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Simplified Statistical Image Reconstruction for
X-ray CT With Beam-Hardening

Artifact Compensation
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Abstract— CT images are often affected by beam-
hardening artifacts due to the polychromatic nature of the
X-ray spectra. These artifacts appear in the image as cup-
ping in homogeneous areas and as dark bands between
dense regions such as bones. This paper proposes a
simplified statistical reconstruction method for X-ray CT
based on Poisson statistics that accounts for the non-
linearities caused by beam hardening. The main advantages
of the proposed method over previous algorithms are that
it avoids the preliminary segmentation step, which can
be tricky, especially for low-dose scans, and it does not
require knowledge of the whole source spectrum, which
is often unknown. Each voxel attenuation is modeled as
a mixture of bone and soft tissue by defining density-
dependent tissue fractions and maintaining one unknown
per voxel. We approximate the energy-dependent attenua-
tion corresponding to different combinations of bone and
soft tissues, the so-called beam-hardening function, with
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the 1D function corresponding to water plus two parameters
that can be tuned empirically. Results on both simulated
data with Poisson sinogram noise and two rodent stud-
ies acquired with the ARGUS/CT system showed a beam
hardening reduction (both cupping and dark bands) similar
to analytical reconstruction followed by post-processing
techniques but with reduced noise and streaks in cases
with a low number of projections, as expected for statistical
image reconstruction.

Index Terms— X-ray computed tomography, polyener-
getic, beam hardening, image reconstruction, penalized
likelihood.

I. INTRODUCTION

THE traditional image reconstruction method for
X-ray CT, filtered back projection (FBP), faces chal-

lenges with non-standard scanning geometries like cone-beam
and multi-slice helical CT and with truncated projection data.
Statistical reconstruction methods are preferable for low-dose
scans, can model any geometry and can accommodate
measurement physics including beam hardening, partial-
volume effects, and scatter [1], at the price of more
computation time. X-ray tubes used in CT scanners are
polyenergetic, producing a beam having a range of photon
energies. Due to the energy dependence of mass attenuation
coefficients, low-energy photons are preferably absorbed,
causing a shift of the mean energy of the X-ray beam
to higher values. Since attenuation coefficients are energy
dependent, different projection measurements will ‘see’ the
same object as having different attenuation values, leading to
data inconsistencies in the Radon sense and, if uncorrected,
reconstruction artifacts: ‘cupping’ in homogeneous areas,
‘dark bands’ or ‘shadows’ between bones, and ‘spill over’ of
bone areas into soft tissue [2].

Most scanners use the ‘linearization method’, which
assumes that all the materials in the scan field have X-ray
attenuation characteristics equivalent to water. These charac-
teristics are measured in a previous calibration [2]–[4]. This
simplification leads to a suboptimal correction for inhomo-
geneous objects, especially in the presence of high-density
areas, like bone. Dual-energy imaging enables quantitative CT
reconstruction free of artifacts based on the acquisition of two
scans at different voltages, typically 80 kVp and 120 kVp in
clinical studies [5]–[7]. Although it is useful for tissue charac-
terization, it needs longer scan times and/or more sophisticated
scanner hardware, potentially increasing the dose significantly.
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Joseph and Spital [8] proposed a post-processing technique
modeling the corrected data with a second-order polynomial
dependent on the amount of bone traversed, which is obtained
by a forward projection of the bone voxels segmented from
an initial FBP reconstruction. This bone projection provides
an estimate of the line-integral-dependent nonlinearity for
each measurement that is then used to correct the projection
data [8]–[11] followed by a second FBP. A similar approach
was proposed in [12], but obtaining the linear combination
in the image domain. Both approaches need knowledge of
the spectrum and attenuation coefficients to find the optimum
linear combination. Kyriakou et al. [13] obtained the optimum
coefficients by maximizing the flatness of the soft tissue, thus
avoiding the need of spectral information. However, enforcing
flatness in soft tissue areas may lead to a reduction of soft-
tissue contrast. Following a similar idea, Park et al. [14]
based the optimization of the coefficients on the minimization
of the sparsity of the Laplacian. Schüller et al. [15] substituted
the bone segmentation step required in the previous methods
by an automatic histogram transformation to create the bone
images. Optimum parameters are then obtained by minimizing
the entropy of the image. Nevertheless, this method was
shown to produce an overcompensation of the beam-hardening
artifacts in real studies. In all the mentioned post-processing
techniques, the result strongly depends on the quality of the
bone segmentation, which may be challenging in low-dose
studies or images highly affected by beam-hardening artifacts.

Alternatively, several iterative reconstruction methods inher-
ently account for the nonlinearities of the beam-hardening
effect. Yan et al. [16] developed an iterative non-statistical
beam-hardening correction method, assuming two known sub-
stances and iteratively computing their volume fraction at each
pixel. Elbakri and Fessler [17] presented a statistical algorithm
also assuming that the sample was composed by known
substances that had to be segmented in an initial image. They
improved the method in [18] by including the segmentation in
the cost function to be updated at each iteration and allowing
pixels to contain mixtures. Both approaches needed tabulated
measurements of the line integrals of bone and water over an
appropriate range of object thicknesses for the CT system’s
spectrum. Man et al. [1] proposed a statistical approach
decomposing the linear attenuation coefficient into a photo-
electric component and a Compton scatter component. The
relative weight of these components was constrained based
on prior material assumptions. The method did not require a
preliminary bone segmentation but it still needed knowledge
of the polyenergetic source spectrum. This was substituted
by Srivastava and Fessler in [19] with the same calibration
data and tuning parameters as Joseph and Spital. However,
the proposed model makes an approximation that can lead
to nonphysical negative values prone to cause convergence
problems.

In an earlier conference paper [20], we explored in more
depth the work in [19], proposed an improved approximation
function, and presented preliminary 2D simulation results. The
method modeled the tissue fractions in the voxels as functions
of the density similarly to what was done in [18]. This paper
improves the algorithm and illustrates its performance with

Fig. 1. Third-order polynomial tissue-fraction functions for soft tissue,
fs(ρ), and bone, fb(ρ).

real 3D CT data. The algorithm iteratively minimizes the Pois-
son likelihood, providing better solutions than PWLS [21], and
uses ordered subsets [22] for acceleration. Including scatter
estimates, if available, in the algorithm is straightforward.
We tested the algorithm on simulated data under low-sampling
conditions using synthetic phantoms and a CT of the anthropo-
morphic PBU-60 thorax phantom (Kyoto Kagaku Co., Kyoto,
Japan). In addition, the algorithm was tested on two sparse-
view rodent studies acquired with the CT subsystem of an
ARGUS/CT (SEDECAL) scanner [23].

II. MATERIALS AND METHOD

We use the usual polyenergetic model [17] for the mean of
the i-th measured sinogram data value

Y i =
∫

Ii (ε)e
− ∫

Li

μ(x,y,z,ε)

dε + ri , (1)

where μ(x, y, z, ε) denotes the unknown energy-dependent
attenuation coefficient map of the object. The integral in the
exponent is taken over the path of the i-th ray, Li , and the
“spectrum” Ii (ε) incorporates the energy dependence of both
the incident ray, a bowtie filter, and the detector sensitivity. The
term ri can account for scatter and other background signals
and is assumed known here. The goal is to reconstruct μ from
the noisy measurements Yi having mean given in (1).

A. Object Model: Segmentation Free Implementation

For an object composed of K different substances,
we express the attenuation coefficient at pixel j using the
following model:

μ j (ε) =
K∑

k=1

mk(ε)ρ j f j
k (2)

where ρj denotes the unknown density, mk(ε) denotes the
known mass attenuation coefficient of the k-th substance,
and f j

k denotes a unitless tissue fraction that quantifies the
contribution of material k to attenuation in voxel j. As in
previous methods, we assume that the object consists of only
two substances: bone and soft tissue. The rationale behind
this assumption comes from the dependence of the attenuation
properties with energy for different tissues in the body, as most
tissues behave like water and only bone differs significantly
(see Fig. 1 in [18]).

To prevent an increase of the number of unknowns and avoid
preliminary segmentation, we define a model for the tissue-
fraction value in the pixel, f j

k , as a function of the estimated
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density in that pixel, similarly to what was proposed in [18].
For the two-material case we assume

μ j (ε) ≈
2∑

k=1

mk(ε)ρ j f j
k

(
ρ j

)

=
(

ms(ε) f j
s (ρ j )+ mb(ε) f j

b (ρ j )
)
ρ j , (3)

with tissue fraction functions, f j
s (ρ j ) and f j

b (ρ j ), built fol-
lowing the displacement model in [18] that considers materials
occupying distinct spatial regions and mixed pixels at the
boundaries. The soft-tissue fraction of the model in [18] was
non zero for air, resulting in an increment of density values in
air-filled areas inside the sample through subsequent iterations.
To avoid it, we propose the piecewise third-order polynomials
for the soft-tissue and bone fractions shown in Fig. 1, given by

fs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.336ρ + 16.234ρ2 − 27.057ρ3 0 ≤ ρ ≤ 0.4

1 0.4 ≤ ρ ≤ 1.1

−54.29+133.6ρ−105.5ρ2+27.1ρ3 1.1≤ρ≤1.5

0 1.5 ≤ ρ

(4)

fb =

⎧⎪⎨
⎪⎩

0 0 ≤ ρ ≤ 1.1

55.3 + 133.6ρ + 105.5ρ2 − 27.1ρ3 1.1 ≤ ρ ≤ 1.5

1 1.5 ≤ ρ

(5)

where ρ has units g/cm3. Taking into account the values
provided by NIST, we assume soft tissue density is between
0.4 and 1.1 g/cm3 and set a threshold for bone density
of 1.5 g/cm3. The coefficients were obtained as the result of
a third-order polynomial fitting using a linear least-squares
regression.

Based on (1) and (3), solving for the unknown values at each
voxel requires knowledge of the X-ray spectrum emitted by the
source, which is often difficult to characterize. The following
section describes our proposal to overcome this problem.

B. Forward Model: Beam Hardening Function

With the model explained above, we express (1), i.e., the
mean of the measured data along the path of the i-th ray, Li, as

Y i (ρ) =
∫

Ii (ε)e
−ms(ε)t i

s(ρ)−mb(ε)t i
b(ρ)dε + ri , (6)

where t i
s (ρ) and t i

b(ρ) denote the contributions of each tissue
type to the line integral along the i-th ray having units g/cm2

and given by

t i
s (ρ) =

p∑
j=1

ai j f j
s

(
ρ j

)
ρ j , t i

b(ρ) =
p∑

j=1

ai j f j
b

(
ρ j

)
ρ j , (7)

where aij denotes elements of the system matrix (having
units cm). Grouping the energy dependent terms into the
exponent yields

Y i (ρ) = Ii e−F
(
t i
s (ρ),t

i
b(ρ)

)
+ ri ; Ii ≡

∫
Ii (ε)dε. (8)

Fig. 2. Beam-hardening (BH) function used for the so-called water
correction (linearization). Left: simulation corresponding to water for a
100 kVp spectrum. Right: calibration of the real scanner ARGUS/CT
using a PMMA phantom for a 40 kVp spectrum.

Fig. 3. Simulation of σ(ts, tb). Left: profiles versus ts where each
line corresponds to different values of tb. Right: profiles versus tb
corresponding to the minimum and maximum ts values.

The function F characterizes the beam hardening and is
defined by

F (ts, tb) = − log

(∫
I (ε)

I
exp (−ms(ε)ts − mb(ε)tb)dε

)
,

(9)

where we drop the dependence on ray i for simplicity. One
could calculate the 2D function F analytically if the X-ray
spectrum were known, which is often not the case. On the
other hand, tabulating the 2D function experimentally would
be cumbersome. Nevertheless, the 1D version of F corre-
sponding to water, which has attenuation properties similar
to soft tissue, is usually available for most scanners (Fig. 2).
We propose to approximate the complete 2D beam-hardening
function by using the 1D function corresponding to water plus
two additional parameters that we tune empirically. The idea
is inspired by the post-reconstruction correction method of
Joseph and Spital [8], which uses the concept of ‘effective
density’, that is, the amount of water that would produce
the same beam-hardening effect as the given amount of bone
traversed. We introduce this concept in the forward model
of an iterative algorithm by rewriting the beam hardening
function as

F (ts, tb) = F (ts + σ (ts, tb) , 0) = Fw(te), (10)

where Fw(t) = F(t, 0) is the beam hardening function corre-
sponding to water and te is the line integral of the effective
density, i.e. water equivalent.

The full X-ray spectrum would be needed to determine
σ (ts, tb) exactly, just like for the function F (ts, tb). Fig. 3
shows calculated plots of σ (ts, tb) for a typical polyenergetic
spectrum.
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Fig. 4. Two examples of approximations for σ(ts, tb).

As we can see in the left panel of Fig. 3, the dependence on
ts can be considered negligible when the amount of bone in
the object is small, which is the case in clinical studies. Joseph
and Spital suggested in [8] a power series approximation of
the function that defines the measured projection depending
only on tb. Hsieh et al. [10] described a similar approach,
based on

σ1 (tb) = Atb − Bt2
b , (11)

where A and B are parameters that one can tune. Although
approximation (11) works adequately for FBP reconstruction,
it can fail when used in the forward model of a statistical
reconstruction method because it can yield negative values.

Furthermore, one can verify that σ(ts, tb) is a monotone
increasing function of both of its arguments, whereas (11)
is not (see Fig. 4). To overcome this drawback of (11),
we investigated the following alternative approximation:

σ2 (tb) = Atb
1 + B

A tb
, (12)

where, as in (11), A is unitless and B has units cm2/g. This
function is monotone nonnegative and matches (10) for small
values of tb. Substituting (12) into (10) and (8) leads to our
proposed forward model:

Y i (ρ)= Ii e
−Fw

(
t i
s (ρ)+

Atib(ρ)

1+ B
A tib(ρ)

)
+ ri

= Ii e

−Fw

⎛
⎜⎜⎝

p∑
j=1

ai j f j
s (ρ j)ρ j +

A
p∑

j=1
ai j

(
f

j
b (ρ j )

)
ρ j

1+ B
A

p∑
j=1

ai j

(
f

j
b (ρ j)

)
ρ j

⎞
⎟⎟⎠
+ ri . (13)

C. Algorithm
An accurate model of the physics of CT acquisition needs

to account for the energy-integrating detection process and the
additive detector read-out noise. On the other hand, sophisti-
cated models often lead to more difficulties in optimizing the
associated penalized-likelihood. For simplicity, in this work
we approximate the measurement statistics as independently
distributed Poisson random variables [24]:

Yi ∼ Poisson
{
Y i

}
, i = 1, . . . , N (14)

The corresponding negative log-likelihood for independent
Poisson measurements is given by

−L (ρ) =
N∑

i=1

hi (Fw(te(ρ))) (15)

with

hi (l) = −Yi log
(

Ii e
−l + ri

)
+ Ii e

−l + ri , (16)

where r accounts for mean contamination by extra background
counts caused primarily by scatter. Because data is noisy and
tomography is an ill-posed problem, we use regularization by
adding a penalty term to the likelihood function that controls
how much the object ρ departs from prior assumptions about
image properties. In this work we used a 3D roughness penalty
function with the convex edge-preserving Huber potential:

R (ρ) =
Np∑
j=1

1

2

∑
k∈N j

w j k · ψ (
ρ j − ρk

)
,

ψ (t) =

⎧⎪⎨
⎪⎩

|t|2
δ

|t| ≤ δ

δ |t| − δ

2
|t| > δ,

(17)

where Nj is a neighborhood of pixels near pixel j, wjk = wkj
and ψ is the convex edge-preserving Huber potential. This
penalty function is modified as described in [25] to improve
spatial resolution uniformity. The penalized cost function is
now:

�(ρ) = −L (ρ)+ β R (ρ) , (18)

where the scalar parameter β controls the tradeoff between the
data-fit and penalty terms.

We derived an iterative algorithm based on separable
quadratic surrogates using the principles of optimization trans-
fer [26], resulting in the following update:

ρn+1 = ρn − D−1∇� (
ρn)

, (19)

where D is a diagonal matrix that influences the rate of
convergence. Instead of designing D to ensure that the algo-
rithm monotonically decreases the cost function we choose the
elements of D approximately as suggested in [17] and [26] by
using the following pre-computed curvature:

d j = (
K ms (εeff)

)2
N∑

i=1

ai j

⎛
⎝∑

j

ai j

⎞
⎠Yi , (20)

where we include K as tuning parameter for the step size.
The final algorithm is shown in Algorithm 1, where DReg

and D2Reg are first and second order derivatives of the
surrogate of the regularization term as explained in [24] and G
is the system matrix. Four projections and one backprojection
are performed at each iteration.

We use an ordered subsets approximation of (19)
to increase speed [22]. The 2D version on this
algorithm, which was incorporated to the Michigan
Image Reconstruction Toolbox (MIRT), is available at
http://web.eecs.umich.edu/~fessler/irt/reproduce/.

D. Performance Assessment
We simulated four polyenergetic spectra, with 80, 100,

120 and 140 kVp, and 0.25 cm aluminum filtration at the
source to give a spectrum shape similar to clinical practice
(Fig. 5).

Based on this model for the source, we generated a set
of transmission polyenergetic Poisson X-ray projections with
parallel beam geometry using the MIRT toolbox.

The detector was modeled as a simple photon-counting
device. The projection data had 512 radial bins with 0.1 cm
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Algorithm 1 Proposed Algorithm
1: x=fbpu
2: denom=G’*(yi.*(G*(ones(size(x))))
3: for 1 to iterations
4: hxs = x*fs(x)
5: hxt = x*ft(x)
6: hxsDeriv = x*Dfs(x)
7: hxtDeriv = x*Dft(x)
8: ti = G*hxt
9: si = G*hxs
10: te = si+sigma(A,B,ti)
11: F = fw(te)
12: hFs = Dfw(te)
13: m = I*exp(-F)+r
14: Ni = (y/m-1)*I*exp(-F)
15: Njs = hFs*Ni;
16: NjAux1 = G*(fs(x)+hxDeriv)
17: NjAux2 = G*(ft(x)+hxtDeriv)
18: NjAux = NjAux1+Dsigma(A,B,ti)*NjAux2
19: Nj = G’*(NjAux*Njs)
20: num = Nj+beta*DReg
21: den = denoms*(K*Dfw(0))ˆ2+ beta*D2Reg
22: x = x+num/den
23: x = max(x,0)
24: end

Fig. 5. X-ray spectra used for simulations.

ray spacing and 180 angular steps over 180 degrees. We did
not simulate scatter. The blank scan value was 106 and 105

counts per detector element to simulate high- and low-SNR
scenarios respectively.

We first evaluated if our approach in (12) is physically
reasonable using a basic ellipsoidal phantom made of water,
with density 1.0 g/cm3, containing two disks of bone, with
density 1.9 g/cm3. We tested A values from 0 to 2 in steps
of 0.001 and B from 0 to 0.1 cm2/g in steps of 0.001 cm2/g.
The optimum A and B were those that minimized the root
mean square error (RMSE) with respect to the FBP recon-
struction from monoenergetic data (reference image) measured
in the rectangle shown in the left panel of Fig. 6. We then
evaluated the dependency of these values with bone size
using them to reconstruct a phantom made of soft tissue
with bone inserts of different sizes and densities equal to
1.9 g/cm3 and 2.1 g/cm3 and two inserts of fat with density
0.95 g/cm3, shown in middle panel of Fig. 6. We used the same
phantom to evaluate the performance of the method under

Fig. 6. Left: ellipsoidal phantom made of soft tissue with 30 cm and 20 cm
diameter sizes and two bone inserts with 4 cm diameter; dashed lines
indicate areas used for measurements. Middle: phantom with inserts of
different sizes and densities. Right: slice of the PBU-60 thorax phantom.

Fig. 7. ROIs obtained by thresholding and erosion/dilation to measure
CV (A), and RMSE (B and C) in soft tissue.

low-SNR and low-sampling conditions, using 45 projections
over 180 degrees.

We used the same A and B values on simulated human
data using a slice of the PBU-60 thorax phantom (right panel
of Fig. 6). Density values for bone areas (spine and ribs) and
soft tissue were 1.9 g/cm3 and 1.06 g/cm3 respectively.

We reconstructed the data using uncorrected FBP, water-
corrected FBP, FBP corrected by the Joseph and Spital (JS)
method, a monoenergetic statistical algorithm (ordered subsets
separable paraboloidal surrogates [26]), and the proposed
polyenergetic algorithm. We used a Hanning window with
cut-off frequency of 80% Nyquist in the FBP reconstruction
to achieve a spatial resolution comparable to that of the
statistical algorithms. Tissue fraction functions shown in Fig. 1
were applied to the water-corrected FBP image providing
the segmentation required by the JS technique. The proposed
method ran for 50 iterations, ß = 30 and δ = 0.002 g/cm3 for
high-SNR and 100 iterations, ß = 145 and δ = 0.002 g/cm3

for low-SNR and low-sampling in (17) and (18). The mono-
energetic method ran for 50 iterations with 15 subsets,
ß = 4 and δ = 0.001 g/cm3. We chose constants A = 1.475 and
B = 0.0100 cm2/g in (13).

In addition to qualitative assessment of artifact reduction,
we quantified the performance in terms of noise, streaks due to
undersampling and bias of the different algorithms. Noise and
undersampling-induced streaks were assessed as the coefficient
of variation (CV) in the homogeneous region depicted in the
left panel of Fig. 7. Bias was calculated as the RMSE relative
to the reference image for the whole soft-tissue area (middle
panel of Fig. 7) and for the area with the strongest beam
hardening artifact, close to the ribs (right panel of Fig. 7).

Finally, the algorithm was tested on two rodent stud-
ies acquired with the CT subsystem of an ARGUS/CT
(SEDECAL) scanner, a cone-beam micro-CT scanner based on
a flat-panel detector [23]. We focus on low-SNR and sparse-
sampling scenarios because these are the cases that derive the
greatest benefit from iterative methods such as that proposed.

We obtained 180 views of a volume of 516×516×301 vox-
els with 0.121 mm3 voxel size, covering 360 degrees with
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TABLE I
OPTIMIZED A AND B PARAMETERS FOR DIFFERENT VOLTAGES

Fig. 8. Phantom with different bone sizes reconstructed with FBP (left)
and with the proposed algorithm (right) for the high-SNR (top) and low-
SNR and low-sampling (bottom) cases.

a source voltage of 40 kVp. We reconstructed the images
using uncorrected FDK, JS-corrected FDK, the monoenergetic
statistical algorithm and the proposed polyenergetic algorithm.
A 3D version of these algorithms was implemented substitut-
ing the MIRT-CPU kernels by the GPU-accelerated kernels
from FUX-Sim [27]. We obtained the segmentation required
by the JS technique using the same tissue fractions used for
the proposed method, shown in Fig. 1, on the water corrected
FDK image.

Parameters in this case were A = 2.458 and B = 0.49 cm2/g
in (13) and ß = 0.06 and δ = 0.04 g/cm3 for the proposed
method and ß = 0.55 and δ = 0.02 g/cm3 for the monoener-
getic algorithm in (17) and (18).

Both monoenergetic and proposed polyenergetic methods
were ran for 200 iterations on a computer with an Intel
Core i7-4790 CPU, 32 GB RAM and an NVIDIA GeForce
GTX960. Runtime was 70 and 100 seconds per iteration,
respectively. The reason for higher computational burden of
the polyenergetic algorithm, compared to the monoenergetic
case, is the higher number of projections per iteration needed.
No effort was made to optimize execution time.

III. RESULTS

Table 1 shows the optimum A and B values found for each
voltage with simulations using the ellipsoidal phantom. Fig. 8
shows good beam-hardening artifact compensation achieved
by the proposed algorithm for different sizes and densities of
bone, proving the feasibility of the approximation of the σ
function. For the low-SNR and low-sampling case, we can
also see a dramatic reduction of the undersampling-induced
streaks.

Fig. 9. Absolute difference between the reference and the result of
the proposed algorithm (top) and the FBP (bottom) for the low-SNR and
low-sampling (left) and the high-SNR (right) cases.

Fig. 10. Soft-tissue and bone segmentations for the low-dose and low-
sampling case at different iterations.

Fig. 9 shows the absolute differences between the reference
and the results of the FBP and the proposed algorithm.

Fig. 10 shows the evolution of the soft-tissue and bone
masks along iterations for the low-dose and low-sampling
case. We can see the improvement of the soft tissue and
bone segmentations through iterations, where both dark bands
and undersampling streaks are reduced, resulting in a more
accurate model.

Figs. 11 and 12 show the results on one slice of the PBU-60
thorax phantom. The uncorrected FBP image suffered from
beam-hardening artifacts in the form of dark bands between
the ribs and spine. The statistical iterative reconstruction with
no modeling of the polyenergetic spectrum exhibited signif-
icantly lower CV (noise and undersampling-based streaks)
but still suffered from beam-hardening artifacts. The proposed
method eliminates the beam-hardening artifacts, removing the
dark bands and recovering the real soft tissue values, while
showing a significant reduction of noise and streaks when
compared with the post-processing JS method.

Table 2 shows the results of the analysis of noise, streaks
and bias for all the methods. The proposed method achieved a
bias reduction on the same order as the JS method, but with a
significantly higher CV reduction in the soft-tissue area. There
was also a significant reduction of CV in the background,
not visible in Fig. 11 because the window was selected to
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Fig. 11. 512×512 pixel axial slice of the PBU-60 phantom (A),
reconstructed with FBP (B), FBP + water correction (C), FBP + JS
correction (D), statistical algorithm using a model incorrectly based on a
monoenergetic X-ray source (E) and the proposed algorithm (F).

Fig. 12. Zoom-in view of the area inside the dotted square drawn in
Fig. 11 A for images A–F.

TABLE II
CV AND RMSE RESULTS FOR THE PBU-60 PHANTOM

show beam-hardening artifacts. The monoenergetic iterative
algorithm resulted in a similar CV reduction as the proposed
method, as expected, but with no bias reduction mainly due
to the beam-hardening effects.

Fig. 13 shows the results for the two rodent studies. Again,
the statistical iterative reconstruction with no modeling of the
polyenergetic spectrum exhibits significantly better noise and
streaks behavior than the FDK-based methods but still suffers
from beam-hardening artifact. The proposed method elimi-
nates the beam-hardening artifact while showing a significant
reduction of noise and streaks when compared with the post-
processing JS method.

IV. DISCUSSION

This work presents a new statistical reconstruction algorithm
for X-ray CT that accounts for beam-hardening effect.

In most of the previously proposed methods the forward
model requires knowledge of the X-ray source spectrum,
which is often unknown in practice. To overcome this problem,
we modify the projection model by adapting one idea previ-
ously proposed by Joseph and Spital [8]. This idea is based on
the concept of ‘effective water path length’. We substitute the
2D beam-hardening function corresponding to bone and soft
tissue with the 1D function corresponding to water, already
available in most scanners, plus two empirical parameters,
A and B in (13). This theoretical model is thus exact for
monochromatic radiation and represents an approximation
in the polychromatic case. The approximation of σ(ts, tb)
used here ignores the dependence on ts, which is a rather
accurate assumption when there are only small areas of bone.
Future works might explore more accurate approximations by
including the dependence with ts in the model. In our imple-
mentation, the parameters A and B were obtained empirically,
but it could be interesting to investigate the possible inclusion
of these parameters in the algorithm in order to perform a joint
estimation.

Regarding the model of the object, the most commonly
used approach is to assume that each voxel can only be either
bone or soft tissue and to segment bone from a preliminary
reconstruction obtained with a fast algorithm such as filtered
back-projection. This segmentation can be challenging, espe-
cially in the case of low-dose scans, which suffer from low
SNR and possibly photon starvation. Furthermore, this model
neglects partial volume effects, as voxels are not allowed
to contain a mixture of bone and soft tissue. Our approach
addresses these problems, as we model the attenuation at
each voxel by defining piecewise density-dependent tissue
fractions, which are updated at each iteration, eliminating
possible segmentation problems in low-dose studies. In our
work, selection of the intervals for these functions was based
on the typical densities for soft-tissue and cortical bone found
in NIST. Further evaluation of the effect of the definition of
these intervals on the recovered density values for both clinical
and preclinical data is warranted. Although the bone/soft-tissue
model will suffice for most cases, a three-class model could
be necessary when contrast agents or metallic implants are
present. It might also help to improve the estimation of the
density of fat.

Comparing panels B, C, and D of Fig. 13, it is clear that the
reduction in undersampling-induced streaks and noise using
the statistical method is likely due to noise model and the
edge-preserving penalty, and not a novel result in itself. The
main point are the reduced beam-hardening artifacts going
from Fig. 13-C to Fig. 13-D. We used a noise model based
on simple Poisson statistics for simplicity, but it does not
reflect the actual physics of CT acquisition. The strategy
proposed in (13) also can be used with more accurate sta-
tistical models that account for energy-integrating detection
and additive detector read-out noise, which could improve the
accuracy of reconstruction. One possibility would be a model
that considers the total signal to be a sum of energy-scaled
Poisson processes, each with a different scale factor. This
model is potentially more accurate because it accounts for
the polyenergetic nature of the incident beam in the detection
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Fig. 13. Axial slice of two rodent studies reconstructed with uncorrected FDK (A), FDK + JS (B), the monoenergetic iterative algorithm (C), and the
proposed method (D).

process. Nevertheless, sophisticated models often lead to more
difficulties in optimizing the associated penalized-likelihood.
Although scattering was not considered in this work, including
scatter estimates in the algorithm is straightforward.

V. CONCLUSION

We present a new statistical reconstruction algorithm for
polyenergetic X-ray CT based on Poisson statistics and a
physical model that accounts for the nonlinearities caused
by the beam-hardening effect. The main advantage of our
method over previously proposed iterative algorithms is the
combination of two desirable characteristics: 1) it eliminates
the problem of wrong bone segmentations in low-dose stud-
ies or images highly affected by beam-hardening artifacts,
and 2) it corrects beam-hardening artifacts without requiring
knowledge of the X-ray source spectrum. Results showed
a similar beam-hardening correction as the post-processing
technique proposed by Joseph and Spital, but with reduced
noise and streak artifacts in the low-dose, low-sampling cases,
as expected for statistical image reconstruction with Huber
penalty with edge-preserving regularization.
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