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Abstract—The low-rank plus sparse (L+S) decomposition
model enables the reconstruction of undersampled dynamic par-
allel magnetic resonance imaging data. Solving for the low rank
and the sparse components involves nonsmooth composite convex
optimization, and algorithms for this problem can be categorized
into proximal gradient methods and variable splitting methods.
This paper investigates new efficient algorithms for both schemes.
While current proximal gradient techniques for the L+S model in-
volve the classical iterative soft thresholding algorithm (ISTA), this
paper considers two accelerated alternatives, one based on the fast
iterative shrinkage-thresholding algorithm (FISTA) and the other
with the recent proximal optimized gradient method (POGM). In
the augmented Lagrangian (AL) framework, we propose an effi-
cient variable splitting scheme based on the form of the data acqui-
sition operator, leading to simpler computation than the conjugate
gradient approach required by existing AL methods. Numerical
results suggest faster convergence of the efficient implementations
for both frameworks, with POGM providing the fastest conver-
gence overall and the practical benefit of being free of algorithm
tuning parameters.

Index Terms—Parallel magnetic resonance imaging (MRI), dy-
namic MRI, low-rank, sparsity, accelerated algorithms, proximal
gradient method (PGM), augmented lagrangian (AL), variable
splitting.

I. INTRODUCTION

T
HE application of compressed sensing (CS) to Magnetic

Resonance Imaging (MRI) has been extensively explored

to accelerate the data acquisition process [1], [2]. In particu-

lar, since dynamic MRI data is inherently under-sampled, it

is useful to use a CS-MRI model for image reconstruction.

CS has also been combined with parallel MRI techniques such

as SENSitivity Encoding (SENSE) [3], aiming to collect more

data with multiple receiver coils, thereby possibly improving the

spatio-temporal resolution trade-off of the reconstructed images.

This combination is especially useful in dynamic MRI, where
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reconstruction of high spatial and temporal resolution is

desired [4]. Compared with models that use coil-by-coil

auto-calibration, [5], [6], the SENSE framework uses explicit

knowledge of the sensitivity of the receiver coils.

In addition to image sparsity based on CS, the low-rank mod-

els of the space-time matrix have also been explored for dynamic

MRI, based on assumptions of the similarities between tempo-

ral profiles [7]–[10]. In particular, a low-rank plus sparse (L+S)

matrix decomposition assumes incoherence between a low-rank

component L and a sparse component S, with L modeling the

temporally correlated background, and S the dynamic infor-

mation that lies on top of the background. The corresponding

reconstruction problem can be formulated as a convex optimiza-

tion problem, where the nuclear norm and l1 norm are used to

respectively promote low-rankness and sparsity regularization

on L and S. The L+S formulation has various applications, such

as motion estimation in dynamic contrast-enhanced MRI, and

automated background suppression for angiography [8], [9].

One technique for solving such optimization problems in-

volves the class of proximal gradient methods (PGM), whose

iterates are based on the proximal operator [11]–[13]. In partic-

ular, [9] solves the L+S decomposition with the iterative soft

thresholding algorithm (ISTA). Although accelerated variants

of ISTA have been applied to various non-parallel and paral-

lel MRI models with sparsity regularization [14]–[17], to our

knowledge, fast PGM has yet to be explored for the L+S recon-

struction problem.

Variable splitting is another category of optimization schemes

that has been used extensively for various MRI reconstruction

models, with formulation in the augmented Lagrangian (AL)

framework. In single-coil dynamic MRI, variable splitting has

provided efficient alternating update schemes for L+S models

[7], [8]. Using the splitting of variables to decouple a cost func-

tion into simpler sub-problems, one can also apply accelerated

schemes, such as the fast iterative shrinkage-thresholding al-

gorithm (FISTA) [18], to the sub-problems, for more efficient

computation [19], [20]. For the L+S model, [8] proposed a split-

ting scheme for which the AL function leads to sub-problems

with quadratic updates. That approach requires inverting a ma-

trix of the form (E∗E + δI)−1 , where E is a data acquisition

operator, E∗ is its Hermitian adjoint, and δ denotes a penalty pa-

rameter. With non-Cartesian sampling, or with multiple coils in

the case of parallel MRI, a computationally demanding iterative

approach like the conjugate gradient (CG) method is required

for the updates. Efficient formulations of this update have been

investigated, including a singular value decomposition (SVD)
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of E∗E [21], and pre-multiplication of a Fourier operator [10].

However, these implementations are still computationally inten-

sive with multi-coil data.

For under-sampled dynamic parallel MRI, this paper presents

efficient algorithms for the L+S image reconstruction problem.

In particular, in the PGM category, we investigate two acceler-

ated alternatives to ISTA, one based on FISTA, and the other

the recent proximal optimized gradient method (POGM) [22].

For methods involving variable splitting, we adapt a splitting

scheme that uses the matrix structures associated with the under-

sampling pattern, the Fourier encoding and the sensitivity maps,

leading to faster MRI reconstruction [23]–[25]. In this case, we

take advantage of the L+S model structure, leading to efficient

updates with only two AL variables. This paper is an extension

of our previous conference work [26] that briefly investigated

the two accelerated algorithms in the PGM category. Compared

with this earlier work, here we discuss the algorithms in more

detail, investigate another accelerated algorithm in the variable

splitting scheme, and include an extension to non-Cartesian MRI

in the Supplement.

The rest of this paper is organized as follows. Section II

formulates the corresponding convex optimization problem, and

reviews some related methods for solving it. Section III presents

the efficient implementations for the two classes of algorithms.

Section IV reports experimental results, followed by discussion

and conclusion in Sections V and VI respectively.

II. PROBLEM AND RELATED METHODS

In the L+S framework for dynamic MRI, the goal is to esti-

mate an unknown image, modeled as a superposition of a low-

rank component L and a sparse component S. In parallel MRI,

we are provided with under-sampled k-space data d ∈ C
N s N c ,

where Ns is the total number of samples received from each

receiver coil (across all frames), and Nc is the number of coils.

Nx and Ny denote the image dimensions of each image frame,

and Nt is the number of time frames. The L+S formulation [9]

uses the following regularized convex optimization scheme:

argmin
L,S

1

2
‖E(L + S) − d‖2

2 + λL‖L‖∗ + λS‖TS‖1 , (1)

where L, S ∈ C
Nx Ny ×N t are the desired dynamic image

components, E : C
Nx Ny ×N t → C

N s N c is the data acquisition

operator that considers the coil sensitivities and the

Fourier transform with under-sampling, and T : C
Nx Ny ×N t →

C
Nx Ny N t a known sparsifying transform operator based on a

priori assumptions of the domain of image sparsity. This pa-

per considers the (unitary) temporal Fourier transform operator,

with TS = (T ⊗ INx Ny
)vec(S), where T is the Nt × Nt uni-

tary temporal discrete Fourier transform matrix. This sparsify-

ing transform has been extensively used to promote sparsity in

dynamic MRI reconstruction [4]–[9]. Our accelerated methods

adapt readily to other unitary operators and to 3D dynamic MRI

problems. Here the data consistency is captured by the vector l2-

norm term, the low-rankness of L by the matrix nuclear norm,

and the sparsity of the transformed S by the vector l1 norm.

The contributions between these three terms are balanced by

the regularization parameters λL and λS .

Methods for solving the optimization problem (1) fall into

two classes: those based on the proximal gradient methods,

and those using AL with variable splitting. Below, we review

these two methods and existing implementations for the L+S

reconstruction model.

A. Conventional Proximal Gradient Scheme

To implement the classical PGM on the L+S optimization

problem, we combine the two unknowns by forming a sin-

gle “stacked” variable X = [ L
S ]. With this change, (1) can be

equivalently expressed as

min
X

g(X ) + h1(X ) + h2(X ), where

g(X ) =
1

2
‖[E E]X − d‖2

2 ,

h1(X ) = λL‖[I 0]X‖∗, and h2(X ) = λS‖[0 T]X‖1 .
(2)

Here I and 0 denote respectively the identity and the zero ma-

trices, of size NxNy × NxNy . To verify the convergence as-

sumptions of PGM, we note that g(X ) is a smooth, convex, and

continuously differentiable function, whose gradient is Lips-

chitz continuous with constant l(∇g); h1(X ), h2(X ) are contin-

uous, convex and non-smooth functions. For arbitrary variables

Y,Z , the kth iterate of the PGM is then given by the proximal

operator:

Yk = proxh

(
Yk−1 − t∇g(Yk−1)

)
, where

proxh(Z) = argmin
Y

h(Y) +
1

2
‖Y − Z‖2

2 .

Here t is a chosen step size, whose dependence on the Lipschitz

constant l(∇g) guarantees convergence of the algorithm.

The proximal maps for the nuclear norm in h1 and the vec-

tor l1 norm in h2 have closed-form expressions. In particular,

proxh2
is given by the soft thresholding operator

Λλ(Y) = sign(Y) ⊙ (|Y| − λ)+ ,

where ⊙ denotes element-wise multiplication. proxh1
is the

singular value thresholding operator

SVTλ(Y) = UΛλ(Σ)V ∗,

where UΣV ∗ is a singular value decomposition of Y . Since h1

and h2 are functions of L and S respectively, the k-th iterate

can be written separately for Lk and Sk :

Lk = SVTλL

(
Lk−1 − td(Xk−1)

)
, and

Sk = T∗
(
ΛλS

[
T

(
Sk−1 − td(Xk−1)

)])
, where

d(X ) = [I 0]∇g(X ) = E∗([E E]X − d) = [0 I]∇g(X ).

Here T∗ denotes the adjoint operator of T, defined by the corre-

sponding inverse Fourier transform. The expression of Sk uses

the fact that T represents the unitary temporal Fourier transform,

and that the l2 norm is unitary invariant.
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Since the gradient d(Xk−1) is the same in both expressions of

Lk and Sk , only one gradient evaluation is necessary in each iter-

ation. The methods in [9] use this fact, exploiting computational

efficiency by jointly estimating L and S. However, Section III

shows that fast PGM provides much further acceleration.

B. Conventional Variable Splitting Scheme

It has been empirically observed that in some problem set-

tings, AL-based methods can achieve higher accuracy than PGM

in fewer iterations [27]. This has motivated another technique

of solving (1), using variable splitting.

A splitting scheme is introduced in [8] to solve the L+S

decomposition problem. In particular, (1) is re-formulated with

two constraints:

argmin
L,S

min
U,W

1

2
‖E(L + S) − d‖2

2 + λL‖U‖∗ + λS‖W‖1 (1)

subject to

{
U = L

W = TS.
(3)

With this formulation, the associated modified AL function is

1

2
‖E(L + S) − d‖2

2 + λL‖U‖∗ + λS‖W‖1

+
δ1

2
‖L − U + V1‖2

2 +
δ2

2
‖TS − W + V2‖2

2 ,

where V1 , V2 are Lagrange multiplier arrays, and δ1 , δ2 are two

corresponding AL penalty parameters that affect the conver-

gence rate, but not the final estimates.

This problem can be solved by iterative updates of the four

unknowns, followed by updates of the Lagrange multipliers.

In particular, each update of L and S is quadratic, requiring

computation of (E∗E + δiI)−1 for i = 1, 2. With single-coil

Cartesian data, as considered in [8], E∗E is circulant and one

can use FFT operations for efficient computation. However, in

parallel MRI, the operator E contains additional information of

coil sensitivities, so E∗E is not circulant, and the updates of the

quadratic terms would require an iterative method like the CG

approach.

Based on this observation, Section III presents a new AL

algorithm that simplifies the computation by considering a more

efficient variable splitting scheme for the L+S model.

III. ACCELERATED ALGORITHMS

This section presents three efficient algorithms for the min-

imization problem (1). Two of them are in the class of PGM,

with additional momentum terms in the updates that help achieve

faster convergence rates. The third is an AL method that uses a

different variable splitting scheme than (3), exploiting the struc-

ture of the data acquisition operator E, improving computation

efficiency for parallel MRI.

A. Proximal Gradient Scheme

The ISTA update for L and S, as given in [9], is based on

classical PGM, for which the sequence of function values con-

verges to the optimal function value at a rate of O(1/k) [18].

We assume from now on that the operator E is normalized such

Algorithm 1: Proximal Gradient L+S.

Inputs:

d: under-sampled k-t data

E: data acquisition operator

T: temporal Fourier transform

λL : singular value threshold

λS : sparsity threshold

Initialization:

M0 = L0 = E∗d, S0 = 0

additional initialization (I) for FISTA or POGM

for k = 1, 2, . . . , N do

update Xk by FISTA or POGM scheme (Xk )

update Mk by FISTA or POGM scheme (Mk )

end for

output: XN

that the spectral norm ‖E‖2 = 1 for fully sampled data. Then

the Lipschitz constant of g(·) in (2) satisfies

l(∇g) = ‖[E E]‖2
2 = 2‖E‖2

2 ≤ 2, (4)

so ISTA converges for any step size t with 0 < t < 2
2‖E‖2

2
= 1.

We now introduce two accelerated methods for (1) that have

O(1/k2) convergence rates; their convergence analyses build

on the work of Nesterov’s fast gradient methods [28]. We use

the same algorithm framework for these two accelerated L+S

variants of ISTA, formulated as Algorithm 1. Computing the

gradient is the most expensive step in each iteration; because

both the L and S updates involve the same gradient expression,

we jointly update them by first computing

Xk =

[
Lk

Sk

]
,

then evaluating the gradient in a data consistency term, denoted

as Mk below.

1) FISTA Update: Built upon the convergence analysis in

[28], FISTA achieves the same rate of convergence of O(1/k2)
[18]. In addition to the unknown Xk in each iteration, the FISTA

update involves a secondary sequence X̃k = [ L̃k

S̃k
] computed by

adding a “momentum” term to the original sequence. This addi-

tion preserves the computational simplicity of ISTA, as the main

computational effort of gradient evaluation remains unchanged

from ISTA. Given the L+S framework of Algorithm 1, the

additional FISTA initialization and updates are:

(I) X̃0 = X0 , θ0 = 1

(Xk ) Lk = SVTλL
(Mk−1 − S̃k−1)

Sk = T∗
(
ΛλS

[
T

(
Mk−1 − L̃k−1)

])

θk =
1 +

√
1 + 4θ2

k−1

2

X̃k = Xk +
θk−1 − 1

θk
(Xk −Xk−1)

(Mk ) Mk = L̃k + S̃k − tE∗(E(L̃k + S̃k ) − d
)
.
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Based on the Lipschitz constant in (4), convergence for FISTA

is guaranteed when the step size satisfies 0 < t ≤ 1
2‖E‖2

2
= 0.5.

2) POGM Update: In the smooth unconstrained setting, the

recent optimized gradient method (OGM) achieves a worst-case

convergence bound twice as small as that of Nesterov’s fast gra-

dient methods (FGM) [29], [30] by optimizing the choice of

the coefficients that determine the step size in a first-order algo-

rithm by minimizing a relaxed worst-case performance bound

of f(XN ) − f(X∗), the cost function discrepancy at the N th

iteration. This optimization problem is solved by semi-definite

programming (SDP) in [31], and an analytical expression of the

optimized step size is derived in [29], confirming the numer-

ical observation that the worst-case performance is two times

better than FGM’s bound. OGM was shown to have optimal

complexity for large-scale smooth problems in [31].

POGM extends OGM to the proximal case for nonsmooth

composite problems. The numerical worst-case performance

bound of POGM is twice better than that of FISTA [22]. In

the L+S model, compared with the FISTA iterate, POGM

introduces an additional sequence X k = [ Lk

S k
], whose update

involves three momentum terms. The POGM formulation is

guaranteed to converge when using the same step size as in

FISTA, and it again achieves the same computational simplicity

as ISTA. The initialization and updates with POGM for the L+S

framework are:

(I) X̃0 = X 0 = X0 , θ0 = ζ0 = 1

(Xk ) L̃k = Mk−1 − Sk−1

S̃k = Mk−1 − Lk−1

θk =

{ 1+
√

1+4θ2
k −1

2 , k < N

1+
√

1+8θ2
k −1

2 , k = N

X k = X̃k +
θk−1 − 1

θk
(X̃k − X̃k−1)

+
θk−1

θk
(X̃k −Xk−1) +

θk−1 − 1

ζk−1θk
t(X k−1 −Xk−1)

ζk = t

(
1 +

θk−1 − 1

θk
+

θk−1

θk

)

Lk = SVTλL
(Lk )

Sk = T∗
(
ΛλS

[
T

(
Sk )

])

(Mk ) Mk = Lk + Sk − tE∗(E(Lk + Sk ) − d
)
.

The empirical results in Section IV show that POGM con-

verges faster than ISTA and FISTA, yet requires essentially the

same computation time per iteration (dominated by the Mk up-

date needed in all methods).

B. Variable Splitting Scheme

We now consider variable splitting methods for the L+S re-

construction problem for parallel MRI. In this setting, the data

acquisition operator is E = ΩQC, where Ω : C
Nx Ny N t N c →

C
N s N c contains the under-sampling patterns for all frames,

Q ∈ C
Nx Ny N t N c ×Nx Ny N t N c represents a Fourier encoding ma-

trix, andC : C
Nx Ny ×N t → C

Nx Ny N t N c captures the sensitivity

maps of the receiver coils [23]–[25]. While direct extension of

the splitting scheme in [23] to the L+S model leads to at least

four more variables in the AL function, here we make use of the

L and S formulations, and introduce only two AL variables to

capture the constrained cost function. For simpler formulation

of the algorithm, we assume from now on that C is normalized

such that C∗C = I (identity). This normalization is valid since

our model considers sparsity with temporal Fourier transform

T, and the spatial scaling does not affect the rank of the low-

rank component. After reconstruction, one can undo the image

scaling if needed.

With this expression, we represent the following novel refor-

mulation of (1) in the constrained form

argmin
L,S

min
Z,X

1

2
‖ΩZ − d‖2

2 + λL‖L‖∗ + λS‖TS‖1

subject to

{
Z = QCX

X = L + S.
(5)

Compared with (3), this splitting scheme also involves four

variable updates, but leads to simpler updates, as shown next.

The modified AL function corresponding to (5) is

1

2
‖ΩZ − d‖2

2 + λL‖L‖∗ + λS‖TS‖1

+
δ1

2
‖Z − QCX + V1‖2

2 +
δ2

2
‖X − (L + S) + V2‖2

2 .

The L update involves the nuclear norm, and its proximal

map is given by singular value thresholding:

argmin
L

λL‖L‖∗ +
δ2

2
‖X − (L + S) + V2‖2

2

= SVTλL /δ2
(X − S + V2). (6)

The S update contains a vector l1-norm term, whose proximal

operator is soft thresholding, where we use the fact that T is a

unitary operator, with the change of variables S̃ = TS:

argmin
S

λS‖TS‖1 +
δ2

2
‖X − (L + S) + V2‖2

2

= T∗
(

argmin
S̃

λS‖S̃‖1 +
δ2

2
‖T(X − L + V2) − S̃‖2

2

)

= T∗ΛλS /δ2

(
T(X − L + V2)

)
. (7)

The updates for Z and X involve quadratic terms:

argmin
Z

1

2
‖ΩZ − d‖2

2 +
δ1

2
‖Z − QCX + V1‖2

2

= (Ω∗Ω + δ1I)
−1

(
Ω∗d + δ1(QCX − V1)

)
, (8)
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Algorithm 2: Variable Splitting L+S.

Inputs:

d: under-sampled multi-coil k-t data

Ω: under-sampling mask

Q: Fourier encoding operator

C: coil sensitivity maps

T: temporal Fourier tranform

λL : singular value threshold

λS : sparsity threshold

δ1 , δ2 : AL penalty parameters

Initialization: X0 = L0 = C∗Q∗Ω∗d,

S0 = V1,0 = V2,0 = 0
for k = 1, 2, . . . , N do

compute Zk by efficient inverse (8)

compute Xk by efficient inverse (9)

compute Lk by singular value thresholding (6)

compute Sk by soft thresholding (7)

V1,k ← V1,k−1 + (Zk − QCXk )
V2,k ← V2,k−1 +

(
Xk − (Lk + Sk )

)

end for

output: LN , SN

argmin
X

δ1

2
‖Z − QCX + V1‖2

2 +
δ2

2
‖X − (L + S) + V2‖2

2

=

(
C∗C +

δ2

δ1
I

)−1 (
C∗Q∗(Z + V1) +

δ2

δ1
(L + S − V2)

)

=
δ1

δ1 + δ2

(
C∗Q∗(Z + V1) +

δ2

δ1
(L + S − V2)

)
, (9)

where we use the fact that Q is the unitary Fourier encoding

matrix, and that C∗C = I by assumption.

Compared with the splitting scheme in (3), which involves the

inverse (E∗E + δiI)
−1 , our proposed variable splitting scheme

in (5) only involves computing (Ω∗Ω + δ1I)
−1 . Represent-

ing the under-sampling mask matrix as a Kronecker product

Ω = IN c
⊗ Ω̃, we note that Ω̃∗Ω̃ is diagonal, hence the inverse

(Ω∗Ω + δ1I)
−1 is easy to compute.

Algorithm 2 summarizes the implementation of these up-

dates, as well as updates for the updates of the Lagrange

multipliers.

IV. RESULTS

To compare the algorithms, we first performed experiments

on two dynamic MRI datasets examined in [9]. Each dataset

includes Cartesian under-sampled multi-coil data d, the k-space

under-sampling mask Ω, and coil sensitivity maps C. We com-

pared the results of the three accelerated algorithms with ISTA

[9] and the AL-based method that requires CG for parallel MRI

[8]. We then tested our methods on the physiologically improved

nonuniform cardiac torso (PINCAT) numerical phantom used in

[7]. In this case, the data is under-sampled with a pseudo-radial

scheme, as in the original implementation [32]. To compare

algorithms in the parallel MRI setting, we included simulated

coil sensitivity maps based on [33], using the Michigan Im-

age Reconstruction Toolbox (MIRT) [34]. In the Supplement,

we also explore a non-Cartesian MRI dataset from [9], where

we compare methods in the PGM scheme. All our experiments

used MATLAB R2018a, with a 2.7-GHz dual-core Intel Core

i5. The MATLAB code that reproduces the experiments with

our efficient algorithms will be available as part of the MIRT.

For each of the three datasets, we kept the regularization pa-

rameters λL , λS consistent for all algorithms. For the in vivo

data, we set them to align as closely as possible with those in

the original code provided by [9]; Section V discusses further

details of this procedure. Similarly, we set a stopping criterion

for our ISTA implementation that provides analogous results

to the reconstructed images in [9]. To ensure fast convergence,

we used a step size t of 0.99 for ISTA, and 0.5 for FISTA and

POGM, as provided by the convergence theory of those meth-

ods. In addition, FISTA and POGM used an adaptive restart

scheme [35]; we explored both the function and the gradient

restart schemes, and report the results with the function scheme

due to its slightly faster convergence with both datasets. We

tuned the penalty parameters δ1 , δ2 for the AL-based meth-

ods by sweeping across a range of values and choosing the

ones that achieve the fastest convergence among them. For both

datasets, we applied 3 inner CG iterations for each outer iter-

ation of the AL scheme (3), with warm-starting; i.e., each CG

call starts with the estimate from the previous AL iteration. No

such inner iterations are needed for the proposed AL approach

(5). We examine convergence rate by computing the normal-

ized root-mean-squared difference (NRMSD) of each iterate to

a converged image, defined by ‖Xk − X∞‖2/‖X∞‖2 , where

Xk = Lk + Sk , and ‖ · ‖2 denotes the vector l2 norm. We ob-

tained X∞ = L∞ + S∞ as a reference by averaging XAL-2
∞ and

XPOGM
∞ , as discussed below for each dataset, then computed the

distance to the minimizer.

A. Cardiac Perfusion Dataset

Images for this dataset have size Nx × Ny = 128 × 128, with

Nt = 40 temporal profiles and Nc = 12 coils. Data were retro-

spectively under-sampled by a factor of 10, using the sampling

pattern from [9], with fully sampled low spatial frequencies and

low-density-sampled outer k-space. We used λL = λS = 0.01

as in [9], with scalings to match the original implementation, as

discussed below in Section V. For the variable splitting frame-

work, the penalty parameters were empirically tuned to achieve

fast convergence, with δ1 = δ2 = 1/5 for AL with CG, and

δ1 = 1/5, δ2 = 1/50 for the efficient AL method. We ran the

efficient AL and the POGM implementations for 24,000 sec-

onds to obtain XAL-2
∞ and XPOGM

∞ . In this case, the cost function

values fAL-2
∞ and fPOGM

∞ are within 10−16 relative difference

from each other, and we averaged the results to obtain X∞ and

f∞. In this case, the NRMSD between XAL-2
∞ and XPOGM

∞ is

approximately 8.9 × 10−13%. As shown in Fig. 1, POGM con-

verges the fastest overall. ISTA converges faster than the other

three methods at the beginning, a phenomenon that could be

due to the chosen step size. FISTA converges faster than the

AL-based methods in this case, with the CG implementation

being the slowest of all. The supplement contains additional

figures showing the long-run behavior of the algorithms.
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Fig. 1. Convergence of the five algorithms for the two datasets, in terms of NRMSD to the minimizer (top row), as well as the cost function values (bottom row).
AL-CG and AL-2 refer respectively to the AL methods with CG (3) and with Algorithm 2 implementations. Every 100th iteration is marked by a dot, indicating
their relative speeds. The blue square markers show when ISTA reaches the approximate stopping criteria corresponding to the implementation in [9].

For this dataset, ISTA reached its stopping criterion from [9]

at k = 53 iterations, after 30 seconds of elapsed compute time.

Fig. 2 shows the magnitude of the reconstructed X∞, as well as

images of all 5 algorithms at 30 seconds time elapsed.

To help visualize the reconstructed image in the spatial-

temporal domain, the Supplement includes y-t images for a

selected y-slice in the center, with comparison to the fully

sampled case. The AL-2 and the POGM updates provide sig-

nificantly faster convergence than the other methods in their

corresponding algorithmic schemes.

B. Cardiac Cine Dataset

This dataset corresponds to images of size 256 × 256, with

24 temporal frames and 12 coils, and a retrospective under-

sampling factor of 8. As in the cadiac perfusion case, we used

λL = 0.01, λS = 0.0025 with additional scalings. For the AL-

based methods, we used δ1 = 1/10, δ2 = 1/20 for AL-CG, and

δ1 = 1/10, δ2 = 1/100 for AL-2. To obtain X∞ and f∞, we ran

the efficient AL and the POGM implementations for 30,000

seconds and averaged the results. The cost function values

are within 10−16 relative difference from each other, and the

NRMSD between XAL-2
∞ and XPOGM

∞ is 1.4 × 10−7%. Fig. 1

illustrates that AL-2 achieving faster convergence than the

FISTA update, but slower than POGM. Fig. 3 shows results with

the same run time cut-off of 48 seconds, with ISTA taking k =
30 iterations to reach the stopping criterion. We again observed

superior rates of convergence of the efficient implementations,

in both the proximal gradient and the variable splitting schemes.

C. PINCAT Phantom Dataset

The ground truth phantom data provided by [7] has spatial

dimension 128 × 128 with 50 temporal frames. To compare

the algorithms in the multi-coil setting, we added simulated

coil sensitivity maps of 32 coils (4 rings of 8 coils), with coil

compression to reduce to Nc = 8 coils. Following the setup in

[7], we applied a pseudo-radial under-sampling mask Ω, i.e.,

a Cartesian trajectory that closely approximates a radial trajec-

tory, with 24 spokes per frame, corresponding to a acceleration
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Fig. 2. First row: X∞, taken as the average of XAL-2
∞ and XPOGM

∞ , and Xfull,
reconstructed using fully sampled data without regularization. Left column:
reconstructed images on a scale of [0, 1], of one temporal frame of the Cardiac
Perfusion Dataset, after the closest run time less than when ISTA reaches its
stopping criterion (30 seconds). Right column: the residual images are plotted
on a scale of [0, 0.2], with their corresponding NRMSD shown on the left of
each row.

Fig. 3. First row: X∞, taken as the average of XAL-2
∞ and XPOGM

∞ . Left
column: reconstructed images on a scale of [0, 1], on one temporal frame for the
Cardiac Cine Dataset, after the closest run time less than when ISTA reaches its
stopping criterion (48 seconds). Right column: the residual images are plotted
on a scale of [0, 0.2], with their corresponding NRMSD shown on the left of
each row.
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Fig. 4. From left to right: Xtrue of one temporal frame from the ground truth PINCAT phantom data, and its corresponding reconstruction X∞ as the average of
XAL-2

∞ and XPOGM
∞ , all on a scale of [0, 1]. The residual image |Xtrue − X∞| is on a scale of [0, 0.1].

Fig. 5. Convergence of the five algorithms for the PINCAT phantom dataset, in terms of NRMSD and cost to the minimizer. Every 100th iteration of each
algorithm is marked by a dot, indicating their relative speeds.

factor of 128/24 ≈ 5.3. We added zero mean Gaussian noise

such that the signal to noise ratio is 46 dB. We tuned the regular-

ization parameters λL to 0.0025 multiplied by the top singular

value of L0 , and λS to 0.05, each divided by a constant that

captures the square root of the sum of squares of the coil sen-

sitivitiy maps before the normalization C∗C = I. The penalty

parameters in the AL-based methods were empirically tuned

to achieve fast convergence, with δ1 = δ2 = 1/3 for AL-CG,

and δ1 = 1/5, δ2 = 1/20 for AL-2. We ran AL-2 and POGM

for 30,000 seconds, and averaged the results to obtain X∞ and

f∞. The NRMSD between XAL-2
∞ and XPOGM

∞ is approximately

4.4 × 10−4%, and the cost function values fAL-2
∞ and fPOGM

∞ are

within 10−12 relative difference from each other. The conver-

gence behavior is similar to the in vivo case; Fig. 5 demonstrates

again the superior convergence speed of AL-2 and POGM in the

two schemes. For unknown reasons, AL-2 reaches a final cost

that is about 10−10 higher than the proximal algorithms. This

behavior is unimportant practically but still somewhat curious;

it is unique to the PINCAT data. To visualize the results, Fig. 4

shows images of the ground truth Xtrue and the under-sampled

reconstruction X∞ = L∞ + S∞. See the Supplement for y-t
images compared to the ground truth.

V. DISCUSSION

A. Alternative Variable Splittings

With under-sampled multi-coil data, we have expressed the

data acquisition operator as E = ΩQC, and our proposed AL

approach (5) splits the sampling mask Ω from the Fourier encod-

ing together with the coil sensitivity maps QC. An alternative

is to split the Fourier encoding operator with under-sampling,

ΩQ, from the coil sensitivities C, as proposed in [23]. Com-

pared with (5), this splitting introduces a slight variation:

min
Z,X,L,S

1

2
‖ΩQZ − d‖2

2 + λL‖L‖∗ + λS‖TS‖1

subject to

{
Z = CX,

X = L + S.
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In this case, the update for Z involves the inverse of

Q∗Ω∗ΩQ + δ1I , which is block circulant and can be diago-

nalized by pre- and post-multiplication by FFT operators [25].

Hence with this splitting, efficient implementation of the in-

verse is again possible. We chose to implement the splitting (5)

because of the simpler expressions (8), (9) for the Z and X
updates, with diagonal matrix inverses due to the unitary prop-

erty of Q. This leads to simpler updates with only inversion of

diagonal matrices.

Although the proposed AL scheme shows empirical con-

vergence, it does not have analytical convergence guarantee

as in generalized Alternating Direction Method of Multipliers

(ADMM). To compare the variable splitting (5) to the ADMM

scheme, we note that it is equivalent to a formulation in the

monotropic programming framework [36]:

min
U

f(U)

subject to AU = b,

where U =

⎡
⎢⎢⎢⎣

Z

X

L

S

⎤
⎥⎥⎥⎦ , A =

[
I −QC 0 0

0 I −I −I

]
, and

b = 0. Since the last two columns of A are linearly dependent,

this splitting scheme does not satisfy the sufficient conditions

for the convergence guarantee of ADMM [36]. To satisfy those

conditions, one could introduce an alternative variable splitting

that meets the convergence criteria of ADMM, but at the cost of

more variables, and thus potentially slightly slower convergence

[25]. We did not investigate that approach here since AL-2

empirically converged well, despite not satisfying the sufficient

conditions in [36]. In addition, POGM converged faster, and is

practically preferable because it does not require any AL-type

tuning parameters.

B. ISTA Implementation in Comparison With [9]

Our ISTA implementation is based on the algorithm discussed

mathematically in [9]. However, we did not directly use the

MATLAB code provided for [9] at http://cai2r.net/resources/

software/ls-reconstruction-matlab-code, because that code is

slightly inconsistent with the math in [9].

The first inconsistency is the implementation of the operator

E. The MATLAB code for the Hermitian adjoint E∗ operation

contains an additional division by the sum of squares of the

coil sensitivity maps that causes inconsistency between the for-

ward and the adjoint operations, preventing convergence to the

minimizer of the stated cost function. We modified the code so

that E∗ is the exact adjoint of E, so that all of the algorithms,

including ISTA, can converge to the same cost function. To ob-

tain similar images as those in [9], we pre-process by dividing

the given coil sensitivities C by the square root of its sum of

squares. Since this factor is close to being constant across the

image, we absorb it into the regularization parameters λL and

λS , to ensure a consistent setup with [9].

Another implementation difference involves the singular

value threshold. In the cost function (1), the nuclear norm regu-

larization parameter λL is a fixed constant, but in the provided

code, λL changes across iterations, with a factor that depends

on the leading singular value of L. This “moving target” cost

function would make it impossible to compare the convergence

rates of different algorithms. To ensure fair comparison of all

the algorithms, while maintaining similar overall regularization

as in [9], we fix λL by considering the leading singular value

of L∞, produced by running the original implementation until

convergence.

The provided implementation has stopping criteria based on

the maximum number of iterations and the tolerance of the

change in updates. With the above modifications, we stop our

ISTA implementation when it reaches the same cost function

value as at the stopped points, and compare the NRMSD at

these points with other algorithms, as indicated by the blue

square markers in Fig. 1.

VI. CONCLUSION

This paper presents efficient algorithms for the L+S recon-

struction of dynamic parallel MRI. Within the proximal gradient

category, in place of using ISTA to solve the optimization prob-

lem, we consider updates by FISTA and POGM. Both meth-

ods can be efficiently formulated within the L+S framework,

preserving the computational simplicity of the original ISTA

implementation. Experiments with two cardiac datasets in [9]

and a phantom dataset in [7] verify their accelerated rates of

convergence.

For AL-based approaches, we also proposed an efficient vari-

able splitting scheme that considers the structure of the data

acquisition operator. In particular, we split the variables based

on the under-sampling mask, the Fourier transform operator and

the coil sensitivity maps. While the existing splitting scheme for

the L+S model requires CG approach to solve for the quadratic

updates [8], our proposed formulation leads to a diagonal ma-

trix inverse that can be easily computed. Numerical experiments

again confirms its superior convergence rate, compared with the

existing implementation.

Although there is no strict convexity guarantee for the L+S

optimization problem, our experimental results suggest high

similarities between the reconstructed images by the AL and

the PGM schemes, due to the observed low NRMSD of both

XAL-2
∞ and XPOGM

∞ . In the implementation perspective, how-

ever, AL-based methods in the L+S model requires the tuning

of two additional penalty parameters, whereas POGM has no

extra tuning parameters. This practical benefit, combined with

the empirical faster convergence of POGM seen in the exam-

ples, make POGM our recommended approach for solving L+S

reconstruction problems for dynamic MRI.
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VIII. y-t IMAGES

To help visualize the reconstruction results for different time

frames, we provide figures of the reconstructed images in the

y-t domain, compared to their reference images, as shown in

Fig. 1 and 2.

Fig. 1. The reconstructed images on a scale of [0,1] from the fully sampled
and under-sampled Perfusion Dataset in the y-t domain, where the central
slice for y is taken. The difference image is plotted on a scale of [0,0.2].

Fig. 2. The ground truth and the reconstructed image on a scale of [0,1] from
the under-sampled PINCAT Dataset in the y-t domain, where the central slice
for y is taken. The difference image is plotted on a scale of [0,0.2].

VII. LONG-RUN BEHAVIORS

Figures 3 and 4 show the results of running many more

iterations of the algorithms investigated to illustrate the long-

run behaviors of the methods, for the Cardiac Perfusion,

Cardiac Cine and the PINCAT phantom datasets.
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Fig. 3. Long-run convergence behaviors of the five algorithms for the three
datasets, in terms of the cost function values. Every 500th iteration is marked
by a dot, indicating their relative speeds.
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Fig. 4. Long-run convergence behaviors of the five algorithms for the three
datasets, in terms of the NRMSD to the minimizer. Every 500th iteration is
marked by a dot, indicating their relative speeds.

IX. NON-CARTESIAN EXPERIMENT

We performed an additional experiment on the Abdominal

dynamic contrast-enhanced (DCE) MRI dataset examined in

[9]. This non-Cartesian dataset uses a golden-angle radial

sampling pattern, and corresponds to images of size 384×384,

with 28 temporal frames and 12 receiver coils, having an

acceleration factor of 12. As in the setup in the MATLAB

code provided by [9], we used λL = 0.025, λS = 2e-5,

with adjusted scaling as described in Section V.B. Here, the

step size for PGM depends on the maximum eigenvalue of

E
∗
E, and we estimated it using power iteration. Due to the

observed faster convergence of POGM than the AL methods,

and because an additional variable splitting would needed for

an AL approach for the non-Cartesian case, we focused on the

proximal methods for this experiment. To obtain X∞ and f∞,

we ran the POGM implementations for 1e5 seconds. Fig. 5

illustrates that POGM achieves the fastest convergence among

the three methods. Fig. 6 shows reconstructed image results

with the same run time cut-off of 153 seconds, with ISTA

taking k = 9 iterations to reach the stopping criterion.

Fig. 5. Convergence of the three proximal algorithms for the Abdominal
DCE phantom dataset, in terms of NRMSD and cost to the minimizer. Every
500th iteration of each algorithm is marked by a dot, indicating their relative
speeds.
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Fig. 6. First row: XPOGM
∞

. Left column: reconstructed images on a scale
of [0,5e-4], on one temporal frame for the Abdominal DCE Dataset, after
the closest run time less than when ISTA reaches its stopping criterion (153
seconds). Right column: the residual images are plotted on a scale of [0,2e-4],
with their corresponding NRMSD shown on the left of each row.
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