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T he development of compressed-sensing (CS) methods for 
magnetic resonance (MR) image reconstruction led to an 
explosion of research on models and optimization algo-

rithms for MR imaging (MRI). Roughly 10 years after such 
methods first appeared in the MRI literature, the U.S. Food 
and Drug Administration (FDA) approved certain CS meth-
ods for commercial use, making CS a clinical success story for 
MRI. This article reports on several key models and optimi-
zation algorithms for MR image reconstruction. Included are 
both methods that the FDA has approved for clinical use and 
more recent methods being considered in the research commu-
nity that use data-adaptive regularizers. It presents in a single 
survey the many algorithms devised to exploit the structure of 
the system model and regularizers used in MRI.

Introduction

Scope
Although the title of this article begins with “optimization meth-
ods,” in practice, one first defines a model and cost function and 
then applies an optimization algorithm. There are several ways 
to partition the space of models, cost functions, and optimiza-
tion methods for MRI reconstruction, such as smooth versus 
nonsmooth cost functions, static versus dynamic problems, and 
single- versus multiple-coil data. This article focuses on the 
static reconstruction problem because the dynamic case is rich 
enough to merit its own survey article. It emphasizes algorithms 
for multiple-coil data (parallel MRI) because modern systems 
all have multiple channels and advanced reconstruction methods 
with undersampling are most likely to be used for parallel MRI 
scans. The main families of parallel MRI methods include

 ■ sensitivity encoding (SENSE) methods that model the coil 
sensitivities in the image domain [1]

 ■ generalized autocalibrating partial parallel acquisition 
(GRAPPA) methods that model the effect of coil sensitivi-
ty in k-space [2]

 ■ calibrationless methods that use low-rank or joint sparsity 
properties [3].
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This article considers all three approaches, emphasizing 
SENSE methods for simplicity. (Figures in this article are re-
produced in Jupyter notebooks with code in the open-source 
language Julia; these are available in the Michigan Image Re-
construction Toolbox at http://github.com/JeffFessler/MIRT.jl.)

Measurement model
The signals recorded by the sensors (receive coils) in MR scan-
ners are linear functions of the object’s transverse magnetiza-
tion. That magnetization is a complicated and highly nonlinear 
function of the radio-frequency pulses, gradient waveforms, 
and tissue properties governed by the physics of the Bloch 
equation [4]. Quantifying tissue properties using nonlinear 
models is a rich topic of its own [5], but we focus here on the 
problem of reconstructing images of the transverse magnetiza-
tion from MR measurements.

Ignoring noise, a vector s CM!  of signal samples recorded 
by an MR receive coil is related (typically) to a discretized ver-
sion x CN!  of the transverse magnetization via a linear Fou-
rier relationship:
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where iov  denotes the k-space sample location of the ith sam-
ple (units: cycles/cm) and x jv  denotes the spatial coordinates 
of the center of the jth pixel (units: cm). In the usual case 
where the pixel coordinates x jv" , and k-space sample loca-
tions iov" , are both on appropriate Cartesian grids, matrix F 
is square, corresponding to the (2D or 3D) discrete Fourier 
transform. In this case ,( / )F FN11 =- l  so reconstructing x 
from s is simply an inverse fast Fourier transform (FFT), and 
that approach is used in many clinical MR scans.

The reconstruction problem becomes more interesting 
when the k-space sample locations are on a non-Cartesian grid 
[6], when the scan is “accelerated” by recording M N1  sam-
ples, when non-Fourier effects like magnetic field inhomoge-
neity are considered [7] and/or when there are multiple receive 
coils. In parallel MRI, let ls  denote the samples recorded by 
the lth of L receive coils. Then one replaces the model (1) with

 ,s FC xl l=  (2)

where Cl  is an N N#  diagonal matrix containing the coil-
sensitivity pattern of the l coil on its diagonal. Note that F does 
not depend on l; all coils see the same k-space sampling pat-
tern. Stacking up the measurements from all coils and account-
ing for noise yields the following basic forward model in MRI:
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where A CML N! #  denotes the system matrix, y CML!  denotes 
the measured k-space data, and x CN!  denotes the latent 
image. The noise in k-space is well modeled as complex white 
Gaussian noise. For extensions that consider other physics ef-
fects, such as relaxation and field inhomogeneity, see [8].

The goal in MR image reconstruction is to recover x from 
y using the model (3). All MR image reconstruction problems 
are underdetermined because the magnetization of the under-
lying object being scanned is a space-limited continuous-
space function on ,R3  yet only a finite number of samples are 
recorded. Nevertheless, the convention in MRI is to treat the 
object as a finite-dimensional vector x CN!  for which the 
M N$  appropriate Cartesian k-space samples are considered 
“fully sampled” and any M N1  is considered “accelerated.”  
Sampling-pattern design is a topic of ongoing interest with 
renewed interest in data-driven methods [9].

The matrix F in (3) is known prior to the scan because the 
k-space sample locations iov" , are controlled by the pulse-
sequence designer. In contrast, the coil-sensitivity maps Cl" , 
depend on the exact configuration of the receive coils for each 
patient. To use the model (3), one must determine the sensitivity 
maps from some patient-specific calibration data, e.g., by joint 
estimation [10], regularization [11], or subspace methods [12].

Cost functions and algorithms

Quadratic problems
When ML N$ , i.e., when the total number of k-space samples 
acquired across all coils exceeds the number of unknown im-
age pixel values, the linear model (3) is overdetermined. If, in 
addition, A is well conditioned, which depends on the sampling 
pattern and the coil-sensitivity maps, then it is reasonable to 
consider an ordinary least-squares (LS) estimator 
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In particular, for fully sampled Cartesian k-space data 
where F 1 =-  ,( / )FN1 l  this LS solution simplifies to x =t  

C C C F yL L
l l l l l1

1
1

1R R=
-

=
- ,l l^ ^h h  which is trivial to implement 

because each Cl  is diagonal. This is known as the optimal coil-
combination approach [13]. For regularly undersampled Car-
tesian data, where only every nth row of k-space is collected, 
the matrix FFl  has a simple block structure with n n#  blocks. 
This structure facilitates noniterative blockwise computation 
known as SENSE reconstruction [1]. This form of LS estima-
tion is widely used in clinical MR systems.

Regularized LS
For undersampled problems N( )ML 1  the LS solution (4) is 
not unique. Furthermore, even when ,ML N$  A is often 
poorly conditioned, particularly for non-Cartesian sampling. 
Some form of regularization is needed in such cases. Some 
early MRI reconstruction work used quadratically regularized 
cost functions leading to optimization problems of the form:

 argminx Ax y Tx
2
1

2
2

2
2

x CN

b= +-
!

,t  (5)

where 02b  denotes a regularization parameter and T de-
notes a K N#  matrix transform, such as finite differences. 
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The conjugate gradient (CG) algorithm is well suited to 
such quadratic cost functions [6], [7]. The Hessian matrix 

bA A T T+l l  is often approximately Toeplitz [14], so a CG 
algorithm with circulant preconditioning is particularly ef-
fective. Although the quadratically regularized LS cost func-
tion (5) is passé in the CS era, CG is often an inner step for 
optimizing more complicated cost functions [15].

Edge-preserving regularization
The drawback of the quadratically regularized cost function (5) 
with T as finite differences is that it blurs image edges. To avoid 
this blur, one can replace the quadratic regularizer <Tx 2< 2  
with a nonquadratic function ( ),Tx}  where typically } is con-
vex and smooth, such as the Huber function, a hyperbola, or 
the Fair potential function z z( ) ( ( ) ,)logz 12} d d d= - +/ /| | ||  
among others as follows:
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Such methods have their roots in Bayesian methods based 
on Markov random fields. The nonlinear CG algorithm is an 
effective optimization method for cost functions with such 
smooth edge-preserving regularizers. Another appropriate op-
timization algorithm is the optimized gradient method (OGM), 
a first-order method having optimal worst-case performance 

among all first-order algorithms for convex cost functions with 
Lipschitz continuous gradients [16]. The OGM has a conver-
gence rate bound that is twice as good as that of Nesterov’s fast 
gradient method [17].  Figure 1 compares two of these methods 
for the case where T represents finite differences and } is the 
Fair potential with . ,0 1d =  which approximates total varia-
tion (TV) fairly closely while being smooth.

Sparsity models: Synthesis form
The scan time in MRI is proportional to the number of k-space 
samples recorded. Reducing scan time in MRI can reduce cost, im-
prove patient comfort, and reduce motion artifacts. Reducing the 
number of k-space samples ML to well below N requires stronger 
modeling assumptions about ,x  and sparsity models are prevalent 
[18], [19]. Two main categories of sparsity models are the synthesis 
approach and the analysis approach. In a synthesis model, one as-
sumes x Bz=  for some N K#  matrix ,B  where coefficient vec-
tor z CK!  should be sparse. In an analysis model, one assumes 
Tx is sparse, for some K N#  transformation matrix .T

A typical cost function for a synthesis model is

 , ,argminx Bz z ABz y z
2
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where the 1-norm is a convex relaxation of the 0,  counting 
measure that encourages z  to be sparse. Typically, B is a wide 
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FIGURE 1. A comparison of CG and OGM convergence for single-coil MRI reconstruction with edge-preserving regularization (akin to anisotropic total varia-
tion with corner rounding). (a) A k-space sampling pattern where only 34% of the phase encodes are collected. (b) The true image. (c) The initial image 
from zero-filled k-space data. (d) The image with minimizer xt  of (6) (both CG and OGM converge to the same limit x ;t  CG: edge-preserving regularization). 
(e) A graph showing cost function ( )xkW  in (6). (f) A graph showing normalized root mean squared error (NRMSE) /x x xk 2 2< < < <-  versus iteration .k
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matrix (often called an overcomplete dictionary) so that one 
can represent x  well using only a fraction of the columns of .B  
The classical approach for (7) is the iterative soft-thresholding 
algorithm (ISTA) [20], also known as the proximal gradient 

method (PGM) [21] and proximal forward-backward splitting 
[22], having the simple form

 ( ), ,/z z D B A ABz y dsoftk k k1
1 b= - -+
- l l^ h  (8)

where the soft-thresholding function is defined by ( , )z csoft =

z( ) ( , )maxz c 0sign -| |  and { }D ddiag=  is any positive defi-
nite diagonal matrix such that D B A AB- l l  is positive semi-
definite [23].

The ISTA update (8) applies to the 1-norm in (7). If we 
replace that 1-norm with some other function ( ),z}  then one 
replaces (8) with the more general PGM update of the form

( ), / ,z z D B A ABz y dproxk k k1
1 b= - -}b+
- l l^ h

where the proximal operator of a function f is defined by

 ( ) ( ) .argminv x v xf
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2

x
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Traditionally ,I; ;D 2< <= B A ABl l  but computing that spectral 
norm (via the power iteration) requires considerable computa-
tion for parallel MRI problems in general. However, for Carte-
sian sampling, N)F F Il  so it suffices to have .B C CB DN )l l  
Often the sensitivity maps are normalized such that ,C C I=l  
in which case B B DN )l  suffices. If, in addition, Bl is a Parse-
val tight frame, then ,B B I)l  so using D IN=  is appropriate. 
For non-Cartesian sampling, nonnormalized sensitivity maps, 
or general choices of ,B  finding D is more complicated [23].

Although ISTA is simple, it has an undesirably slow ( / )O k1  
convergence bound, where k denotes the number of iterations. 
This limitation was first overcome by the fast iterative soft-
thresholding algorithm (FISTA) [24], also known as the fast 
PGM (FPGM), which has an ( / )O k1 2  convergence bound. A 
recent extension is the proximal OGM (POGM), which has a 
worst-case convergence bound about twice as good as that of the 
FISTA/FPGM [25]. Both the FISTA and POGM are essentially 
as simple to implement as (8). Recent MRI studies have shown 
the POGM converging faster than the FISTA, as one would 
expect based on the convergence bounds [26], particularly 
when combined with adaptive restart [25]. So, the POGM (with 
restart) is a recommended method for optimization problems 
having the form (7). Figure 2 provides POGM pseudo-code for 
solving composite optimization problems like the MRI synthe-
sis reconstruction model (7). Figure 3 shows that the POGM 
converges faster than the FISTA and ISTA for minimizing (7).

Sparsity models: Analysis form
A potential drawback of the synthesis formulation (7) is that 
x Bz.  may be a more realistic assumption than the strict 
equality x Bz=  when z is sparse. The analysis approach avoids 
constraining xt  to lie in any such subspace (or union of sub-
spaces when B is wide). For an analysis-form sparsity model, a 
 typical optimization problem involves a composite cost function 
consisting of the sum of a smooth term and a nonsmooth term:

 b ,argminx Ax y Tx
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2
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FIGURE 2. The POGM for minimizing ( ) ( )f gx x+ , where f  is convex with 
L-Lipschitz smooth gradient and g  is convex. See [25] for the adaptive 
restart version.
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iterations to converge than the POGM, which is consistent with the  
2# better worst-case bound of the POGM.
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where T is a sparsifying operator, such as a wavelet transform, 
or represents finite differences, or both [18]. The expression 
(10) is general enough to handle combinations of multiple 
regularizers, such as wavelets and finite differences [19] by 
stacking the operators in T and possibly allowing a weight of 
1-norm. When T represents finite differences, the regularizer 
is called TV [11], and combinations of TV and wavelet trans-
forms are useful [19]. Although the details are proprietary, the 
FDA-approved method for CS MRI for at least one manufac-
turer is related to (10) [27].

When T is invertible, such as in an orthogonal wavelet 
transform, the optimization problem (10) can be rewritten as

b, ,argminx T z z AT z y z
2
11 1

2
2

1
z

= = - +- -t t t

which is simply a special case of (7) with TB 1= - . Typically, 
B is wide, and T is tall, so this simplification is usually not possible.

In the general case (10) where T is not invertible, the opti-
mization problem is much harder than (7) due to the nondiffer-
entiability of the 1-norm with the matrix T. The noninvertible 
case (with redundant Haar wavelets) is used clinically [27]. 
The PGM for (10) is

 ,argminx x x Tx
2
L

k k1 2
2

1
x

b= - ++ u  (11)

where ( )Ax y-( )x Ax 1 Lk k k_ - lu  denotes the usual gradi-
ent update and the Lipschitz constant is .; ;AL 2

2< <=  Unfortu-
nately, there is no simple solution for computing the proximal 
operator (9) in (11) in general, so inner iterative methods are 
required, typically involving dual formulations [24]. This chal-
lenge makes the PGM, FPGM, and POGM less attractive for 
(10) and has led to a vast literature on algorithms for problems 
like (10), with no consensus on what is best. The difficulty of (8) 
is the main drawback of analysis regularization, whereas a pos-
sible drawback of the synthesis regularization in (11) is that often 
K N&  for overcomplete B.

Approximate methods
One popular “work-around” option is to “round the cor-
ner” of the 1-norm, making smooth approximations like 
z; ; .  .z 2; ; e+  This approximation is simply the hyperbola 

function, which has a long history in the edge-preserving 
regularization literature. All of the gradient-based algo-
rithms mentioned for edge-preserving regularization are 
suitable candidates when a smooth function replaces the 
1-norm. Smooth functions can shrink values toward zero, 
but their proximal operators never induce sparsity by setting 
many values exactly to zero. Whether a thresholding effect 
is truly essential is an open question. Hereafter we focus on 
methods that tackle the 1-norm directly without any such 
approximations.

Variable splitting methods
Variable splitting methods replace (10) with an exactly equiva-
lent constrained minimization problem involving an auxiliary 
variable, such as ,z Tx=  e.g.,

 b .argminx Ax y z
2
1min 2

2
1

:x z z Tx
< < < <= - +

=
t  (12)

This approach underlies the split Bregman algorithm [28], 
various augmented Lagrangian (AL) methods [29], and the 
alternating direction multiplier method (ADMM) [30]. The 
AL for (12) is
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where CK!c  denotes the vector of Lagrange multipliers and 
02n  is an AL penalty parameter that affects the convergence 

rate but not the final image .xt  Defining the scaled dual vari-
able /1_h nc  and completing the square lead to the following 
scaled AL:

( , ; , ) .x z Ax y z Tx zL
2
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2
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n
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An AL approach alternates between descent updates of the 
primal variables ,x  z  and an ascent update of the scaled dual 
variable .h  The z  update is simply soft thresholding:

( , / ).z Txsoftk k k1 h b n= ++

The x  update minimizes a quadratic function:

( ) ( ( )) .x A A T T A y T zk k k1
1

1 hn n= + + ++
-

+l l l l

A few CG iterations is a natural choice for approximating the 
x  update. Finally, the h  update is

( ).Tx zk k k k1 1 1h h= + -+ + +

The unit step size here ensures dual feasibility [31]. A draw-
back of variable splitting methods is the need to select the 
parameter .n  Adaptive methods have been proposed to help 
with this tuning [31]. One could apply the ADMM to the 
synthesis-regularized problem (7), though again it would re-
quire parameter tuning that is unnecessary with the POGM.

The conventional variable split in (12) ignores the specific 
structure of the MRI system matrix A in (3). Important prop-
erties of A include the fact that F Fl  is circulant (for Carte-
sian sampling) or Toeplitz (for non-Cartesian sampling) and 
that each coil-sensitivity matrix Cl  is diagonal. In contrast, the 
Gram matrix A Al  for parallel MRI is harder to precondition, 
though possible [32]. An alternative splitting that simplifies the 
updates is [29]:
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(13)

where .F I FL L 7_  With this splitting, the z update again is 
simply soft thresholding, and the x update involves the diagonal 
matrix C C,l  which is trivial. The v update involves the matrix 
T Tl  that is circulant for periodic boundary conditions or is very 
well suited to a circulant preconditioner otherwise, using simple 
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FFT operations. The u update involves the matrix F FL Ll  that is 
circulant or Toeplitz. This approach exploits the structure of A 
to simplify the updates; the primary drawback is that it requires 
selecting even more AL penalty parameters; condition number 
criteria can be helpful [29]. Another splitting with fewer auxil-
iary variables leads to an inner update step that requires solving 
denoising problems similar to (11).

Primal-dual methods
A key idea behind duality-based methods is the following:

, }.maxTx z Txreal{1
:z z 1CK

< < =
! < < #3

Thus, the (nonsmooth) analysis-regularized problem (7) is 
equivalent to this constrained problem:

 
x

, },argmin min Ax y z Tx
2
1 real{2

z Z
< < b- +

!
2  (14)

where { : } .z zC 1Z K_ ! #3  The primal-dual methods 
typically alternate between updating the primal variable x  
and the dual variable ,z  using more convenient alternatives 
to (14) that involve separate multiplication by A and by Al 
without requiring inner CG iterations. These methods provide 
convergence guarantees and acceleration techniques that 
lead to ( / )O k1 2  rates [33]. A drawback of such methods is 
they typically require power iterations to find a Lipschitz con-
stant, and, like AL methods, have tuning parameters that af-
fect the practical convergence rates. Finding a simple, con-
vergent, and tuning-free method for the analysis-regularized 
problem (10) remains an important open problem.

Patch-based sparsity models
Using (10) with a finite-difference regularizer is essentially 
equivalent to using patches of size .2 1#  It is plausible that one 
can regularize better by considering larger patches that provide 
more context for distinguishing signal from noise. There are 
two primary modes of patch-based regularization: synthesis 
models and analysis methods.

A typical synthesis approach attempts to represent each patch 
using a sparse linear combination of atoms from some signal-
patch dictionary. Let Pp  denote the d N#  matrix that extracts 
the pth of P  patches (having d  pixels) when multiplied by an 
image vector .x  Then the synthesis model is that ,P x Dzp p.  
where D is a d J#  dictionary, such as the discrete cosine trans-
form (DCT) [34], and z Cp

J!  is a sparse coefficient vector for 
the pth patch. Under this model, a natural regularizer is

 ( ) .minx P x Dz zR
2
1

p

P

p p p
1

2
1

z p
< < < <a= - +

=
2" ,

/  (15)

See [34] for an extension to the case of multiple images. The 
regularizer has an inner minimization over the sparse coeffi-
cients { },z p  so the overall problem involves both optimizing 
the image x  and those coefficients. This structure lends itself 
to alternating minimization algorithms. The work in [34] used 
ISTA for updating ;z p  the results in Figure 3 suggest that the 
POGM may be beneficial.

A typical analysis approach for patches assumes there is a 
sparsifying transform Ω  such that P xΩ p  tends to be sparse. 
For example, [35] uses a directional wavelet transform for each 
patch. Under this model, a natural regularizer is

 ( ) .minx P x z zR
2
1 Ω p p

p

P

p
2

1
1

z p
< < < <a= - +

=
2" ,

/  (16)

Again, a double minimization over the image x  and the trans-
form coefficients { }z p  is needed, so alternating minimization 
algorithms are natural. For alternating minimization (block co-
ordinate descent), the update of each z p  is simply soft thresh-
olding, and the update of x  is a quadratic problem involving 

.PΩ ΩA A Pp p p/b+ ll l  When the transform Ω  is unitary and 
the patches are selected with periodic boundary conditions and 
a stride of one pixel, then this simplifies to A A I.b+l  A few 
inner iterations of the (preconditioned) CG algorithm is useful 
for the x  update. Under these assumptions and using just a 
single gradient descent update for x, an alternating minimiza-
tion algorithm for LS with regularizer (16) simply alternates 
between a denoising step and a gradient step:
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For this algorithm, the cost function is monotonically non-
increasing.

Adaptive regularization
The patch dictionary D in (15) or the sparsifying transform Ω  
in (16) can be chosen based on mathematical models like the 
DCT, or they can be learned from a population of preexisting 
training data and then used in (15) or (16) for subsequent pa-
tients. A third possibility is to adapt D or Ω  to each specific 
patient [36]. The dictionary-learning MRI approach [36] uses a 
nonconvex regularizer of the following form:

 ( ) .min minx P x Dz zR p p
p

P

p
2

1
1

D zD p
< < < <a= - +

=
!

2" ,
/  (18)

where D  is the feasible set of dictionaries (typically con-
strained so that each atom has a unit norm). Now there are 
three sets of variables to optimize: ,x  { },z p  and D. This makes 
alternating minimization methods very suitable. The update of 
the image x  is a quadratic optimization subproblem, the z p  
update is soft thresholding, and the D update is simple when 
considering one atom at a time.

The transform-learning MRI approach uses a regularizer 
of this form:

( ) ( ),min minx P x z zR rp p
p

P

p
2

1
1

z p
< < < <a cX X= - + +

X
=

2" ,
/

where ( )Ωc  enforces or encourages properties of the sparsi-
fying transform, such as orthogonality. Again, alternating 
minimization methods are well suited; the Ω  update involves 
(small) singular value decomposition operations.
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Convolutional regularizers
An alternative to patch-based regularization is to use convolu-
tional sparsity models [37]. A convolutional synthesis regular-
izer replaces (15) with

( ) ,minx x h z zR
2
1

z
k

k

K

k k
1 2

2

1
k

) a= - +
=" ,
/

where { }hk  is a set of filters learned from training images 
[37] and * denotes convolution. Again, alternating minimiza-
tion algorithms are a natural choice because the x  update is 
quadratic and the zk  update is a sparse-coding problem for 
which proximal methods like the POGM are well suited.

A convolution analysis regularizer replaces (16) with

( ) .minx h zx zR
2
1

z k

K

k k k
1

2
1

k
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=
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Again, alternating minimization algorithms are effective, 
where the zk  update is soft thresholding. One can either learn 
the filters { }hk  from good-quality (e.g., fully sampled) training 
data or adapt the filters for each patient by jointly optimizing 

,x  { },hk  and { }zk  using alternating minimization.

Other methods
The summation in (17) is a particular type of patch-based de-
noising of the current image estimate .xk  There are many other 
denoising methods, some of which have variational formula-
tions well suited to inverse problems, but many of which, such 
as nonlocal means [38] and block-matching 3D, do not [39]. One 
way to adapt most such denoising methods for image reconstruc-
tion is to use a plug-and-play ADMM approach [40] that replac-
es a denoising step like (17) with a general denoising procedure.

Non-SENSE methods
The measurement model (2) and (3) has a single latent image ,x  
viewed by each receive coil. An alternative formulation is to de-
fine a latent image for each coil x C xl l_  and write the measure-
ment model as .y Fxl l lf= +  For such formulations, the prob-
lem becomes to reconstruct the L  images [ ]X x xL1f=  from 
the measurements, while considering relationships between 
those images. Because multiplication by the smooth sensitivity 
map Cl  in the image domain corresponds to convolution with 
a small kernel in the frequency domain, any point in k-space 
can be approximated by a linear combination of its neighbors in 
all coil data [2]. This GRAPPA modeling leads to an approxi-
mate consistency condition vec vec( ) ( )X G X.  where G  is a 
matrix involving small k-space kernels learned from calibration 
data [2]. This relationship leads to spectral-aware Pareto itera-
tive refinement optimization for supervised high-level synthesis 
(SPIRiT) optimization problems like the following:

( ) ( ) ( ),argminX FX Y G I X XRvec
2
1

2
1

X

2
1

2
2

CN L
< < < <b b= - + - +

! #
2Frob

t

where [ ]Y y y CL
M L

1f != #  and ( )XR  is a regularizer that 
encourages joint sparsity because all of the images { }xl  have 
edges in the same locations. No sensitivity maps C  are needed 
for this approach. When ,02b =  the problem is quadratic and 

CG is well suited. Otherwise, the ADMM is convenient for 
splitting this optimization problem into parts with easier up-
dates. The ESPIRiT approach uses the redundancy in k-space 
data from multiple coils to estimate sensitivity maps from the 
eigenvectors of a certain block-Hankel matrix [12]; this ap-
proach helps bridge the SENSE and GRAPPA approaches 
while building on related signal processing tools like subspace 
estimation and multichannel blind deconvolution.

Conclusions
While the title of this article refers to optimization methods, 
it is far more important (for undersampled problems) before 
selecting an optimization algorithm to first select an appropri-
ate cost function that captures useful prior information about 
the latent object x. The literature is replete with numerous 
candidate models, each of which often leads to different op-
timization methods. Nevertheless, common ingredients arise 
in most formulations, such as alternating minimization (block 
coordinate descent) at the outer level, preconditioned CG for 
inner iterations related to quadratic terms, and soft threshold-
ing or other proximal operators for nonsmooth terms that pro-
mote sparsity.

This survey has focused on 1-norm regularizers for simplicity, 
but (nonconvex) p “norms” with p0 11#  have also been inves-
tigated and appear to be beneficial, particularly for very unders-
ampled measurements. This survey considers a single image x, 
but many MRI scan protocols involve several images with differ-
ent contrasts, and it may be useful to reconstruct them jointly, e.g., 
by considering common sparsity or subspace models.

There are many open problems in optimization that are rele-
vant to MRI. The analysis form regularized problem (10) remains 
challenging, and further investigation of analysis versus synthesis 
approaches is needed. There has been considerable recent prog-
ress on finding optimal worst-case methods [16], but these opti-
mality results are for very broad classes of cost functions, whereas 
the cost functions in MRI reconstruction have particular structure. 
Finding algorithms with optimal complexity (fastest possible con-
vergence) for MRI-type cost functions would be valuable both for 
clinical practice and for facilitating research.

Finally, the current trend is to use convolutional neural net-
work (CNN) methods to process undersampled images, to per-
form direct reconstruction, or to function as denoising operators. 
The stochastic gradient descent method currently is the univer-
sal optimization tool for training CNN models. Many “deep-
learning” methods for MRI are based on network architectures 
that are “unrolled” versions of iterative optimization methods. 
like the PGM. Thus, familiarity with “classical” optimization 
methods for MR image reconstruction is important, even in the 
machine-learning era.
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