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Convolutional Analysis Operator Learning:
Acceleration and Convergence

Il Yong Chun , Member, IEEE, and Jeffrey A. Fessler , Fellow, IEEE

Abstract— Convolutional operator learning is gaining attention
in many signal processing and computer vision applications.
Learning kernels has mostly relied on so-called patch-domain
approaches that extract and store many overlapping patches
across training signals. Due to memory demands, patch-domain
methods have limitations when learning kernels from large
datasets – particularly with multi-layered structures, e.g., convo-
lutional neural networks – or when applying the learned kernels
to high-dimensional signal recovery problems. The so-called con-
volution approach does not store many overlapping patches, and
thus overcomes the memory problems particularly with careful
algorithmic designs; it has been studied within the “synthesis”
signal model, e.g., convolutional dictionary learning. This paper
proposes a new convolutional analysis operator learning (CAOL)
framework that learns an analysis sparsifying regularizer with
the convolution perspective, and develops a new convergent
Block Proximal Extrapolated Gradient method using a Majorizer
(BPEG-M) to solve the corresponding block multi-nonconvex
problems. To learn diverse filters within the CAOL framework,
this paper introduces an orthogonality constraint that enforces
a tight-frame filter condition, and a regularizer that promotes
diversity between filters. Numerical experiments show that, with
sharp majorizers, BPEG-M significantly accelerates the CAOL
convergence rate compared to the state-of-the-art block proximal
gradient (BPG) method. Numerical experiments for sparse-view
computational tomography show that a convolutional sparsifying
regularizer learned via CAOL significantly improves reconstruc-
tion quality compared to a conventional edge-preserving regu-
larizer. Using more and wider kernels in a learned regularizer
better preserves edges in reconstructed images.

Index Terms— Convolutional regularizer learning, convolu-
tional dictionary learning, convolutional neural networks, unsu-
pervised machine learning algorithms, nonconvex-nonsmooth
optimization, block coordinate descent, inverse problems, X-ray
computed tomography.

I. INTRODUCTION

L
EARNING convolutional operators from large datasets
is a growing trend in signal/image processing, computer

vision, and machine learning. The widely known patch-domain
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approaches for learning kernels (e.g., filter, dictionary, frame,
and transform) extract patches from training signals for simple
mathematical formulation and optimization, yielding (sparse)
features of training signals [1]–[9]. Due to memory demands,
using many overlapping patches across the training signals
hinders using large datasets and building hierarchies on the
features, e.g., deconvolutional neural networks [10], convolu-
tional neural network (CNN) [11], and multi-layer convolu-
tional sparse coding [12]. For similar reasons, the memory
requirement of patch-domain approaches discourages learned
kernels from being applied to large-scale inverse problems.

To moderate these limitations of the patch-domain approach,
the so-called convolution perspective has been recently intro-
duced by learning filters and obtaining (sparse) representa-
tions directly from the original signals without storing many
overlapping patches, e.g., convolutional dictionary learning
(CDL) [10], [13]–[17]. For large datasets, CDL using care-
ful algorithmic designs [16] is more suitable for learning
filters than patch-domain dictionary learning [1]; in addition,
CDL can learn translation-invariant filters without obtaining
highly redundant sparse representations [16]. The CDL method
applies the convolution perspective for learning kernels within
“synthesis” signal models. Within “analysis” signal models,
however, there exist no prior frameworks using the convolu-
tion perspective for learning convolutional operators, whereas
patch-domain approaches for learning analysis kernels are
introduced in [3], [4], [6]–[8]. (See brief descriptions about
synthesis and analysis signal models in [4, Sec. I].)

Researchers interested in dictionary learning have actively
studied the structures of kernels learned by the patch-domain
approach [3], [4], [6]–[8], [18]–[20]. In training CNNs (see
Appendix A), however, there has been less study of filter
structures having non-convex constraints, e.g., orthogonal-
ity and unit-norm constraints in Section III, although it is
thought that diverse (i.e., incoherent) filters can improve
performance for some applications, e.g., image recognition [9].
On the application side, researchers have applied (deep) NNs
to signal/image recovery problems. Recent works combined
model-based image reconstruction (MBIR) algorithm with
image refining networks [21]–[30]. In these iterative NN
methods, refining NNs should satisfy the non-expansiveness
for fixed-point convergence [29]; however, their trainings lack
consideration of filter diversity constraints, e.g., orthogonality
constraint in Section III, and thus it is unclear whether the
trained NNs are nonexpansive mapping [30].

This paper proposes 1) a new convolutional analysis oper-

ator learning (CAOL) framework that learns an analysis
sparsifying regularizer with the convolution perspective, and
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Fig. 1. A general flowchart from learning sparsifying operators O to solving inverse problems via MBIR using learned operators O⋆; see Section II. For
the lth training sample xl , F(O; xl ) measures its sparse representation or sparsification errors, and sparsity of its representation generated by O.

2) a new convergent Block Proximal Extrapolated Gradient

method using a Majorizer (BPEG-M [16]) for solving block
multi-nonconvex problems [31]. To learn diverse filters,
we propose a) CAOL with an orthogonality constraint that
enforces a tight-frame (TF) filter condition in convolutional
perspectives, and b) CAOL with a regularizer that promotes
filter diversity. BPEG-M with sharper majorizers converges
significantly faster than the state-of-the-art technique, Block
Proximal Gradient (BPG) method [31] for CAOL. This paper
also introduces a new X-ray computational tomography (CT)
MBIR model using a convolutional sparsifying regularizer
learned via CAOL [32].

The remainder of this paper is organized as follows.
Section II reviews how learned regularizers can help solve
inverse problems. Section III proposes the two CAOL models.
Section IV introduces BPEG-M with several generalizations,
analyzes its convergence, and applies a momentum coefficient
formula and restarting technique from [16]. Section V applies
the proposed BPEG-M methods to the CAOL models, designs
two majorization matrices, and describes memory flexibility
and applicability of parallel computing to BPEG-M-based
CAOL. Section VI introduces the CT MBIR model using a
convolutional regularizer learned via CAOL [32], along with
its properties, i.e., its mathematical relation to a convolutional
autoencoder, the importance of TF filters, and its algorithmic
role in signal recovery. Section VII reports numerical exper-
iments that show 1) the importance of sharp majorization in
accelerating BPEG-M, and 2) the benefits of BPEG-M-based
CAOL – acceleration, convergence, and memory flexibility.
Additionally, Section VII reports sparse-view CT experiments
that show 3) the CT MBIR using learned convolutional
regularizers significantly improves the reconstruction quality
compared to that using a conventional edge-preserving (EP)
regularizer, and 4) more and wider filters in a learned regu-
larizer better preserves edges in reconstructed images. Finally,
Appendix A mathematically formulates unsupervised training
of CNNs via CAOL, and shows that its updates attained via
BPEG-M correspond to the three important CNN operators.
Appendix B introduces some potential applications of CAOL
to image processing, imaging, and computer vision.

II. BACKGROUNDS: MBIR USING LEARNED

REGULARIZERS

To recover a signal x ∈ CN ′
from a data vector

y ∈ Cm , one often considers the following MBIR optimiza-
tion problem (Appendix C provides mathematical notations):
argminx∈X f (x; y)+γ g(x), where X is a feasible set, f (x; y)

is data fidelity function that models imaging physics (or image
formation) and noise statistics, γ > 0 is a regularization

parameter, and g(x) is a regularizer, such as total variation
[33, §2–3]. However, when inverse problems are extremely
ill-conditioned, the MBIR approach using hand-crafted
regularizers g(x) has limitations in recovering signals.
Alternatively, there has been a growing trend in learning
sparsifying regularizers (e.g., convolutional regularizers [16],
[17], [32], [34], [35]) from training datasets and applying the
learned regularizers to the following MBIR problem [33]:

argmin
x∈X

f (x; y) + γ g(x;O⋆), (B1)

where a learned regularizer g(x;O⋆) quantifies consistency
between any candidate x and training data that is encapsu-
lated in some trained sparsifying operators O⋆. The diagram
in Fig. 1 shows the general process from training sparsifying
operators to solving inverse problems via (B1). Such models
(B1) arise in a wide range of applications. See some examples
in Appendix B.

This paper describes multiple aspects of learning convolu-
tional regularizers. The next section first starts with proposing
a new convolutional regularizer.

III. CAOL: MODELS LEARNING CONVOLUTIONAL

REGULARIZERS

The goal of CAOL is to find a set of filters that “best”
sparsify a set of training images. Compared to hand-crafted
regularizers, learned convolutional regularizers can better
extract “true” features of estimated images and remove “noisy”
features with thresholding operators. We propose the following
CAOL model:

argmin
D=[d1,...,dK ]

min
{zl,k }

F(D, {zl,k }) + βg(D),

F(D, {zl,k }) :=
L∑

l=1

K∑

k=1

1

2

∥∥dk ⊛ xl − zl,k

∥∥2
2 + α‖zl,k‖0,

(P0)

where ⊛ denotes a convolution operator (see details about
boundary conditions in the supplementary material), {xl ∈
C

N : l = 1, . . . , L} is a set of training images, {dk ∈ C
R : k =

1, . . . , K } is a set of convolutional kernels, {zl,k ∈ CN : l =
1, . . . , L, k = 1, . . . , K } is a set of sparse codes, and g(D)

is a regularizer or constraint that encourages filter diversity
or incoherence, α > 0 is a thresholding parameter controlling
the sparsity of features {zl,k}, and β > 0 is a regularization
parameter for g(D). We group the K filters into a matrix
D ∈ CR×K :

D :=
[

d1 . . . dK

]
. (1)

For simplicity, we fix the dimension for training sig-
nals, i.e., {xl, zl,k ∈ CN }, but the proposed model
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Fig. 2. A flowchart from CAOL (P0) to MBIR using a convolutional sparsifying regularizer learned via CAOL (P3) in sparse-view CT. See details of the
CAOL process (P0) and its variants (P1)–(P2), and the CT MBIR process (P3) in Section III and Section VI, respectively.

(P0) can use training signals of different dimension, i.e.,
{xl, zl,k ∈ CNl }. For sparse-view CT in particular, the diagram
in Fig. 2 shows the process from CAOL (P0) to solving
its inverse problem via MBIR using learned convolutional
regularizers.

The following two subsections design the constraint or
regularizer g(D) to avoid redundant filters (without it, all
filters could be identical).

A. CAOL With Orthogonality Constraint

We first propose a CAOL model with a nonconvex orthog-
onality constraint on the filter matrix D in (1):

argmin
D

min
{zl,k }

F(D, {zl,k}) subj. to DDH = 1

R
· I. (P1)

The orthogonality condition DDH = 1
R

I in (P1) enforces a
TF condition on the filters {dk} in CAOL (P0). Proposition 3.1
below formally states this relation.

Proposition 3.1 (Tight-frame (TF) filters). Filters satisfy-

ing the orthogonality constraint DDH = 1
R

I in (P1) satisfy

the following TF condition in a convolution perspective:

K∑

k=1

‖dk ⊛ x‖2
2 = ‖x‖2

2, ∀x ∈ C
N , (2)

for both circular and symmetric boundary conditions.

Proof: See Section S.I of the supplementary material.
Proposition 3.1 corresponds to a TF result from

patch-domain approaches; see Section S.I. (Note that the
patch-domain approach in [6, Prop. 3] requires R = K .)
However, we constrain the filter dimension to be R ≤ K

to have an efficient solution for CAOL model (P1); see
Proposition 5.4 later. The following section proposes a more
flexible CAOL model in terms of the filter dimensions R

and K .

B. CAOL With Diversity Promoting Regularizer

As an alternative to the CAOL model (P1), we propose a
CAOL model with a diversity promoting regularizer and a
nonconvex norm constraint on the filters {dk}:

argmin
D

min
{zl,k }

F(D, {zl,k }) + β

2

=: gdiv(D)︷ ︸︸ ︷∥∥∥∥DH D − 1

R
· I

∥∥∥∥
2

F
,

subject to ‖dk‖2
2 = 1

R
, k = 1, . . . , K . (P2)

In the CAOL model (P2), we consider the following:

• The constraint in (P2) forces the learned filters {dk} to
have uniform energy. In addition, it avoids the “scale
ambiguity” problem [36].

• The regularizer in (P2), gdiv(D), promotes filter diversity,
i.e., incoherence between dk and {dk′ : k ′ �= k}, measured
by |〈dk, dk′〉|2 for k �= k ′.

When R = K and β → ∞, the model (P2) becomes (P1)
since DH D = 1

R
I implies DDH = 1

R
I (for square matrices A

and B , if AB = I then B A = I ). Thus (P2) generalizes (P1)
by relaxing the off-diagonal elements of the equality constraint
in (P1). (In other words, when R = K , the orthogonality
constraint in (P1) enforces the TF condition and promotes the
filter diversity.) One price of this generalization is the extra
tuning parameter β.

(P1)–(P2) are challenging nonconvex optimization problems
and block optimization approaches seem suitable. The fol-
lowing section proposes a new block optimization method
with momentum and majorizers, to rapidly solve the multiple
block multi-nonconvex problems proposed in this paper, while
guaranteeing convergence to critical points.

IV. BPEG-M: SOLVING BLOCK MULTI-NONCONVEX

PROBLEMS WITH CONVERGENCE GUARANTEES

This section describes a new optimization approach, BPEG-
M, for solving block multi-nonconvex problems like a) CAOL
(P1)–(P2),1 b) CT MBIR (P3) using learned convolutional
regularizer via (P1) (see Section VI), and c) “hierarchical”
CAOL (A1) (see Appendix A).

A. BPEG-M – Setup

We treat the variables of the underlying optimization prob-
lem either as a single block or multiple disjoint blocks.
Specifically, consider the following block multi-nonconvex

optimization problem:

min F(x1, . . . , xB) := f (x1, . . . , xB) +
B∑

b=1

gb(xb), (3)

where variable x is decomposed into B blocks x1, . . . , xB

({xb ∈ Rnb : b = 1, . . . , B}), f is assumed to be continuously
differentiable, but functions {gb : b = 1, . . . , B} are not
necessarily differentiable. The function gb can incorporate the

1A block coordinate descent algorithm can be applied to CAOL (P1);
however, its convergence guarantee in solving CAOL (P1) is not yet known
and might require stronger sufficient conditions than BPEG-M [37].
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constraint xb ∈ Xb, by allowing any gb to be extended-valued,
e.g., gb(xb) = ∞ if xb /∈ Xb, for b = 1, . . . , B . It is standard
to assume that both f and {gb} are closed and proper and the
sets {Xb} are closed and nonempty. We do not assume that f ,
{gb}, or {Xb} are convex. Importantly, gb can be a nonconvex
ℓp quasi-norm, p ∈ [0, 1). The general block multi-convex
problem in [16], [38] is a special case of (3).

The BPEG-M framework considers a more general concept
than Lipschitz continuity of the gradient as follows:

Definition 4.1 (M-Lipschitz continuity). A function g :
Rn → Rn is M-Lipschitz continuous on Rn if there exist

a (symmetric) positive definite matrix M such that

‖g(x) − g(y)‖M−1 ≤ ‖x − y‖M , ∀x, y,

where ‖x‖2
M := x T Mx.

Lipschitz continuity is a special case of M-Lipschitz conti-
nuity with M equal to a scaled identity matrix with a Lipschitz
constant of the gradient ∇ f (e.g., for f (x) = 1

2‖Ax − b‖2
2,

the (smallest) Lipschitz constant of ∇ f is the maximum eigen-
value of AT A). If the gradient of a function is M-Lipschitz
continuous, then we obtain the following quadratic majorizer
(i.e., surrogate function [39], [40]) at a given point y without
assuming convexity:

Lemma 4.2 (Quadratic majorization (QM) via M-Lipschitz
continuous gradients). Let f : R

n → R. If ∇ f is M-Lipschitz

continuous, then

f (x) ≤ f (y) + 〈∇ f (y), x − y〉 + 1

2
‖x − y‖2

M , ∀x, y ∈ R
n .

Proof: See Section S.II of the supplementary material.
Exploiting Definition 4.1 and Lemma 4.2, the proposed

method, BPEG-M, is given as follows. To solve (3), we mini-
mize a majorizer of F cyclically over each block x1, . . . , xB ,
while fixing the remaining blocks at their previously updated
variables. Let x

(i+1)
b be the value of xb after its i th update,

and define

f
(i+1)
b (xb) := f

(
x

(i+1)
1 ,. . ., x

(i+1)
b−1 , xb, x

(i)
b+1,. . ., x

(i)
B

)
, ∀b, i.

At the bth block of the i th iteration, we apply Lemma 4.2
to functional f

(i+1)
b (xb) with a M

(i+1)
b -Lipschitz continuous

gradient, and minimize the majorized function.2 Specifically,
BPEG-M uses the updates

x
(i+1)
b = argmin

xb

〈∇xb f
(i+1)
b (x́

(i+1)
b ), xb − x́

(i+1)
b 〉

+ 1

2

∥∥∥xb − x́
(i+1)
b

∥∥∥
2

M̃
(i+1)
b

+ gb(xb)

= argmin
xb

1

2

∥∥∥∥xb−
(

x́
(i+1)
b −

(
M̃

(i+1)
b

)−1

· ∇xb f
(i+1)
b (x́

(i+1)
b )

)∥∥∥∥
2

M̃
(i+1)
b

+gb(xb)

= Prox
M̃

(i+1)
b

gb

(
x́

(i+1)
b −

(
M̃

(i+1)
b

)−1
∇xb f

(i+1)
b (x́

(i+1)
b )

︸ ︷︷ ︸
extrapolated gradient step using a majorizer of f

(i+1)
b

)
,

(4)

2The quadratically majorized function allows a unique minimizer if

g
(i+1)
b (xb) is convex and X

(i+1)
b is a convex set (note that M

(i+1)
b ≻0).

Algorithm 1 BPEG-M

where
x́

(i+1)
b = x

(i)
b + E

(i+1)
b

(
x

(i)
b − x

(i−1)
b

)
, (5)

the proximal operator is defined by

ProxM
g (y) := argmin

x

1

2
‖x − y‖2

M + g(x),

∇ f
(i+1)
b (x́

(i+1)
b ) is the block-partial gradient of f at x́

(i+1)
b ,

an upper-bounded majorization matrix is updated by

M̃
(i+1)
b = λb · M

(i+1)
b ≻ 0, λb > 1, (6)

and M
(i+1)
b ∈Rnb×nb is a symmetric positive definite majoriza-

tion matrix of ∇ f
(i+1)
b . In (5), the Rnb×nb matrix E

(i+1)
b � 0

is an extrapolation matrix that accelerates convergence in
solving block multi-convex problems [16]. We design it in
the following form:

E
(i+1)
b = e

(i)
b · δ(λb − 1)

2(λb + 1)
·
(

M
(i+1)
b

)−1/2 (
M

(i)
b

)1/2
, (7)

for some {0 ≤ e
(i)
b ≤ 1 : ∀b, i } and δ < 1, to satisfy

condition (9) below. In general, choosing λb values in (6)–(7)
to accelerate convergence is application-specific. Algorithm 1
summarizes these updates.

The majorization matrices M
(i)
b and M̃

(i+1)
b in (6) influence

the convergence rate of BPEG-M. A tighter majorization
matrix (i.e., a matrix giving tighter bounds in the sense of
Lemma 4.2) provided faster convergence rate [41, Lem. 1],
[16, Fig. 2–3]. An interesting observation in Algorithm 1 is
that there exists a tradeoff between majorization sharpness
via (6) and extrapolation effect via (5) and (7). For example,
increasing λb (e.g., λb = 2) allows more extrapolation but
results in looser majorization; setting λb → 1 results in sharper
majorization but provides less extrapolation.

Remark 4.3. The proposed BPEG-M framework – with
key updates (4)–(5) – generalizes the BPG method [31], and
has several benefits over BPG [31] and BPEG-M introduced
earlier in [16]:

• The BPG setup in [31] is a particular case of
BPEG-M using a scaled identity majorization matrix
Mb with a Lipschitz constant of ∇ f

(i+1)
b (x́

(i+1)
b ). The

BPEG-M framework can significantly accelerate conver-
gence by allowing sharp majorization; see [16, Fig. 2–3]
and Fig. 3. This generalization was first introduced for
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block multi-convex problems in [16], but the proposed
BPEG-M in this paper addresses the more general prob-
lem, block multi-(non)convex optimization.

• BPEG-M is useful for controlling the tradeoff between
majorization sharpness and extrapolation effect in differ-
ent blocks, by allowing each block to use different λb

values. If tight majorization matrices can be designed for
a certain block b, then it could be reasonable to maintain
the majorization sharpness by setting λb very close to 1.
When setting λb = 1 + ǫ (e.g., ǫ is a machine epsilon)
and using E

(i+1)
b = 0 (no extrapolation), solutions of the

original and its upper-bounded problem become (almost)
identical. In such cases, it is unnecessary to solve the
upper bounded problem (4), and the proposed BPEG-M
framework allows using the solution of f

(i+1)
b (xb) with-

out QM; see Section V-B. This generalization was not
considered in [31].

• The condition for designing the extrapolation matrix (7),
i.e., (9) in Assumption 3, is more general than that in
[16, (9)] (e.g., (10)). Specifically, the matrices E

(i+1)
b and

M
(i+1)
b in (7) need not be diagonalized by the same basis.

The first two generalizations lead to the question, “Under
the sharp QM regime (i.e., having tight bounds in Lemma 4.2),
what is the best way in controlling {λb} in (6)–(7) in Algo-
rithm 1?” Our experiments show that, if sufficiently sharp
majorizers are obtained for partial or all blocks, then giving
more weight to sharp majorization provides faster convergence
compared to emphasizing extrapolation; for example, λb =
1 + ǫ gives faster convergence than λb = 2.

B. BPEG-M – Convergence Analysis

This section analyzes the convergence of Algorithm 1 under
the following assumptions.

Assumption 1) F is proper and lower bounded in dom(F),
f is continuously differentiable, gb is proper lower semi-
continuous, ∀b.3 (3) has a critical point x̄ , i.e., 0 ∈ ∂ F(x̄),
where ∂ F(x) denotes the limiting subdifferential of F at
x (see [42, §1.9], [43, §8]).
Assumption 2) The block-partial gradients of f , ∇ f

(i+1)
b ,

are M
(i+1)
b -Lipschitz continuous, i.e.,
∥∥∥∇xb f

(i+1)
b (u) − ∇xb f

(i+1)
b (v)

∥∥∥(
M

(i+1)
b

)−1

≤ ‖u − v‖
M

(i+1)
b

, (8)

for u, v ∈ Rnb , and (unscaled) majorization matrices
satisfy mb Inb � M

(i+1)
b with 0 < mb < ∞, ∀b, i .

Assumption 3) The extrapolation matrices E
(i+1)
b � 0

satisfy

(
E

(i+1)
b

)T

M
(i+1)
b E

(i+1)
b � δ2(λb − 1)2

4(λb + 1)2
· M

(i)
b , (9)

for any δ < 1, ∀b, i .

Condition (9) in Assumption 3 generalizes that in [16,
Assumption 3]. If eigenspaces of E

(i+1)
b and M

(i+1)
b coincide

3 F : R
n → (−∞,+∞] is proper if domF �= ∅. F is lower bounded

in dom(F) := {x : F(x) < ∞} if inf x∈dom(F) F(x) > −∞. F is lower
semicontinuous at point x0 if lim inf x→x0 F(x) ≥ F(x0).

Fig. 3. Cost minimization comparisons in CAOL (P1) with different
BPG-type algorithms and datasets (R = K = 49 and α = 2.5 × 10−4;
solution (31) was used for sparse code updates; BPG (Xu & Ying ’17) [31]
used the maximum eigenvalue of Hessians for Lipschitz constants; the cross
mark x denotes a termination point). A sharper majorization leads to faster
convergence of BPEG-M; for all the training datasets considered in this
paper, the majorization matrix in Proposition 5.1 is sharper than those in
Lemmas 5.2–5.3.

(e.g., diagonal and circulant matrices), ∀i [16, Assumption 3],
(9) becomes

E
(i+1)
b � δ(λb − 1)

2(λb + 1)
·
(

M
(i)
b

)1/2 (
M

(i+1)
b

)−1/2
, (10)

as similarly given in [16, (9)]. This generalization allows one
to consider arbitrary structures of M

(i)
b across iterations.

Lemma 4.4 (Sequence bounds). Let {M̃b : b = 1, . . . , B}
and {Eb : b = 1, . . . , B} be as in (6)–(7), respectively. The

cost function decrease for the i th update satisfies:

Fb(x
(i)
b ) − Fb(x

(i+1)
b ) ≥ λb − 1

4

∥∥∥x
(i)
b − x

(i+1)
b

∥∥∥
2

M
(i+1)
b

− (λb − 1)δ2

4

∥∥∥x
(i−1)
b −x

(i)
b

∥∥∥
2

M
(i)
b

(11)

Proof: See Section S.III of the supplementary material.
Lemma 4.4 generalizes [31, Lem. 1] using {λb = 2}. Taking

the majorization matrices in (11) to be scaled identities with
Lipschitz constants, i.e., M

(i+1)
b = L

(i+1)
b · I and M

(i)
b = L

(i)
b · I ,

where L
(i+1)
b and L

(i)
b are Lipschitz constants, the bound (11)

becomes equivalent to that in [31, (13)]. Note that BPEG-M
for block multi-convex problems in [16] can be viewed within
BPEG-M in Algorithm 1, by similar reasons in [31, Rem. 2] –
bound (11) holds for the block multi-convex problems by
taking E

(i+1)
b in (10) as E

(i+1)
b � δ · (M

(i)
b )1/2(M

(i+1)
b )−1/2 in

[16, Prop. 3.2].
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Proposition 4.5 (Square summability). Let {x (i+1) : i ≥ 0}
be generated by Algorithm 1. We have

∞∑

i=0

∥∥∥x (i) − x (i+1)
∥∥∥

2

2
< ∞. (12)

Proof: See Section S.IV of the supplementary material.
Proposition 4.5 implies that

∥∥∥x (i) − x (i+1)
∥∥∥

2

2
→ 0, (13)

and (13) is used to prove the following theorem:
Theorem 4.6 (A limit point is a critical point). Under

Assumptions 1–3, let {x (i+1) : i ≥ 0} be generated by

Algorithm 1. Then any limit point x̄ of {x (i+1) : i ≥ 0} is

a critical point of (3). If the subsequence {x (i j +1)} converges

to x̄, then

lim
j→∞

F(x (i j +1)) = F(x̄).

Proof: See Section S.V of the supplementary material.
Finite limit points exist if the generated sequence {x (i+1) :

i ≥ 0} is bounded; see, for example, [44, Lem. 3.2–3.3]. For
some applications, the boundedness of {x (i+1) : i ≥ 0} can
be satisfied by choosing appropriate regularization parameters,
e.g., [16].

C. Restarting BPEG-M

BPEG-type methods [16], [31], [38] can be further accel-
erated by applying 1) a momentum coefficient formula
similar to those used in fast proximal gradient (FPG)
methods [45]–[47], and/or 2) an adaptive momentum restart-
ing scheme [48], [49]; see [16]. This section applies
these two techniques to further accelerate BPEG-M in
Algorithm 1.

First, we apply the following increasing momentum-
coefficient formula to (7) [45]:

e
(i+1)
b = θ (i) − 1

θ (i+1)
, θ (i+1) = 1 +

√
1 + 4(θ (i))2

2
. (14)

This choice guarantees fast convergence of FPG method [45].
Second, we apply a momentum restarting scheme [48], [49],
when the following gradient-mapping criterion is met [16]:

cos
(
�
(

M
(i+1)
b

(
x́

(i+1)
b − x

(i+1)
b

)
, x

(i+1)
b − x

(i)
b

))
> ω, (15)

where the angle between two nonzero real vectors ϑ and
ϑ ′ is �(ϑ, ϑ ′) := 〈ϑ, ϑ ′〉/(‖ϑ‖2

∥∥ϑ ′∥∥
2) and ω ∈ [−1, 0].

This scheme restarts the algorithm whenever the momentum,
i.e., x

(i+1)
b − x

(i)
b , is likely to lead the algorithm in an

unhelpful direction, as measured by the gradient mapping
at the x

(i+1)
b -update. We refer to BPEG-M combined with

the methods (14)–(15) as restarting BPEG-M (reBPEG-M).
Section S.VI in the supplementary material summarizes the
updates of reBPEG-M.

To solve the block multi-nonconvex problems proposed in
this paper (e.g., (P1)–(P3)), we apply reBPEG-M (a variant of
Algorithm 1; see Algorithm S.1), promoting fast convergence
to a critical point.

V. FAST AND CONVERGENT CAOL VIA BPEG-M
This section applies the general BPEG-M approach to

CAOL. The CAOL models (P1) and (P2) satisfy the assump-
tions of BPEG-M; see Assumption 1–3 in Section IV-B.
CAOL models (P1) and (P2) readily satisfy Assump-
tion 1 of BPEG-M. To show the continuously differentia-
bility of f and the lower boundedness of F , consider that
1)
∑

l

∑
k

1
2

∥∥dk ⊛ xl − zl,k

∥∥2
2 in (P0) is continuously dif-

ferentiable with respect to D and {zl,k}; 2) the sequences
{D(i+1)} are bounded, because they are in the compact set
D(P1) = {D : DDH = 1

R
I } and D(P2) = {dk : ‖dk‖2

2 = 1
R
,∀k}

in (P1) and (P2), respectively; and 3) the positive thresholding
parameter α ensures that the sequence {z(i+1)

l,k } is bounded
(otherwise the cost would diverge). In addition, for both (P1)
and (P2), the lower semicontinuity of regularizer gb holds,
∀b. For D-optimization, the indicator function of the sets
D(P1) and D(P2) is lower semicontinuous, because the sets are
compact. For {zl,k}-optimization, the ℓ0-quasi-norm is a lower
semicontinuous function. Assumptions 2 and 3 are satisfied
with the majorization matrix designs in this section – see
Sections V-A–V-B later – and the extrapolation matrix design
in (7), respectively.

Since CAOL models (P1) and (P2) satisfy the BPEG-M
conditions, we solve (P1) and (P2) by the reBPEG-M method
with a two-block scheme, i.e., we alternatively update all
filters D and all sparse codes {zl,k : l = 1, . . . , L, k =
1, . . . , K }. Sections V-A and V-B describe details of D-block
and {zl,k}-block optimization within the BPEG-M framework,
respectively. The BPEG-M-based CAOL algorithm is par-
ticularly useful for learning convolutional regularizers from
large datasets because of its memory flexibility and parallel
computing applicability, as described in Section V-C and
Sections V-A–V-B, respectively.

A. Filter Update: D-Block Optimization

We first investigate the structure of the system matrix in
the filter update for (P0). This is useful for 1) accelerat-
ing majorization matrix computation in filter updates (e.g.,
Lemmas 5.2–5.3) and 2) applying R×N-sized adjoint operators
(e.g., � H

l in (17) below) to an N-sized vector without needing
the Fourier approach [16, Sec. V-A] that uses commutativity
of convolution and Parseval’s relation. Given the current
estimates of {zl,k : l = 1, . . . , L, k = 1, . . . , K }, the filter
update problem of (P0) is equivalent to

argmin
{dk}

1

2

K∑

k=1

L∑

l=1

∥∥�ldk − zl,k

∥∥2
2 + βg(D), (16)

where D is defined in (1), �l ∈ CN×R is defined by

�l :=
[

PB1 x̂l . . . PBR x̂l

]
, (17)

PBr ∈ CN×N̂ is the r th (rectangular) selection matrix that
selects N rows corresponding to the indices Br = {r, . . . , r +
N − 1} from I

N̂
, {x̂l ∈ CN̂ : l = 1, . . . , L} is a set

of padded training data, N̂ = N + R − 1. Note that
applying � H

l in (17) to a vector of size N is analogous
to calculating cross-correlation between x̂l and the vector,
i.e., (� H

l ẑl,k)r =
∑N

n=1 x̂∗
n+r−1(ẑl,k)n , r = 1, . . . , R. In

general, ˆ(·) denotes a padded signal vector.
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TABLE I

COMPUTATIONAL COMPLEXITY OF DIFFERENT MAJORIZATION MATRIX

DESIGNS FOR THE FILTER UPDATE PROBLEM (16)

1) Majorizer Design: This subsection designs multiple
majorizers for the D-block optimization and compares their
required computational complexity and tightness. The next
proposition considers the structure of �l in (17) to obtain
the Hessian

∑L
l=1 � H

l �l ∈ CR×R in (16) for an arbitrary
boundary condition.

Proposition 5.1 (Exact Hessian Matrix MD). The follow-

ing matrix MD ∈ CR×R is identical to
∑L

l=1 � H
l �l:

[MD]r,r ′ =
L∑

l=1

〈PBr x̂l, PBr′ x̂l〉, r, r ′ = 1, . . . , R. (18)

A sufficiently large number of training signals (with
N ≥ R), L, can guarantee MD =

∑L
l=1 � H

l �l ≻ 0 in
Proposition 5.1. The drawback of using Proposition 5.1 is its
polynomial computational complexity, i.e., O(L R2 N) – see
Table I. When L (the number of training signals) or N (the
size of training signals) are large, the quadratic complexity
with the size of filters – R2 – can quickly increase the
total computational costs when multiplied by L and N . (The
BPG setup in [31] additionally requires O(R3) because it
uses the eigendecomposition of (18) to calculate the Lipschitz
constant.)

Considering CAOL problems (P0) themselves, differ-
ent from CDL [13]–[17], the complexity O(L R2 N) in
applying Proposition 5.1 is reasonable. In BPEG-M-based
CDL [16], [17], a majorization matrix for kernel update
is calculated every iteration because it depends on updated
sparse codes; however, in CAOL, one can precompute MD via
Proposition 5.1 (or Lemmas 5.2–5.3 below) without needing
to change it every kernel update. The polynomial computa-
tional cost in applying Proposition 5.1 becomes problematic
only when the training signals change. Examples include 1)

hierarchical CAOL, e.g., CNN in Appendix A, 2) “adaptive-
filter MBIR” particularly with high-dimensional signals [2],
[6], [50], and 3) online learning [51], [52]. Therefore, we also
describe a more efficiently computable majorization matrix
at the cost of looser bounds (i.e., slower convergence; see
Fig 3). Applying Lemma S.1, we first introduce a diagonal
majorization matrix MD for the Hessian

∑
l � H

l �l in (16):
Lemma 5.2 (Diagonal majorization matrix MD). The

following matrix MD ∈ CR×R satisfies MD �
∑L

l=1 � H
l �l :

MD = diag

(
L∑

l=1

|� H
l ||�l |1R

)
, (19)

where |·| takes the absolute values of the elements of a matrix.

The majorization matrix design in Lemma 5.2 is more
efficient to compute than that in Proposition 5.1, because
no R2-factor is needed for calculating MD in Lemma 5.2,
i.e., O(L RN); see Table I. Designing MD in Lemma 5.2

takes fewer calculations than [16, Lem. 5.1] using Fourier
approaches, when R < log(N̂ ). Using Lemma S.2, we next
design a potentially sharper majorization matrix than (19),
while maintaining the cost O(L RN):

Lemma 5.3 (Scaled identity majorization matrix MD ). The

following matrix MD ∈ CR×R satisfies MD �
∑L

l=1 � H
l �l :

MD =
R∑

r=1

∣∣∣∣∣

L∑

l=1

〈PB1 x̂l , PBr x̂l〉
∣∣∣∣∣ · IR, (20)

for a circular boundary condition.

Proof: See Section S.VII of the supplementary material.
For all the training datasets used in this paper, we observed

that the tightness of majorization matrices in Proposition 5.1
and Lemmas 5.2–5.3 for the Hessian

∑
l � H

l �l is
given by

L∑

l=1

� H
l �l = (18) � (20) � (19). (21)

(Note that (18)� (19) always holds regardless of training
data.) Fig. 3 illustrates the effects of the majorizer sharp-
ness in (21) on CAOL convergence rates. As described in
Section IV-A, selecting λD (see (22) and (26) below) controls
the tradeoff between majorization sharpness and extrapolation
effect. We found that using fixed λD = 1 + ǫ gives faster
convergence than λD = 2; see Fig. 4 (this behavior is more
obvious in solving the CT MBIR model in (P3) via BPEG-M
– see [32, Fig. 3]). The results in Fig. 4 and [32, Fig. 3] show
that, under the sharp majorization regime, maintaining sharper
majorization is more critical in accelerating the convergence
of BPEG-M than giving more weight to extrapolation.

Sections V-A2 and V-A3 below apply the majorization
matrices designed in this section to proximal mappings of
D-optimization in (P1) and (P2), respectively.

2) Proximal Mapping With Orthogonality Constraint: The
corresponding proximal mapping problem of (16) using the
orthogonality constraint in (P1) is given by

{d(i+1)
k } = argmin

{dk}

K∑

k=1

1

2

∥∥∥dk − ν
(i+1)
k

∥∥∥
2

M̃D

,

subject to DDH = 1

R
· I, (22)

where

ν
(i+1)
k = d́

(i+1)
k − M̃−1

D

∑L
l=1 � H

l

(
�l d́

(i+1)
k − zl,k

)
, (23)

d́
(i+1)
k = d

(i)
k + E

(i+1)
D

(
d

(i)
k − d

(i−1)
k

)
, (24)

for k = 1, . . . , K , and M̃D = λD MD by (6). One can
parallelize over k = 1, . . . , K in computing {ν(i+1)

k } in (23).
The proposition below provides an optimal solution to (22):

Proposition 5.4. Consider the following constrained mini-

mization problem:

min
D

∥∥∥M̃
1/2
D D − M̃

1/2
D V

∥∥∥
2

F
, subj. to DDH = 1

R
· I, (25)

where D is given as (1), V = [ν(i+1)
1 · · · ν(i+1)

K ] ∈ CR×K ,

M̃D = λD MD , and MD ∈ RR×R is given by (18), (19),
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Fig. 4. Cost minimization comparisons in CAOL (P1) with different BPEG-M
algorithms and datasets (Lemma 5.2 was used for MD ; R = K = 49;
deterministic filter initialization and random sparse code initialization). Under
the sharp majorization regime, maintaining sharp majorization (i.e., λD =
1 + ǫ) provides faster convergence than giving more weight on extrapolation
(i.e., λD =2). (The same behavior was found in sparse-view CT application
[32, Fig. 3].) There exist no differences in convergence between solution (31)
and solution (33) using {λZ =1 + ǫ}.

or (20). The optimal solution to (25) is given by

D⋆ = 1√
R

· U
[

IR, 0R×(K−R)

]
V H , for R ≤ K ,

where M̃DV has (full) singular value decomposition, M̃DV =
U�V H .

Proof: See Section S.VIII of the supplementary material.
When using Proposition 5.1, M̃Dν

(i+1)
k of M̃DV in Propo-

sition 5.4 simplifies to the following update:

M̃Dν
(i+1)
k = (λD − 1) MD d́

(i+1)
k +

L∑

l=1

� H
l zl,k .

Similar to obtaining {ν(i+1)
k } in (23), computing {M̃Dν

(i+1)
k :

k = 1, . . . , K } is parallelizable over k.
3) Proximal Mapping With Diversity Promoting Regular-

izer: The corresponding proximal mapping problem of (16)
using the norm constraint and diversity promoting regularizer
in (P2) is given by

{d(i+1)
k } = argmin

{dk}

K∑

k=1

1

2

∥∥∥dk − ν
(i+1)
k

∥∥∥
2

M̃D

+ β

2
gdiv(D),

subject to ‖dk‖2
2 = 1

R
, k = 1, . . . , K , (26)

where gdiv(D), ν
(i+1)
k , and d́

(i+1)
k are given as in (P2), (23),

and (24), respectively. We first decompose the regularization

term gdiv(D) as follows:

gdiv(D) =
K∑

k=1

K∑

k′=1

(
d H

k dk′d H
k′ dk − R−1)

=
K∑

k=1

d H
k

(∑

k′ �=k

dk′d H
k′

)
dk +

(
d H

k dk − R−1)2

=
K∑

k=1

d H
k Ŵkdk, (27)

where the equality in (27) holds by using the constraint in (26),
and the Hermitian matrix Ŵk ∈ CR×R is defined by

Ŵk :=
∑

k′ �=k

dk′d H
k′ . (28)

Using (27) and (28), we rewrite (26) as

d
(i+1)
k = argmin

dk

1

2

∥∥∥dk − ν
(i)
k

∥∥∥
2

M̃D

+ β

2
d H

k Ŵkdk,

subject to ‖dk‖2
2 = 1

R
, k = 1, . . . , K . (29)

This is a quadratically constrained quadratic program with
{M̃D + βŴk ≻ 0 : k = 1, . . . , K }. We apply an accel-
erated Newton’s method to solve (29); see Section S.IX.
Similar to solving (22) in Section V-A2, solving (26) is a
small-dimensional problem (K separate problems of size R).

B. Sparse Code Update: {zl,k}-Block Optimization

Given the current estimate of D, the sparse code update
problem for (P0) is given by

argmin
{zl,k }

L∑

l=1

K∑

k=1

1

2

∥∥dk ⊛ xl − zl,k

∥∥2
2 + α

∥∥zl,k

∥∥
0 . (30)

This problem separates readily, allowing parallel computation
with L K threads. An optimal solution to (30) is efficiently
obtained by the well-known hard thresholding:

z
(i+1)
l,k = H√

2α (dk ⊛ xl) , (31)

for k = 1, . . . , K and l = 1, . . . , L, where

Ha(x)n :=
{

0, |xn| < an,

xn, |xn| ≥ an.
(32)

for all n. Considering λZ (in M̃Z = λZ MZ ) as λZ → 1,
the solution obtained by the BPEG-M approach becomes
equivalent to (31). To show this, observe first that the
BPEG-M-based solution (using MZ = IN ) to (30) is
obtained by

z
(i+1)
l,k = H√ 2α

λZ

(
ζ

(i+1)
l,k

)
,

ζ
(i+1)
l,k =

(
1 − λ−1

Z

)
· ź

(i+1)
l,k + λ−1

Z · dk ⊛ xl,

ź
(i+1)
l,k = z

(i)
l,k + E

(i+1)
Z

(
z
(i)
l,k − z

(i−1)
l,k

)
. (33)

The downside of applying solution (33) is that it would
require additional memory to store the corresponding
extrapolated points – {ź(i+1)

l,k } – and the memory grows
with N , L, and K . Considering the sharpness of the
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TABLE II

COMPARISONS OF COMPUTATIONAL COMPLEXITY AND MEMORY USAGES

BETWEEN CAOL AND PATCH-DOMAIN APPROACH

majorizer in (30), i.e., MZ = IN , and the memory issue, it is
reasonable to consider the solution (33) with no extrapolation,
i.e., {E

(i+1)
Z = 0}:

z
(i+1)
l,k = H√ 2α

λZ

(
(λZ − 1)−1λZ · z

(i)
l,k + λ−1

Z · dk ⊛ xl

)

becoming equivalent to (31) as λZ →1.
Solution (31) has two benefits over (33): compared to (33),

(31) requires only half the memory to update all z
(i+1)
l,k vectors

and no additional computations related to ź
(i+1)
l,k . While having

these benefits, empirically (31) has equivalent convergence
rates as (33) using {λZ = 1 + ǫ}; see Fig. 4. Throughout the
paper, we solve the sparse coding problems (e.g., (30) and
{zk}-block optimization in (P3)) via optimal solutions in the
form of (31).

C. Lower Memory Use Than Patch-Domain Approaches

The convolution perspective in CAOL (P0) requires much
less memory than conventional patch-domain approaches;
thus, it is more suitable for learning filters from large datasets
or applying the learned filters to high-dimensional MBIR
problems. First, consider the training stage (e.g., (P0)). The
patch-domain approaches, e.g., [1], [6], [7], require about R

times more memory to store training signals. For example, 2D
patches extracted by

√
R×

√
R-sized windows (with “stride”

one and periodic boundaries [6], [12], as used in convolution)
require about R (e.g., R = 64 [1], [7]) times more memory
than storing the original image of size

√
N ×

√
N . For L

training images, their memory usage dramatically increases
with a factor L RN . This becomes even more problematic in
forming hierarchical representations, e.g., CNNs – see Appen-
dix A. Unlike the patch-domain approaches, the memory use
of CAOL (P0) only depends on the L N-factor to store training
signals. As a result, the BPEG-M algorithm for CAOL (P1)
requires about two times less memory than the patch-domain
approach [6] (using BPEG-M). See Table II-B. (Both the
corresponding BPEG-M algorithms use identical computations
per iteration that scale with L R2 N ; see Table II-A.)

Second, consider solving MBIR problems. Different from
the training stage, the memory burden depends on how
one applies the learned filters. In [53], the learned filters

are applied with the conventional convolutional operators
– e.g., ⊛ in (P0) – and, thus, there exists no additional
memory burden. However, in [2], [54], [55], the

√
R ×

√
R-

sized learned kernels are applied with a matrix constructed
by many overlapping patches extracted from the updated
image at each iteration. In adaptive-filter MBIR problems
[2], [6], [8], the memory issue pervades the patch-domain
approaches.

VI. SPARSE-VIEW CT MBIR USING CONVOLUTIONAL

REGULARIZER LEARNED VIA CAOL, AND BPEG-M

This section introduces a specific example of applying the
learned convolutional regularizer, i.e., F(D⋆, {zl,k}) in (P0),
from a representative dataset to recover images in extreme

imaging that collects highly undersampled or noisy mea-
surements. We choose a sparse-view CT application since
it has interesting challenges in reconstructing images that
include Poisson noise in measurements, nonuniform noise or
resolution properties in reconstructed images, and complicated
(or no) structures in the system matrices. For CT, undersam-
pling schemes can significantly reduce the radiation dose and
cancer risk from CT scanning. The proposed approach can be
applied to other applications (by replacing the data fidelity and
spatial strength regularization terms in (P3) below).

We pre-learn TF filters {d⋆
k ∈ RK : k = 1, . . . , K } via

CAOL (P1) with a set of high-quality (e.g., normal-dose) CT
images {xl : l = 1, . . . , L}. To reconstruct a linear attenuation
coefficient image x ∈ RN ′

from post-log measurement y ∈
Rm [54], [56], we apply the learned convolutional regularizer
to CT MBIR and solve the following block multi-nonconvex
problem [32], [35]:

argmin
x≥0

1

2
‖y−Ax‖2

W
︸ ︷︷ ︸

data fidelity f (x; y)

+ γ · min
{zk }

K∑

k=1

1

2

∥∥d⋆
k ⊛ x − zk

∥∥2
2 + α′

N ′∑

n=1

ψ j φ((zk)n)

︸ ︷︷ ︸
learned convolutional regularizer g(x, {zk}; {dk})

.

(P3)

Here, A ∈ R
m×N ′

is a CT system matrix, W ∈ R
m×m is

a (diagonal) weighting matrix with elements {Wl,l = ρ2
l /(ρl +

σ 2) : l = 1, . . . , m} based on a Poisson-Gaussian model for
the pre-log measurements ρ ∈ Rm with electronic readout
noise variance σ 2 [54]–[56], ψ ∈ RN ′

is a pre-tuned spatial
strength regularization vector [57] with non-negative elements
{ψn = (

∑m
l=1 A2

l,n Wl,l )
1/2/(

∑m
l=1 A2

l,n)
1/2 : n = 1, . . . , N ′}4

that promotes uniform resolution or noise properties in the
reconstructed image [54, Appx.], an indicator function φ(a) is
equal to 0 if a = 0, and is 1 otherwise, zk ∈ RN ′

is unknown
sparse code for the kth filter, and α′ > 0 is a thresholding
parameter.

We solved (P3) via reBPEG-M in Section IV with a
two-block scheme [32], and summarize the corresponding

4See details of computing {A2
l, j

: ∀l, j} in [32].
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BPEG-M updates as

x (i+1) =
[(

M̃A + γ IR

)−1 ·
(

M̃Aη(i+1)

+ γ

K∑

k=1

(P f d⋆
k ) ⊛ H√

2α′ψ

(
d⋆

k ⊛ x (i)
))]

≥0
, (34)

where

η(i+1) = x́ (i+1) − M̃−1
A AT W

(
Ax́ (i+1) − y

)
,

x́ (i+1) = x (i) + E
(i+1)
A

(
x (i) − x (i−1)

)
, (35)

M̃A = λA MA by (6), a diagonal majorization matrix MA �
AT W A is designed by Lemma S.1, and P f ∈ CR×R flips a
column vector in the vertical direction (e.g., it rotates 2D filters
by 180◦). Interpreting the update (34) leads to the following
two remarks:

Remark 6.1. When the convolutional regularizer learned
via CAOL (P1) is applied to MBIR, it works as an autoen-
coding CNN:

M(x) =
K∑

k=1

(P f d⋆
k ) ⊛ H√

2α′
k

(
d⋆

k ⊛ x
)

(36)

(setting ψ = 1N ′ and generalizing α′ to {α′
k : k = 1, . . . , K }

in (P3)). This is an explicit mathematical motivation for
constructing architectures of iterative regression CNNs for
MBIR, e.g., BCD-Net [28], [58]–[60] and Momentum-Net
[29], [30]. Particularly when the learned filters {d⋆

k } in (36)
satisfy the TF condition, they are useful for compacting energy
of an input signal x and removing unwanted features via the
non-linear thresholding in (36).

Remark 6.2. Update (34) improves the solution x (i+1)

by weighting between a) the extrapolated point considering
the data fidelity, i.e., η(i+1) in (35), and b) the “refined”
update via the (ψ-weighting) convolutional autoencoder,
i.e.,

∑
k(P f d⋆

k ) ⊛ H√
2α′ψ (d⋆

k ⊛ x (i)).

VII. RESULTS AND DISCUSSION

A. Experimental Setup

This section examines the performance (e.g., scalability,
convergence, and acceleration) and behaviors (e.g., effects of
model parameters on filters structures and effects of dimen-
sions of learned filter on MBIR performance) of the proposed
CAOL algorithms and models, respectively.

1) CAOL: We tested the introduced CAOL
models/algorithms for four datasets: 1) the fruit dataset
with L = 10 and N = 100×100 [10]; 2) the city dataset with
L = 10 and N = 100×100 [14]; 3) the CT dataset of L = 80
and N = 128 × 128, created by dividing down-sampled
512 × 512 XCAT phantom slices [61] into 16 sub-images
[13], [62] – referred to the CT-(i) dataset; 4) the CT dataset
of with L = 10 and N = 512 × 512 from down-sampled
512×512 XCAT phantom slices [61] – referred to the CT-(ii)
dataset. The preprocessing includes intensity rescaling to
[0, 1] [10], [13], [14] and/or (global) mean substraction
[1], [63, §2], as conventionally used in many sparse coding
studies, e.g., [1], [10], [13], [14], [63]. For the fruit and
city datasets, we trained K = 49 filters of size R = 7×7.

For the CT dataset (i), we trained filters of size R = 5×5,
with K = 25 or K = 20. For CT reconstruction experiments,
we learned the filters from the CT-(ii) dataset; however,
we did not apply mean subtraction because it is not modeled
in (P3).

The parameters for the BPEG-M algorithms were defined
as follows.5 We set the regularization parameters α, β as
follows:

• CAOL (P1): To investigate the effects of α, we tested
(P1) with different α’s in the case R = K . For the fruit
and city datasets, we used α = 2.5×{10−5, 10−4}; for
the CT-(i) dataset, we used α = {10−4, 2×10−3}. For the
CT-(ii) dataset (for CT reconstruction experiments), see
details in [32, Sec. V1].

• CAOL (P2): Once α is fixed from the CAOL (P1)
experiments above, we tested (P2) with different β’s to
see its effects in the case R > K . For the CT-(i) dataset,
we fixed α = 10−4, and used β = {5×106, 5×104}.

We set λD = 1 + ǫ as the default. We initialized filters in
either deterministic or random ways. The deterministic filter
initialization follows that in [6, Sec. 3.4]. When filters were
randomly initialized, we used a scaled one-vector for the first
filter. We initialize sparse codes mainly with a deterministic
way that applies (31) based on {d(0)

k }. If not specified, we used
the random filter and deterministic sparse code initializations.
For BPG [31], we used the maximum eigenvalue of Hessians
for Lipschitz constants in (16), and applied the gradient-based
restarting scheme in Section IV-C. We terminated the iterations
if the relative error stopping criterion (e.g., [16, (44)]) is met
before reaching the maximum number of iterations. We set
the tolerance value as 10−13 for the CAOL algorithms using
Proposition 5.1, and 10−5 for those using Lemmas 5.2–5.3,
and the maximum number of iterations to 2×104.

The CAOL experiments used the convolutional operator
learning toolbox [64].

2) Sparse-View CT MBIR With Learned Convolutional Reg-

ularizer via CAOL: We simulated sparse-view sinograms of
size 888×123 (‘detectors or rays’ × ‘regularly spaced projec-
tion views or angles’, where 984 is the number of full views)
with GE LightSpeed fan-beam geometry corresponding to a
monoenergetic source with 105 incident photons per ray and
no background events, and electronic noise variance σ 2 =52.
We avoided an inverse crime in our imaging simulation and
reconstructed images with a coarser grid with �x = �y =
0.9766 mm; see details in [32, Sec. V-A2].

For EP MBIR, we finely tuned its regularization parameter
to achieve both good root mean square error (RMSE) and
structural similarity index measurement [65] values. For the
CT MBIR model (P3), we chose the model parameters {γ, α′}
that showed a good tradeoff between the data fidelity term
and the learned convolutional regularizer, and set λA =1 + ǫ.
We evaluated the reconstruction quality by the RMSE (in a
modified Hounsfield unit, HU, where air is 0 HU and water
is 1000 HU) in a region of interest. See further details
in [32, Sec. V-A2] and Fig. 6.

5The remaining BPEG-M parameters not described here are identical to
those in [16, VII-A2].
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The imaging simulation and reconstruction experiments
used the Michigan image reconstruction toolbox [66].

B. CAOL With BPEG-M

Under the sharp majorization regime (i.e., partial or all
blocks have sufficiently tight bounds in Lemma 4.2), the pro-
posed convergence-guaranteed BPEG-M can achieve sig-
nificantly faster CAOL convergence rates compared with
the state-of-the-art BPG algorithm [31] for solving block
multi-nonconvex problems, by several generalizations of BPG
(see Remark 4.3) and two majorization designs (see Propo-
sition 5.1 and Lemma 5.3). See Fig. 3. In controlling the
tradeoff between majorization sharpness and extrapolation
effect of BPEG-M (i.e., choosing {λb} in (6)–(7)), maintaining
majorization sharpness is more critical than gaining stronger
extrapolation effects to accelerate convergence under the sharp
majorization regime. See Fig. 4.

While using about two times less memory (see Table II),
CAOL (P0) learns TF filters corresponding to those given by
the patch-domain TF learning in [6, Fig. 2]. See Section V-C
and Fig. S.1 with deterministic {d(0)

k }. Note that BPEG-
M-based CAOL (P0) requires even less memory than
BPEG-M-based CDL in [16], by using exact sparse coding
solutions (e.g., (31) and (34)) without saving their extrapolated
points. In particular, when tested with the large CT dataset of
{L =40, N =512×512}, the BPEG-M-based CAOL algorithm
ran fine, while BPEG-M-based CDL [16] and patch-domain
AOL [6] were terminated due to exceeding available
memory.6 In addition, the CAOL models (P1) and (P2)
are easily parallelizable with K threads. Combining these
results, the BPEG-M-based CAOL is a reasonable choice
for learning filters from large training datasets. Finally, [34]
shows theoretically how using many samples can improve
CAOL, accentuating the benefits of the low memory usage
of CAOL.

The effects of parameters for the CAOL models are shown
as follows. In CAOL (P1), as the thresholding parameter α

increases, the learned filters have more elongated structures;
see Figs. 5(a) and S.2. In CAOL (P2), when α is fixed, increas-
ing the filter diversity promoting regularizer β successfully
lowers coherences between filters (e.g., gdiv(D) in (P2)); see
Fig. 5(b).

In adaptive MBIR (e.g., [2], [6], [8]), one may apply adap-
tive image denoising [53], [67]–[71] to optimize thresholding
parameters. However, if CAOL (P0) and testing the learned
convolutional regularizer to MBIR (e.g., (P3)) are separated,
selecting “optimal” thresholding parameters in (unsupervised)
CAOL is challenging – similar to existing dictionary or
analysis operator learning methods. Our strategy to select the
thresholding parameter α in CAOL (P1) (with R = K ) is
given as follows. We first apply the first-order finite difference
filters {dk : ‖dk‖2

2 = 1/R,∀k} (e.g., 1√
2R

[1,−1]T in 1D) to all
training signals and find their sparse representations, and then
find αest that corresponds to the largest 95(±1)% of non-zero
elements of the sparsified training signals. This procedure

6Their double-precision MATLAB implementations were tested on 3.3 GHz
Intel Core i5 CPU with 32 GB RAM.

Fig. 5. Examples of learned filters with different CAOL models and
parameters (Proposition 5.1 was used for MD ; the CT-(i) dataset with a
symmetric boundary condition).

defines the range [ 1
10αest, αest] to select desirable α⋆ and its

corresponding filter D⋆. We next ran CAOL (P1) with multiple
α values within this range. Selecting {α⋆, D⋆} depends on
application. For CT MBIR, D⋆ that both has (short) first-order
finite difference filters and captures diverse (particularly diag-
onal) features of training signals, gave good RMSE values and
well preserved edges; see Fig. S.2(c) and [32, Fig. 2].

C. Sparse-View CT MBIR With Learned Convolutional

Sparsifying Regularizer (via CAOL) and BPEG-M

In sparse-view CT using only 12.5% of the full projec-
tions views, the CT MBIR (P3) using the learned convo-
lutional regularizer via CAOL (P1) outperforms EP MBIR;
it reduces RMSE by approximately 5.6–6.1HU. See the
results in Figs. 6(c)–(e). The model (P3) can better recover
high-contrast regions (e.g., bones) – see red arrows and
magnified areas in Fig. 6(c)–(e). Nonetheless, the filters with
R = K = 52 in the (ψ-weighting) autoencoding CNN,
i.e.,

∑
k(P f d⋆

k ) ⊛H√
2α′ψ (d⋆

k ⊛ (·)) in (36), can blur edges in

low-contrast regions (e.g., soft tissues) while removing noise.
See Fig. 6(d) – the blurry issues were similarly observed
in [54], [55]. The larger dimensional kernels (i.e., R =
K = 72) in the convolutional autoencoder can moderate
this issue, while further reducing RMSE values; compare the
results in Fig. 6(d)–(e). In particular, the larger dimensional
convolutional kernels capture more diverse features – see
[32, Fig. 2]) – and the diverse features captured in kernels
are useful to further improve the performance of the pro-
posed MBIR model (P3). (The importance of diverse features
in kernels was similarly observed in CT experiments with
the learned autoencoders having a fixed kernel dimension;
see Fig. S.2(c).) The RMSE reduction over EP MBIR is
comparable to that of CT MBIR (P3) using the {R, K = 82}-
dimensional filters trained via the patch-domain AOL [7];
however, at each BPEG-M iteration, this MBIR model using
the trained (non-TF) filters via patch-domain AOL [7] requires
more computations than the proposed CT MBIR model (P3)
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Fig. 6. Comparisons of reconstructed images from different reconstruction methods for sparse-view CT (123 views (12.5% sampling); for the MBIR model
(P3), convolutional regularizers were trained by CAOL (P1) – see [32, Fig. 2]; display window is within [800, 1200] HU) [32]. The MBIR model (P3) using
convolutional sparsifying regularizers trained via CAOL (P1) shows higher image reconstruction accuracy compared to the EP reconstruction; see red arrows
and magnified areas. For the MBIR model (P3), the autoencoder (see Remark 6.1) using the filter dimension R = K = 49 improves reconstruction accuracy
of that using R = K =25; compare the results in (d) and (e). In particular, the larger dimensional filters improve the edge sharpness of reconstructed images;
see circled areas. The corresponding error maps are shown in Fig. S.5 of the supplementary material.

using the learned convolutional regularizer via CAOL (P1).
See related results and discussion in Fig. S.4 and Section S.X,
respectively.

On the algorithmic side, the BPEG-M framework can guar-
antee the convergence of CT MBIR (P3). Under the sharp
majorization regime in BPEG-M, maintaining the majorization
sharpness is more critical than having stronger extrapolation
effects – see [32, Fig. 3], as similarly shown in CAOL
experiments (see Section VII-B).

VIII. CONCLUSION

Developing rapidly converging and memory-efficient CAOL
engines is important, since it is a basic element in training
CNNs in an unsupervised learning manner (see Appendix A).
Studying structures of convolutional kernels is another fun-
damental issue, since it can avoid learning redundant fil-
ters or provide energy compaction properties to filters. The
proposed BPEG-M-based CAOL framework has several ben-
efits. First, the orthogonality constraint and diversity pro-
moting regularizer in CAOL are useful in learning filters
with diverse structures. Second, the proposed BPEG-M algo-
rithm significantly accelerates CAOL over the state-of-the-
art method, BPG [31], with our sufficiently sharp majorizer
designs. Third, BPEG-M-based CAOL uses much less mem-
ory compared to patch-domain AOL methods [3], [4], [7],
and easily allows parallel computing. Finally, the learned
convolutional regularizer provides the autoencoding CNN
architecture in MBIR, and outperforms EP reconstruction in
sparse-view CT.

Similar to existing unsupervised synthesis or analysis oper-
ator learning methods, the biggest remaining challenge of
CAOL is optimizing its model parameters. This would become
more challenging when one applies CAOL to train CNNs
(see Appendix A). Our first future work is developing “task-
driven” CAOL that is particularly useful to train threshold-
ing values. Other future works include further acceleration
of BPEG-M in Algorithm 1, designing sharper majorizers
requiring only O(L RN) for the filter update problem of
CAOL (P0), and applying the CNN model learned via (A1)
to MBIR.

APPENDIX

A. Training CNN in a Unsupervised Manner via CAOL

This section mathematically formulates an unsupervised
training cost function for classical CNN (e.g., LeNet-5 [11]
and AlexNet [72]) and solves the corresponding optimization
problem, via the CAOL and BPEG-M frameworks studied in
Sections III–V. We model the three core modules of CNN:
1) convolution, 2) pooling, e.g., average [11] or max [63], and
3) thresholding, e.g., RELU [73], while considering the TF
filter condition in Proposition 3.1. Particularly, the orthogo-
nality constraint in CAOL (P1) leads to a sharp majorizer,
and BPEG-M is useful to train CNNs with convergence
guarantees. Note that it is unclear how to train such diverse (or
incoherent) filters described in Section III by the most common
CNN optimization method, the stochastic gradient method in
which gradients are computed by back-propagation. The major
challenges include a) the non-differentiable hard thresholding
operator related to ℓ0-norm in (P0), b) the nonconvex filter
constraints in (P1) and (P2), c) using the identical filters in
both encoder and decoder (e.g., W and W H in Section S.I),
and d) vanishing gradients.

For simplicity, we consider a two-layer CNN with a single
training image, but one can extend the CNN model (A1)
(see below) to “deep” layers with multiple images. The first
layer consists of 1c) convolutional, 1t) thresholding, and 1p)

pooling layers; the second layer consists of 2c) convolu-
tional and 2t) thresholding layers. Extending CAOL (P1),
we model two-layer CNN training as the following optimiza-
tion problem:

argmin
{d [1]

k ,d
[2]
k,k′ }

min
{z[1]

k ,z
[2]
k′ }

K1∑

k=1

1

2

∥∥∥d
[1]
k ⊛ x − z

[1]
k

∥∥∥
2

2
+ α1

∥∥∥z
[1]
k

∥∥∥
0

+ 1

2

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

K1∑

k=1

⎡
⎢⎢⎣

d
[2]
k,1 ⊛ Pz

[1]
k

...

d
[2]
k,K2

⊛ Pz
[1]
k

⎤
⎥⎥⎦

⎞
⎟⎟⎠−

⎡
⎢⎣

z
[2]
1
...

z
[2]
K2

⎤
⎥⎦

∥∥∥∥∥∥∥∥

2

2

+ α2

K2∑

k′=1

∥∥∥z
[2]
k′

∥∥∥
0
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subject to D[1](D[1])H = 1

R1
· I,

D
[2]
k

(
D

[2]
k

)H = 1

R2
· I, k = 1, . . . , K1,

(A1)

where x ∈ RN is the training data, {d [1]
k ∈ RR1 : k =

1, . . . , K1} is a set of filters in the first convolutional layer,
{z[1]

k ∈ RN : k = 1, . . . , K1} is a set of features after the

first thresholding layer, {d [2]
k,k′ ∈ R

R2 : k ′ = 1, . . . , K2} is a

set of filters for each of {z[1]
k } in the second convolutional

layer, {z[2]
k′ ∈ RN/ω : k = 1, . . . , K2} is a set of features

after the second thresholding layer, D[1] and {D
[2]
k } are

similarly given as in (1), P ∈ RN/ω×ω denotes an average
pooling [11] operator (see its definition below), and ω is
the size of pooling window. The superscripted number in the
bracket of vectors and matrices denotes the (·)th layer. Here,
we model a simple average pooling operator P ∈ R(N/ω)×ω

by a block diagonal matrix with row vector 1
ω

1T
ω ∈ Rω:

P := 1
ω

⊕N/ω
j=1 1T

ω . We obtain a majorization matrix of PT P

by PT P � diag(PT P1N ) = 1
ω

IN (using Lemma S.1). For
2D case, the structure of P changes, but PT P � 1

ω IN holds.
We solve the CNN training model in (A1) via the BPEG-M

techniques in Section V, and relate the solutions of (A1) and
modules in the two-layer CNN training. The symbols in the
following items denote the CNN modules.

1c) Filters in the first layer, {d [1]
k }: Updating the filters is

straightforward via the techniques in Section V-A2.
1t) Features at the first layers, {z[1]

k }: Using BPEG-M with

the kth set of TF filters {d [2]
k,k′ : k ′} and PT P � 1

ω IN (see

above), the proximal mapping for z
[1]
k is

min
z
[1]
k

1

2

∥∥∥d
[1]
k ⊛ x − z

[1]
k

∥∥∥
2

2
+ 1

2ω′

∥∥∥z
[1]
k − ζ

[k]
k

∥∥∥
2

2
+α1

∥∥∥z
[1]
k

∥∥∥
0
,

(37)
where ω′ = ω/λZ and ζ

[k]
k is given by (4). Combining the

first two quadratic terms in (37) into a single quadratic
term leads to an optimal update for (37):

z
[1]
k = H√

2
ω′α1
ω′+1

(
d

[1]
k ⊛ x + 1

ω′ ζ
[k]
k

)
, k ∈ [K ],

where the hard thresholding operator Ha(·) with a thresh-
olding parameter a is defined in (32).

1p) Pooling, P: Applying the pooling operator P to {z[1]
k }

gives input data – {Pz
[1]
k } – to the second layer.

2c) Filters in the second layer, {d [2]
k,k′}: We update the kth

set filters {d [2]
k,k′ : ∀k ′} in a sequential way. Updating

the kth set filters is straightforward via the techniques
in Section V-A2.

2t) Features at the second layers, {z[2]
k′ }: The corresponding

update is given by

z
[2]
k′ = H√

2α2

(
K1∑

k=1

d
[1]
k,k′ ⊛ Pz

[1]
k

)
, k ′ ∈ [K2].

Considering the introduced mathematical formulation of
training CNNs [11] via CAOL, BPEG-M-based CAOL has

potential to be a basic engine to rapidly train CNNs with big
data (i.e., training data consisting of many (high-dimensional)
signals).

B. Examples of { f (x; y),X } in MBIR Model (B1) Using

Learned Regularizers

This section introduces some potential applications of using
MBIR model (B1) using learned regularizers in imaging
processing, imaging, and computer vision. We first consider
quadratic data fidelity function in the form of f (x; y) =
1
2‖y−Ax‖2

W . Examples include

• Image debluring (with W = I for simplicity), where y is
a blurred image, A is a blurring operator, and X is a box
constraint;

• Image denoising (with A = I ), where y is a noisy image
corrupted by additive white Gaussian noise (AWGN),
W is the inverse covariance matrix corresponding to
AWGN statistics, and X is a box constraint;

• Compressed sensing (with {W = I,X ∈CN ′ } for simplic-
ity) [74], [75], where y is a measurement vector, and
A is a compressed sensing operator, e.g., subgaussian
random matrix, bounded orthonormal system, subsampled
isometries, certain types of random convolutions;

• Image inpainting (with W = I for simplicity), where y is
an image with missing entries, A is a masking operator,
and X is a box constraint;

• Light-field photography from focal stack data with
f (x; y) =

∑
c ‖yc −

∑
s Ac,s xs‖2

2, where yc denotes
measurements collected at the cth sensor, Ac,s models
camera imaging geometry at the sth angular position for
the cth detector, xs denotes the sth sub-aperture image,
∀c, s, and X is a box constraint [29], [76].

Examples that use nonlinear data fidelity function include
image classification using the logistic function [77], magnetic
resonance imaging considering unknown magnetic field vari-
ation [78], and positron emission tomography [59].

C. Notation

We use ‖·‖p to denote the ℓp-norm and write 〈·, ·〉 for
the standard inner product on CN . The weighted ℓ2-norm
with a Hermitian positive definite matrix A is denoted by
‖·‖A =

∥∥A1/2(·)
∥∥

2. ‖·‖0 denotes the ℓ0-quasi-norm, i.e., the
number of nonzeros of a vector. The Frobenius norm of a
matrix is denoted by ‖ · ‖F. (·)T , (·)H , and (·)∗ indicate
the transpose, complex conjugate transpose (Hermitian trans-
pose), and complex conjugate, respectively. diag(·) denotes
the conversion of a vector into a diagonal matrix or diagonal
elements of a matrix into a vector.

⊕
denotes the matrix

direct sum of matrices. [C] denotes the set {1, 2, . . . , C}.
Distinct from the index i , we denote the imaginary unit√

−1 by i. For (self-adjoint) matrices A, B ∈ CN×N ,
the notation B � A denotes that A − B is a positive semi-
definite matrix.
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Convolutional Analysis Operator Learning:
Acceleration and Convergence

(Supplementary Material)
Il Yong Chun, Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

This supplementary material for [1] provides mathematical

proofs, detailed descriptions, and additional experimental re-

sults that support several arguments in the main manuscript.

We use the prefix “S” for the numbers in section, equation,

figure, algorithm, and footnote in the supplementary material.
Comments on Convolutional Operator ⊛: Throughout the

paper, we fix the dimension of dk ⊛ xl by N (e.g., “same”

option in convolution functions in MATLAB) for simplicity.

However, one can generalize it to PB(dk⊛xl) for considering

arbitrary boundary truncations (e.g., “full” or “valid” options)

and conditions (e.g., zero boundary). Here, dk⊛xl ∈ C
N+R−1,

PB ∈ C
N ′×(N+R−1) is a selection matrix with |B| = N ′ and

N ′ ≤ N+R−1, and B is a list of distinct indices from the set

{1, . . . , N+R−1} that correspond to truncating the boundaries

of the padded convolution.

S.I. PROOFS OF PROPOSITION 3.1 AND ITS RELATION TO

RESULTS DERIVED BY LOCAL APPROACHES

We consider the following 1D setup for simplicity. A non-

padded signal x ∈ C
N has support in the set {0, 1, . . . , N −

1}. The odd-sized filters {dk ∈ C
R : k ∈ [K]} have finite

support in the set {−∆,−∆ + 1, . . . ,∆} and padded signal

x̂ ∈ C
N+2∆ has finite support in the set {0, 1, . . . , N − 1 +

2∆}, where ∆ is a half width of odd-sized filters dk’s, e.g.,

∆ = ⌊R/2⌋. We aim to find conditions of {dk : k ∈ [K]} to

show
K∑

k=1

‖dk ⊛ x‖
2
2 = ‖x‖

2
2

↔

K∑

k=1

N−1+∆∑

n=∆

∣∣∣∣∣

∆∑

r=−∆

x̂(n− r)dk(r)

∣∣∣∣∣

2

=

N−1∑

n′=0

|x(n′)|2,

(S.1)

for any x ∈ C
N . We first rewrite the term

∑
k ‖dk ⊛ x‖

2
2 by

K∑

k=1

‖dk ⊛ x‖
2
2

=
K∑

k=1

N−1+∆∑

n=∆

(
∆∑

r=−∆

x̂(n− r)dk(r)

)∗ ∆∑

r′=−∆

x̂(n− r′)dk(r
′)
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=
K∑

k=1

N−1+∆∑

n=∆

∆∑

r=−∆

∆∑

r′=−∆

x̂∗(n− r)d∗k(r)x̂(n− r′)dk(r
′)

=

K∑

k=1

N−1+∆∑

n=∆

∆∑

r=−∆

|x̂(n− r)|
2
|dk(r)|

2

+
∑

r′ 6=r

x̂∗(n− r)d∗k(r)x̂(n− r′)dk(r
′).

The second summation term further simplifies to

N−1+∆∑

n=∆

∆∑

r=−∆

∑

r′ 6=r

K∑

k=1

x̂∗(n− r)d∗k(r)x̂(n− r′)dk(r
′)

=

N−1+∆∑

n=∆

∆∑

r=−∆

∑

r′ 6=r

x̂∗(n− r)x̂(n− r′)

K∑

k=1

d∗k(r)dk(r
′).

If dk’s satisfy the orthogonality condition in Proposition 3.1,

i.e.,

K∑

k=1

dk(r)d
∗
k(r

′) =
1

R
δr−r′ , ∀r, r′ ∈ Z

1 or Z2, (S.2)

where δn denotes the Kronecker impulse, then the equality in

(S.1) holds:

K∑

k=1

‖dk ⊛ x‖
2
2 =

N−1+∆∑

n=∆

∆∑

r=−∆

|x̂(n− r)|
2

K∑

k=1

|dk(r)|
2

=
1

R

N−1+∆∑

n=∆

∆∑

r=−∆

|x̂(j − r)|
2

=

N−1∑

n′=0

|x(n′)|2

where the last equality holds by periodic or mirror-reflective

signal padding. It is straightforward to extend the proofs to

even-sized filters and 2D case.

We next explain the relation between the TF con-

dition in Proposition 3.1 and that given by the local

approach. Reformulate [(d1 ⊛ x)H , . . . , (dK ⊛ x)H ]H as

[(WP1)
H , . . . , (WPN )H ]Hx, where the kth row of W ∈

C
K×R corresponds to the kth filter’s coefficients, {Pn ∈

C
R×N} is a set of patch extraction operators (with a circular

boundary condition and the sliding parameter 1), and x ∈ C
N .

To enforce a TF condition with this local perspective, the

matrix W (in [2], [3]) should satisfy
∑N

n=1 P
H
n W

HWPn =
I . This is satisfied when WHW = 1

R · I , considering that∑N
n=1 P

H
n Pn = R · I with the patch extraction assumptions
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above. Thus, the orthogonality constraint DDH = 1
RI in

Proposition 3.1, i.e., (S.2), corresponds to the TF condition

derived by the local approach.

S.II. PROOFS OF LEMMA 4.2

By the 1st-order Taylor integral, observe that

f(x)− f(y) =

∫ 1

0

〈∇f(y + t(x− y)), x− y〉 dt.

In addition, we attain

〈x, y〉 = xTM−1/2M1/2y = 〈M−1/2x,M1/2y〉

≤ ‖x‖M−1‖y‖M , (S.3)

for any x, y ∈ R
n and M = MT ≻ 0, where the second

equality hold by M−1/2 = (M−1/2)T due to the assumption

of M and the inequality holds by Cauchy-Schwarz inequality

and the definition of ‖x‖
2
M in Definition 4.1. For x, y ∈ R

n,

we now obtain that

f(x)

=f(y)+

∫ 1

0

〈∇f(y+ t(x−y)),x−y〉dt

=f(y)+〈∇f(y),x−y〉+
∫ 1

0

〈∇f(y+ t(x−y))−∇f(y),x−y〉dt

≤f(y)+〈∇f(y),x−y〉+
∫ 1

0

‖∇f(y+ t(x−y))−∇f(y)‖M−1‖x−y‖M dt

≤f(y)+〈∇f(y),x−y〉+

∫ 1

0

t‖x−y‖
2
M dt

=f(y)+〈∇f(y),x−y〉+
1

2
‖x−y‖2M ,

where the first inequality holds by (S.3), and the second

inequality holds by M -Lipschitz continuity of ∇f (see Defi-

nition 4.1). This completes the proof.

S.III. PROOFS OF LEMMA 4.4

The following proof extends that given in [4, Lem. 1]. By

the M -Lipschitz continuity of ∇xb
f
(i+1)
b (xb) about xb and

Proposition 4.2, it holds that (e.g., see [5, Lem. S.1])

f
(i+1)
b (x

(i+1)
b )

≤ f
(i+1)
b (x

(i)
b ) + 〈∇xb

f
(i+1)
b (x

(i)
b ), x

(i+1)
b − x

(i)
b 〉

+
1

2

∥∥∥x(i+1)
b − x

(i)
b

∥∥∥
2

M
(i+1)
b

. (S.4)

Considering that x
(i+1)
b is a minimizer of (4), we have

〈∇xb
f
(i+1)
b (x́

(i+1)
b ), x

(i+1)
b − x́

(i)
b 〉

+
1

2

∥∥∥x(i+1)
b − x́

(i+1)
b

∥∥∥
2

M̃
(i+1)
b

+ gb(x
(i+1)
b )

≤ 〈∇xb
f
(i+1)
b (x́

(i+1)
b ), x

(i)
b − x́

(i)
b 〉

+
1

2

∥∥∥x(i)b − x́
(i+1)
b

∥∥∥
2

M̃
(i+1)
b

+ gb(x
(i)
b ) (S.5)

Summing (S.4) and (S.5), we obtain

Fb(x
(i)
b )−Fb(x

(i+1)
b )

=f
(i+1)
b (x

(i)
b )+gb(x

(i)
b )−f

(i+1)
b (x

(i+1)
b )−gb(x

(i+1)
b )

≥〈∇xb
f
(i+1)
b (x́

(i+1)
b ),x

(i+1)
b −x

(i)
b 〉

−〈∇xb
f
(i+1)
b (x

(i)
b ),x

(i+1)
b −x

(i)
b 〉

−
1

2

∥∥∥x(i+1)
b −x

(i)
b

∥∥∥
2

M
(i+1)
b

+
1

2

∥∥∥x(i+1)
b − x́

(i+1)
b

∥∥∥
2

M̃
(i+1)
b

+
1

2

∥∥∥x(i)b − x́
(i+1)
b

∥∥∥
2

M̃
(i+1)
b

≥〈∇xb
f
(i+1)
b (x́

(i+1)
b )−∇xb

f
(i+1)
b (x

(i)
b ),x

(i+1)
b −x

(i)
b 〉

+〈M̃
(i+1)
b (x

(i)
b − x́

(i+1)
b ),x

(i+1)
b −x

(i)
b 〉

+
1

2

∥∥∥x(i+1)
b −x

(i)
b

∥∥∥
2

M̃
(i+1)
b

−M
(i+1)
b

≥−
∥∥∥x(i+1)

b −x
(i)
b

∥∥∥
2
·
∥∥∥∇xb

f
(i+1)
b (x́

(i+1)
b )−∇xb

f
(i+1)
b (x

(i)
b )
∥∥∥
2

(S.6)

−
∥∥∥x(i+1)

b −x
(i)
b

∥∥∥
M̃

(i+1)
b

·
∥∥∥x(i)b − x́

(i+1)
b

∥∥∥
M̃

(i+1)
b

+
1

2

∥∥∥x(i+1)
b −x

(i)
b

∥∥∥
2

M̃
(i+1)
b

−M
(i+1)
b

≥−
∥∥∥x(i+1)

b −x
(i)
b

∥∥∥
M

(i+1)
b

(S.7)

·
∥∥∥∇xb

f
(i+1)
b (x́

(i+1)
b )−∇xb

f
(i+1)
b (x

(i)
b )
∥∥∥(

M
(i+1)
b

)
−1

−
∥∥∥x(i+1)

b −x
(i)
b

∥∥∥
M̃

(i+1)
b

·
∥∥∥x(i)b − x́

(i+1)
b

∥∥∥
M̃

(i+1)
b

+
1

2

∥∥∥x(i+1)
b −x

(i)
b

∥∥∥
2

M̃
(i+1)
b

−M
(i+1)
b

≥−
∥∥∥x(i+1)

b −x
(i)
b

∥∥∥
M

(i+1)
b

·
∥∥∥x́(i+1)

b −x
(i)
b

∥∥∥
M

(i+1)
b

(S.8)

−
∥∥∥x(i+1)

b −x
(i)
b

∥∥∥
M̃

(i+1)
b

·
∥∥∥x(i)b − x́

(i+1)
b

∥∥∥
M̃

(i+1)
b

+
1

2

∥∥∥x(i+1)
b −x

(i)
b

∥∥∥
2

M̃
(i+1)
b

−M
(i+1)
b

≥−
∥∥∥x(i+1)

b −x
(i)
b

∥∥∥
M̃

(i+1)
b

+M
(i+1)
b

·
∥∥∥x(i)b − x́

(i+1)
b

∥∥∥
M

(i+1)
b

(S.9)

−
∥∥∥x(i+1)

b −x
(i)
b

∥∥∥
M̃

(i+1)
b

+M
(i+1)
b

·
∥∥∥x(i)b − x́

(i+1)
b

∥∥∥
M̃

(i+1)
b

+
1

2

∥∥∥x(i+1)
b −x

(i)
b

∥∥∥
2

M̃
(i+1)
b

−M
(i+1)
b

≥
λb−1

4

∥∥∥x(i+1)
b −x

(i)
b

∥∥∥
2

M
(i+1)
b

(S.10)

−
(λb+1)2

λb−1

∥∥∥x(i)b − x́
(i+1)
b

∥∥∥
2

M
(i+1)
b

=
λb−1

4

∥∥∥x(i+1)
b −x

(i)
b

∥∥∥
2

M
(i+1)
b

(S.11)

−
(λb+1)2

λb−1

∥∥∥E(i+1)
b (x

(i)
b −x

(i−1)
b )

∥∥∥
2

M
(i+1)
b

≥
λb−1

4

∥∥∥x(i+1)
b −x

(i)
b

∥∥∥
2

M
(i+1)
b

(S.12)

−
(λb−1)δ2

4

∥∥∥x(i)b −x
(i−1)
b

∥∥∥
2

M
(i)
b
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where the inequality (S.6) holds by Cauchy-Schwarz inequal-

ity, the inequality (S.7) holds by (S.3), the inequality (S.8)

holds by (8) in Assumption 2, the inequality (S.9) holds by

(6), the inequality (S.10) holds by (6) and Young’s inequality,

i.e., ab ≤ a2

2ε + εb2

2 , where a, b ≥ 0 and ε > 0, with

ε = 2(λb + 1)(λb − 1)−1 (note that λb > 1 via (6)), the

equality (S.11) holds by (5), and the inequality (S.12) holds

by (9) in Assumption 3. This completes the proof.

S.IV. PROOF OF PROPOSITION 4.5

Summing the following inequality of F (x
(i)
b )−F (x

(i+1)
b )

F (x
(i)
b )−F (x

(i+1)
b )

=

B∑

b=1

Fb(x
(i)
b )−Fb(x

(i+1)
b )

≥

B∑

b=1

λb−1

4

(∥∥∥x(i)b −x
(i+1)
b

∥∥∥
2

M
(i+1)
b

−δ
2
∥∥∥x(i−1)

b −x
(i)
b

∥∥∥
2

M
(i)
b

)

over i=0, .. . ,Iter−1, we obtain

F (x(0))−F (x(Iter+1))

≥

Iter−1∑

i=0

B∑

b=1

λb−1

4

(∥∥∥x(i)b −x
(i+1)
b

∥∥∥
2

M
(i+1)
b

−δ
2
∥∥∥x(i−1)

b −x
(i)
b

∥∥∥
2

M
(i)
b

)

≥

Iter−1∑

i=0

B∑

b=1

(λb−1)(1−δ2)

4

∥∥∥x(i)b −x
(i+1)
b

∥∥∥
2

M
(i+1)
b

≥ min
b∈[B]

{
(λb−1)mb

4

}
(1−δ

2)

Iter−1∑

i=0

∥∥∥x(i)−x
(i+1)

∥∥∥
2

2
(S.13)

where the inequality (S.13) holds by Assumption 2. Due

to the lower boundedness of F in Assumption 1 (i.e.,

infx∈dom(F ) F (x) > −∞), taking Iter → ∞ completes the

proof.

S.V. PROOFS OF THEOREM 4.6

The following proof extends that given in [4, Thm. 1]. Let

x̄ be a limit point of {x(i+1) : i ≥ 0} and {x(ij+1)} be the

subsequence converging to x̄. Using (13), {x(ij+ι)} converges

to x̄ for any ι ≥ 0. Note that, taking another subsequence if

necessary, M
(ij)
b converges to some M̄b as j → ∞ for b ∈ [B],

since M
(i)
b is bounded by Assumption 2.

We first observe that

x
(ij+1)
b =argmin

xb

〈∇xb
f
(ij+1)
b (x́

(ij+1)
b ),xb− x́

(ij+1)
b 〉

+
λb
2

∥∥∥xb− x́(ij+1)
b

∥∥∥
2

M
(ij+1)

b

+gb(xb),

(S.14)

for any ij , since M̃
(i+1)
b = λbM

(i+1)
b , ∀i. Since f is contin-

uously differentiable and gb’s are lower semicontinuous, we

have

gb(x̄b)

≤ liminf
j→∞

{
〈∇xb

f
(ij+1)
b (x́

(ij+1)
b ),x

(ij+1)
b − x́

(ij+1)
b 〉

+
λb
2

∥∥∥x(ij+1)
b − x́

(ij+1)
b

∥∥∥
2

M
(ij+1)

b

+gb(x
(ij+1)
b )

}

≤ liminf
j→∞

{
〈∇xb

f
(ij+1)
b (x́

(ij+1)
b ),xb− x́

(ij+1)
b 〉

+
λb
2

∥∥∥xb− x́(ij+1)
b

∥∥∥
2

M
(ij+1)

b

+gb(xb)

}

= 〈∇xb
fb(x̄b),xb− x̄b〉+

λb
2
‖xb− x̄b‖

2
M̄b

+gb(xb),

for all xb ∈ dom(F ), where the last equality holds by letting

j → ∞. This result can be viewed by

〈∇xb
fb(x̄b), x̄b − x̄b〉+

λb
2
‖x̄b − x̄b‖

2
M̄b

+ gb(x̄b)

≤ 〈∇xb
fb(x̄b), xb − x̄b〉+

λb
2
‖xb − x̄b‖

2
M̄b

+ gb(xb),

for all xb ∈ dom(F ). Thus, we have

x̄b = argmin
xb

〈∇xb
fb(x̄b), xb− x̄b〉+

λb
2
‖xb − x̄b‖

2
M̄b

+gb(xb)

and x̄b satisfies the first-order optimality condition:

0 ∈ ∇xb
f(x̄) + ∂gb(x̄b). (S.15)

Since (S.15) holds for b = 1, . . . , B, x̄ is a critical point of (3).

This completes the proof of the first result in Theorem 4.6.

In addition, (S.14) implies

〈∇xb
f
(ij+1)
b (x́

(ij+1)
b ), x

(ij+1)
b − x́

(ij+1)
b 〉

+
λb
2

∥∥∥x(ij+1)
b − x́

(ij+1)
b

∥∥∥
2

M
(i+1)
b

+ gb(x
(ij+1)
b )

≤ 〈∇xb
f
(ij+1)
b (x́

(ij+1)
b ), x̄b − x́

(ij+1)
b 〉

+
λb
2

∥∥∥x̄b − x́
(ij+1)
b

∥∥∥
2

M
(i+1)
b

+ gb(x̄b).

Applying limit superior to both sides of the above inequality

over j gives

lim sup
j→∞

gb(x
(ij+1)
b ) ≤ gb(x̄b), b = 1, . . . , B. (S.16)

Because gb is lower semi-continuous,

lim inf
j→∞

gb(x
(ij+1)
b ) ≥ gb(x̄b), b = 1, . . . , B. (S.17)

Combining (S.16) and (S.17) gives

lim
j→∞

gb(x
(ij+1)
b ) = gb(x̄b).

Considering the continuity of f completes the proof of the

second result in Theorem 4.6.

For simplicity, our convergence analysis assumes a deter-

ministically cyclic block update order. Similar to [4], one

can extend our proofs in Sections S.II–S.V to the randomly

shuffled update order (for each cycle).
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S.VI. SUMMARY OF REBPEG-M

This section summarizes updates of reBPEG-M. See Algo-

rithm S.1.

Algorithm S.1 reBPEG-M: Restarting BPEG-M

Require: {x
(0)
b = x

(−1)
b : ∀b}, {E

(i)
b ∈ [0, 1], ∀b, i}, i = 0

while a stopping criterion is not satisfied do

for b = 1, . . . , B do

Calculate M
(i+1)
b , M̃

(i+1)
b by (6), and E

(i+1)
b by (7)

x́
(i+1)
b = x

(i)
b +E

(i+1)
b

(
x
(i)
b −x

(i−1)
b

)

x
(i+1)
b = . ..

Prox
M̃

(i+1)
b

gb

(
x́
(i+1)
b −

(
M̃

(i+1)
b

)−1
∇f

(i+1)
b (x́

(i+1)
b )

)

if restarting criterion (15) is satisfied then

x́
(i+1)
b = x

(i)
b

x
(i+1)=...
b

Prox
M̃

(i+1)
b

gb

(
x́
(i+1)
b −

(
M̃

(i+1)
b

)−1
∇f

(i+1)
b (x́

(i+1)
b )

)

end if

Update e
(i+1)
b using (14)

end for

i = i+ 1
end while

S.VII. PROOFS OF LEMMAS 5.2–5.3

We first introduce the following lemmas that are useful in

designing majorization matrices for a wide class of (positive

semidefinite) Hessian matrices:

Lemma S.1 ( [5, Lem. S.3]). For a complex-valued ma-

trix A and a diagonal matrix W with non-negative entries,

AHWA � diag(|AH |W |A|1), where |A| denotes the matrix

consisting of the absolute values of the elements of A.

Lemma S.2 ([5, Lem. S.2]). For a complex-valued positive

semidefinite Hermitian matrix A (i.e., diagonal entries of a

Hermitian matrix are nonnegative), A � diag(|A|1).

The diagonal majorization matrix design in Lemma 5.2 is

obtained by straightforwardly applying Lemma S.1. For the

majorization matrix design in Lemma 5.3, we first observe

that, for circular boundary condition, the Hessian
∑

l Ψ
H
l Ψl

in (16) is a (symmetric) Toeplitz matrix (for 2D, a block

Toeplitz matrix with Toeplitz blocks). Next, we approximate

the Toeplitz matrix
∑

l Ψ
H
l Ψl with a circulant matrix with a

first row vector ψ̃H ∈ C
R (similar to designing a precondi-

tioner to a Toeplitz system):

L∑

l=1

ΨH
l Ψl ≈ circ

(
ψ̃H
)
, (S.18)

ψ̃ :=




(∑L
l=1〈PB1

x̂l, PB1
x̂l〉
)∗

...(∑L
l=1〈PB1

x̂l, PBR
x̂l〉
)∗


 ,

where circ(·) : Cn → C
n×n constructs a circulant matrix

from a row vector of size n. Assuming that the circulant

matrix circ(ψ̃H) in (S.18) is positive definite (we observed

that this holds for all the training datasets used in the paper)

and using its circulant structure, we design the scaled identity

majorization matrix via Lemma S.2 as follows:

MD =

R∑

r=1

∣∣∣∣∣

L∑

l=1

〈PB1 x̂l, PBr
x̂l〉

∣∣∣∣∣ · IR.

This completes the proofs for Lemma 5.3.

S.VIII. PROOFS OF PROPOSITION 5.4

The following proof is closely related to reduced rank

Procrustes rotation [6, Thm. 4]; however, we shall pay careful

attention to the feasibility of solution by considering the

corresponding matrix dimensions. We rewrite the objective

function of (25) by
∥∥∥M̃1/2

D D − M̃
1/2
D V

∥∥∥
2

F

= tr(DHM̃DD)− 2tr(DHM̃DV) + tr(VT M̃DV)

=
1

R
tr(M̃D)− 2tr(DHM̃DV) + tr(VT M̃DV).

The second equality holds by the constraint DDH = 1
RI .

Then, we rewrite (25) as follows:

max
D

tr(DHM̃DV), subj. to DDH =
1

R
· I. (S.19)

Considering singular value decomposition (SVD) of M̃DV ,

i.e., M̃DV = UΛV H , observe that

tr(DHM̃DV) = tr(DHM̃DV) = tr(D̃HUΛ)

where D̃ = DV . Because V is unitary, we recast (S.19)

max
D̃

tr(D̃HUΛ), subj. to D̃D̃H =
1

R
· I. (S.20)

Consider that Λ ∈ R
R×K is (rectangular) diagonal, i.e., Λ =

[Λ̃R×R, 0R×(K−R)] for R ≤ K, in which Λ̃R×R is a (R×
R-sized) diagonal matrix with singular values. Based on the

structure of Λ, we rewrite tr(D̃HUΛ) in (S.20) as

tr(D̃HUΛ) =

R∑

r=1

(D̃HU)r,rΛ̃r,r,

Thus, (S.20) is maximized when the diagonals elements

(D̃HU)r,r’s are positive and maximized. Under the con-

straint in (S.20), the maximum is achieved by setting D̃⋆ =
1√
R
U [IR, 0R×(K−R)] for R ≤ K. Combining this result with

D̃ = DV completes the proofs.

Note that the similar technique above in finding D̃⋆ can

be applied to the case of R > K; however, the constraint

in (S.20) cannot be satisfied. For R > K, observe that

Λ = [Λ̃K×K , 0K×(R−K)]
T , where Λ̃K×K is a diagonal

matrix with singular values. With the similar reason above,

D̃⋆ = 1√
R
U [IK , 0K×(R−K)]

T maximizes the cost function in

(S.20). However, this solution does not satisfy the constraint

D̃D̃H = 1
R ·I in (S.20). On a side note, one cannot apply some

tricks based on reduced SVD (R > K), because UUH = I
does not hold.
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S.IX. ACCELERATED NEWTON’S METHOD TO SOLVE (26)

The optimal solution to (29) can be obtained by the classical

approach for solving a quadratically constrained quadratic

program (see, for example, [7, Ex. 4.22]):

d
(i+1)
k = (Gk + ϕkIR)

−1
gk, (S.21)

Gk := M̃D + βΓk,

gk := M̃Dν
(i)
k (S.22)

where the Lagrangian parameter is determined by ϕk =
max{0, ϕ⋆

k} and ϕ⋆
k is the largest solution of the nonlinear

equation f(ϕk) = R−1, in which

f(ϕk) :=
∥∥∥(Gk + ϕkIR)

−1
gk

∥∥∥
2

2
, (S.23)

for k = 1, . . . ,K ((S.23) is the so-called secular equation).

More specifically, the algorithm goes as follows. First obtain

d
(i+1)
k = G−1

k gk (note again that Gk ≻ 0). If it satisfies the

unit norm equality constraint in (26), it is optimal. Otherwise,

one can obtain the optimal solution d
(i+1)
k through (S.21) with

the Lagrangian parameter ϕk = ϕ⋆
k, where ϕ⋆

k is optimized by

solving the secular equation f(ϕk) = R−1 and f(ϕk) is given

as (S.23). To solve f(ϕk) = R−1, we first rewrite (S.23) by

f(ϕk) =

R∑

r=1

|g̃k|
2
r

(ϕk + (σk)r)
2 . (S.24)

where {g̃k = QH
k gk : k = 1, . . . ,K}, {Gk = QkΣkQ

H
k :

k = 1, . . . ,K}, {(σk)1 ≥ · · · ≥ (σk)R > 0} is a set of

eigenvalues of Gk for k = 1, . . . ,K (note that Gk+ϕkIR ≻ 0
because Gk ≻ 0). To simplify the discussion, we assume that

{(gk)r 6= 0 : k = 1, . . . ,K, r = 1, . . . , R} [8]. Noting that,

for ϕk > −(σk)R, f(ϕk) monotonically decreases to zero as

ϕk → ∞), the nonlinear equation f(ϕk) = R−1 has exactly

one nonnegative solution ϕ⋆
k. The optimal solution ϕ⋆

k can

be determined by using the classical Newton’s method. We

apply the accelerated Newton’s method in [5], [9] that solves

1/f(ϕk) = R:

ϕ
(ι+1)
k = ϕ

(ι)
k − 2

f(ϕ
(ι)
k )

f ′(ϕ
(ι)
k )

(√
f(ϕ

(ι)
k )− 1

)
(S.25)

where f(ϕk) is given as (S.24),

f ′(ϕk) = −2

R∑

r=1

|g̃k|
2
r

(ϕk + (σk)r)
3 ,

and ϕ
(0)
k = −(σk)R +10−10. Note that (S.25) approaches the

optimal solution ϕ⋆
k faster than the classical Newton’s method.

S.X. SUPPLEMENTARY RESULTS

This section provides additional results to support several

arguments in the main manuscript. Examples of additional

results include Figs. S.1, S.2, S.3, S.4, and S.5.

We compare sparse-view CT reconstruction performances

between MBIR models (P3) that use filters trained via the

patch-domain AOL [3] and CAOL (P1):

• The filters {d⋆k ∈ R
49 : k ∈ [49]} trained via CAOL

(P1) and filters {w⋆
k ∈ R

64 : k ∈ [64]} trained via the

-0.0754

0.0857

-0.0734

0.0823

(a1) Deterministic {d
(0)
k

} (a2) Random {d
(0)
k

}
(a) The fruit dataset (L = 10, N = 100×100)

-0.0777

0.0727

-0.0824

0.0791

(b1) Deterministic {d
(0)
k

} (b2) Random {d
(0)
k

}
(b) The city dataset (L = 10, N = 100×100)

Fig. S.1. Examples of learned filters via CAOL (P1) with different filter
initialization, from different datasets (Proposition 5.1 was used for MD ; R=
K=49, α=2.5×10−4, and circular boundary condition).

-0.0887

0.0766

-0.0734

0.0823

(a1) α = 2.5×10−5 (a2) α = 2.5×10−4

(a) The fruit dataset (L = 10, N = 100×100)

-0.0862

0.0958

-0.0824

0.0791

(b1) α = 2.5×10−5 (b2) α = 2.5×10−4

(b) The city dataset (L = 10, N = 100×100)

-0.194

0.144

-0.139

0.141

(c1) α = 10−4 (c2) α = 2×10−4

(c) The CT-(ii) dataset (L = 10, N = 512×512)

Fig. S.2. Examples of learned filters via CAOL (P1) with different datasets
and regularization parameters (Proposition 5.1 was used for MD ; R=K=49
for the fruit and city datasets, and R=K=25 for the CT-(ii) dataset; circular
boundary condition). We observed that the learned filters in (c2) give higher
signal recovery accuracy than those in (c1) for CT MBIR (P3). This implies
that the diverse features captured in (c2) are useful to improve the performance
of the proposed MBIR model (P3).
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(a) α = 10−4, β = 5×106

0 200 400 600 800 1000

Number of iterations, i

10
3

10
4
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(D

(i
+
1)
,
{
z
(i
+
1)
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k

}
) CAOL (P2), reBPEG-M

(b) α = 10−4, β = 5×104

Fig. S.3. Cost minimization in CAOL (P2) with different diversity promoting
regularization parameters (R=25 and K=20; Proposition 5.1 was used for
MD ; the CT-(i) dataset). CAOL (P2) can consider the case R>K – noting
that CAOL (P1) only considers the case of R ≤ K for the efficient solution
in Proposition 5.4 – and BPEG-M stably minimizes the corresponding cost
function.

patch-domain AOL method [3] provided similar recon-

struction quality in RMSE values, when applied to the

MBIR model (P3).S.1 See RMSE values in Figs. S.4(ii)–

(iii). However, even with larger parameter dimensions,

{w⋆
k :k∈ [64]} gave more blurry edges in some soft tissue

and bone areas, compared to {d⋆k : k ∈ [49]}. See red-

circled areas and yellow-magnified areas in Fig. S.4(ii). In

particular, Fig. S.4(i) shows that {d⋆k :k∈ [49]} are more

diverse and less redundant compared to {w⋆
k : k ∈ [64]},

and this implies that learning diverse (i.e., incoherent)

filters is important in improving signal recovery quality

in MBIR using learned convolutional regularizers.

• At each BPEG-M iteration, MBIR (P3) using {w⋆
k ∈

R
64 : k ∈ [64]} – trained via patch-domain AOL [3] –

uses more computations compared to MBIR (P3) using

{d⋆k ∈ R
49 : k ∈ [49]} – trained via CAOL (P1).

In particular, the former uses a O(642 · N ′)-involved

convolution operator three times per BPEG-M iteration;

the latter uses a O(492·N ′)-involved convolution operator

two times per BPEG-M iteration. (Both methods use

identical computations involved with f(x; y), i.e., (back-

)projections by A (and AT ).) Different from {d⋆k ∈

S.1The filters {w⋆

k
∈ R64 : k ∈ [64]} trained via the patch-domain AOL

method [3] achieved state-of-the-art performance for CT MBIR optimization;
see, e.g., [10]. In running the BPEG-M algorithm for MBIR (P3) using {w⋆

k
:

k∈ [64]}, we normalized them to satisfy maxk∈[64] ‖w
⋆

k
‖22 = 1/64 (indeed,

they became ‖w⋆

k
‖22≈1/64, ∀k), and selected the thresholding parameter α′

as 0.4 · (2×10−10) by considering the energy of the filter, where we chose
α′ as 2×10−10 and 0.5 ·(2×10−10) for the filters {d⋆

k
∈ R25 :k∈ [25]} and

{d⋆
k
∈ R49 :k∈ [49]} trained via CAOL (P1), respectively [11, Sec. V-A].

(a) Trained filters via
patch-domain AOL [3]

(R=K=64)

(b) Trained filters
via CAOL (P1)
(R=K=49)

(i
)
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RMSE = 35.1 RMSE = 34.7

Fig. S.4. Performance comparisons between MBIR models (P3) of which
use filters trained via the patch-domain AOL method [3] and CAOL (P1) in
sparse-view CT (123 views (12.5% sampling); display window is [0, 100]
HU).

R
49 : k ∈ [49]}, {w⋆

k ∈ R
64 : k ∈ [64]} does not

satisfy the TF condition (2) and thus, each image update

problem requires a (diagonal) majorizer for the entire

term f(x; y) + µ
∑64

k=1 ‖w
⋆
k ⊛ x − zk‖

2
2 to have easily

computable proximal mapping. Consequently, calculating

the gradient of the above term with respect to x at the

extrapolated point x́(i+1) uses a O(642 · N ′)-involved

convolution operator two times; each sparse code update

{z
(i+1)
k :k∈ [64]} uses an additional O(642 ·N ′)-involved

convolution operator.

S.XI. DISCUSSION RELATED TO MODELING MEAN

SUBTRACTION IN (P3)

In (P3), the exact mean value for the unknown signal x
is unknown, and thus we do not model the mean subtraction

operator. We observed that including the mean subtraction op-

erator to (P3) with the exact mean value does not improve the

reconstruction accuracy. Since we have a DC filter among the

TF filters learned via CAOL (P1) (see examples in Fig. S.2(c)
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(a) Filtered back-projection (b) EP (c) Proposed MBIR (P3),
with (36) of R=K=25

(d) Proposed MBIR (P3),
with (36) of R=K=49

RMSE = 82.8 RMSE = 40.8 RMSE = 35.2 RMSE = 34.7

Fig. S.5. Error map comparisons of reconstructed images from different reconstruction methods for sparse-view CT (123 views (12.5% sampling); for the
MBIR model (P3), convolutional regularizers were trained by CAOL (P1) – see [11, Fig. 2]; display window is [0, 100] HU) [11]. The MBIR model (P3)
using convolutional sparsifying regularizers trained via CAOL (P1) shows higher image reconstruction accuracy compared to the EP reconstruction; see red
arrows and magnified areas. For the MBIR model (P3), the autoencoder (see Remark 6.1) using the filter dimension R=K =49 improves reconstruction
accuracy of that using R=K=25; compare the results in (c) and (d). In particular, the larger dimensional filters improve the edge sharpness of reconstructed
images; see circled areas.

and [11, Fig. 2]), the mean subtraction operator is not required

to shift the sparse codes {z
(i+1)
k : ∀k, i} to have a zero mean.
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