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Purpose: Time of flight (TOF) PET reconstruction is well known to statistically improve the image
quality compared to non-TOF PET. Although TOF PET can improve the overall signal to noise ratio
(SNR) of the image compared to non-TOF PET, the SNR disparity between separate regions in the
reconstructed image using TOF data becomes higher than that using non-TOF data. Using the con-
ventional ordered subset expectation maximization (OS-EM) method, the SNR in the low activity
regions becomes significantly lower than in the high activity regions due to the different photon
statistics of TOF bins. A uniform recovery across different SNR regions is preferred if it can yield an
overall good image quality within small number of iterations in practice. To allow more uniform
recovery of regions, a spatially variant update is necessary for different SNR regions.
Methods: This paper focuses on designing a spatially variant step size and proposes a TOF-PET
reconstruction method that uses a nonuniform separable quadratic surrogates (NUSQS) algorithm,
providing a straightforward control of spatially variant step size. To control the noise, a spatially
invariant quadratic regularization is incorporated, which by itself does not theoretically affect the
recovery uniformity. The Nesterov’s momentum method with ordered subsets (OS) is also used to
accelerate the reconstruction speed. To evaluate the proposed method, an XCAT simulation phantom
and clinical data from a pancreas cancer patient with full (ground truth) and 69 downsampled counts
were used, where a Poisson thinning process was employed for downsampling. We selected tumor
and cold regions of interest (ROIs) and compared the proposed method with the TOF-based conven-
tional OS-EM and OS-SQS algorithms with an early stopping criterion.
Results: In computer simulation, without regularization, hot regions of OS-EM and OS-NUSQS
converged similarly, but cold region of OS-EM was noisier than OS-NUSQS after 24 iterations. With
regularization, although the overall speeds of OS-EM and OS-NUSQS were similar, recovery ratios
of hot and cold regions reconstructed by the OS-NUSQS were more uniform compared to those of
the conventional OS-SQS and OS-EM. The OS-NUSQS with Nesterov’s momentum converged fas-
ter than others while preserving the uniform recovery. In the clinical example, we demonstrated that
the OS-NUSQS with Nesterov’s momentum provides more uniform recovery ratios of hot and cold
ROIs compared to the OS-SQS and OS-EM. Although the cost function of all methods is equivalent,
the proposed method has higher structural similarity (SSIM) values of hot and cold regions compared
to other methods after 24 iterations. Furthermore, our computing time using graphics processing unit
was 809 shorter than the time using quad-core CPUs.
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Conclusion: This paper proposes a TOF PET reconstruction method using the OS-NUSQS with
Nesterov’s momentum for uniform recovery of different SNR regions. In particular, the spatially
nonuniform step size in the proposed method provides uniform recovery ratios of different SNR
regions, and the Nesterov’s momentum further accelerates overall convergence while preserving uni-
form recovery. The computer simulation and clinical example demonstrate that the proposed method
converges uniformly across ROIs. In addition, tumor contrast and SSIM of the proposed method were
higher than those of the conventional OS-EM and OS-SQS in early iterations. © 2018 American

Association of Physicists in Medicine [https://doi.org/10.1002/mp.13321]
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1. INTRODUCTION

Time of flight (TOF) positron emission tomography (PET)
has been developed to improve image quality and reduce
image acquisition time.1,2 The noise reduction has been stud-
ied using TOF and non-TOF data in many papers.3,4,5,6 One
of the main advantages using TOF information is to improve
the signal-to-noise ratio (SNR) of the reconstructed image.
The SNR of an image voxel reconstructed by filtered back-
projection (FBP) is approximately:7

SNR ¼ k " N#1
2

T2

T þ Sþ R

! "
1
2

; (1)

where k is a physically defined constant and N is the number
of voxels in an image. T is the number of true counts in a
back-projected image, S and R are the numbers of scatter and
random counts, respectively, in a back-projected image. The
noise equivalent count rate (NEC), defined by T2=ðT þ
S þ RÞ with measurements, is also used as the effective sen-
sitivity considering noise contributions, such as scatter and
random events.8 For example, in a cylinder of diameter D

with uniform activity, the improvements of SNR and NEC
gains of TOF PET are estimated as follows:8

SNRT ¼

ffiffiffiffiffiffi

D

Dx

r

SNRn#T; NECT ¼
D

Dx
NECn#T; (2)

where T and n # T denote TOF and non-TOF, respectively,
Dx is the full-width-half-maximum (FWHM) calculated by
an intrinsic time resolution (Dt) as Dx = cDt/2. Here, c is the
speed of light. Therefore, TOF information improves the
image quality with higher SNR and NEC.8 In addition, Karp
et al.9 demonstrated that the contrast recovery coefficient
(CRC) using TOF data converges faster than the CRC using
non-TOF data in the maximum likelihood expectation maxi-
mization (MLEM) algorithm, and observed that CRCs using
TOF data are larger than those using non-TOF data. Here, the
CRC is defined as (H # B)/B, where H is a hot region and B

is a background.
In general, due to nonuniform (NU) activity in an image,

SNRs differ between regions. The standard iterative algo-
rithms such as OS-EM10 and OS-SQS11 converge slowly for
the low-SNR region, and regions with different SNRs con-
verge to different recovery ratios. Although TOF PET can
improve image contrast in high SNR regions, the disparity of

SNRs between elements in an image becomes considerably
wider by at least

ffiffiffiffi

D
Dx

q

times compared to that in non-TOF
PET. For example, specific regions, such as low activity
regions, can be very noisy after a few iterations, potentially
degrading the overall noise distribution within an image and
making it difficult to terminate an iterative method early.
Therefore, development of an algorithm that provides fast
and uniform recovery of ROIs without sacrificing the overall
convergence speed is necessary, which can help minimize the
total number of iterations needed in practice.

In iterative image reconstruction, there are two possible ways
to encourage the uniform recovery for different SNR regions:
(a) spatially variant regularization based on the noise statistics
of data and (b) spatially NU step size method for the gradient-
based update. The spatially variant regularization has been used
to encourage uniform image resolution.12,13,14 Based on our
knowledge, there is no spatially variant regularization for
achieving uniform recovery. Due to the complexity in develop-
ing a spatially variant regularization satisfying the requirement
of uniform recovery, a spatially NU step size method is more
straightforward to control the uniform recovery.

Algorithms using spatially variant step size have been
developed to promote faster convergence by nonuniformly
updating the image in iterations.15,16 Nonhomogeneous itera-
tive coordinate descent (NH-ICD) was proposed to accelerate
the conventional ICD algorithm.15 However, NH-ICD is diffi-
cult to parallelize because each voxel is updated sequentially.
Van Slambrouck and Nuyts proposed a group-wise NU coor-
dinate descent update for faster convergence speed,16 which
is more amenable to parallelization than ICD-type methods,
but is still limited by its group size. On the other hand, Kim
et al. proposed a nonuniform separable quadratic surrogates
(NUSQS) algorithm,17 in which the step size is spatially NU
and the update is parallelizable, accelerating the convergence
speed. The NU update in that work was used to accelerate
CT reconstruction, whereas here we use a similar idea to
encourage spatially uniform recovery ratio, and extend the
NUSQS method for TOF PET reconstruction.

For additional acceleration, it is useful to combine the
ordered subsets (OS)10 and the Nesterov’s momentum method18

that uses previous descent updates to provide momentum. Kim
et al. exploited both OS and Nesterov’s momentum for CT
reconstruction,19 where the convergence speed using both the
OS and momentum was significantly higher than speeds of
conventional methods in early iterations. Similarly, we propose
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a TOF-PET reconstruction exploiting the ordered subsets
nonuniform separable quadratic surrogates (OS-NUSQS) algo-
rithm with the Nesterov’s momentum method. To further
reduce the computation time, we implemented the proposed
method using a graphics processing unit (GPU), particularly
forward and backward projectors for TOF reconstruction and
the quadratic regularization.

To validate the proposed algorithm, we performed computer
simulations using an XCAT phantom20 under various condi-
tions, and compared the recovery ratios of ROIs and the
reconstructed image qualitatively and quantitatively. We also
performed an experiment with a patient having pancreatic and
other metastatic tumors. The image reconstructed after 300
iterations of one-subset version of EM using full data is used
as the ground truth, and reconstructed images using data with
6 9 downsampled counts are used for validating the perfor-
mance. Here, a Poisson thinning process is used for downsam-
pling the counts of prompt raw data.21 The proposed method
is compared with the conventional OS-SQS and OS-EM meth-
ods after certain number of iterations. More specifically,
reconstructed images are compared after 24 iterations. Note
that the OS-SQS has a relatively uniform step size compared
to the OS-EM and OS-NUSQS, and the OS-EM is the stan-
dard method in iterative PET reconstruction, having a spatially
variant update in iteration. We select both tumor and cold
ROIs, and compared recovery ratios of ROIs and structural
similarity (SSIM) values. Our results demonstrate that the pro-
posed method can achieve uniform recovery ratios of ROIs,
and provides a good image quality after a finite number of
iterations.

This paper is organized as follows. Section II gives the
problem formulation and the proposed method: OS-NUSQS
and Nesterov’s momentum for TOF PET reconstruction.
Section III provides experimental setup details of computer
simulation, clinical example, evaluation, and GPU implemen-
tation. Section IV demonstrates simulation and clinical
results for various aspects. Section V discusses several tech-
nical issues and Section VI concludes.

2. THEORY

2.A. Problems

We reconstruct a non-negative image x ¼ ðx1; . . .;
xNv

Þ 2 R
Nv
þ from a time of flight (TOF) measurement

Y ¼ ½y1; y2; . . .; yt; . . .; yNT ( 2 Z
Nm) NT
þ ; yt ¼ ðyt1; . . .; y

t
Nm
Þ 2

Z
Nm
þ . Nv, Nm and NT denote the numbers of voxels, sinogram

bins and TOF time bins, respectively. Y is the number of pho-
ton counts and contains true, scatter, and random coincidence
events in which we assume a Poisson statistical model:

yti * Poissonf½Atx(i þ rtig; (3)

where yti is the number of counts with the ith sinogram at the tth
time bin. rti is the mean value of scatter and random events,22

with the ith sinogram at the tth time bin. At ¼ ðA +WtÞ is the
TOF system matrix at the tth time bin; A 2 R

Nm) Nv
þ is the

conventional system matrix that computes the line integral of a
line of response (LOR), Wt 2 R

Nm) Nv
þ is the Gaussian kernel

along all LORs calculated by the TOF time response function,
and ∘ is the Hadamard product. The TOF time response function
is a one-dimensional Gaussian function centered at the emission
position.23 Thus, ½Atx(i ¼

PNv

j¼1 aijw
t
ijxj represents the Gaussian

weighted line integral of a LOR for the tth time bin and w is the
Gaussian weight. Here, aij denotes the probability that a pair of
annihilation photons emitted from the jth voxel is detected at
the ith sinogram bin, and wt

ij is the Gaussian weight along the
line of flight at tth time bin. Throughout the paper, we use
atij ¼ aijw

t
ij.

For regularized TOF PET image reconstruction, we mini-
mize the following cost function WoðxÞ:

WoðxÞ ¼ LðxÞ þ RðxÞ (4)

¼
X

NT

t¼1

X

Nm

i¼1

htið½Atx(iÞ þ
X

Nv

j¼1

wjðxÞ; (5)

where L(x) denotes the negative log-likelihood function from
the Poisson statistics and R(x) is a quadratic roughness regu-
larization.24 htiðkÞ ¼ k þ rti # yti logðk þ rtiÞ, wjðxÞ ¼

b
2

P

j02Xj

q jj0ðxj # xj0Þ
2 and b > 0 is a regularization parameter that

controls the noise variance of the reconstructed image. q jj0 is
the reciprocal of Euclidean distance between voxels j and j0,
and Xj is the neighbor of center voxel j. For Xj, we use 26
neighbor voxels in a three-dimensional (3D) space.

2.B. Nonuniform separable quadratic surrogates
for TOF PET

In TOF-PET reconstruction, because the negative log-
likelihood function L(x) is difficult to minimize directly, a
separable quadratic surrogates (SQS) algorithm for solving
L(x) is widely used with a regularization for reducing
noise.11,25

First, the quadratic surrogate function of L(x) is as follows:

LðxÞ , Q
ðnÞ
L ðxÞ,

X

NT

t¼1

X

Nm

i¼1

p
t;ðnÞ
i ð½Atx(iÞ; (6)

where

p
t;ðnÞ
i ðkÞ,htiðk

t;ðnÞ
i Þ þ _htiðk

t;ðnÞ
i Þðk # k

t;ðnÞ
i Þ þ

v
t;ðnÞ
i

2

ðk # k
t;ðnÞ
i Þ2:

(7)

k
t;ðnÞ
i ¼ ½Atx

ðnÞ(i at nth iteration, and v
t;ðnÞ
i is the curvature of

p
t;ðnÞ
i ðkÞ. The first and second derivatives of hti are as fol-

lows11:

_htiðk
t;ðnÞ
i Þ ¼ 1#

yti

k
t;ðnÞ
i þ rti

; (8)

€htiðk
t;ðnÞ
i Þ ¼

yti

ðkt;ðnÞi þ rtiÞ
2

: (9)
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For v
t;ðnÞ
i , the optimal curvature25 is

v
t;ðnÞ
i ðkt;ðnÞÞ ¼

2
htið0Þ#htiðk

t;ðnÞÞþ _htiðk
t;ðnÞÞðkt;ðnÞÞ

ðkt;ðnÞÞ
2

h i

þ
; kt;ðnÞ [ 0

€htið0Þ
h i

þ
; kt;ðnÞ ¼ 0:

8

>

<

>

:

(10)

½ (þ denotes an operator that sets negative values to zero. To
reduce the computing cost, we can use the Newton curvature
€htið½Atx

ðnÞ(iÞ, or precompute as 1=maxðyti; !Þ, or approximately
compute as 1=maxð½Atx

ðnÞ(i; !Þ (see Section V). Here, many
of TOF measurements are zero, thus we set e as a small posi-
tive value.

We next review a separable surrogate of the quadratic
surrogate function,11 which uses the following trick:

½Atx(i ¼
X

Nv

j¼1

atijxj

¼
X

Nv

j¼1

g
t;ðnÞ
ij

atij

g
t;ðnÞ
ij

ðxj # x
ðnÞ
j Þ þ ½Atx

ðnÞ(i

 !

; (11)

where gtij ¼ atij=
PNv

j0 ¼ 1 a
t
ij0

$ %

is a non-negative real value

(gtij ¼ 0 only if atij ¼ 0 for all i, j), and
PNv

j¼1 g
t;ðnÞ
ij ¼ 1. By

using the convexity of p
t;ðnÞ
i , the convexity inequality can be

expressed as:

p
t;ðnÞ
i ð½Atx(iÞ ,

X

Nv

j¼1

g
t;ðnÞ
ij p

t;ðnÞ
i

atij

g
t;ðnÞ
ij

ðxj # x
ðnÞ
j Þ þ ½Atx

ðnÞ(i

 !

:

(12)

Combined with Eq. (5), we have the following majorizer:

LðxÞ , Q
ðnÞ
L ðxÞ , /

ðnÞ
L ðxÞ,

X

NT

t¼1

X

Nv

j¼1

/
t;ðnÞ
L;j ðxjÞ; (13)

where

/
t;ðnÞ
L;j ðxjÞ,

X

Nm

i¼1

g
t;ðnÞ
ij p

t;ðnÞ
i

atij

g
t;ðnÞ
ij

ðxj # x
ðnÞ
j Þ þ ½Atx

ðnÞ(i

 !

:

(14)

The second derivative of the surrogate function /
ðnÞ
L;j ðxjÞ is

d
ðnÞ
L;j,

@2

@x2j
/
ðnÞ
L;j ðxjÞ ¼

X

NT

t¼1

X

Nm

i¼1

v
t;ðnÞ
i ðatijÞ

2=gtij: (15)

We next derive a separable surrogate of the quadratic
roughness regularization R(x):25

RðxÞ ¼
X

Nv

j¼1

wjðxÞ ¼
X

Nv

j¼1

b

2

X

j02Xj

q jj0 xj # xj0
& '2

; (16)

¼
X

Nv

j¼1

X

j02Xj

bq jj0

2

2xj#x
ðnÞ
j #x

ðnÞ
j0

$ %

2
þ

#2xj0 þx
ðnÞ
j þx

ðnÞ
j0

$ %

2

0

@

1

A

2

;

(17)

,
X

Nv

j¼1

X

j02Xj

bq jj0

4
2xj#x

ðnÞ
j #x

ðnÞ
j0

$ %2

þ 2xj0 #x
ðnÞ
j #x

ðnÞ
j0

$ %2
! "

;

(18)

¼
X

Nv

j¼1

X

j02Xj

bq jj0

2
2xj # x

ðnÞ
j # x

ðnÞ
j0

$ %2

; (19)

,
X

Nv

j¼1

/
ðnÞ
R;j ðxjÞ ¼ /

ðnÞ
R ðxÞ: (20)

here, we use the convexity inequality in (17) and symmetry of
quadratic function (wjðkÞ ¼ wjð#kÞ) in (18). The regulariz-
ing factor between two voxels of j and j0 is computed twice
when switching center and neighbor, thus we can simplify
the equation for xj in (19). The first and second derivatives of
/
ðnÞ
R ðxÞ at the point xðnÞ are as follows:

_/
ðnÞ
R;j ðx

ðnÞÞ ¼ 2b
X

j02Xj

q jj0ðx
ðnÞ
j # x

ðnÞ
j0 Þ; (21)

€/
ðnÞ
R;j ðxÞ ¼ 4b

X

j02Xj

q jj0 ¼ dR;j: (22)

Now, the majorizer Ψ(x) is:

WoðxÞ , WðxÞ ¼ /
ðnÞ
L ðxÞ þ /

ðnÞ
R ðxÞ ; (23)

¼
X

NT

t¼1

X

Nv

j¼1

/
t;ðnÞ
L; j ðxjÞ þ

X

Nv

j¼1

/
ðnÞ
R;j ðxjÞ: (24)

The SQS with quadratic regularization provides the voxel-
wise update at each iteration as follows:

x
ðnþ1Þ
j ¼ x

ðnÞ
j #

_/
ðnÞ
L; jðx

ðnÞ
j Þ þ _/

ðnÞ
R; jðx

ðnÞ
j Þ

d
ðnÞ
L; j þ dR; j

; 8j 2 ½1; . . .;Nv(:

(25)

Then, the step size of SQS with quadratic regularization
has this relationship:26

D
ðnÞ
j ¼ x

ðnþ1Þ
j # x

ðnÞ
j /

1

d
ðnÞ
L; j þ dR; j

: (26)

Because the dR;j does not change in iterations as shown in

Eq. (22), the step size is mainly decided by d
ðnÞ
L;j . To accelerate

the SQS algorithm, a larger value of g
t;ðnÞ
ij (or equivalently

smaller value of d
ðnÞ
L;j ) can encourage larger step size. Here,

we choose g
t;ðnÞ
ij ¼

atiju
ðnÞ
j

PNv

j0 ¼ 1
at
ij0
u
ðnÞ

j0

using the NU-based update

factor (u
ðnÞ
j ) as follows:17,27

u
ðnÞ
j ¼ maxfjxðn#1Þ

j # x
ðnÞ
j j; dg; (27)

where d is a small positive value. Note that the u
ðnÞ
j is an

approximation of the oracle NU factor jxðnÞj # x
ð1Þ
j j. Our
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experimental results show that applying a Gaussian filtering

to noisy uðnÞ empirically provides a better approximation to
the oracle NU factor. The Gaussian filtering does not affect
the final image quality but affects the convergence speed at
early iterations. The corresponding NU denominator is

d̂
ðnÞ

L; j ¼
1

u
ðnÞ
j

X

NT

t¼1

X

Nm

i¼1

v
t;ðnÞ
i atij

X

Nv

j0¼1

atij0u
ðnÞ
j0

 !

; (28)

which leads to the NU-based update relationship of
D
ðnÞ
j / u

ðnÞ
j that encourages the voxel-wise NU step size.

This is a key property that allows one to control the recovery
ratio of each voxel by using NU step size; Section IV
demonstrates numerically that a suitable NU step size can
provide similar ROI recovery ratios across iterations in TOF-
PET reconstruction.

The NUSQS method exploits the surrogate function with
a diagonal Hessian matrix DðnÞ of Ψ(x).26 Specifically, the jth
diagonal element of DðnÞ is D

ðnÞ
j ¼ d̂

ðnÞ
L;j þ dR;j. Algorithm 1

presents the pseudo code for NUSQS (one-subset version).

Algorithm 1 NUSQS

1: Initialize xð0Þ ¼ 1 and uð0Þ ¼ 1.

2: for n = 0,1,. . . do

3: for j ¼ 1; 2; . . .;Nv do

4: D
ðnÞ
j ¼ d̂

ðnÞ
L;j þ dR;j

5: x
ðnþ 1Þ
j ¼ ½xðnÞj #rjWðxðnÞÞ=DðnÞ

j (þ
6: u

ðnþ 1Þ
j ¼ maxfjxðnþ 1Þ

j # x
ðnÞ
j j; dg

7: end for

8: end for

2.C. Nesterov’s momentum and ordered subsets
methods

To further accelerate the convergence speed, we exploit
the Nesterov’s momentum and OS methods. Iterative
TOF-PET reconstruction requires the forward A

(¼ ½A1; . . .;AT () and backward AH (¼ ½AH
1 ; . . .;A

H
T () pro-

jection operators. We set Ns as the number of subsets
and the sth-subset forward As (¼ ½As1; . . .;AsT () and
backward AH

s (¼ ½AH
s1; . . .;A

H
sT () projection operators. Sub-

sets are equally distributed over the angular bins. The
computing cost per sub-iteration decreases almost linearly
with the number of subsets Ns.

Now, the (approximate) majorizer with OS for TOF recon-
struction is

WðxÞ ¼
X

Ns

s¼1

WsðxÞ; (29)

where

WsðxÞ ¼ /
ðnÞ
sL ðxÞ þ

1

Ns

/
ðnÞ
R ðxÞ ; (30)

¼
X

NT

t¼1

X

Nv

j¼1

/
t;ðnÞ
sL;j ðxjÞ þ

1

Ns

X

Nv

j¼1

/
ðnÞ
R;j ðxjÞ; (31)

/
t;ðnÞ
sL;j ðxjÞ ¼

X

i2Xs

g
t;ðnÞ
ij p

t;ðnÞ
i

atij

g
t;ðnÞ
ij

ðxj # x
ðnÞ
j Þ þ ½Astx

ðnÞ(i

 !

;

(32)

d̂
t;ðnÞ
sL;j ¼

1

uj

X

i2Xs

v
t;ðnÞ
i atij

X

Nv

j0¼1

atij0u
ðnÞ
j0

 !

: (33)

Xs denotes the sth subset and we evenly distribute the sub-
sets in azimuthal bins. Algorithm 2 presents the pseudo code
of OS-NUSQS. The subset balance can be approximately
described as follows:10,19,26

rWðxÞ - NsrWsðxÞ; (34)

DðnÞ - NsD
ðnÞ
s ; (35)

where s ¼ ½1; . . .;Ns( and Ds is a diagonal Hessian of the
surrogate function of WsðxÞ for the sth subset; D

ðnÞ
sj is a jth

diagonal component of D
ðnÞ
s .

Algorithm 2 OS-NUSQS

1: Initialize xð0Þ ¼ 1 and uð0Þ ¼ 1.

2: for n=0,1,. . . do

3: for s ¼ 0; 1; . . .;Ns # 1 do

4: k ¼ n ) Ns þ s

5: for j ¼ 1; 2; . . .;Nv do

6: D
ðkÞ
sj ¼ d̂

ðkÞ
sL;j þ dR;j=Ns

7: x
ðkþ1Þ
j ¼ ½xðkÞj #rjWsðxðkÞÞ=D

ðkÞ
sj (þ

8: u
ðkþ1Þ
j ¼ maxfjxðkþ1Þ

j # x
ðkÞ
j j; dg

9: end for

10: end for

11: end for

Next, we consider the OS-NUSQS combined with Nes-
terov’s momentum.18,19 Specifically, the Nesterov’s momen-
tum18 exploits the previous descent updates for additional
acceleration. By combining with the OS method, we expect
the convergence speed Oð1=ðnNsÞ

2Þ in early iterations that is
significantly faster than the speeds of NUSQS O(1/n) and
OS-NUSQS Oð1=ðnNsÞÞ. This is one of the main advantages
of the OS in the momentum method, which accelerates
approximately ðNsÞ

2
times in early iterations.19 Also, the

momentum factor does not require additional memory
because the NU factor (u) can be reused in the momentum
computation. In Algorithm 3, the NU factor (u) is calculated
in each iteration; to save computation, we first calculate the
variation x

ðkþ1Þ
d ¼ ðxðkþ1Þ # xðkÞÞ for momentum (line 10 in

Algorithm 3), and then we update uðkþ1Þ ¼ maxfjxðkþ1Þ
d j; dg

(line 11 in Algorithm 3).
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Algorithm 3 OS-NUSQS with Nesterov’s Momentum

1: Initialize xð0Þ ¼ 1, zð0Þ ¼ 1, uð0Þ ¼ 1 and b0 ¼ 1; tc 2 ½0; 1(.

2: for n = 0,1,. . . do

3: for s ¼ 0; 1; . . .;Ns # 1 do

4: k ¼ n ) Ns þ s

5: for j ¼ 1; 2; . . .;Nv do

6: bkþ1 ¼ 1
2

$

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 4b2k

q %

7: ck ¼ tc
bk#1
bkþ1

8: D
ðkÞ
sj ¼ d̂

ðkÞ
sL;j þ dR;j=Ns

9: x
ðkþ1Þ
j ¼ ½zðkÞj #rjWsðzðkÞÞ=D

ðkÞ
sj (þ

10: z
ðkþ1Þ
j ¼ ½xðkþ1Þ

j þ ckðx
ðkþ1Þ
j # x

ðkÞ
j Þ(þ

11: u
ðkþ1Þ
j ¼ maxfjxðkþ1Þ

j # x
ðkÞ
j j; dg

12: end for

13: end for

14: end for

In addition, a relaxation factor tc in Algorithm 3 is
applied. Although the momentum method can practically
improve the convergence speed, the OS-NUSQS with
momentum algorithm can sometimes diverge due to OS,19 as
will be presented in Section V. Therefore, we set the relax-
ation factor, such as tc 2 ½0; 1(, to avoid divergence in the pro-
posed method.

3. EXPERIMENTAL SETUP

3.A. Computer simulation

We performed a computer simulation using an XCAT
phantom20 and the simulation geometry of a clinical Bio-
graph mCT TOF PET/CT scanner (Siemens Medical Solu-
tions USA, Inc., Knoxville, TN, USA). In a TOF sinogram,
the number of radial bins with a 2.005 mm pixel size and azi-
muthal bins are 336, and the number of time bins is 13 with a
560 ps time resolution; the radius of scanner is 427.6 mm
and data were acquired with span 11. In the reconstructed
image, the number of image voxels is 336 9 336 9 109 with
a 2.005 9 2.005 9 2.027 mm3 voxel size. To evaluate ROI-
based convergence, we chose three hot ROIs and one cold
ROI at the lung, spine, and liver as shown in Fig. 1. In each
region, a high-intensity component assumed as a tumor is
added. Specifically, different tumor shapes and intensities
were applied for evaluation of uniform recovery under differ-
ent conditions. We put a sphere with a 7 mm radius and 0.4

intensity in the lung, a sphere with a 6 mm radius and 0.3
intensity in the spine, and an ellipsoid with axes of length
(15, 7, 7) mm and 0.3 intensity in the liver as shown in
Figs. 1(b)–1(d), respectively. The muscle (background) inten-
sity is 0.02. For ROI-based metric comparison, all ROIs were
extracted by the shape of sphere with a 20 mm radius at the
centers of tumors. The ground truths of tumor to muscle
ratios (TMRs) are 20 in the lung, 15 in the spine, and 15 in
the liver, respectively. We imposed Poisson noise to the
prompt (attenuated) sinogram with signal to noise ratio
(SNR) of 8 dB in which the number of counts was
3.3 ) 107. In simulation, detector-pair sensitivities, scatter,
and random counts were not considered.

We also conducted experiments to evaluate the recovery
ratio. We used the same regularization (b = 0.2) for all meth-
ods. To consider not only tumor but also different back-
ground regions, we selected four sphere-shape ROIs with
20 mm radius, as shown in Fig. 1. Specifically, we considered
the spine ROI with complex structures, the lung ROI with
very low intensity, and the liver ROI with high-intensity back-
grounds.

3.B. Clinical example

A pancreas-focused scan was performed for 45 min with a
TOF PET/MR (SIGNA, GE Healthcare) scanner. A bolus
injection of 196.1 MBq of 18F-FDG was administered. The
protocol of this experiment was approved by the Institutional
Review Board (IRB) of University of California, San Fran-
cisco (UCSF). The SIGNA scanner has 357 9 224 9

1981 9 27 (radial, angle, plane, TOF) bins with time of

FIG. 1. XCAT phantom simulation setup using (a) three tumor ROIs with high-intensity components at the (b) lung, (c) spine, and (d) liver. A cold ROI in (d)

was used for comparison. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. Comparison of global NRMSEs for the OS-SQS, OS-EM, OS-

NUSQS, and OS-NUSQS with momentum. b = 0 was used in simulation.

[Color figure can be viewed at wileyonlinelibrary.com]
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flight resolution of 420 ps. The scanner radius is 640 mm
and the field-of-view (FOV) is 600 mm. The reconstructed
image size was 256 9 256 9 89 with 2.34 9 2.34 9

2.78 mm3 resolution.
For evaluation, we used the full-dose image as the ground

truth and 69 downsampled data as a measurement. The

full-dose image was acquired by EM (one-subset version of
OS-EM) after 300 iterations. To generate 69 downsampled
sinograms, a Poisson thinning process was used21 in which
coincidence events can be randomly discarded by a predeter-
mined sampling factor. The Poisson thinning process has
been applied to initial prompt data (listmode or sinogram)

FIG. 3. (a) Ground truth and reconstructed images of (b) OS-SQS, (c) OS-EM, (d) OS-NUSQS, and (e) OS-NUSQS with momentum at 24 iterations. Standard

deviations for a flat region of interest in coronal view were compared. b = 0 was used in simulation. [Color figure can be viewed at wileyonlinelibrary.com]
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before random, scatter, normalization, and attenuation correc-
tions. We selected three tumor and one cold ROIs extracted
by a sphere with a 12.5 mm radius. In patient data, detector-
pair sensitivities (normalization), scatter, and random counts
were fully considered.

3.C. Evaluation

In this paper, we compared the OS-NUSQS with the con-
ventional OS-EM and OS-SQS. The step size of OS-SQS
does not consider spatially different SNRs nor recovery varia-
tions. The OS-EM has a spatially variant step size; however,
the step size of OS-EM does not take into account the recov-
ery variation. We compared algorithms without regularization
(b = 0) and with regularization (b > 0). For the regularized
OS-EM algorithm, a De Pierro’s EM algorithm28 is used for
comparison, in which the quadratic regularization was equiv-
alently used as in other methods. Throughout this paper, the
iteration in result plots denotes the sub-iteration (k), and we
used eight subsets in reconstruction.

The normalized root mean square error (NRMSE)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PNv

j¼1
ðx.

j
#x

ðnÞ
j
Þ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PNv

j¼1
ðx.

j
Þ2

q was computed using the ground truth image

(x.). To compare convergences of ROIs, we also calculated
the ROI-based normalized root mean square difference

(NRMSD) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j2Xr
ðxð1Þ

j
#x

ðnÞ
j
Þ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j2Xr
ðxð1Þ

j
Þ2

q , where n is the iteration, xð1Þ

is the converged image after 300 iterations with one-subset
version of OS-EM, and Xr is the rth ROI. The recovery ratio

was measured by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j2Xr
ðx.

j
#x

ð1Þ
j

Þ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j2Xr
ðx.

j
#x

ðnÞ
j
Þ2

q . Here, the distance between

the ground truth and the converged image (x. # xð1Þ) was
used for calculating the recovery ratio (i.e., the recovery ratio
approaches 1 with increasing iterations). Furthermore, we
measure the ROI-based structural similarity (SSIM) index for
comparing image quality. The SSIM is defined by
ð2l r. l rþc1Þð2r r.rþc2Þ

ðl 2
r.
þl 2rþc1Þðr 2r.þr 2rþc2Þ

, where r. and r denote the ROIs of the

ground truth and the reconstructed image, respectively. l is

the average, r 2 is the variance, and r r.r is the covariance of

intensity within the ROIs r. and r. c1 ¼ 2:5 ) 10#5 and

c2 ¼ 2:25 ) 10#4 were used.

3.D. Implementation

Parallel computing technologies are commonly used to
speed up computations. In particular, the general purpose
graphics processing unit (GPGPU) has been widely used for
medical applications, such as 3D CT and PET reconstruc-
tions.29,30,31,32 To speed up the proposed method, we imple-
mented TOF reconstruction using the GPU and compute
unified device architecture (CUDA), similar to previous
work.33 Specifically, we implemented our TOF system model
with ray-driven forward projector and a matched (transpose)
back projector with a time response function that is a typical
Gaussian function with FWHM based on the timing

FIG. 5. Comparison of NRMSDs for OS-SQS, OS-EM, OS-NUSQS, and

OS-NUSQS with momentum algorithms with quadratic regularization.

b = 0.2 was used in simulation. [Color figure can be viewed at wileyonline

library.com]

FIG. 4. Profiles of tumor ROIs in the (i) lung, (ii) spine, and (iii) liver as

described in Fig. 3(a). Dot line is the ground truth. Profiles were measured

with b = 0 at 24 iterations in simulation. [Color figure can be viewed at wile

yonlinelibrary.com]
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resolution. In GPU kernels of TOF forward and backward
projectors, each thread corresponds to a line-of-response
(LOR); thus, all time bins are updated or used in each thread.
Technically, we use the atomic operator to avoid interference
from other threads when accessing a specific address at the
same time, and the 3D linear interpolation using the texture

memory is exploited for line integrals. A Gaussian coefficient
table for the time response function is precalculated before
the reconstruction process, and is assigned to the constant

memory. All geometrical parameters are also assigned to the
constant memory. The surrogate function of quadratic rough-
ness regularization is easily parallelizable because the calcu-
lation of each voxel is independent, thus each thread in a
GPU kernel can be assigned to each voxel. One main differ-
ence compared to the conventional PET reconstruction is that
the denominator D in algorithms [1, 2, 3] cannot be precom-
puted due to the NU factor. Thus, the proposed method

requires two forward and backward projections in each itera-
tion. To further reduce the computing cost, our code calcu-
lates AxðnÞ and AuðnÞ at the same time in forward projection of
GPU kernel that can share all geometrical computations; and
the ∇Ψ(x) and D are also calculated at the same time and
share the geometrical computations in backward projection of
GPU kernel as similarly done by Kim et al.19 This approach
was 1.5 * 1.7 times faster than separate calculations.

4. RESULTS

4.A. Computer simulation

4.A.1. No regularization (b = 0)

First, to observe the convergence speed of different algo-
rithms, we performed experiments without regularization, as
a special case of b = 0 in Eq. (5). The convergence speed of
OS-NUSQS and OS-EM were similar as shown in Fig. 2.
However, the OS-EM diverged faster than the OS-NUSQS.
The OS-SQS at 24 iterations did not reach the minimum
NRMSE. Figure 3 shows the reconstructed images of OS-
SQS, OS-EM, OS-NUSQS, and OS-NUSQS with momen-
tum methods at 24 iterations. The OS-EM image was noisier
than other images, particularly in the lower intensity region.
We compared the standard deviations in the flat region with
low intensity, a circle in coronal view as shown in Fig. 3. The

FIG. 6. Comparison of NRMSDs of OS-SQS, OS-EM, OS-NUSQS, and OS-NUSQS with momentum algorithms using quadratic regularizations for tumor

ROIs in the (a) lung, (b) spine, (c) liver, and (d) cold region as shown in Fig. 1. b = 0.2 was used in simulation. [Color figure can be viewed at wileyonlinelibra

ry.com]

TABLE I. Tumor to muscle ratios of (a) OS-SQS, (b) OS-EM, (c)

OS-NUSQS, and (d) OS-NUSQS with momentum. b = 0.2 was used in

simulation.

TMR OS-SQS OS-EM OS-NUSQS OS-NUSQS-mom

Lung 13.7 14.4 14.5 14.5

Spine 10.7 11.7 11.8 11.8

Liver 12.7 12.7 12.8 12.8
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standard deviations of the flat region were 0.0111, 0.0168,
0.0132, and 0.0134 for the OS-SQS, OS-EM, OS-NUSQS,
and OS-NUSQS with momentum methods, respectively. The
reconstructed images of OS-NUSQS with and without
momentum were visually similar to the image of OS-EM, and
we confirmed that OS-NUSQS has reduced noise compared
to OS-EM in early iterations of TOF reconstruction. The OS-
SQS method did not reach convergence at 24 iterations, par-
ticularly at high-intensity regions, such as tumors in the lung
and spine as shown in Fig. 3(b). For high-intensity regions,
Fig. 4 compares profiles of tumors in the liver, lung, and
spine regions as shown in Fig. 3(a). In Fig. 4, we observed
that the profiles of OS-SQS did not reach convergence after
24 iterations, and demonstrated that the contrast of OS-
NUSQS was higher than that of OS-EM at 24 iterations.
Although the intensity of OS-EM in the liver ROI was similar

FIG. 9. NRMSE comparison without and with Gaussian filtering of FWHM 2, 4, 6 mm for different noise levels with total counts of (a) 1:98 ) 107 and (b)

4:62 ) 107. b = 0.2 was used in simulation. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 8. Bias and standard deviation plots of OS-SQS and OS-NUSQS

methods at 24 iterations. b parameters between 0.08 and 0.3 were used in

simulation.

FIG. 7. ROI-based recovery ratio comparisons of (a) OS-SQS, (b) OS-EM, (c) OS-NUSQS, and (d) OS-NUSQS with momentum. b = 0.2 was used in

simulation. [Color figure can be viewed at wileyonlinelibrary.com]
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to that of NUSQS, OS-EM needed more iterations for ROIs
in the lung and spine. Note that profiles of OS-NUSQS with
and without momentum were almost identical.

4.A.2 With regularization (b > 0)

Figure 5 compares the NRMSDs for whole images of OS-
SQS, OS-EM, OS-NUSQS, and OS-NUSQS with momen-
tum. The per-iteration convergence speed of OS-SQS was the
slowest, and that of OS-NUSQS with momentum (tc ¼ 0:7)
was the fastest. In Fig. 6, the NRMSDs of tumor ROIs with
OS-NUSQS converged much faster than those of OS-EM.

We compared the TMRs of OS-SQS, OS-EM, OS-NUSQS,
and OS-NUSQS with momentum after 24 iterations in
Table I. The TMRs of the proposed method were slightly
higher than those of OS-SQS and OS-EM.

Figure 7 compares the recovery ratios of OS-SQS, OS-
EM, OS-NUSQS, and OS-NUSQS with momentum for four
ROIs. In general, similar ratios of ROIs illustrate the uniform
recovery of ROIs. We observed that the OS-NUSQS and OS-
NUSQS with momentum methods show uniform recovery
ratios after five iterations for both hot and cold ROIs. In
Fig. 8, the bias and standard deviation plots of OS-SQS and
OS-NUSQS methods at 24 iterations were compared using

FIG. 10. (a) Ground truth of full-dose EM image, and reconstructed images of (b) converged OS-EM image with 300 iterations, (c) OS-SQS, (d) OS-EM, (e)

OS-NUSQS, and (f) OS-NUSQS with momentum. (b)–(f) used 69 downsampled data. Three hot ROIs (spine 1, kidney, and spine 2) were extracted at centers of

tumors and a cold region was also extracted. b = 0.03 was used with patient data. [Color figure can be viewed at wileyonlinelibrary.com]
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10 simulations (same SNR) with random Poisson noise. Fig-
ure 8 used b parameters between 0.08 to 0.3 for both OS-
SQS and OS-NUSQS, which demonstrates that the NU
method can improve the image quantitatively in early itera-
tions. Here, the bias and standard deviation values of OS-
EM, OS-NUSQS, and OS-NUSQS with momentum were
almost the same after 24 iterations. Note that after

convergence with sufficient number of iterations, bias and
standard deviation values of OS-SQS and OS-NUSQS are
approximately equivalent since they solve the same optimiza-
tion problem.

In the proposed method, the voxel-wise NU factor
(u

ðnÞ
j ¼ maxfjxðnÞj # x

ðn#1Þ
j j; dg) is calculated at each itera-

tion. We used the Gaussian filtering on the NU factor to

FIG. 12. Comparison of recovery images of (a) OS-SQS, (b) OS-EM, (c) OS-NUSQS, and (d) OS-NUSQS with momentum at 24 iterations. The saggital view

of Fig. 10 was used. The intensity window is [0, 1.5]. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 11. ROI-based recovery ratio comparisons of (a) OS-SQS, (b) OS-EM, (c) OS-NUSQS, and (d) OS-NUSQS with momentum. b = 0.03 was used with

patient data. [Color figure can be viewed at wileyonlinelibrary.com]
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provide a better approximation of the oracle NU factor in our
experiment, which lead to higher convergence speed at early
iterations. To observe the relationship between noise levels
and the optimal FWHM of Gaussian filtering, we compared
the NRMSEs of reconstructed images using the NU factors
without and with Gaussian filtering with FWHM of 2, 4, and
6 mm, as shown in Fig. 9. Two noise levels with total counts
of (a) 1:98 ) 107 and 4:62 ) 107 were used. Note that the
total photon counts used in the simulationwas 3:3 ) 107. The
NU factor using the Gaussian filtering showed fast decrease of
NRMSEs at early iterations. The performance with Gaussian
filtering of FWHM larger than 4 mmwas almost the same. We
observed that the FWHM of Gaussian filtering was not highly
related to the noise level; thus, an FWHM of 4 mm was used
for the Gaussian filtering in NU-based algorithms.

4.B. Clinical example

To evaluate the recovery ratio with converged images, we
performed reconstructions with quadratic regularization

having b = 0.03 and relaxation factor of 0.5 for the Nes-
terov’s momentum. We will additionally discuss effects of
parameters such as the number of subsets and relaxation fac-
tor in Section V.

Figure 10 shows the reconstructed images of OS-SQS,
OS-EM, OS-NUSQS, and OS-NUSQS with momentum
methods at 24 iterations. Figure 10(a) is the ground truth of
full-dose EM image after 300 iterations, and Fig. 10(b) is the
converged EM image of 69 downsampled data after 300
iterations. The OS-SQS was not fully converged in Fig. 10(c)
(see arrow), however, other methods converged after 24
iterations.

Figure 11 compares the recovery ratios of OS-SQS, OS-
EM, OS-NUSQS, and OS-NUSQS with momentum for four
ROIs. The OS-NUSQS and OS-NUSQS with momentum
methods show uniform recovery ratios after 24 iterations for
both hot and cold ROIs. In Fig. 12, we also compared the
recovery images of OS-SQS, OS-EM, OS-NUSQS, and OS-
NUSQS with momentum, where the voxel-wise recovery
ratio was calculated at 24 iterations and the saggital view in
Fig. 10 was used. Because of the high noise of recovery
image, a Gaussian filtering with FWHM 2.5 mm was addi-
tionally applied only for visualization in Fig. 12. Boundaries
and inner regions in the recovery images of OS-SQS and OS-
EM were not uniform at 24 iterations. Although the recovery
ratios of specific ROIs of OS-NUSQS and OS-NUSQS with
momentum were similar, the recovery image of OS-NUSQS
with momentum was more uniform than the recovery image
of OS-NUSQS.

For image quality comparison, we compared ROI-based
SSIM values as shown in Table II. The SSIMs of NUSQS

TABLE II. ROI-based SSIM comparisons of OS-SQS, OS-EM, OS-NUSQS,

and OS-NUSQS with momentum. b = 0.03 was used with patient data.

SSIM OS-SQS OS-EM OS-NUSQS OS-NUSQS-mom

Spine 1 0.841 0.850 0.852 0.840

Kidney 0.727 0.741 0.748 0.724

Spine 2 0.688 0.690 0.694 0.683

Cold 0.942 0.953 0.963 0.982

The bold values represent the highest SSIM metrics.

FIG. 13. Comparison of NRMSEs using different number of subsets of (a) 1, (b) 8, and (c) 16 combining with relaxation factors (tc) of 0 (without momentum), 0.3,

0.5, and 0.7, and (d) NRMSEs of b = 0.01, 0.02, 0.03, and 0.05 with 16 subsets and relaxation factor of 0.7. [Color figure can be viewed at wileyonlinelibrary.com]
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combining with or without momentum were the highest for
all ROIs. Here, SSIM considers mean (bias) and variance
(noise). We confirmed that the mean values of hot regions of
OS-EM, OS-NUSQS, and OS-NUSQS with momentum were
almost identical. We additionally compared biases for a cold
region in Fig. 10(b) (see arrow), where biases of OS-SQS,
OS-EM, OS-NUSQS, and OS-NUSQS with momentum were
0.8%, 0.6%, 0.09%, and 0.12%. We confirmed that the OS-
NUSQS has faster convergence of lower SNR region com-
pared to OS-EM.

Although the momentum method can increase the com-
puting speed while preserving the uniform recovery, the
reconstructed image can diverge when combined with OS;
thus, the relaxation factor was incorporated into the momen-
tum method. We performed an empirical comparison of
relaxation factor, effect of subsets, and b, as similarly done
by Berker et al.34 Figs. 13(a)–13(c) show NRMSE compar-
isons for various number of subsets of 1, 8, and 16 with relax-
ation factors (tc) of 0 (without momentum), 0.3, 0.5, and 0.7,
where the patient data and fixed b = 0.03 were used. Without
OS in Fig. 13(a), the OS-NUSQS with momentum decreased
NRMSE monotonically with relaxation factors less than 0.7.
With 8 or 16 subsets, NRMSEs diverge with high relaxation
factors [see arrows in Figs. 13(c) and 13(d)]. Figure 13(d)
shows NRMSE comparison for various b with 16 subsets and
relaxation factor of 0.7. In our observations, the proper

hyperparameter and relaxation factor for 16 subsets were
b = 0.05 and tc ¼ 0:5, respectively. Similarly, the proper
parameters for eight subsets were b = 0.03 and tc ¼ 0:5.
The results indicated that higher b is required for higher
relaxation factors to enable the convergence, however, differ-
ent bs converge to different solutions.

4.C. Execution time

In our iterative algorithms, the most time-consuming oper-
ations are forward and backward projectors. Table III com-
pares the computing time using quad-core CPU with
3.5 GHz, 48-core CPU server with 2.4 GHz and GPU
(Geforce GTX 1080, Nvidia). Here, GE SIGNA TOF data
without subset was used. For implementation, we used
OpenMP for CPU and CUDA for GPU, specifically, 4-cores
with 3.5 GHz of a personal computer, 48-cores with
2.4 GHz of a cluster server and Nvidia Geforce GTX 1080
were compared. We observed that the overall acceleration is
about 809.

We also compared computing time (s) of OS-EM, OS-
NUSQS, and OS-NUSQS with momentum, which indicates
one sub-iteration time of eight subsets including TOF forward
and backward projectors and quadratic penalty. We observed
that the OS-EM was 12% faster than the OS-NUSQS.

5. DISCUSSION

In Fig. 14(a), we observed variations of the NU factor
(u in Eq. (27) by iterations. In early iterations, high-inten-
sity regions have larger NU factors, indicating larger step
size. After reaching similar recovery ratios, we observed
that the step size in NU factor became more uniform,
which means NU updates yield uniform recovery in early
iterations. Figure 14(b) compares the Newton curvature
(€htið½Atx

ðnÞ(iÞ ), approximate curvature (1=maxð½Atx
ðnÞ(i; !Þ)

and optimal curvature in Eq. (10). Although the optimal
curvature is the fastest at early iterations, optimal curva-
ture requires additional computations when ½Atx

ðnÞ(i ¼ 0.
Because the NRMSE of optimal curvature became similar
to NRMSEs of others after 10 iterations and the approxi-
mate curvature can be directly calculated by re-projected
values in each iteration, we used the approximate

FIG. 14. (a)(i) Ground truth image and nonuniform factors at iterations of (ii) 10 and (iii) 24, and (b) comparison of NRMSEs of the reconstructed images over

time using the Newton, approximate, and optimal curvatures. b = 0.2 was used in simulation. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE III. Computing time (s) of TOF forward and backward projectors

without subsets using CPU and GPU. Specifically, 4-cores with 3.5 GHz of a

personal computer, 48-cores with 2.4 GHz of a cluster server and Nvidia

Geforce GTX 1080 for GPU implementation were compared. Computing

time (s) of OS-EM, OS-NUSQS, and OS-NUSQS with momentum were

compared. GPU time indicates one sub-iteration (one of eight subsets) com-

puting time including TOF forward and backward projectors and quadratic

penalty.

Forward Backward Acceleration

CPU(4) 1920 2063 1.09

CPU(48) 368 480 5.09

GPU 25 25.1 80.09

OS-EM OS-NUSQS OS-NUSQS + mom

GPU 14.1 15.8 16.0
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curvature in this paper. Note that although the approxi-
mate curvature does not hold inequalities of Eqs. (6),
(12), (13) and (23) in general, we can reduce the comput-
ing time (13% in our implementation).

In Figs. 7 and 11, the uniformity of recovery ratio was
achieved at different number of iterations and we observed
that the fast reaching of uniformity depends on the distance
between the initial value and the converged value in recon-
struction. We used 1 as an initial value for all voxels in both
simulated data and real data in which the initial value of the
cold region in the simulation was closer to the converged
value and thus the uniformity was achieved faster. To investi-
gate the impact of the initial value, particularly when it is
very far from the solution, we compared recovery ratios of
OS-EM and OS-NUSQS using different initial values in
Fig. 15. We used a back-projected image as an initial image
and same ROIs in Fig. 11 to compute the recovery ratio. Fig-
ure 15(a) showed that the cold region of OS-EM converged
slower than hot regions. The uniformity of recovery ratios of
OS-NUSQS was achieved around 15 iterations in Fig. 15(b)
compared to 24 iterations in Fig. 11(c), which demonstrated
that the fast reaching of uniformity depends on the initial
value.

The momentum method can speed up convergence in early
iterations particularly when it is combined with the ordered
subset approach. However, because the gradient at each itera-
tion is updated from a subset of whole data, the algorithm
can diverge. Figure 13 demonstrated that the relaxation factor
can achieve relatively faster convergence speed compared to
the non-momentum method. The selection of the relaxation
factor is still an open question. We empirically selected the
optimal relaxation factor and the number of subsets, and will
further investigate the relationship of optimal parameters and
noise.

6. CONCLUSIONS

In conclusion, we derived an OS-NUSQS) with the Nes-
terov’s momentum method for TOF PET reconstruction. The
spatially NU step size in the proposed method provided uni-
form recovery ratios of different SNR regions. The computer
simulation and clinical example showed that the proposed

method converged uniformly regardless of hot and cold ROIs,
and the contrast and SSIM were higher at early iterations
using the proposed method than using the conventional OS-
EM and OS-SQS methods. Furthermore, our GPU imple-
mentation was able to achieve 809 acceleration compared to
the implementation using 4-core CPU.
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