- 0.12 0.13 0.13 0.14 0.13

# Activated
Voxels

225 166 52 48 34 164

Average
tSNR

40.2 41 25.2 46.1 19 42.1



13

Fig. S19. Activation maps and temporal SNR maps from retrospectively undersampled reconstructions of a different subject. A contiguity (cluster-
size) threshold of 2 was applied for the activated regions. The proposed model provides more functional activation than other approaches and
shows similar results as the patch-tensor low-rank plus sparse model.

Fig. S20. ROC curves for a different subject with mostly sampled activation at the lower third of the brain as ground truth. The proposed method
outperforms other approaches with the largest area under the ROC curve (left). The ROC curve of the proposed approach is also the closest to the
top left corner, especially for the reasonable range with false positive rate less than 0.05 (right).

TABLE S4

PROSPECTIVELY UNDERSAMPLED RECONSTRUCTIONS OF A DIFFERENT SUBJECT

Proposed MLLR GTLR
CG-

SENSE
Patch
L+S

# Activated
Voxels

225 120 223 89 227

Average
tSNR

33.5 21.1 34.9 20.6 34
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Fig. S21. Activation maps, temporal SNR maps, and activated time courses from prospectively undersampled reconstructions of a different subject.
A contiguity (cluster-size) threshold of 2 was applied for the activation maps. The patch-tensor low-rank, global tensor low-rank, and patch-tensor
low-rank plus sparse reconstructions outperform other approaches with more functional activation and cleaner time courses.
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