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Abstract— Quantitative yttrium-90 (Y-90) SPECT imaging
is challenging due to the nature of Y-90, an almost pure
beta emitter that is associated with a continuous spectrum
of bremsstrahlung photons that have a relatively low yield.
This paper proposes joint spectral reconstruction (JSR),
a novel bremsstrahlung SPECT reconstruction method that
uses multiple narrow acquisition windows with accurate
multi-band forward modeling to cover a wide range of
the energy spectrum. Theoretical analyses using Fisher
information and Monte-Carlo (MC) simulation with a digital
phantom show that the proposed JSR model with multi-
ple acquisition windows has better performance in terms
of covariance (precision) than previous methods using
multi-band forward modeling with a single acquisition win-
dow, or using a single-band forward modeling with a single
acquisition window. We also propose an energy-window
subset (ES) algorithm for JSR to achieve fast empirical
convergence and maximum-likelihood based initialization
for all reconstruction methods to improve quantification
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accuracy in early iterations. For both MC simulation with
a digital phantom and experimental study with a physi-
cal multi-sphere phantom, our proposed JSR-ES, a fast
algorithm for JSR with ES, yielded higher recovery coeffi-
cients (RCs) on hot spheres over all iterations and sphere
sizes than all the other evaluatedmethods, due to fast empir-
ical convergence. In experimental study, for the smallest hot
sphere (diameter 1.6cm), at the 20th iteration the increase in
RCs with JSR-ES was 66 and 31% compared with single wide
and narrow band forward models, respectively. JSR-ES also
yielded lower residual count error (RCE) on a cold sphere
over all iterations than other methods for MC simulation
with known scatter, but led to greater RCE compared with
single narrow band forward model at higher iterations for
experimental study when using estimated scatter.

Index Terms— Y-90, SPECT, joint spectral reconstruction,
bremsstrahlung, energy-window subset.

I. INTRODUCTION

INTERNAL emitter therapies with Y-90 have yielded
promising clinical results in innovative cancer treatments

such as radioembolization for nonresectable liver tumors
[1], [2], radioimmunotherapy for non-Hodgkin’s lymphoma [3]
and peptide receptor radionuclide therapy for neuroendocrine
tumors [4]. Post-therapy quantitative Y-90 PET and SPECT
imaging allows confirmation of the delivered absorbed doses
to lesions and normal organs for early assessment of efficacy
and toxicity and implementation of further treatment when
needed. Despite the superior spatial resolution and quantitative
accuracy of PET, there is considerable interest in Y-90 imaging
by SPECT because of the wider availability and lower cost
associated with SPECT.

SPECT imaging of Y-90 is challenging because it is an
almost pure beta emitter that has to be imaged via the asso-
ciated bremsstrahlung photons that have a continuous energy
spectrum (Fig. 1) extending to 2.3 MeV [5]. In addition to
the complexities of imaging photons that have a continuous
energy spectrum, bremsstrahlung photon generation in tissue
is an inefficient process with <5% of beta interactions yielding
imageable photons of >50 keV [6]. Because of this low yield,
it is desirable to include as many photons as possible in the
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Fig. 1. Y-90 bremsstrahlung energy spectrum corresponding to the
sphere phantom MC simulation of the current study. The total spectrum
and primary (un-scattered photons) components are shown. A lower
energy cutoff of 50 keV was used. The six 30 keV narrow windows
(over 105-285 keV range) used for JSR are indicated in vertical dashed
lines. Single wide and narrow band forward models correspond to
single windows covering the range of 105-135 keV and 105-285 keV,
respectively.

acquisition. However, the wide bremsstrahlung spectrum has
been underutilized in some past studies with reconstruction
performed using a relatively narrow energy band [5], [7], [8].

There have been studies on improving quantitative Y-90
SPECT by dealing with continuous energy ranges in the
image reconstruction model. One approach is to model the
continuous energy spectrum in the forward (and backward)
projectors of iterative reconstructions. Rong et al. proposed
MER (multienergy range) that incorporated energy-dependent
collimator-detector responses (CDRs), attenuation correction
factors, and scatter kernels (ESSE) for 4 energy bands
(0-250, 250-500, 500-1000, 1000-2000 keV) with a single
energy window acquisition (0-500 keV) [9]. Monte-Carlo
(MC) simulations for a point source or a cylinder were used to
estimate CDRs, attenuations and scatter kernels. Yue et al. later
showed that the MER SPECT reconstruction method yielded
comparable results to Y-90 PET-CT in terms of estimating total
activity in the liver and activity distributions within treated
volumes [10]. However, MER did not take patient dependent,
detailed and accurate photon transport physics into account
and used unmatched forward and backward projectors that
may cause convergence issues with some iterative algorithms.
Elschot et al. proposed a method that is similar to MER,
but replaces MER’s pre-calculated forward projector with a
fast MC simulator for more accurate forward modeling with
8 energy bands (50-64, 64-94, 94-149, 149-250, 250-373,
373-607, 607-1044, 1044-2000 keV) with a single acqui-
sition window (50-250 keV) [11]. Even though it yielded
promising results that are comparable to time-of-flight PET
imaging, the proposed method had to perform MC simulations
every iteration that could be in general slower than using
pre-calculated kernels such as [9] or hypothetically more
computationally intensive than the approaches that use MC
simulations every 5 iterations for scatter estimation (e.g., [8])
assuming the same MC simulator used. However, note that
unlike SIMIND [12] that was used in our MC simulations,
the work of [11] made several approximations for the colli-
mator so that the simulation time could be reduced. Lastly,

TABLE I
ALL EVALUATED RECONSTRUCTION METHODS USED OSEM

WITH 4 ORDERED SUBSETS. JSR-ES USED

ADDITIONAL 3 ENERGY SUBSETS

it is not straightforward to implement the matched backward
projector for the MC forward projector. Rong’s and Elschot’s
methods look different, but both of them were based on the
multi-band forward model with a single acquisition window
(denoted by SSR-WA).

Recently, we proposed a joint spectral reconstruction (JSR)
that uses multi-band forward model with multi-band measure-
ments [13] to use more of the available photons and to exploit
the availability of multi-window, list-mode SPECT acquisition
systems. However, there are still remaining challenges.

Firstly, there has been no comparison study among different
reconstruction methods such as [8], [9], [11], [13]. Since there
are too many reconstruction parameters and methods to be
optimized (e.g., energy windows, iterations, subsets, scatters),
fair experimental comparisons are challenging. This paper
attempts to analyze and compare theoretical performances
using Fisher information of the various methods.

Secondly, JSR was relatively slow compared to the method
with a single-band forward model and a single-band acquisi-
tion (we will denote it by SSR-N for a narrow energy window
and by SSR-W for a wide window). Ordered-subset (OS) algo-
rithm is a typical method to speed up empirical convergence
by utilizing angular subsets for gradient approximations. In a
similar way, we propose to include energy-window subsetting
(ES), along with conventional angular subsetting (OS), for
gradient approximations to achieve faster convergence.

Lastly, we investigated a principled method to determine
a good initial image using maximum-likelihood (ML) to
improve quantification accuracy in early iterations. We use
both simulations and a physical phantom scan to evaluate
our proposed methods. Note that for the methods evaluated
in the current work, the scatter estimate is generated by MC
simulation and is updated every 5 iterations. By including the
MC scatter estimate as an additive term in the forward model,
our reconstruction method is able to use matched projectors.
All methods are summarized in Table I.

II. BACKGROUND

A. Single Spectral Reconstruction With
Single Energy Window

For a given Y-90 distribution in the body, there are certain
bremsstrahlung photons associated with the Y-90 beta decay
that are emitted within any given energy window and only
some of which are recorded by the detector. Define xe ∈ R

N

(in units of counts) as emitted “primary” (the desired un-
scattered) bremsstrahlung photons within the energy range
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of the eth energy window that are recorded by the detector.
Let ye ∈ R

M be a total measured projection and se ∈
R

M denote the (ensemble mean) scatter projection for the
eth energy window. Define Ae ∈ R

M×N to be a forward
model for the eth energy window that maps from the emitted
primary photons to the detectors including energy-dependent
attenuation information and CDR [14]. Then, the measurement
model is

ye ∼ Poisson(ȳe), ȳe := Aexe + se (1)

where Poisson(·) is a component-wise, independent Poisson
distribution.

If one estimates the scatter contribution se via MC meth-
ods [12], then for SSR-N and SSR-W, the goal is to reconstruct
the unknown emitted counts xe from the measurement ye. The
maximum likelihood (ML) estimate of xe is:

x̂e := arg max
xe�0

L(xe; Ae, ye, se) (2)

where xe � 0 implies the non-negativity constraint on xe and
L(·, ·; Ae, ye, se) is the sum of Poisson log-likelihoods:

L(xe; Ae, ye, se) := 1�
M (ye � log ȳe − ȳe)

where 1M is a vector whose elements are all one with
the length of M , � is a transpose operator, log is an
element-wise log function, and � is a component-wise multi-
plication (Hadamard product). A popular algorithm for solv-
ing (2) is maximum likelihood expectation maximization
(ML-EM) [15]:

x̂(n+1)
e = x̂(n)

e + x̂(n)
e � ae � ∇L(x̂(n)

e ; Ae, ye, se) (3)

where x̂(n)
e is an estimate at the nth iteration, � is a

component-wise division (Hadamard division), ae := Ae
�1M is

a sensitivity image for Ae, and

∇L(x̂(n)
e ; Ae, ye, se) = A�

e(ye � ȳ(n)
e − 1M )

where ȳ(n)
e := Aex̂(n)

e + se.
One can accelerate convergence by using ordered-subset

(OS) approach (ML-OSEM) [16] so that the next estimate
(either x̂(n,k+1)

e or x̂(n+1,1)
e ) becomes

x̂(n,k)
e + x̂(n,k)

e � ae,k � ∇L(x̂(n,k)
e ; Ae,k, ye,k, se,k) (4)

where k = 1, . . . , K is an index for �k that is a subset of all
measurement indices 1, . . . , M , ae,k := Ae,k

�1K , Ae,k ∈ R
K×N

is a sub-matrix to collect the rows of Ae corresponding to
the index subset �k , and ye,k, se,k are vectors to collect the
elements of ye, se corresponding to �k , respectively.

B. Model Accuracy vs. Noise Property Trade-Off in SSR

The model (1) and its corresponding algorithm (4) can
be used for SSR-N and SSR-W (later SSR-WA, too) by
changing its forward projection model Ae, measurement ye,
and scatter information se. For example, with a narrow single
energy window of 105-135 keV, Ae could be more accurately
modeling the energy-dependent CDR and attenuation correc-
tion information than that with a wide single energy window
(e.g., 105-285 keV). However, due to the narrow acquisition

window, ye will have fewer counts (be more noisy) than that
with a wide single energy window.

In this work, we divided a wide energy window into 6 nar-
row windows indicated in Fig. 1 (105-135, 135-165, 165-195,
195-225, 225-255, 255-285 keV) where the indices for energy
windows are e = 1, . . . , 6. Note that lower energies were not
included in order to avoid lead x-rays. We will denote the
reconstruction result x̂(n,k)

1 of the first narrow energy window
“single spectral reconstruction with narrow energy window
(SSR-N).” Note that the first narrow energy window contains
the highest fraction of primary counts (ratio of un-scattered to
total counts) among all 6 windows.

One can also apply “single” spectral reconstruction for a
wide energy window (e.g., 105-285 keV) as follows:

x̂(n+1)
W = x̂(n)

W + x̂(n)
W � aW � ∇L(x̂(n)

W ; AW , yW , sW ) (5)

where aW := AW
�1M and AW , yW , sW are forward model,

measurement vector, known scatter for the wide energy win-
dow (e.g., 105-285 keV), respectively. OS approximation can
also be done in a similar manner as (4). Due to wide energy
window, yW , sW will have high counts to reduce noise level in
the reconstructed image x̂(n)

W , but the accuracy of modeling AW

will be decreased because of the energy dependence of atten-
uation and CDR. We will denote this reconstruction “single
spectral reconstruction with wide energy window (SSR-W).”
Note that the relationships between SSR-N and SSR-W are
yW = �

e ye and sW = �
e se with different forward models

Ae (more accurate) and AW (less accurate).

III. METHODS

A. Emitted Photon Model in Multiple Energy Windows

Consider the total emitted bremsstrahlung photons x. Then,
for the emitted photons xe in the eth energy window, the fol-
lowing relationship holds:

x =
�

e

xe. (6)

We further modeled the emitted bremsstrahlung photons xe as
proportional to the total emitted photons x for direct, simplified
representations as follows:

xe = τex (7)

where τe is a scale parameter describing the ratio of emitted
photons in the eth energy window to total emitted photons in
all energy ranges with

�
e τe = 1. One can estimate all τe’s by

measuring primary counts ye − se in each energy window [13]
or by a simple MC simulation with a point source [17]. Note
that (7) does not imply ye = τey due to energy-dependent
forward model Ae and energy-dependent scatter se.

B. Joint Spectral Reconstruction With
Multiple Energy Windows

By combining the forward model for a single energy win-
dow (1) and our emitted bremsstrahlung photon model for
multiple energy windows (7), we can stack up all forward
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models for multiple energy windows to create a joint forward
model as follows [13]:

yJ ∼ Poisson (AJ x + sJ ) (8)

where yJ , AJ , sJ are stacks of ye, Aeτe, se for all e,
respectively, or

yJ :=

⎡
⎢⎢⎣

...
ye
...

⎤
⎥⎥⎦ , AJ :=

⎡
⎢⎢⎣

...
Aeτe

...

⎤
⎥⎥⎦ , sJ :=

⎡
⎢⎢⎣

...
se
...

⎤
⎥⎥⎦ .

Using E energy windows, a ML-EM algorithm for (8) is

x̂(n+1) = x̂(n) + x̂(n) � aJ � ∇L(x̂(n); AJ , yJ , sJ ) (9)

where x̂(n) is an estimate at the nth iteration, aJ := AJ
�1M E

is a sensitivity image for AJ , and

∇L(x̂(n); AJ , yJ , sJ ) = A�
J (yJ � ȳ(n)

J − 1M E )

where ȳ(n)
J := AJ x̂(n) + sJ . The natural ML-OSEM for (9)

partitions the data into K sets of view angles and the next
estimate (either x̂(n,k+1) or x̂(n+1,1)) will be

x̂(n,k) + x̂(n,k) � aJ,k � ∇L(x̂(n,k); AJ,k, yJ,k, sJ,k),

yJ,k :=

⎡
⎢⎢⎣

...
ye,k
...

⎤
⎥⎥⎦ , AJ,k :=

⎡
⎢⎢⎣

...
Ae,kτe

...

⎤
⎥⎥⎦ , sJ,k :=

⎡
⎢⎢⎣

...
se,k
...

⎤
⎥⎥⎦ (10)

and aJ,k := AJ,k
�1M E/K . Note that the number of rows in AJ,k

is K times smaller than the number of rows in AJ . We call
these algorithms “joint spectral reconstruction with multiple
energy windows (JSR).”

C. Energy-Window Subset (ES) Approximation

The OS approach significantly improved the speed of
empirical convergence in ML-EM [16] by approximating the
gradient of the cost function with partial measurements in the
subset of projection angles. For example, the OS version of
SSR-N uses the following approximation:

A�
e(ye � ȳ(n)

e − 1M ) ≈ K A�
e,k(ye,k � ȳ(n)

e,k − 1M/K )

where ȳ(n)
e := Aex̂(n)

e + se and ȳ(n)
e,k := Ae,k x̂(n)

e + se,k . For (8),
ML-OSEM uses the following gradient approximation:

A�
J (yJ � ȳ(n)

J − 1M E ) ≈ K A�
J,k(yJ,k � ȳ(n)

J,k − 1M E/K )

where ȳ(n)
J := AJ x̂(n) + sJ and ȳ(n)

J,k := AJ,kx̂(n) + sJ,k . Even
though it may be possible to share computations for ray tracing
among different energy windows, it is still unavoidable to
increase computation complexity due to multiple energy win-
dows and forward models with E times more measurements
for each gradient computation.

Assuming that the model (7) is accurate, we propose an
energy-window subset (ES) approximation for OS-type gradi-
ent computations. First of all, we divide energy windows into
L energy-window subsets where each subset contains one or
more energy windows. In other words, the lth energy subset

contains all energy window indices e such that e ∈ �l . Then,
the proposed gradient approximation using ES is as follows:
A�

J (yJ � ȳ(n)
J − 1M E ) ≈ L K A�

J,l,k(yJ,l,k � ȳ(n)
J,l,k − 1M E/K L)

where ȳ(n)
J,l,k := AJ,l,k x̂(n) + sJ,l,k, yJ,l,k is a stack of ye,k for

all e ∈ �l , AJ,l,k is a stack of Ae,kτe for all e ∈ �l , and sJ,l,k

is a stack of se,k for all e ∈ �l .
We empirically found that it is advantageous to divide

energy windows into subsets so that each subset contains
similar number of counts. For our 6 narrow energy windows in
Fig. 1, we used 3 energy subsets where the first group contains
105-135 keV window, the second group contains 135-165 and
225-255 keV windows, and the last subset contains the rest.
Note that ES is used along with conventional OS, thus 3 times
more subsets will be used when using ES approximation.

D. Maximum Likelihood-Based Initialization

Theoretically, ML-EM in (3), (5), (9) and ML-OSEM in (4),
(10) require an initial image with positive values. In practice,
a uniform image with a very small positive value � or an
image with the support from an attenuation image is used
as an initialization image. We next propose a principled
way of choosing an initialization image, called ML-based
initialization, by modifying the latter approach.

Consider an image with the support from an attenuation
image, denoted by m. Then, we model our initial image as

x̂(0)
e = cm (11)

where c is a unknown positive real number. By plugging this
model into any cost function that we are optimizing, we can
change a high dimensional optimization problem of (2) into a
1D optimization problem for the scaling factor c as follows:

ĉ := arg max
c>0

L(cm; Ae, ye, se). (12)

This maximization only requires one forward projection of m
and a simple 1D optimization algorithm. It can be extended to
JSR or other likelihood based image reconstructions easily.
In our simulation studies for bremsstrahlung SPECT, we
observed that it was important to choose a reasonable value
c for good performance of image reconstructions in early
iterations and our proposed method provided an effective
method for it.

IV. NOISE PROPERTY ANALYSIS

A. Single Spectral Reconstruction With
Accurate Forward Model

There have been studies for Y-90 SPECT image recon-
struction using multi-band forward models with a single-band
acquisition window [9], [11], [18]. Mathematically, these
approaches are approximately based on the following model:

yW ∼ Poisson (ASx + sW ) (13)

where yW = �
e ye, AS = �

e Aeτe, and sW = �
e se. This

new forward model AS allows to have a wide energy window
for more counts while maintaining the same accuracy in the
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forward model as Ae for all e in (1). Based on (13), a ML-EM
algorithm can be derived as follows:

x̂(n+1)
S = x̂(n)

S + x̂(n)
S � aS � ∇L(x̂(n)

S ; AS, yW , sW ). (14)

It is trivial to extend this update (14) to ML-OSEM to speed
up convergence rate by using AS,k = �

e Ae,kτe instead of AS .
However, applying our proposed ES approximation does not
seem feasible since it is not trivial to decompose yW into ye’s.
We denote this method by SSR-WA.

B. Theoretical Precision Limits of SSR-N,
SSR-WA and JSR

The precision of an unbiased estimator is bounded below
by the inverse of the Fisher information matrix. Consider a
random vector V and its realization v. Let fθ (v) denote a
family of densities of V parameterized by θ . Then, the Fisher
information matrix for V is defined as follows:

J(V; θ) := Cov {∇θ log fθ (V)} (15)

where ∇θ is a column gradient operator with respect to θ . The
Cramer-Rao bound states that for a unbiased estimator θ̂(V)
for θ from V, the inverse Fisher information matrix provides
a lower bound for the covariance of the estimator or

Cov(θ̂(V)) ≥ J(V; θ)−1. (16)

Thus, comparing Fisher information matrices of SSR-N, SSR-
WA, and JSR can suggest their theoretical performance limits
and relationships.

Assuming that SSR-N uses the first energy window e = 1,
the Fisher information matrix for SSR-N with the measure-
ment model (1) can be derived as

JSSR−N(Y1; x) = τ1A�
1D



1

A1τ1x + s1

�
A1τ1 (17)

where Ye is a random vector to generate a realization ye in (1)
and x is a ground truth image. The Fisher information matrix
for SSR-WA in (13) can also be derived as

JSSR−WA
��

e Ye; x

 = A�

SD



1

ASx + sW

�
AS (18)

where AS = �
e Aeτe and sW = �

e se. The Fisher informa-
tion matrix for JSR with the measurement model (8) can be
obtained as

JJSR(YJ ; x) = A�
J D



1

AJ x + sJ

�
AJ (19)

where YJ is a random vector to generate the realization yJ

in (1) and D(·) is a diagonal matrix with the elements in (·).
Equation (19) simplifies to

�
e

τeA�
eD



1

Aeτex + se

�
Aeτe. (20)

For the random vector V and a multivariate function φ(·),
a data processing inequality holds for the Fisher information
matrix as the following lemma:

Lemma 1 (Data Processing Inequality [19]):

J(V; θ) ≥ J(φ(V); θ)

with equality if φ(V) is a sufficient statistic relative to the
family { fθ (v)} (e.g., when φ(·) is an invertible function).
The following propositions are true due to Lemma 1:

Proposition 1 (JSR vs. SSR-N):

JJSR (YJ ; x) > JSSR−N (Y1; x) . (21)

Proof: Y1 = [I 0a · · · 0]YJ and [I 0 · · · 0] is not
invertible due to large null space from 0. Applying Lemma 1
with this non-invertible linear function proves the claim.

Proposition 2 (JSR vs. SSR-WA):

JJSR (YJ ; x) > JSSR−WA
��

e Ye; x


. (22)

Proof:
�

e Ye = [I I · · · I]YJ and [I I · · · I] is not
invertible due to large null space from multiple I. Applying
Lemma 1 with this non-invertible linear function proves the
claim.
Therefore, an unbiased and efficient estimator for x using
JSR should yield approximately and asymptotically the best
performance in terms of covariance (precision) among all other
unbiased (and efficient) estimators of SSR-N and SSR-WA
since ML-EM is asymptotically unbiased and efficient. There-
fore, our proposed JSR has favorable statistical properties over
conventional SSR-N and recent SSR-WA in theory.

V. MONTE-CARLO SIMULATION RESULTS

A. MC Simulation and Reconstruction Setup

We performed a MC simulation using SIMIND [12] with
a digital phantom (128 × 128 × 128 voxels with 4.8 ×
4.8 × 4.8mm3 per voxel) similar to the NEMA PET phan-
tom [20], but with the 6 hot spheres expanded in volumes
with the diameters of 1.5, 1.9, 2.4, 3.1, 3.7, 5.7 cm (about
2-100 mL). These diameters are more reasonable for SPECT
considering spatial resolution and our Y-90 radioembolization
dosimetry study with 22 patients (89 lesions) [21] in which
the median lesion volume was 12 mL (range 2-58 mL) for
hepatocellular carcinoma and 9 mL (range 2-828 mL) for liver
metastases. The cylindrical lung insert of the NEMA phantom
was unchanged. The activity concentration ratio between hot
spheres, cold lung insert and background was 8:0:1. The
hot-sphere to background activity concentration ratio was
higher than the median value of 4:1 that we reported for
the lesion-to-nontumoral liver activity concentration ratio in
patients, but the ratio extended up to 39 [21], hence our value
of 8 is clinically relevant.

SIMIND MC simulation for Siemens Intevo with high
energy collimators was done with the 6 acquisition energy
windows as shown in Fig. 1. Note that our SIMIND MC
simulation used a new bremsstrahlung emission spectrum
with both internal (IB) and external bremsstrahlung (EB)
components of the spectrum and also accounted for beta range
effects [22]. We selected these windows since the primary to
scatter ratio drops off rapidly with energy and it is desirable to
avoid x-ray and high order scatter at low energies. Using MC
simulated projection data, a Poisson realization was obtained
assuming 100 million detected counts for 105-195 keV range.
100 million counts were selected considering a typical total
count of 10-20 million for our 30-min Y-90 SPECT patient
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scans and 10 × larger simulated phantom volume than patient
liver (typically 1000 mL) for similar count density.

Five reconstruction methods were performed as illustrated
in Table I with up to 200 iterations and 4 ordered-subsets. For
JSR-ES, additional 3 energy-subsets were used as proposed
(12 subsets total). Gaussian kernel based CDR compensa-
tion and attenuation correction factor at the bremsstrahlung
yield-weighted mean energy of each window were used in the
forward projector. For the upper bound of 285 keV, additional
modeling for CDR such as penetration tails [14] was not
necessary. For scatter correction, the true scatter from MC
simulation was used.

Additionally, we performed a multiple realization study
to investigate our theoretical analysis results in Proposi-
tions 1 and 2. We reconstructed images from 25 Poisson
measurement realizations and generated the mean and standard
variation images over 25 images. we denote them by MEAN
and STDEV images, respectively. These images are voxel-wise
empirical mean and standard deviation.

B. Evaluation Criteria

Assuming that estimated emitted photon count is propor-
tional to Y-90 activity, the calibration factor to convert counts
to activity was determined using the total counts in the field
of view and the known total activity. To define the target
volumes, the true region outlines were used. Target counts
were converted to activity by scaling with the calibration
factor. We used the following metrics to assess the quantitative
accuracy of all reconstruction methods: for hot spheres,

RCVOI = mean of estimated activity in VOI

mean of true activity in VOI

where RC, VOI stand for recovery coefficient, volume of
interest, respectively. Average RC is a weighted average of
RC values for all 6 hot spheres in the phantom with weights
that are proportional to volumes of spheres. For cold sphere
with 0 activity, the residual count error [20] was defined as

RCEVOI = mean of estimated activity in VOI

mean of estimated activity in BG

where BG stands for background VOI defined by the uniform
region of the phantom background away from the spheres to
avoid spill-out. As a measure of image noise, the coefficient
of variation (CV) was used:
CVBG = standard deviation of estimated activity in BG

mean of estimated activity in BG
.

Ideally, RC, RCE, and CV should be 1, 0, and 0, respectively.
For the multiple realization study, we introduced two met-

rics that may be able to better show the bias-variance trade-
off using the MEAN and STDEV images from multiple
realizations. Similar metrics to RC were defined for the MEAN
and STDEV image values as follows:

RCMVOI = mean of MEAN image values in VOI

mean of true activity in VOI
,

RCSDVOI = mean of STDEV image values in VOI

mean of true activity in VOI
.

Fig. 2. CV for background vs. average RC for hot spheres for JSR
with different initial images. Different initial images lead to different noise
properties over average RC values.

Fig. 3. RCE vs. average RC in the cold lung insert for JSR with different
initial images.

RCM averages the voxel-wise mean values in VOI and RCSD
averages the voxel-wise standard deviation values in VOI.
These voxel-wise mean, standard deviation calculations should
provide more accurate metrics for Propositions 1 and 2 that
are also voxel-wise relationships.

C. Results for ML Based Initializations

Figs. 2 and 3 illustrate that choosing an appropriate initial
image is important for good performance especially for the
methods with early stopping. These figures were generated
by calculating average RC, RCE, and CV of reconstructed
images by changing the number of iterations for phantom
simulations. Note that CV in background was high initially
since it is normalized by low contrast and became high again
later due to high noise in the later iteration of unregularized
OSEM. “ML initial” implies that c in (11) is chosen based
on (12). Let us denote this chosen value by c∗. “Small initial”
and “Large initial” mean that relatively small c � c∗ and
large c 
 c∗ are selected, respectively. It seems advantageous
to use the ML optimal c∗ for an initial image to obtain
overall low CV in background and low RCE in the cold insert
together over all average RCs. Even though only relatively
high average RCs are concerned, our ML initialization can
provide a nice lower-bound for c for low CV in background
and low RCE in the cold insert. Note that these figures are
the results for JSR, but similar tendency was also observed
for SSR-N.
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Fig. 4. Reconstructed images at the 40th iteration with 4 OS (SSR-N,
SSR-W, SSR-WA, JSR) and 4 OS × 3 ES (JSR-ES).

Fig. 5. RCs vs. iteration for two hot spheres with the diameters of 5.7 and
1.5 cm. Our proposed JSR-ES achieved higher RCs than other methods
over iterations for all sphere volumes, especially for small spheres.

D. Results for JSR and JSR-ES

For phantom simulations, five reconstruction methods were
applied as shown in Fig. 4. SSR-W, SSR-WA, and JSR yielded
visually the most blurred images with low noise, while our
proposed JSR-ES yielded the image with the highest contrast
and highest noise. Fig. 5 shows RCs over iterations for two hot
spheres. Our proposed JSR-ES achieved higher RCs than other
methods over all iterations for all sphere volumes, especially
for small spheres. If more iterations are run, these differences
among RCs will become smaller for large hot spheres, but
there are still significant RC difference for small spheres even
after 200 iterations with 4 OS. Similarly, Fig. 6 shows RCE
over iterations for all methods in the cold lung insert. Our
proposed JSR-ES yielded the lowest value among all other
methods. Thus, in terms of RC in hot spheres and RCE in cold

Fig. 6. RCE vs. iteration for the cold lung insert. Our proposed JSR-ES
yielded the lowest RCE among all other methods.

Fig. 7. RCs vs. sphere diameters at CV ≈ 0.15. All methods using all
counts in the wide energy window yielded significantly better RC values
than SSR-N using partial counts in the narrow energy window.

insert, our proposed JSR-ES yielded the fastest convergence
rates over iterations among all methods.

Increased RC or decreased RCE often leads to increased
noise level. Fig. 7 shows RCs over sphere volumes at CV ≈
0.15. All methods using all counts in the wide energy window
including our proposed methods yielded significantly better
RC values than SSR-N using partial counts in the narrow
energy window. This result clearly illustrates that using all
counts is advantageous to achieve good RCs at similar noise
level. Note that similar CV around 0.15 was achieved at the
12th (JSR-ES), 15th (SSR-N), 38th (JSR), and 41st (SSR-W,
SSR-WA) iterations.

E. Results for Theoretical Comparisons

Fig. 8 shows the RCSD over background vs. the RCM over
all 6 hot spheres (top) and the RCSD vs. the RCM over all hot
spheres (bottom). Using all counts for JSR-ES, JSR, SSR-WA
and SSR-W was one of the most important factors to achieve
low noise level. JSR and JSR-ES yielded significantly lower
noise level than SSR-N as shown in Proposition 1 and also
yielded slightly lower noise than SSR-WA that is consistent
with our Proposition 2 in both hot spheres and in background.
Even though there was no theoretical comparison between
JSR and SSR-W, we observed good performances of JSR and
JSR-ES compared to SSR-W possibly due to less accurate
forward model of SSR-W leading to poorer RCM at a given
RCSD.
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Fig. 8. RCSD in background vs. RCM in all 6 hot spheres (top) and RCSD
vs. RCM in all hot spheres (bottom) that indirectly show bias-variance
trade-off.

Fig. 9. A slice of the STDEV images at the iterations whose RCM in hot
spheres = 0.925. All methods but SSR-N yielded similarly low STDEV
images due to high counts. However, our proposed JSR, JSR-ES yielded
slightly lower noise than SSR-W, SSR-WA near spheres.

The STDEV images at RCM in spheres ≈ 0.925 for
different methods are illustrated in Fig. 9 showing consistent
results as our Propositions 1 and 2. We were able to observe
that SSR-N yielded the highest noise level among all methods.
We also observed that JSR and JSR-ES yielded slightly lower
noise levels than SSR-W and SSR-WA near small hot spheres.

VI. EXPERIMENT RESULTS

A. Physical Phantom Experiment Setup

We also performed an experimental measurement with a
physical elliptical-shaped phantom where the lengths of the
long, short, longitudinal axes are 31, 22, 19 cm, respectively,
with 6 hot spheres as shown in the bottom right sub-figure of
Fig. 10 (1.6, 2, 2.5, 3.1, 3.8, 6 cm diameters) and 1 cold sphere

that was located at the center of the phantom volume (5.7 cm
diameter). The activity ratio between hot spheres, cold sphere,
and background was approximately 9:0:1. Siemens Symbia
SPECT-CT Intevo scanner with high energy collimator was
used for data acquisition with the same 6 energy windows as
our MC simulations in Section V-A. The total detected count
for 105-195 keV energy range was about 8 million that was
12.5 times lower than the simulated counts in Section V-A.

SIMIND MC simulations were used to estimate scatter
information for each window as described in [8]. Note that
when generating the scatter estimate using SIMIND, we did
not include the beta range effects because the input to the
simulation is the measured SPECT activity distribution that
has spatial resolution effects and the blurring due to resolution
effects ‘compensates’ for the blurring due to beta range.
For each scatter estimation update, 1.25 million histories ×
12 cores × 2 hyper-threading were simulated with a SSR-N
reconstructed image to generate common scatter information
for all reconstruction methods and to save computation time
(about 20 minutes per update). Initial input image to MC
simulation was reconstructed by using SSR-N at 5 iteration
(4 OS) without scatter information. Then, for the next 3 scatter
updates, SSR-N reconstructed images at 5, 10, 15 iterations
(4 OS) using previously estimated scatter information were
used as inputs to MC simulations. Note that all reconstructions
used the same ML based uniform image as an initial image.
The last SIMIND MC simulation with a SSR-N reconstruction
image at 15 iteration (4 OS) as an input image generated
scatter information for all reconstruction methods and then all
methods with this estimated scatter information were run with
20 iterations (4 OS × 3 ES for JSR-ES or 4 OS for others). We
used our proposed ML based uniform initialization methods
for all methods to yield better performance.

Inspired by our recent work [23], we implemented the
following guided filter based denoising for noisy short-time
MC scatter estimates for better performance. For the given
measurement ye and the SIMIND MC estimates ye,MC, se,MC
at the eth energy window, the estimated scatter for SSR-N is

ŝ1 = GF(s1,MC; ỹ1,MC) � GF(y1; ỹ1,MC) � ỹ1,MC

where GF(b; a) is the guided filter [24] with an input
noisy image of b and a guide image a and ỹ1,MC =
GF(y1,MC; y1,MC). For other methods such as SSR-W, JSR,
JSR-ES, since yW,MC = �

e ye,MC is available, we obtained
the scatter estimate as follows:

ŝe = GF(se,MC; ỹW,MC) � GF(yW ; ỹW,MC) � ỹW,MC

where ỹW,MC = GF(yW,MC; yW,MC).
The same evaluation metrics such as RC, RCE, and CV

were used. To define the target volumes for the evaluation,
outlines defined on CT were used in this experiment.

B. Results of Fast Convergence for
Energy-Window Subset

For the phantom experiment, four reconstruction methods
were applied as shown in Fig. 10. Our proposed JSR-ES
yielded the highest contrasts for all hot spheres at the 20th
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Fig. 10. Physical phantom reconstructed images at the 20th iteration
using SSR-N, SSR-W, JSR (all 4 OS), and JSR-ES (4 OS × 3 ES).
A diagram for the physical phantom with the diameters of all hot spheres
is on bottom right.

Fig. 11. RCs vs. iteration for 3 hot spheres. Our proposed JSR-ES
yielded substantially higher RCs than all other methods over all iterations.

iteration, even for the smallest sphere with 1.6 cm diameter.
Figs. 11 and 12 show RCs vs. iteration for 3 hot spheres and
RCE vs. iteration for a cold sphere. Our proposed JSR-ES

Fig. 12. RCE vs. iteration for the cold sphere. Our proposed JSR-ES
yielded lower RCE than all other methods for early to mid iterations.

Fig. 13. RC vs. sphere diameter at CV = 0.16 for real phantom
experiment.

yielded the highest RCs among all other methods over all
sizes of sphere diameters, which are consistent with our digital
phantom simulation results in Fig. 5. Our proposed JSR-ES
also yielded lower RCE than all other methods for early to
mid-iterations, which are consistent with our simulation results
in Fig. 6. However, SSR-N yielded lower RCE than other
methods after the 11th iteration.

Fig. 13 shows RCs vs. sphere diameters at CV = 0.16.
All methods using the counts from the full range were able to
yield similar RCs over sphere volumes, while SSR-N that used
partial counts yielded much lower RCs than other methods
including our proposed JSR and JSR-ES. Note that CV =
0.16 can not be exactly achieved since iterations are integers
so that CV values over iterations are also discretized. CV ≈
0.16 were achieved at the 4th (SSR-N), 9th (SSR-W, JSR) and
3rd (JSR-ES) iterations, respectively.

VII. DISCUSSION

The continuous energy spectrum that extends to high
energies and the relatively low bremsstrahlung yield makes
quantitative Y-90 SPECT challenging. While previous state-
of-the-art work to exploit this continuous energy spectrum
[9], [11] relied on the SSR-WA model that has a single-band
acquisition window with a wide energy range, our proposed
JSR used multi-band acquisition windows. This difference in
the forward model enabled us to prove better performance
of our proposed JSR over the model of SSR-WA theoreti-
cally and empirically. It also enabled us to propose the ES
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approximation for empirically fast convergence. Note that our
proposed methods were not directly compared with the works
of [9], [11]. SSR-WA is the model underlying [9] and [11]
and the current work compares our proposed methods with
the SSR-WA method whose model is almost equivalent to
the models underlying [9], [11], rather than with the methods
of [9], [11] themselves. There are trade-offs in computation
complexity, ways of using MC runs, and accuracy of MC
simulations that were not considered in our analyses. The
work of [9] used pre-calculated scatter kernel values from
MC simulations for both AS and sW , while the work of [11]
performed MC simulations for both AS and sW every iteration.
In our implementation, we followed the MC scatter estimation
of [8] to generate sW = �

e se every 5 iterations using
SIMIND that included full radiation transport physics in the
collimator, but the work of [11] made approximations for the
collimator so that the simulation time could be reduced by
using pre-calculated kernels instead of accurately modeling
collimator interactions that is one of the most time-consuming
parts of the MC run. Assuming the same MC simulator
used, our method will hypothetically be less computationally
intensive than the approach of [11] without giving up matched
backward projectors in calculating both aS and ∇L(·).

In this work, some performance comparisons of different
methods such as RC or RCE were done over iterations, not
over computation time. Fair comparison over computation time
is challenging due to many computation factors and different
implementations. For example, our current implementation
computes each forward model for each narrow band. JSR,
JSR-ES and SSR-WA require nearly the same computation
time per iteration and they also require ∼6 times more
computation time than SSR-N and SSR-W. Our current imple-
mentation seems suboptimal considering the fact that common
computation among different energy bands could be shared
such as line-of-response evaluation. Another factor to consider
is heavy computation time for MC scatter estimation updates
that usually take much more time than one forward projection.
For MC simulation based forward model in the work of [11],
optimal number of histories should be considered for fair
comparisons. Therefore, further investigation is necessary for
fair comparisons over computation time.

Direct comparison between our proposed methods and
MC-based reconstructions [11] is challenging. MC-based
reconstructions have an advantage of using more accurate
forward models over our proposed methods. However, they
typically use unmatched projectors while our proposed meth-
ods can use matched projectors for nice convergence properties
that could be critical for unregularized algorithms for high
contrast recovery and regularized reconstruction methods with
advanced image priors. Often, these unmatched operators are
not favorable to use since they do not guarantee some of the
desired statistical properties of ML-EM such as asymptotic
unbiasedness and efficiency of estimators. Furthermore, our
JSR methods are not as computationally demanding as MC
methods since our reconstructions use MC only to generate
the scatter estimate, which is only updated 2-3 times [8]
instead of at each iteration, and requires fewer histories than
full MC.

We used hot sphere to background activity concentration
ratios that were clinically relevant. However, in the experimen-
tal measurements it is logistically difficult to use a phantom
with the same activity concentration levels as in a patient
because these patients are administered ∼100 mCi to the liver.
To be specific, our physical phantom experiment acquired
8 million counts in the 105-195 keV energy window that was
similar to that of a patient study, but the activity is distributed
in the large phantom (not focal liver activity as in patients),
thus the activity concentration levels in our experimental study
with 8 million counts and our MC simulation with 100 million
counts in the energy window of 105-195 keV are quite differ-
ent. Despite different imaging conditions, we found that the
results for the physical phantom experiment are consistent with
the results for the digital phantom simulation in most cases
such as RCs of hot spheres and CV in background. Therefore,
one can expect that the findings hold in clinical imaging
conditions with parameters in between the two “extremes.”
At the 20th iteration, JSR-ES yielded 31.4% and 65.9% better
RCs than SSR-N and SSR-W, respectively, for the smallest
hot sphere. However, we found some inconsistencies for RCE
in cold regions over relatively high iterations. There are a
couple of possible explanations such as inaccurate or challeng-
ing scatter estimation for Y-90 reconstruction, or challenging
reconstruction in zero activity areas due to the non-negativity
constraint in image domain [25]. This phenomenon is expected
to be more severe in JSR than SSR due to the small number
of primary counts in high energy windows.

The cold center artifact in Figs. 4 and 10 is the result of
resolution modeling in ML reconstruction, which can lead
to significant artifacts (Gibbs phenomenon). This effect was
first described by Snyder et al. [26] and a detailed discus-
sion and an example image is included in the paper by
Rahmim et al. [27]. They are severe in large spheres as used
in our study (about 100 mL for the largest sphere) while there
is no edge artifact in small spheres. We previously showed
that regularized reconstruction with CT side information is
one solution to this problem [28].

The JSR methods developed here were evaluated for the
105 to 285 keV, but can be applied to a wider range. Extending
to higher energies may not lead to a substantial gain in primary
counts (Fig. 1), but extending to lower energies will increase
primary counts, potentially without degradation in quantitative
accuracy. For example, a previous study investigated single
windows in the range 70-410 keV and found the 90-125 keV
window gave the best results [7]. The JSR methods developed
here can also be applied to other beta emitters that rely on
bremsstrahlung photons for SPECT, such as P-32. Further-
more, the methods can be applied to radionuclides that have
multiple gamma-ray emissions with low yield, such as Lu-177,
that can benefit from utilizing multiple windows to capture
all the information to increase counts in contrast to standard
reconstruction that uses only one of the gamma-rays.

Lastly, we used the Fisher information in our theoretical
analyses and RC, RCE, and CV in our simulation and exper-
iment for assessing overall image fidelity. While these met-
rics seem useful for dose-outcome evaluation [29], there are
other metrics such as lesion-detection task based assessment,
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non-uniform 3-D dosimetry or dose-volume histogram [30].
Further investigations of our proposed methods on these
metrics can be interesting future works.

VIII. CONCLUSION

We proposed JSR, a novel Y-90 SPECT reconstruction
method that uses a wide energy spectrum with accurate for-
ward modeling. We theoretically and empirically showed that
our JSR with multi-band forward model and multi-acquisition
windows has favorable statistical properties over other com-
peting methods with multi-band forward model and single
acquisition window, and with single-band forward model and
single acquisition window. We also proposed an ES approxi-
mation algorithm for JSR to yield faster empirical convergence
in most cases for both MC simulation and experimental
study except for the RCE on a cold sphere at high itera-
tions in experimental study when using estimated scatter. Our
ML-based initial image optimization for all methods yielded
better performance in early iterations.
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