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ABSTRACT

Estimating a time-varying signal, such as head motion from magnetic resonance imaging data, becomes
particularly challenging in the face of other temporal dynamics such as functional activation. This paper
describes a new Kalman-filter-like framework that includes a sparse residual term in the measurement
model. This additional term allows the extended Kalman filter to generate real-time motion estimates
suitable for prospective motion correction when such dynamics occur. An iterative augmented Lagrangian
algorithm similar to the alterating direction method of multipliers implements the update step for this
Kalman filter. This paper evaluates the accuracy and convergence rate of this iterative method for small
and large motion in terms of its sensitivity to parameter selection. The included experiment on a sim-
ulated functional magnetic resonance imaging acquisition demonstrates that the resulting method im-
proves the maximum Youden’s | index of the time series analysis by 2 — 3% versus retrospective motion
correction, while the sensitivity index increases from 4.3 to 5.4 when combining prospective and retro-

spective correction.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Prospective head motion correction [1-5] is an example of real-
time estimation. Classical approaches to real-time motion tracking
frequently involve a linearized (extended or unscented) Kalman
filter and assume time series variations follow a Gauss-Markov
model. This model efficiently shares information through time, fa-
voring smooth transitions consistent with known (or estimated)
autocorrelation matrices for both measurement noise and the
random process of innovations influencing state transitions. In
magnetic resonance imaging (MRI), PROMO [6] is a widely used
example of such a motion correction framework, applying an ex-
tended Kalman filter to track a state vector composed of rigid
motion (translation and rotation) measured from acquired “navi-
gator data”. In addition to improving the statistical reliability of
time series analysis in functional magnetic resonance imaging [7],
prospective motion correction methods aid volumetric morphome-
try and other forms of quantitation on very high resolution brain
maps [8-10] acquired in vivo. Unlike retrospective methods such
as image registration, prospective motion tracking mitigates sig-
nificant higher-order effects on the acquisition, such as spin his-
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tory variation caused by motion disrupting the steady state be-
tween MRI excitation and relaxation. Accurate and precise motion
tracking is necessary in such applications. However, real-time esti-
mation of motion from the raw frequency-domain data (“k-space”)
used to obtain functional or dynamic MRI's is complicated by over-
lapping variations from motion and other physiological signals.

1.1. Our contribution

This paper describes a new Kalman-filter-like real-time frame-
work based on a combination of sparse and linearized Gauss—
Markov signal and measurement models. While obtaining k-space
data, applying this approach facilitates nearly continuous tracking
of rigid motion in three dimensions. An appropriate real-time feed-
back mechanism in an MRI scanner can update the scan prescrip-
tion over time to follow the estimated motion, mitigating both
misalignments and higher-order distortions of the time series sig-
nal. We simulate our proposed motion correction and demonstrate
improvement in sensitivity and specificity over existing registration
corrections when detecting simulated brain activity.

This paper extends our previous work [11] by introducing slice-
by-slice motion correction, by studying parameter selection effects
on convergence of our iterative estimation algorithm, and by ac-
counting for spin history and other effects encountered in real MRI
scanning environments.
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1.2. Related work

See Refs. [1,4,12-14] for a comprehensive review of motion cor-
rection and image registration in MRI. The linearized motion model
used in prospective correction appears in both PACE [15] and
PROMO [6]. PACE estimates motion directly from functional im-
ages, while PROMO forms Kalman-filter-like estimates from special
navigator data interspersed throughout the acquisition. Our tech-
nique combines PACE and PROMO, correcting motion directly from
functional images, and using a real-time Kalman-filter-like design.
Thus, additional navigator sequences are not needed to use our al-
gorithm. Also, our motion correction algorithm improves over PACE
by estimating motion continuously, rather than having to wait to
obtain a complete volume. To accomplish this, we model tempo-
rally sparse changes in the image time series, enabling us to sepa-
rate motion-related changes from dynamics such as functional ac-
tivation or blood perfusion. Some retrospective motion correction
techniques like k-t FOCUSS [16] and MASTeR [17] employ a similar
sparse time residual, but they process the entire time series post-
acquisition to suppress non-rigid motion via a block matching ap-
proach without any motion model. Unlike those techniques, and
other recent sparsity-based reconstruction approaches, the pro-
posed method is designed to correct motion during the acquisition
rather than after the fact. As the quality of the motion estimates
matters more than the quality of the intermediate images recon-
structed in this prospective setting, we do not consider accelerated
high-resolution imaging techniques like parallel imaging or nonlin-
ear or data-driven time series modeling approaches.

Another approach would treat the image at each time frame as
a dynamic state and rigid motion as unknown parameters of the
state transition model. The nonlinear dynamical system would in-
clude an extra sparse, non-Gaussian state innovation term to cap-
ture unknown temporal dynamics. A linearized Kalman filter can
recursively update the motion parameters and the image state esti-
mates, assuming the process variance is fixed [18], even with time
delay in the measurements [19] or autoregressive moving average
(ARMA) process noise [20]. The time delay is related to slice-by-
slice motion estimation, but our approach must handle different
time delays for each slice. Beyond Kalman filtering, other exam-
ples include nonlinear Wiener filtering [21] and H,, filters that
constrain worst-case performance [22] and can handle randomly
occurring faults, modeled as outliers [23]. Alternatively, after lin-
earizing the effect of motion on the system, the problem of esti-
mating both motion and image states becomes bilinear, leading to
maximum likelihood, hierarchical identification, and stochastic gra-
dient methods [24-26]. The proposed framework is distinct from
all these approaches, as we do not impose a stochastic model on
the image time series, only on the rigid motion parameters.

While this work describes the first addition of a sparse image
difference model with a linearized Gauss-Markov model for mo-
tion state estimation, the idea of integrating sparsity and Kalman
filtering is not new. Some methods replace the Gaussian assump-
tion on the state innovation process with a heavy-tailed sparsity-
promoting distribution leading to a 1-norm penalty on the process
variation [27,28]. Those methods [29-34] add sparse modeling of
the state vector directly, improving estimation quality when prior
information about the state’s sparsity is known. That approach can
be useful for dynamic or functional MRI reconstruction, where the
time series images are known to be compressible via a sparsifying
transform [35]. While integrating signal or innovation sparsity with
the Kalman filter is essentially solved for when the filter’s process
autocorrelation matrix is known, online estimation of the process
autocorrelation matrix becomes more challenging when account-
ing for sparse innovations. Various applications, such as tracking
asset returns in high frequency market data, motivate new co-
variance estimation approaches [36]. However, none of these ar-

ticles consider the role of sparse changes in the images being ob-
served, as distinct from the motion parameters being tracked. Fur-
thermore, adapting the process autocorrelation matrix remains un-
solved in such settings.

In this paper, the sparse innovations appear in the measure-
ment model instead of the state transition model, so extensions
involving non-Gaussian noise and outliers in the measurements
are also of interest. Unscented Kalman filters [37] can adapt to
measurement uncertainty, but they cannot absorb sudden signifi-
cant changes from sparse innovations. Adaptive filters also exist for
measurement disturbances combining Gaussian noise and outliers,
such as those that arise while measuring the state of pneumatic
servo actuators [38]. A modified extended Masreliez-Martin filter
is proposed for such nonlinear systems [39]. An important result
here is that the method is consistent even when the measurements
follow a non-Gaussian distribution. For missing measurements, a
probabilistic distribution on the missing data enables robust esti-
mation in settings like complex sensor networks with real, phys-
ical constraints [40]. While these measurement outlier and miss-
ing data models are similar to our sparse innovations model, the
sparse innovations due to functional brain activity occur in the im-
age domain, not the measurement domain, requiring a different
solution. For instance, Monte Carlo methods can adapt state esti-
mates to abruptly changing environments, given a prior model for
the sparse innovations [41]. However, a prior on functional activity
in brain imaging may not be available.

Treating the motion as unknown parameters of a nonlinear dy-
namical system, metaheuristic techniques can mitigate the noncon-
vexity of the overall estimation problem. For instance, differential
evolution evaluates several candidate parameter values in parallel
[42]. However, these methods would have to incorporate the un-
known sparse innovations in the cost function used to compare
solutions to the parameter estimation problem. Related heuris-
tics like parallel particle swarming, grey wolf pack-based optimiza-
tion, or humpback whale-based spiraling optimization over the
entire search space, can attempt to solve for these parameters di-
rectly, or in combination with conventional Kalman-based tech-
niques [43,44]. Another such heuristic, the cuckoo search uses a
heavy-tailed step length to explore the parameter space more ef-
ficiently [45]. The firefly algorithm models the patterns of light
flashes used by fireflies to attract mates, and leads to very effi-
cient exploration of this space as well [46]. These metaheuristic
methods can jointly estimate state information and optimize the
parameters simultaneously, such as for controlling parallel robotic
platforms [47]. An improved metaheuristic search inspired by bats
can improve the worst-case performance of such platforms, even
over the cuckoo search and other common approaches [48]. Hypo-
thetically, such metaheuristic search algorithms can tune other im-
plementation parameters, such as the regularization or penalty pa-
rameters in the proposed motion estimation implementation, even
though such parameters are not directly part of the state space
model.

As a final alternative, artificial neural networks can learn to
produce state estimates from a series of observations, incorporat-
ing nonlinearity without having to solve a difficult optimization
problem in real time (training can be performed off-line if de-
sired). For instance, a neural network derived for battery charge
state estimation automatically adapts to the nonlinearity of the
state estimation and can accommodate constraints in combination
with a particle swarming algorithm [49]. In other work, a gener-
ative convolutional neural network can recover the latent dynam-
ical state of nonlinear brain oscillations in magnetoencephalogra-
phy (MEG) data without being constrained by the tractability of
complicated noise models or a limited set of available training data
[50]. Such methods can outperform extended or unscented Kalman
smoothers in such applications, but the network complexity, and
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the amount of training data, would have to grow significantly to
accommodate the larger problem size.

1.3. Outline

Section 2 introduces the Kalman filter formulation with sparse
signal changes over time and describes a slice-by-slice motion cor-
rection framework for the same. Section 3 describes the simu-
lation design, evaluation criteria, and the algorithm parameters
used. Section 4 presents experimental results regarding conver-
gence analysis, parameter selection, motion estimation, and time
series analysis. Section 5 discusses these results.

2. Theory

Consider complex vector-valued functions of time x(t). Without
loss of generality, assume the time ¢ are scaled in units of sampling
frames, so the time series consists of vectors g = x(0), x; = x(1),
and so on. For BOLD functional MRI [51], these vectors represent
the brain anatomy with T,)-weighted BOLD contrast for each of Nyy
pixels in Ns slices acquired in a usually interleaved sequence re-
peatedly over time, so X : contains the pixel values for the nth
slice at time t. The spatial Fourier transform domain k-space data
obtained via a Cartesian grid sampling pattern such as echo pla-
nar imaging (EPI) are related to these images via the 2D discrete
Fourier transform (DFT) F:

dy; =Fxn‘t+£n,p (1)

where &,  is a vector of iid circularly symmetric complex Gaus-
sian noise with variance o2. If k-space is undersampled, then the
matrix F would exclude the corresponding rows of the DFT matrix.
In general, real MRI acquisitions agree with this noise model, al-
though occasional fluctuations due to radiofrequency interference
or obvious spikes at a few individual k-space frequencies do occur.
Due to the obviousness of such disturbances in the data, simple
thresholding could exclude such disturbances from the DFT matrix
used to reconstruct Xy, .

To describe the evolution of these images, we introduce an
auxiliary vector o ; that describes how the corresponding signal
relates to the reference frame, X. r, where the “:” notation in-
dicates the vector contains the entire image stack (not just one
slice). In the case of tracking head motion, we use three translation
and three rotation parameters to describe the rigid motion
throughout the brain. The notation e~ describes suitable param-
eters of the inverse motion transformation, which exists when the
motion is rigid. While this is an oversimplification near the neck
and base of the cerebellum, it is reasonable in the brain regions
that are usually imaged. We describe the process of applying a mo-
tion transformation to a volume of stacked slice images as T(a)x:, ¢.
Then, let T(a)x. ; denote extracting the nth slice from the trans-
formed volume. In addition to motion, we allow other dynamics to
occur over the course of imaging, such as functional brain activa-
tions. These dynamics are reflected in a residual image s;,  added
to the transformed reference image:

Xt = T, )X ref + Snt. (2)

In our slice-by-slice motion correction, slices are acquired
at slightly different times, meaning that the motion vectors
oy, 0, ... can differ a bit. This possibility even applies to the ini-
tial frame, where the first slice is consistent with the reference vol-
ume (X1 g = Xq ref), but the others follow the model in Eq. (2) with
Sp.0 = 0 by definition.

The motion parameter vectors oy, : are unknown. To aid esti-
mating the motion, we assume they follow their own state evolu-
tion model. A Gauss-Markov model is a reasonable approximation
for generating a motion vector & from the previous vector oprey:

p(o | otprev) = N (tprev, Q) with symmetric positive definite covari-
ance matrix Q. Indexing the slices in the order they are acquired,
Oprev = Oty for n>1, and oy, ¢ for n = 1. By the Markov prop-

erty, we can relate all the motion parameters o, ..., ay,; for a
time frame to ey, ;1 via the conditional distribution:
(L4
p N v
0N, ¢
1 1 1
S22
=N|Ana® Doy 1, 2= . . | . |®Q (3)
1 2 - N

This enlarged covariance matrix Q is symmetric positive definite,
and its inverse is a block tridiagonal matrix with closed form (for
Ng>1)

®(@Q™"). (4)

For Ns=1, 91 =Q!. Let @, ; denote the difference between o, ;
and ay, ;1. Combining these models yields the state and measure-
ment equations:

an,[ = aNs,t—l + al’l,t7 n= 1, ey Ns, (5)

dy; = F (T (0tne)X. rer + Snt) + gn,tv n=1,...,N;. (6)

A challenge here is that the transformation T,(e) is a nonlinear
function of a. The sequel describes a linearized Kalman-filter-like
implementation to update & as new k-space measurements arrive,
facilitating prospective motion correction.

2.1. Slice-by-slice extended Kalman filter

Here, we linearize the measurement model around the present
motion estimate. Call J{T,(-)x}(ean) the Jacobian matrix of first
derivatives with respect to « of the transform T,(a)x for the nth
slice, evaluated at o = a;;. For convenience, we write the Ja-
cobian matrix for this slice and time frame as just J, ;. Using
this matrix, the first-order Taylor series expansion of T,(0t)X. ref
around & = oty 1 iS Tr(otng (1) rer +Jp (0 — @y, 1) +0(]le —
an, —1/%). When motion does not change too rapidly, the o(|lec —
ON 1 |2) term decays to zero. The linearized measurement model
becomes

dn,t = F(Tn (aNs,t—l )x:,ref +.’n,t (‘xn,t - “Ns,t—l) + sn.t) + 'Smt’ (7)

Let X, 1 =Tn(an,r_1)X. s With the appropriate estimate of
ay.r—1. Then, define the measurement residual rp¢=d;; —
F(X,;_1 + sn:) to be the difference between d ; and its prediction
assuming no additional motion.

Since the measurements (and the images) are complex-valued,
but the motion parameter vectors are real-valued, we must
account for the real [-]z and imaginary [-]; parts of these
variables in the Kalman filter expressions that follow. Given
the previous state estimate @&., 4, and previous error co-
variance estimate P;_;;_;, the Kalman filter prediction step
is straightforward: @1 = @y, r_1t—1, and Pyrq = Ay ®1)
Py 1)1 ® D) + Q. where Py, 1 is the part of the er-
ror covariance for the motion of the last slice (since predictions
for all the slices are with respect to that last slice’s value).
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To compute the Kalman filter update steps, following the incor-
poration of new data d. ;, we first consider s  to be fixed and
known. Through some matrix algebra, we have that the motion in-
novations a., ; for all slices are estimated as

a. = (Pt7|r171 + %[ﬂi’t(lest ®FI-IF)-’11:|R)71 '
L Uy, @ F1 (] (8)

Then, &. ;|; = & ¢;_1 + @. ;. This @ ;; also solves the least squares
problem

a:,tlt =arg min 217 ” (IN5><NS ® F)];,[a - r:,t”z + %GTPQLCL (9)
a

Using some more algebra, the posterior error covariance estimate
Py, satisfies

Py =Pl + 5[ (U @ FTF)) ] (10)

When the residual sy, ¢ is not known, we impose a prior model
on it. For dynamic MRI, a reasonable model is that the residual
is sparse, assuming the dynamic changes not due to motion are
localized in space and time. Thus, we expand the optimization to
solve for both @. |, and 8. together:

~

{@.. 8.} = argmin ¥ (a, s)
as

A

= Z(szn(INsts ®F)(’:,ta+s+§:.t—l) *d:.tnz
+%aTP;|:71a+)L||s||1. (11)

This convex optimization problem is the key component of our
sparse Kalman-filter-like algorithm. While one may solve for a
in terms of s and plug back into Eq. (11), the resulting 1-norm-
regularized least squares problem involves time-consuming matrix
operations. We propose a variable-splitting approach that separates
and simplifies the updates for @ and s. Since the estimate of . ;
is no longer linear, the posterior error covariance estimate Py, be-
comes a loose approximation of the true posterior error covariance.

2.2. Initial conditions and covariance estimation

The Kalman filter framework requires a reasonable estimate for
o. 1 and P_;_; consistent with the initial measurement informa-
tion to perform the initial prediction step. We designate the initial
head position as the reference . e, S0 & 1 =0 and P_;;_; =0.
The initial image x. s can be obtained directly from the initial
measurements without considering motion during this time. Thus,
the initial conditions are known for this motion estimation prob-
lem.

Furthermore, the process and measurement noise covariances
Q and ¢ 2I are not necessarily known a priori. In MRI, we can esti-
mate o2 by obtaining some additional measurements with the ex-
citation radiofrequency field turned off, However, the process co-
variance Q@ is much harder to access in practice, so we adapt it
from a sliding window of motion estimates. Autocovariance least
squares (ALS) [52-54] also would work in the linear case. Recent
efforts target the cases of nonlinear measurements [55] and sparse
innovations [36]. Instead of adopting highly complex methods not
necessarily amenable to rapid processing, we constrain Q to be di-
agonal and form simple estimates from the sample variances of the
motion innovations @, ;. This approach ignores cross-correlations
across parameters and differences in motion sensitivities for differ-
ent slices, but prospective correction would dynamically reorient
the coordinate system to track the principal direction of the de-
tected motion. So this constraint likely is not a major limitation on
the overall algorithm’s accuracy.

2.3. AL-based Implementation

Majorization-minimization [56-58] could solve Eq. (11), but
guaranteeing a small Lipschitz constant (see supplementary mate-
rial) for fast convergence to the solution {@,$§} is challenging. In-
stead, we create an auxiliary variable z for the motion-transformed
image and use an augmented Lagrangian (AL) scheme similar to
the alternating direction method of multipliers (ADMM) [59-62].

First, let z denote the unknown image stack at time t: z=
X.;1+J..a+s. We define the following modified augmented La-
grangian:

La(a,s,z;u) = 55| (U@ F)z—d. (|5 + 3a"Py_a+Alls
+50J.ca+s+X.1) —z+ulf3, (12)

where u and u are the scaled Lagrange dual vector and augmented
Lagrangian penalty parameter, respectively.

Alternating minimizing a, s, and z would correspond to ADMM.
Instead, we update a and z jointly, and separately from s:

s*1 —argminAllsll; + 51U, @ +5) -2 + X +u']3, (13)
s

(@t zit1) « argarznin L TeF)z—d. |3+ %aTP[“t]_]a

+80J.a+st) —z+R g +u|]3, (14)

ui+l - ui + (’:,taiﬂ + si+l) _ zi+1 +§:,t—l~ (‘]5)

Updating s soft-thresholds 2/ —%., 1 —J.,a' —u!, which element-
wise shrinks the complex-valued argument (call it s,) according
to the threshold %: Sp < sign(sy) - max{0, |sp| — ﬁ}. The normal
equations from Eq. (14) yield a and z:

(Pl + ] )a— n[)iz],
= _/'L[.,{:It (izt—l + ui + siH )]R’

e [g(l o (F'F) + iz

1
= —UoFHd,

U (Repq + U+ 5T, (16)

Schur complements solve this system of equations efficiently (see
supplementary material). The final step of our algorithm updates u
via vector addition.

As the problem scales in the image size Nyy, number of slices
Ns, or number of frames, the update steps of our ADMM-like im-
plementation remain reasonable computationally. As Ny, increases,
the DFT operation grows like NyxylogNyy, and all the other oper-
ations involved in solving the normal equations in Eq. (16) grow
linearly. Similarly, the matrix-vector inversions scale linearly with
N;, since the matrices involved are either block diagonal or block
tridiagonal. Matrix-vector products involving IQF or J. ; also scale
linearly in Ns, as they are either stacked or block diagonal ma-
trices. Finally, the computational and storage complexity remains
constant as the number of time frames grows, as opposed to meth-
ods that process the entire time series jointly.

2.4. Initialization and parameter selection

The convergence rate of the ADMM-like method proposed here
is affected by both the initialization and the choice of penalty pa-
rameter 4. We initialize a® = 0 by setting the motion for the cur-
rent slice is the same as the previous one. To initialize z and s,
we perform a direct reconstruction of the data d., ; to form 2%, and
assign the residual image 20 —%.; 1 —J. ,a® to sO.
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The choice of penalty parameter u that leads to fastest pos-
sible convergence is expected to vary with the noise and pro-
cess innovation covariances as well as the choice of A. AL
methods like ADMM converge, even with finite p [61]. The pa-
rameter selection experiment explores how a fixed value of u can
affect convergence for a range of motions. Heuristics for fixing u
based on the numerical conditioning of the quadratic subproblem
and the sparse thresholding fraction of the shrinkage subproblem
can achieve consistent results across reconstructions [63]. At the
same time, adaptive heuristic methods [62] allow u to vary to bal-
ance minimizing the objective function and preserving the equality
constraint (z =X. ;1 +J..a+s). Optimizing the choice of u is also
feasible for quadratic problems [64]; this method could approxi-
mate non-quadratic problems as well. Thus, we can select fixed or
adaptive p automatically.

The other tuning parameter introduced in our implementation,
A, controls the sparsity of the image innovations s, so A can be
considered an implicitly described parameter of the state space
model. We propose using a fixed A during prospective motion cor-
rection and adapt the process covariance matrix to abrupt mo-
tion changes in real time. Alternatively, automatic parameter selec-
tion methods like Stein’s unbiased risk estimator [65-67] can help
pick A. Derivative-free metaheuristic search algorithms described
in Section 1 can optimize A to make the residual energy in the
data consistency term consistent with the expected noise variance
of the data (consistent with the discrepancy principle [68]). How-
ever, tuning A during the motion estimation process would involve
calculating and comparing many motion estimates in parallel, so
parameter selection ideally would be performed only during the
initial stimulus phases.

As an alternative to adjusting A for large motion, we temporar-
ily scale our estimate of the process innovation covariance Q by
a large number whenever we detect large impulsive motion. Do-
ing so temporarily decouples the last motion estimate from the
current one, permitting rapid adjustment to the large motion. To
detect this large motion, we use a threshold on the total energy
of the latter half of slices s, since those slices are most affected
by the new motion. When the motion is consistent with the ran-
dom walk model, so the change in motion is well-modeled by the
extended Kalman filter, the sparse innovations s for those slices
should include only the functional activity and some small resid-
ual from matching the measurement noise. The 1-norm sparsity
penalty suppresses the latter. Both of these are on the order of a
few percent of the total signal energy, so a much larger change
can only be explained by a failure of the motion model. Thus, a
relatively conservative threshold would be a reliable change detec-
tor, and a relatively large scaling of Q would effectively reset the
Kalman filter to handle large motion. The process covariance esti-
mation then naturally decreases Q over time as the motion returns
to being consistent with the model.

2.5. Sensing matrix for echo planar imaging

Echo planar imaging (EPI) is used often for functional MRI, and
is highly susceptible to systematic k-space offsets caused by eddy
current effects. These produce aliasing artifacts (ghosts) offset by
Ny/2 in the phase encode direction. These ghosts disrupt motion
estimation, making ghost correction necessary in our reconstruc-
tion. We estimate the in-plane k-space shifts through a calibra-
tion pre-scan [69,70]. Since prospective motion correction rotates
the acquisition readout gradient axis, correcting phase ghosts re-
quires calculating oblique-plane k-space offsets [71]. Shifting the
odd and even phase encode lines of our data corrects the ghost
artifacts before performing motion estimation. When we include
the EPI phase shifts in our forward model, we can still implement

the sensing matrix F efficiently using the fast Fourier transform by
treating the odd and even EPI lines as two half transforms.

3. Materials and methods

To analyze the proposed Kalman-filter-like framework incorpo-
rating a sparse residual model in the images, we implemented
our method for prospective motion estimation in MATLAB (The
Mathworks, Natick, MA), using the Michigan Image Reconstruc-
tion Toolbox, which is available online from http://web.eecs.umich.
edu/~fessler/code/index.html, along with MEX files previously de-
veloped for B-spline-based interpolation [72,73]. We first evaluate
the effect of varying the sparse regularization parameter A and in-
cluding Q-adaptation. Then, we vary the AL penalty parameter p
and measure how the objective function convergence changes. Our
real-time experiments simulate a realistic BOLD functional MRI ac-
quisition described next.

3.1. Simulated data

Our simulation of BOLD functional MR imaging uses a
high-resolution T,;-weighted Brainweb phantom [74], shown in
Fig. 1 with active regions highlighted. This phantom contains
181 x 217 x 181 voxels, each 1 mm isotropic resolution, with no
noise or inhomogeneity effects. From this volume we extract
twenty slices, with a uniform slice profile 3-mm thick, covering
a 6 cm slab with no gaps. We also construct a high-resolution
T; map of this phantom for modeling spin history effects, by
tracking tissue-specific longitudinal relaxations, corresponding to
the time between successive excitations, of each high-resolution
voxel. Our simulated acquisition includes spatial variations in in-
tensity caused by different longitudinal relaxations, or “spin histo-
ries.” We interleave the slice order in “bit-reversed” fashion, with
greater distance between the initial slices of each frame, to facil-
itate three-dimensional motion estimation. We simulate a single-
shot EPI acquisition, including small phase variations reflecting the
presence of eddy current effects. To account for partial volume ef-
fects, k-space samples from this high-resolution phantom are re-
constructed at a lower resolution, measuring 4 x 4 mm in-plane.

To this brain phantom, we add five 3D ellipsoidal regions of
varying dimensions to represent sets of activated voxels. All of the
activated voxels have added to their amplitudes an activation time
series (shown in Fig. 2) corresponding to a block design task re-
peated three times over 200 s (200 frames with TR=1 s), with 30
s off, and 30 s on. This block design is convolved with a canoni-
cal hemodynamic response function [75] to emulate the vascular
response to activation. These activations produce signal changes of
approximately 3% of the maximum image intensity.

We simulate motion for each slice acquisition in every frame
using a combination of two motion models, producing variability
not expected by our Kalman filter. The first is the random-walk
Markov model discussed in Section 2, with zero-mean Gaussian in-
novations with a standard deviation of 0.05 mm or degrees, per
second (unknown to our motion estimation system). We add to
this random walk impulsive motion with a larger magnitude of 1
mm or degree over a second; impulse times are exponentially dis-
tributed with a mean occurrence time of 50 s. Each of the six mo-
tion parameters are simulated independently. The generated mo-
tion trajectories had no more than +5 mm or degrees of motion
in each direction. When simulating prospective correction, these
simulated motions are applied after adjusting the volume coordi-
nates for the motion estimated for the last slice of the previous
time frame (&, ¢_1).
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Fig. 1. Active regions (red) are overlaid on the high-resolution T;-weighted Brain-
web phantom used in our simulations. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this ar-
ticle.)
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Fig. 2. The activation time series is typical for a block design with alternating off-
and on-task blocks.

3.2. Parameter selection

Before running our complete simulation, we study the effects of
choosing A and u on the performance of our motion estimation.
Recognizing that activation patterns may change between scans,
and desiring to determine broadly applicable choices of parame-
ters, we exclude functional activations from the parameter selec-

0.1
0.05

Sparse residuals
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Image errors

N

Translation (mm)
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Motion errors
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Fig. 3. The sparse residual (top), image error (middle), and motion error (bottom)
are plotted for both (a) A =1 and (b) A = 1000 with Q held fixed (at the true value
for the random walk model). The sparse residual, image error, and motion error
also are plotted for (c) A =1, resetting Q when the sparse residual energy is large,
such as after the large motion around 33 s.

tion tests. For simplicity, we also ignore spin history, EPI phase
ghosts, quantization, and other effects for the parameter selection
experiments. We run a short time series based on the acquisi-
tion strategy with realistic slice-by-slice motion for A {1, 10, 100,
1000}. For each A, we run our method for a range of w's, retaining
the result that achieved the lowest objective function value. To test
our adaptive Q scheme, we scale Q by a factor of ten whenever
the latter half of slices of s on average contain greater than unit
energy (our threshold). We aim to show that adapting Q (with A
held fixed) can provide some of the same advantages of adapting
A in the presence of large, impulsive motion.

Next, we vary the penalty parameter © to determine a value
that yields rapid convergence with both small and large motion.
For large impulsive motions, using the adaptive scheme just de-
scribed would increase Q by several orders of magnitude, yield-
ing much smaller precision matrices P;ltlf]. However, we hold u
fixed to simplify real-time implementation. We run our AL-based
method for we{1, 10, 100, 1000, 10*} and compare the objec-
tive function convergence against each other. We aim to show that
even a fixed u = 100 can achieve relatively consistent convergence
in both settings (small and large motion).

4. Experimental results
4.1. Parameter selection

Fig. 3 illustrates the effects of increasing A when large motion,
such as from an impulse, is present. The predicted error covari-
ance Py;_; attempts to keep a, the change in motion, small to be
consistent with the random walk model. The error due to under-
estimating the motion appears in the sparse residual s. As A in-
creases, more of this error appears in the image estimate x instead
of in the sparse residual, but the translational and rotational er-
rors in the estimated motion decrease much more rapidly. Fig. 3(c)
shows that temporarily increasing Q achieves the desired effect of
reducing the magnitude and duration of errors due to large resid-
ual motion without altering A. Also, this strategy does not intro-
duce additional errors into the image estimates, unlike increasing
A
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Fig. 4. The objective function W(a, s) convergence to a minimum value W* is plotted for our ADMM-like method with u = {10, 100, 1000}, for both small motion (a) and
large motion (b) cases. In both cases, our algorithm rapidly reaches the optimal objective function value over a wide range of w. Despite small motion and large motion
cases using significantly different values of Q (according to the adaptive scheme), choosing p = 100 yields good convergence over the first 50 iterations for both cases.
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Fig. 5. Ground truth (a) and estimated (b) translations Ay, Ay, A; and rotations «, 8, and y (relative to the z-, y-, and x-axes, respectively) using the proposed sparse-

residual Kalman filter estimation technique.

Fig. 4 plots the objective function W(a, s), relative to the long-
term-optimal value W*, for our ADMM-like method with the three
fastest-converging values of u. We depict two cases: frame #20,
containing only random walk motion, and frame #34, featuring the
aftereffects of large impulsive motion. In both cases, the ADMM-
like method converges rapidly in objective function value over a
wide range of w, and the AL penalty parameter p = 100 performs
reasonably in both motion settings. Since the computation time is
about the same throughout (9 ms/iteration each), plots of objective
function convergence versus time would appear similar to those in
Fig. 4.

4.2. Real-time simulated experiments

Our real-time experiments jointly simulate BOLD functional
MRI acquisitions and prospective motion estimation on two sep-
arate MATLAB instances communicating with each other in real
time. Fig. 5 shows that the motion estimates generated by the
slice-by-slice prospective correction algorithm, appear very simi-
lar to the true motion. The absolute errors for the translational
and rotational motion estimates measure 0.063+0.10 mm and
0.085+0.17 degrees, respectively (mean =+ std. dev.). These trans-
lational errors are computed as the 2-norm of the Ay, Ay, and A,
errors together. The rotational motion errors are computed as the
magnitude of the angle in the axis-angle representation of the dif-
ference between the true and estimated rotations, where rotations
are relative to the center of the 6 cm slab.

At least as important as the accuracy of the motion estimates
is the impact of prospective correction using these measurements.

Even if these motion estimates are exact, we expect some resid-
ual motion to remain since we apply the previous frame’s last
motion estimate to acquire the current frame. In prospective
correction, the residual motion should remain small relative to
the overall motion throughout the course of the scan, so ef-
fects like spin history should be minimized. In fact, the average
residual translation and rotation decreases from 2.2+13 mm to
0.11 £0.19 mm, and from 1.6+ 1.0 degrees to 0.13+£0.25 degrees,
after prospective correction.

The functional MRI analysis that follows compares prospective,
retrospective (the standard realign-and-reslice tool in SPM12 avail-
able online at http://www.fil.ion.ucl.ac.uk/spm/), and both motion
corrections against an ideal acquisition without head motion. The
time series data for each voxel in the reconstructed/realigned vol-
ume are then correlated against the true activation time series
in Fig. 2. Fig. 6(a)-(d) features slices #9 and #11 with overlaid
correlation maps for no motion, retrospective correction, prospec-
tive correction, and prospective and retrospective correction com-
bined. These overlays are all thresholded according to a signifi-
cance threshold of o = 0.01, adjusted for multiple comparisons us-
ing Bonferroni correction by the number of voxels in the brain. Not
shown, the motion-corrupted correlation map without any correc-
tion has very low quality. Fig. 6(e) quantitatively compares these
fMRI time series analyses over all twenty slices using receiver
operating characteristic (ROC) curves to track the sensitivity and
specificity of each method for detecting functional activations. The
ground truth is generated by reducing the resolution of the high-
resolution activation mask shown in Fig. 1. We focus on the low
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Fig. 6. Correlation maps (o = 0.01) are overlaid on the low-resolution reconstructed slices #9 and #11 for (a) no motion (ideal), (b) retrospective correction (using SPM8)
only, (c) slice-by-slice prospective correction only, and (d) both prospective and retrospective corrections. The receiver operating characteristic (ROC) curves (e) plot sensitivity

versus false alarm rate (1-specificity) for these methods is shown.

Table 1
ROC curve statistics for functional MRI correlation analysis.
AUC Ap' d

No correction 0.945 0.81 2.8
Retrospective only 0.994 0.96 43
Prospective only 0.997 0.98 4.8
Prospective + retrospective >0999 0.99 54
No motion (ideal) 0.998 >0.99 5.7

false-alarm-rate regime, as activations are usually rare events in
task-based functional MRI studies. The area under the curve (AUC)
is one summary statistic for quantifying the overall quality of the
detection algorithm, but the AUC equally weights all prior prob-
abilities for the true hypothesis, ignoring the scarcity of true ac-
tivations. Alternatively, another statistical measure of the quality
of detection is the maximum Youden's | index Ap’, which is the
maximum difference between sensitivity and false alarm rate. This
criterion is related to the sensitivity index d’ according to the for-
mula d’ = &~ (sensitivity) — ®~1(1 — specificity) for the J-index-
maximizing sensitivity and specificity, where ®~1() is the inverse
cumulative density function of the standard Normal distribution.
Table 1 lists the AUC, Ap’, and d’ statistics for these ROC curves.

5. Discussion

Ensuring a reasonable convergence rate for this motion esti-
mation method is essential for a nearly real-time application like
prospective motion correction, but the fastest possible ADMM con-
vergence is likely not necessary given the progressive nature of
prospective motion correction permits the algorithm to make ad-
ditional corrections to motion through time. As long as retrospec-
tive correction after the prospectively corrected acquisition demon-
strates that the residual motion errors are roughly of the same
scale as the motion changes from frame to frame, the benefits
of further improvements in prospective motion estimation accu-
racy become negligible. Given the motion errors in Fig. 3 are rela-
tively small before and after the large motion, in both the cases of
A =1000 and of A =1 with adaptive Q, this condition appears to
be satisfied by our method with a simple, fixed . That said, the
adaptive heuristics described could further minimize the number
of iterations between accurate motion parameter updates, helping
the prospective estimation method to keep up with head motion
during a more challenging scan. In our experiments, we keep the
number of algorithm iterations between updates below 50 steps.
Ensuring our ADMM-like optimization makes sufficient progress
towards the optimum during this time is important. Observing
in Fig. 4 rapid convergence within this many iterations for both

small and big motions confirms the suitability of our optimization
method for this simulation.

While we observe that the objective converges quickly using
i = 100 regardless of whether the motion is small (with a real-
istic covariance Q), or large (temporarily increasing the covariance
Q by two or three orders of magnitude, to enable larger jumps),
further study is needed to demonstrate the broad applicability of
A =1, u =100 across many data sets. Metaheuristic methods and
other automatic parameter selection techniques described earlier
may provide a means to tune A during the earliest task activation,
on a per-scan basis. This approach would automate selection of A
without overburdening the real-time estimation after the first task
activation period is done (a functional MRI scan frequently runs
for many such periods in succession). The sparse residual energy
also appears to be a suitable criterion for detecting large impulsive
motion, although other techniques like parallel imaging motion de-
tection [76] may also be effective alternatives. Also, observing that
A =1 generalizes from the no-activation experiment to our simu-
lation with functional activations supports the practicality of using
a fixed parameter without additional tuning.

Significant differences are apparent in the activation correlation
maps as a result of using this motion correction method prospec-
tively. The content of these ellipses are noticeably degraded with
retrospective correction, likely due to the inability to mitigate spin
history effects and the smoothing nature of retrospective interpo-
lation. Prospective correction noticeably improves the uniformity
of these ellipses. Prospective correction, either alone or in combi-
nation with retrospective correction, also improves the maximum
Youden’s ] index (sensitivity and specificity) of detecting functional
activations across a wide range of thresholds, especially in the
small false positive regime, the important region for rare events
like activations. Combining prospective and retrospective correc-
tion provides even greater improvement.

However, our conclusions come with several caveats. Our sim-
ulations cannot exactly replicate what we would observe with a
real acquisition. Real functional MRI acquisitions are not explicitly
task-specific, and data often contain unrelated activations. Other
motion-related changes, such as to the magnetic field sensitivities
of the receiver antennas used, are not modeled by our method.
Our method also does not explicitly track and account for outliers
in the measured k-space, and undersampling k-space to acceler-
ate the acquisition also may make motion estimation less accurate.
In general, our method assumes our measurements are Gaussian,
which may not fit all practical applications. Non-Gaussian noise
likely would produce non-sparse errors in the image domain, so
a sparse regularizer (such as that applied to s) would likely mit-
igate the effects of such noise or outliers. Furthermore, rigid mo-
tion estimation is low-dimensional on its own, so the effects of a
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few outliers may be small. Additional evaluation is necessary be-
fore applying this method to such environments where such noises
are prevalent. Additionally, we do not incorporate time-varying
physiological signals that may alias onto the frequencies of our
task-related activations during a typical study. Other time-varying
effects include slow temperature drift and magnetic field inhomo-
geneity changes, and these effects may add distortions that do not
fit the sparse residual image model. Techniques like bandpass fil-
tering and source separation (e.g., RETROICOR [77]) effectively mit-
igate some of these perturbations and can be combined with our
phase-corrected EPI reconstruction, assuming nearly real-time im-
plementations are available.

6. Conclusion

In conclusion, we developed a novel Kalman-filter-like real-
time estimation framework incorporating a sparse residual term in
the measurement model to accommodate other time-varying dy-
namics. We presented two implementations of this framework for
prospective motion correction. Our experiments analyzed the tun-
ing parameters for these methods and compared their convergence
rates for different degrees of motion. We also demonstrated the ef-
fectiveness of this prospective motion correction on a time series
analysis of a simulated functional MRI acquisition. We discussed
our results and limitations of our experimental setup. In summary,
our prospective motion correction method has the potential to sig-
nificantly improve the sensitivity and specificity of functional MRI
time series analysis versus existing retrospective methods.
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