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PWLS-ULTRA: An Efficient Clustering and
Learning-Based Approach for Low-Dose

3D CT Image Reconstruction
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and Jeffrey A. Fessler , Fellow, IEEE

Abstract— The development of computed tomography
(CT) image reconstruction methods that significantly
reduce patient radiation exposure, while maintaining
high image quality is an important area of research
in low-dose CT imaging. We propose a new penalized
weighted least squares (PWLS) reconstruction method
that exploits regularization based on an efficient Union
of Learned TRAnsforms (PWLS-ULTRA). The union of
square transforms is pre-learned from numerous image
patches extracted from a dataset of CT images or volumes.
The proposed PWLS-based cost function is optimized
by alternating between a CT image reconstruction step,
and a sparse coding and clustering step. The CT image
reconstruction step is accelerated by a relaxed linearized
augmented Lagrangian method with ordered-subsets
that reduces the number of forward and back projections.
Simulations with 2-D and 3-D axial CT scans of the extended
cardiac-torso phantom and 3-D helical chest and abdomen
scans show that for both normal-dose and low-dose levels,
the proposed method significantly improves the quality of
reconstructed images compared to PWLS reconstruction
with a nonadaptive edge-preserving regularizer. PWLS
with regularization based on a union of learned transforms
leads to better image reconstructions than using a single
learned square transform. We also incorporate patch-based
weights in PWLS-ULTRA that enhance image quality and
help improve image resolution uniformity. The proposed
approach achieves comparable or better image quality com-
pared to learned overcomplete synthesis dictionaries, but
importantly, is much faster (computationally more efficient).
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I. INTRODUCTION

T
HERE is a growing interest in techniques for computed

tomography (CT) image reconstruction that significantly

reduce patient radiation exposure while maintaining high

image quality. Dictionary learning based techniques have been

proposed for low-dose CT (LDCT) imaging, but often involve

expensive computation. This paper proposes a new penalized

weighted least aquares (PWLS) reconstruction approach that

exploits regularization based on an efficient Union of Learned

TRAnsforms (PWLS-ULTRA). In the following, we briefly

review recent methods for LDCT image reconstruction and

summarize the contributions of this work.

A. Background

Various methods have been proposed for image recon-

struction in LDCT imaging. When radiation dose is reduced,

analytical filtered back-projection (FBP) image reconstruction

methods (e.g., the Feldkamp-Davis-Kress or FDK method [1])

typically provide unacceptable image quality. For exam-

ple, streak artifacts increase severely as radiation dose

is reduced [2]. Model-based image reconstruction (MBIR)

methods, aka statistical image reconstruction (SIR) meth-

ods, can provide high-quality reconstructions from low-dose

scans [3], [4]. These methods iteratively find the image based

on the system (physical) model, the measurement statistical

model, and (assumed) prior information about the unknown

object. A typical MBIR method for CT uses a penalized

weighted-least squares (PWLS) cost function with a statis-

tically weighted quadratic data-fidelity term and a penalty

term (regularizer) modeling prior knowledge of the underlying

unknown object [5]–[7].

Many current LDCT reconstruction methods use simple

prior information. Adopting better image priors in MBIR

could substantially improve image reconstruction quality for

LDCT scans. The prior image constrained compressed sens-

ing (PICCS) method was first proposed to enable accurate
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reconstruction of CT images from highly undersampled pro-

jection data sets [8]–[10]. Since a normal-dose CT image

scanned previously may be available in some clinical appli-

cations, dose reduction using prior image constrained com-

pressed sensing (DR-PICCS) was proposed to reduce image

noise [11]. Ma et al. [12] proposed the previous normal-dose

scan induced nonlocal means (ndiNLM) method to utilize

the normal-dose image to enable low dose CT image recon-

struction. The ndiNLM method expects that the normal-dose

and the current low-dose scans are spatially aligned, and

determines optimal local weights from the normal-dose image

to improve the NLM weighted average [12], [13]. The PICCS

and ndiNLM class of methods incorporate prior information

from corresponding normal-dose CT images, assumed avail-

able. We propose a method that differs from these approaches

in that it does not require prior normal-dose images of the

same patient or object, and can rather learn general CT image

features or filters from diverse image sets and datasets.

Extracting prior information from big datasets of CT images

has great potential to enable MBIR methods to produce signif-

icantly improved reconstructions from LDCT measurements.

Images are often sparse in certain transform domains (such

as wavelets, discrete cosine transform, and discrete gradient)

or dictionaries. The synthesis dictionary model approximates

a signal by a linear combination of a few columns or atoms

of a pre-specified dictionary [14]. The choice of the synthesis

dictionary is critical for the success of sparse representation

modeling and other applications [15]. The data-driven adap-

tation of dictionaries, or dictionary learning [16]–[20] yields

dictionaries with better sparsifying capability for specific

classes of signals than analytic dictionaries based on mathe-

matical models. Such learned dictionaries have been widely

exploited in various applications in recent years, including

super-resolution imaging, image or video denoising, classifica-

tion, and medical image reconstruction [21]–[27]. Some recent

works also studied parametrized models such as adaptive tight

frames [28], multivariate Gaussian mixture distributions [29],

and shape dictionaries [30].

Recently, Xu et al. [31] applied dictionary learning to

2D LDCT image reconstruction by proposing a PWLS

approach with an overcomplete synthesis dictionary-based reg-

ularizer. Their method uses either a global dictionary trained

from 2D image patches extracted from a normal-dose FBP

image, or an adaptive dictionary jointly estimated with the low-

dose image. The trained global dictionary worked better than

the adaptively estimated dictionary for highly limited (e.g.,

with very few views, or ultra-low dose) data. Several works

proposed 3D CT reconstruction by learning either a 3D dictio-

nary from 3D image patches, or learning three 2D dictionaries

(dubbed 2.5D) from image patches extracted from slices along

the x-y, y-z, and x-z directions, respectively [32], [33].

Dictionary learning methods typically alternate between

estimating the sparse coefficients of training signals or image

patches (sparse coding step) and updating the dictionary

(dictionary update step). The sparse coding step in both

synthesis dictionary learning [18], [21] and analysis dictionary

learning [34] is NP-Hard (Non-deterministic Polynomial-time

hard) in general, and algorithms such as K-SVD [18], [21]

involve relatively expensive computations for sparse coding.

A recent generalized analysis dictionary learning approach

called sparsifying transform learning [35], [36] more effi-

ciently learns a transform model for signals. The transform

model assumes that a signal x ∈ R
n is approximately spar-

sifiable using a transform � ∈ R
m×n , i.e., �x = z + e

where z ∈ R
m is sparse in some sense, and e ∈ R

m

denotes the modeling error in the transform domain. Trans-

form learning methods typically alternate between sparse

approximation of training signals in the transform domain

(sparse coding step) and updating the transform operator

(transform update step). In contrast to dictionary learn-

ing methods, the sparse coding step in transform learning

involves simple thresholding [35], [36]. Transform learning

methods have been recently demonstrated to work well in

applications [37]–[40]. Pfister and Bresler [41]–[43] showed

the promise of PWLS reconstruction with adaptive square

transform-based regularization, wherein they jointly esti-

mated the square transform (ST) and the image. Pre-training

a (global) transform from a large dataset would save computa-

tions during CT image reconstruction, and may also be well-

suited for highly limited data (evidenced earlier for dictionary

learning in [31]).

Wen et al. [44] recently extended the single ST learning

method to learning a union of square transforms model,

also referred to as an overcomplete transform with block

cosparsity (OCTOBOS). This transform learning approach

jointly adapts a collection (or union) of K square transforms

and clusters the signals or image patches into K groups.

Each (learned) group of signals is well-matched to a corre-

sponding transform in the collection. Such a learned union of

transforms outperforms the ST model in applications such as

image denoising [44].

B. Contributions

Incorporating the efficient square transform (ST) model,

we propose a new PWLS approach for LDCT reconstruction

that exploits regularization based on a pre-learned square

transform (PWLS-ST). We also extend this approach to a

more general PWLS scheme involving a Union of Learned

TRAnsforms (PWLS-ULTRA). The transform models are pre-

learned from numerous patches extracted from a dataset of

CT images or volumes. We also incorporate patch-based

weights in the proposed regularizer to help improve image

resolution or noise uniformity. We propose an efficient itera-

tive algorithm for the PWLS costs that alternates between a

sparse coding and clustering step (which reduces to a sparse

coding step for PWLS-ST) that uses closed-form solutions,

and an iterative image update step. There are several iterative

algorithms that could be used for the image update step such

as the preconditioned conjugate gradient (PCG) method [45],

the separable quadratic surrogate method with ordered-

subsets based acceleration (OS-SQS) [46], iterative coordinate

descent (ICD) [47], splitting-based algorithms [48], and the

optimal gradient method (OGM) [49]. We chose the relaxed

linearized augmented Lagrangian method with ordered-subsets

(relaxed OS-LALM) [50] for the image update step.
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The proposed PWLS-ULTRA approach clusters the voxels

into different groups. These groups often capture features

such as bones, specific soft tissues, edges, etc. Experiments

with 2D and 3D axial CT scans of the extended cardiac-

torso (XCAT) phantom and 3D helical chest and abdomen

scans show that for both normal-dose and low-dose levels,

the proposed methods significantly improve the quality of

reconstructed images compared to conventional reconstruction

methods such as filtered back-projection or PWLS reconstruc-

tion with a nonadaptive edge-preserving regularizer (PWLS-

EP). The union of learned transforms provides better image

reconstruction quality than using a single learned square

transform. The proposed PWLS-ULTRA achieves compara-

ble or better image quality compared to learned overcomplete

synthesis dictionaries, but importantly, is much faster (compu-

tationally more efficient).

We presented a brief study of PWLS-ST for low-dose

fan-beam (2D) CT image reconstruction in [51]. This paper

investigates the more general PWLS-ULTRA framework, and

presents experimental results illustrating the properties of the

PWLS-ST and PWLS-ULTRA algorithms and demonstrating

their performance for low-dose fan-beam, cone-beam (3D) and

helical (3D) CT.

C. Organization

Section II describes the formulations for pre-learning a

square transform or a union of transforms, and the formula-

tions for PWLS reconstruction with regularization based on

learned sparsifying transforms. Section III derives efficient

optimization algorithms for the proposed problems. Section IV

presents experimental results illustrating properties of the

proposed algorithms and demonstrating their promising perfor-

mance for LDCT reconstruction compared to numerous recent

methods. Section V presents our conclusions and mentions

areas of future work.

II. PROBLEM FORMULATIONS FOR TRANSFORM

LEARNING AND IMAGE RECONSTRUCTION

A. PWLS-ST Formulation for LDCT Reconstruction

Given N ′ vectorized image patches (2D or 3D) extracted

from a dataset of CT images or volumes, we learn a square

transform � ∈ R
l×l by solving the following (training)

optimization problem:

min
�,Z

‖�X − Z‖2
F + λQ(�) +

N ′
∑

i=1

η2‖Zi‖0 (P0)

where l is the number of pixels in each patch, λ = λ0‖X‖2
F

(λ0 > 0 is a constant) and η > 0 are scalar parameters,

and {Zi }
N ′

i=1 denote the sparse codes of the training signals

(vectorized patches) {Xi }
N ′

i=1. Matrices X ∈ R
l×N ′

and Z ∈

R
l×N ′

have the training signals and sparse codes respectively,

as their columns. The ℓ0 “norm” counts the number of

non-zeros in a vector. The term ‖�X − Z‖2
F is called the

sparsification error and measures the deviation of the signals

in the transform domain from their sparse approximations.

Fig. 1. Behavior of PWLS-ST: Pre-learned sparsifying transform � with
(a) η = 50 and (b) η = 100. The rows of the 512 × 512 matrix � are
reshaped into 8 × 8 × 8 (3D) patches and the first 8 × 8 slices of 256 of
these 3D patches are displayed for simplicity.

Regularizer Q(�) � ‖�‖2
F − log | det �| prevents trivial

solutions and controls the condition number of � [36].

After a transform � is learned, we reconstruct an (vector-

ized) image or volume x ∈ R
Np from noisy sinogram data

y ∈ R
Nd by solving the following optimization problem [51]:

min
x�0

1

2
‖y − Ax‖2

W + βR(x) (P1)

where W = diag{wi } ∈ R
Nd ×Nd is a diagonal weighting

matrix with elements being the estimated inverse variance

of yi [6], A ∈ R
Nd ×Np is the system matrix of a CT scan,

the parameter β > 0 controls the noise and resolution trade-

off, and the regularizer R(x) based on � is defined as

R(x) � min
{z j }

Ñ
∑

j=1

τ j

{

‖�P j x − z j‖
2
2 + γ 2‖z j ‖0

}

(1)

where Ñ is the number of image patches, the operator

P j ∈ R
l×Np extracts the j th patch of l voxels of x as P j x,

and vector z j ∈ R
l denotes the transform-sparse representation

of P j x. The regularizer includes a sparsification error term and

a ℓ0 “norm”-based sparsity penalty with weight γ 2 (γ > 0).

We also include patch-based weights {τ j } in (1) to encour-

age uniform spatial resolution or uniform noise in the recon-

structed image [52] as follows:

τ j � ‖P j κ‖1/ l (2)

with κ (of same size as x) whose elements κ j are defined

in terms of the entries of A (denoted ai j ) and W as κ j �
√

∑Nd

i=1 ai j wi/
∑Nd

i=1 ai j [53, eq. (39)]. While (2) uses the ℓ1

norm, corresponding to the mean value of P jκ , to define τ j ,

we have observed that other alternative norms also work well

in practice for LDCT reconstruction.

Fig. 1 shows example transforms (rows of � are reshaped

as 8 × 8 × 8 patches and the first 8 × 8 slices of 256 such

3D patches are shown) learned from 8 × 8 × 8 patches of

an XCAT phantom [54] volume. The transform learned with

η = 100 in (P0) has more oriented features whereas the

transform learned with η = 50 shows more gradient (or finite-

difference) type features (pointed by the green arrows). This

behavior suggests that a single ST may not be rich enough to
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capture the diverse features, edges, and other properties of CT

volumes. Therefore, next we consider the extension of the ST

approach to a rich union of learned transforms scheme.

B. Learning a Union of Sparsifying Transforms

To learn a union of sparsifying transforms {�k}
K
k=1 from N ′

(vectorized) patches, we solve

min
{�k ,Zi ,Ck}

K
∑

k=1

∑

i∈Ck

{

‖�kXi − Zi‖
2
2 + η2‖Zi‖0

}

+

K
∑

k=1

λk Q(�k) s.t. {Ck} ∈ G. (P2)

This formulation groups the training signals {Xi } into

K classes according to the transform they best match,

and Ck denotes the set of indices of signals matched to

the kth class. Set G denotes all possible partitionings of
{

1, 2, .., N ′
}

into K disjoint subsets. We use K regularizers

Q(�k) � ‖�k‖
2
F − log | det �k |, 1 ≤ k ≤ K , to control the

properties of the transforms. We set these regularizer weights

as λk = λ0‖XCk ‖
2
F [44], where λ0 > 0 is a constant and

XCk is a matrix whose columns are the training signals in the

kth cluster. This choice of {λk} together with η = η0‖X‖F for

η0 > 0 allows the terms in (P2) to scale appropriately with

the data. Problem (P2) learns a collection of transforms and

a clustering for the image patches, together with the patches’

sparse coefficients {Zi }. The next section uses these transforms

for image reconstruction.

C. LDCT Reconstruction With ULTRA Regularization

We propose a PWLS-ULTRA framework, where we

solve (P1) but with the regularizer R(x) defined based on a

union of sparsifying transforms as

R(x) � min
{z j ,Ck}

K
∑

k=1

{

∑

j∈Ck

τ j

{

‖�kP j x − z j‖
2
2 + γ 2‖z j‖0

}

}

s.t. {Ck} ∈ G. (3)

This regularizer measures the sparsification error of each patch

using its best-matched transform. Using (3), (P1) estimates the

image x, the sparse coefficients of image patches {z j }, and the

cluster assignments {Ck} from LDCT sinogram data y.

III. ALGORITHMS AND PROPERTIES

The square transform learning and the PWLS-ST formu-

lations are special cases (corresponding to K = 1) of the

ULTRA-based formulations. Therefore, this section describes

algorithms for solving (P1) with regularizer (3) and (P2).

A. Algorithm for Training a Union of Transforms

We adopt an alternating minimization algorithm for (P2)

that alternates between a transform update step (solving for

{�k}) and a sparse coding and clustering step (solving for

{Zi , Ck}). These steps are described next.

1) Transform Update Step: With {Zi , Ck} fixed, we solve the

following optimization problem for {�k} [44]:

min
{�k}

K
∑

k=1

∑

i∈Ck

‖�kXi − Zi‖
2
2 +

K
∑

k=1

λk Q(�k). (4)

Since the objective is in summation form, the above prob-

lem separates into K independent single transform learning

problems that we solve in parallel. The kth such optimization

problem is as follows:

min
�k

∑

i∈Ck

‖�kXi − Zi‖
2
2 + λk Q(�k). (5)

We update the transform �k following prior work [36], [44].

Let Q�RT denote the full singular value decomposition of

L−1XCk ZT
Ck

, with LLT � XCk XT
Ck

+ λkI (i.e., L is a matrix

square root). Then, the minimizer of (5) is

�̂k = 0.5R
(

� + (�2 + 2λkI)
1
2
)

QT L−1. (6)

2) Sparse Coding and Clustering Step: With {�k} fixed,

we solve the following sub-problem for {Zi , Ck}:

min
{Zi ,Ck}

K
∑

k=1

∑

i∈Ck

{

‖�kXi − Zi‖
2
2 + η2‖Zi‖0 + λ0‖Xi‖

2
2 Q(�k)

}

(7)

For given cluster memberships, the optimal sparse codes are

Zi = Hη(�kXi ),∀i ∈ Ck , where the hard-thresholding

operator Hη(·) zeros out vector entries with magnitude less

than η. Using this result, it follows that the optimal cluster

membership for each Xi in (7) is k̂i = arg min
1≤k≤K

{

‖�kXi −

Hη(�kXi )‖
2
2 + η2‖Hη(�kXi )‖0 + λ0‖Xi‖

2
2 Q(�k)

}

, and the

corresponding optimal sparse code is Ẑi = Hη(�k̂i
Xi ).

B. PWLS-ULTRA Image Reconstruction Algorithm

We propose an alternating algorithm for the PWLS-ULTRA

formulation (i.e., (P1) with regularizer (3)) that alternates

between updating x (image update step), and {z j , Ck} (sparse

coding and clustering step).

1) Image Update Step: With {z j , Ck} fixed, (P1) for

PWLS-ULTRA reduces to the following weighted least

squares problem:

min
x�0

1

2
‖y − Ax‖2

W + R2(x) (8)

where R2(x) � β
∑K

k=1

∑

j∈Ck
τ j‖�kP j x − z j‖

2
2.

We solve (8) using the recent relaxed OS-LALM [50],

whose iterations are shown in Algorithm 1. Here, for each

iteration n, we further iterate over 1 ≤ m ≤ M corresponding

to M ordered subsets. The matrices Am , Wm , and the vector

ym in Algorithm 1 are sub-matrices of A, W, and sub-vector

of y, respectively, for the mth subset. Matrix DA � AT WA

is a diagonal majorizing matrix of AT WA; specifically we

use [46]

DA � diag{AT WA1} � AT WA. (9)
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Algorithm 1 PWLS-ULTRA Algorithm

Input: initial image x̃(0), pre-learned {�k}, threshold γ ,

α = 1.999, DA in (9), DR in (11), number of outer iterations

T , number of inner iterations N , and number of subsets M .

Output: reconstructed image x̃(T ), cluster indices {C̃
(T )
k }.

for t = 0, 1, 2, · · · , T − 1 do

1) Image Update: {z̃
(t)
j } and {C̃

(t)
k } fixed,

Initialization: ρ = 1, x(0) = x̃(t), g(0) = ζ (0) =

MAT
M WM (AM x(0) − yM) and h(0) = DAx(0) − ζ (0).

for n = 0, 1, 2, · · · , N − 1 do

for m = 0, 1, 2, · · · , M − 1 do r = nM + m
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

s(r+1) = ρ(DAx(r) − h(r)) + (1 − ρ)g(r)

x(r+1) = [x(r) − (ρDA + DR)−1(s(r+1) + ∇R2(x
(r)))]+

ζ (r+1) � MAT
mWm(Amx(r+1) − ym)

g(r+1) =
ρ

ρ + 1
(αζ (r+1) + (1 − α)g(r)) + 1

ρ+1
g(r)

h(r+1) = α(DAx(r+1) − ζ (r+1)) + (1 − α)h(r)

decreasing ρ using (10).

end for

end for

x̃(t+1) = x(N M).

2) Sparse Coding and Clustering: with x̃(t+1) fixed,

for each 1 ≤ j ≤ N , obtain k̂ j using (13). Then z̃
(t+1)
j =

Hγ (�
k̂ j

P j x̃
(t+1)), and update C̃

(t+1)

k̂ j
.

end for

The gradient ∇R2(x) = 2β
∑K

k=1

∑

j∈Ck
τ j P

T
j �T

k (�kP j x −

z j ), the (over-)relaxation parameter α ∈ [1, 2), and the

parameter ρ > 0 decreases gradually with iteration [50],

ρr (α) =

⎧

⎨

⎩

1, r = 0

π

α(r + 1)

√

1 −
( π

2α(r + 1)

)2
, otherwise,

(10)

where r indexes the total number of n and m iterations. Lastly,

DR in Algorithm 1 is a diagonal majorizing matrix of the

Hessian of the regularizer R2(x), specifically:

DR � 2β

{

max
k

λmax(�
T
k �k)

} K
∑

k=1

∑

j∈Ck

τ j P
T
j P j

� 2β

K
∑

k=1

∑

j∈Ck

τ j P
T
j �T

k �kP j = ∇2R2(x). (11)

Since this DR is independent of x, {z j }, and {Ck}, we precom-

pute it using patch-based operations [25] (cf. the supplement1

for details) prior to iterating.

2) Sparse Coding and Clustering Step: With x fixed,

we solve the following sub-problem to determine the optimal

sparse codes and cluster assignments for each patch:

min
{z j },{Ck}∈G

K
∑

k=1

{

∑

j∈Ck

τ j

{

‖�kP j x − z j‖
2
2 + γ 2‖z j ‖0

}

}

. (12)

1Supplementary material is available in the supplementary files/multimedia
tab.

For each patch P j x, with (optimized) z j = Hγ (�kP j x),

the optimal cluster assignment is computed as follows:

k̂ j = arg min
1≤k≤K

‖�kP j x − Hγ (�kP j x)‖2
2 + γ 2‖Hγ (�kP j x)‖0

(13)

Minimizing over k above finds the best-matched transform.

Then, the optimal sparse codes are ẑ j = Hγ (�
k̂ j

P j x).

3) Overall Algorithm: The proposed method for the

PWLS-ULTRA problem is shown in Algorithm 1. The algo-

rithm for the PWLS-ST formulation is obtained by setting

K = 1 and skipping the clustering procedure in the sparse

coding and clustering step. Algorithm 1 uses an initial image

estimate and the union of pre-learned transforms {�k}. It then

alternates between the image update, and sparse coding and

clustering steps until a convergence criterion (such as ‖x̃(t+1)−

x̃(t)‖2 < ǫ for some small ǫ > 0) is satisfied, or alternatively

until some maximum inner/outer iteration counts are reached.

4) Computational Cost: Each outer iteration of the proposed

Algorithm 1 involves the image update and the sparse coding

and clustering steps. The cost of the sparse coding and cluster-

ing step scales as O(l2 N) and is dominated by matrix-vector

products. Importantly, unlike prior dictionary learning-based

works [31], where the computations for the sparse coding

step (involving orthogonal matching pursuit (OMP) [55]) can

scale worse as O(l3 N) (assuming synthesis sparsity levels

of patches ∝ l), the exact sparse coding and clustering in

PWLS-ULTRA is cheaper, especially for large patch sizes.

Similar to prior works [31], the computations in the image

update step are dominated by the forward and back projection

operations. Section IV compares the proposed method to

synthesis dictionary learning-based approaches, and shows that

our transform approach runs much faster.

IV. EXPERIMENTAL RESULTS

This section presents experimental results illustrating prop-

erties of the proposed algorithms and demonstrating their

promising performance for LDCT reconstruction compared to

numerous recent methods. We include additional experimental

results in the supplement. A link to software to reproduce

our results is provided at http://web.eecs.umich.edu/~fessler/

irt/reproduce/.

A. Framework and Data

We evaluate the proposed PWLS-ULTRA and PWLS-ST

(i.e., with K = 1) methods for 2D fan-beam and 3D axial

cone-beam CT reconstruction of the XCAT phantom [54].

We also apply the proposed methods to helical CT clinical

data of the chest and abdomen.

Section IV-B discusses the role and intuition of each para-

meter in the proposed methods. Section IV-C illustrates the

properties of the transform learning and image reconstruction

methods. Sections IV-D and IV-E show results for 2D fan-

beam and 3D axial cone-beam CT, respectively, for the XCAT

phantom data. We used the “Poisson + Gaussian” model,

i.e., k̃ Poisson{I0 exp(−[Ax]i)} + Normal{0, σ 2} to simulate

CT measurements of the XCAT phantom, where I0 is the
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incident X-ray intensity incorporating X-ray source illumi-

nation and the detector gain, the parameter k̃ = 1 models

the conversion gain from X-ray photons to electrons, and

σ 2 = 52 is the variance of electronic noise [56]. We compare

the image reconstruction quality obtained with PWLS-ST and

PWLS-ULTRA with those of:

• FBP: conventional FBP method with a Hanning window.

• PWLS-EP: PWLS reconstruction with the edge-

preserving regularizer R(x) =
∑Np

j=1

∑

k∈N j
κ j κkϕ

(x j − xk), where N j is the size of the neighborhood,

κ j and κk are the parameters encouraging uniform

noise [53], and ϕ(t) � δ2(|t/δ| − log(1 + |t/δ|)).

We optimized this PWLS cost function using the relaxed

OS-LALM [50].

• PWLS-DL: PWLS reconstruction with a learned over-

complete synthesis dictionary based regularization, whose

image update step is optimized by relaxed OS-LALM

instead of the SQS-OS used in [31].

Section IV-F reports the reconstructions from helical CT

clinical data of the chest and abdomen (low-dose). Finally,

Section IV-G compares the performance of PWLS-ULTRA

to an oracle scheme that uses cluster memberships estimated

directly from the reference or ground truth images.

To compare various methods quantitatively for the case of

the XCAT phantom, we calculated the Root Mean Square

Error (RMSE) and Structural Similarity Index Measure-

ment (SSIM) [57] of the reconstructions in a region of inter-

est (ROI). RMSE in Hounsfield units 2 (HU) is defined

as RMSE =

√

∑Np,ROI

i=1 (x̂i − x∗
i )2/Np,ROI, where x∗ is the

ground truth image and Np,ROI is the number of pixels (voxels)

in the ROI. Unless otherwise noted, we tuned the parameters

of various methods for each experiment to achieve good

RMSE and SSIM. For the clinical chest and low-dose abdomen

data, the reconstructions were evaluated visually using voxel

profiles. We display all reconstructions in this section using a

display window [800, 1200] HU, unless otherwise noted.

In the 2D fan-beam CT experiments, we pre-learned square

transforms and union of square transforms from 8 × 8 over-

lapping image patches extracted from five 512 × 512 XCAT

phantom slices, with a patch stride 1 × 1. We ran 1000

iterations of the alternating minimization transform learning

algorithm in Section III-A (or in [36] when K = 1) to

ensure convergence, and used λ0 = 31. The transforms were

initialized with the 2D DCT, and k-means clustering (of

patches) was used to initialize the clusters for learning a union

of transforms. We simulated a 2D fan-beam CT scan using

an 840 × 840 XCAT phantom slice (air cropped) that differs

from the training slices, and �x = �y = 0.4883 mm. Noisy

sinograms of size 888 × 984 were numerically simulated

with GE LightSpeed fan-beam geometry corresponding to a

monoenergetic source with 1 × 104 and 5 × 103 incident

photons per ray and no scatter, respectively. We reconstructed

a 420 × 420 image with a coarser grid, where �x = �y =

0.9766 mm. The ROI here was a circular (around center)

region containing all the phantom tissues.

2Modified Hounsfield units, where air is 0 HU and water is 1000 HU.

In the 3D cone-beam CT reconstruction experiments,

we pre-learned STs and union of square transforms from

8×8×8 patches (N ′ ≈ 1×106) extracted from a 420×420×54

XCAT phantom (air cropped) with a patch stride 2 × 2 × 2.

We set λ0 large enough, e.g., λ0 = 31, to ensure well-

conditioned learned transforms. We ran the alternating min-

imization transform learning algorithms for 1000 iterations.

The transforms were initialized with the 3D DCT, and a ran-

dom initialization was used for the clusters (because k-means

produced some empty clusters for large K ) for learning a union

of square transforms. We simulated an axial cone-beam CT

scan using an 840×840×96 XCAT phantom with �x = �y =

0.4883 mm and �z = 0.625 mm. We generated sinograms of

size 888×64×984 using GE LightSpeed cone-beam geometry

corresponding to a monoenergetic source with 1 × 104 and

5 × 103 incident photons per ray and no scatter, respectively.

We reconstructed a 420 × 420 × 96 volume with a coarser

grid, where �x = �y = 0.9766 mm and �z = 0.625 mm.

For PWLS-ST and PWLS-ULTRA reconstructions, the patch

size was 8 × 8 × 8 with a patch stride 2 × 2 × 2 (Ñ ≈ 2 × 106

patches). The ROI for the 3D case consisted of the central

64 of 96 axial slices and a circular (around center) region in

each slice (cylinder in 3D). The diameter of the circle was

420 pixels, which is the width of each slice.

For the clinical chest data, we reconstructed a 420 × 420 ×

222 image volume (air cropped) with patch size 8 ×8 ×8 and

patch stride 3 × 3 × 3 (Ñ ≈ 1.5 × 106 patches), where �x =

�y = 1.1667 mm and �z = 0.625 mm, from a helical CT

scan. The size of the sinogram was 888×64×3611 and pitch

was 1.0 (about 3.7 rotations with rotation time 0.4 seconds).

The tube current and tube voltage of the X-ray source were

750 mA and 120 kVp, respectively. To further evaluate the

proposed method, we reconstructed 512×512×200 abdomen

region volumes with patch size 8 × 8 × 8, patch stride

3 × 3 × 3, �x = �y = 1 mm and �z = 0.625 mm, from

low-dose helical CT patient scans. The size of the sinogram

was 888 × 64 × 2952 and pitch was 1.375 (3 rotations with

rotation time 0.8 seconds). The tube voltage was 120 kVp, and

the tube currents were 150 mA and 35 mA (scanned twice for

the same patient).

B. Parameter Selection

The {τ j } parameters are designed using the κ information

as per (2), so no additional tuning is needed. Since the trans-

forms are pre-learned once from a given dataset and used to

reconstruct new data, the parameters λ and η are tuned during

training. As mentioned in prior work [36], the parameter λ

controls the condition number and larger values of λ encourage

well-conditioned transforms that work well for image recon-

struction. The η parameter can be set to achieve low sparsity

(e.g., 5 − 10%) and a good trade-off with sparsification error

(the transform-domain residual in the training objective) for

training data. In our experiments, we learned transforms for

a couple different η values (training sparsities) and compared

their effectiveness in some test reconstructions before picking

the best learned model.

During reconstruction, mainly the parameters β and

γ (Section IV-C discusses about K ) need to be tuned.
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Fig. 2. RMSE and SSIM for PWLS-ULTRA for various choices of
number of clusters K (left), and the central slices along three directions
for the underlying volume in the cone-beam CT reconstruction experi-
ments (right).

These parameters are tuned to achieve a good trade-off

between image resolution and noise. For example, large values

of γ would achieve very low sparsities and reduce the noise

but potentially oversmooth the image. For a given learned

transform, we tuned β and γ together to achieve good RMSE

and SSIM of the reconstruction. Since the PWLS-ST and

PWLS-ULTRA formulations are quite similar, except for the

richer model and implicit clustering in the latter case, one

could tune β and γ for ST first, and use these optimized

values for ULTRA. In our experiments, we tuned parameters

separately for ST and ULTRA, and found the tuned values to

be typically similar.

Likewise, standard methods like the PWLS-EP method have

an overall regularization parameter β and an edge-preserving

parameter δ, so the number of parameters that one must tune

during reconstruction (after training is done) is similar for EP

and ULTRA. Similarly as for PWLS-ULTRA, the parameters

(maximum patch-wise sparsity level and error threshold for

sparse coding) for the prior PWLS-DL were selected carefully

(by sweeping over values in a grid) to achieve good RMSE

and SSIM in each case, for fair comparison.

C. Behavior of the Learning and PWLS-ULTRA
Algorithms

We evaluate the behavior of the PWLS-ULTRA method

(with τ j = 1 ∀ j ) for 3D cone-beam CT data with I0 = 1×104.

Fig. 2 shows the central slices along three directions for

the underlying (true) XCAT phantom volume. We reconstruct

the volume from low-dose CT measurements. Fig. 2 shows

the RMSE and SSIM of PWLS-ULTRA for various choices

of K , the number of clusters (patch size 8 × 8 × 8 and patch

stride 2 × 2 × 2). Rich models (large K ) produce better

reconstructions compared to using a single ST (K = 1).

For the piece-wise constant phantom, K = 5 clusters works

well enough, with only a small additional RMSE or SSIM

improvement observed for larger K . Larger values of K led

to sharper image edges.

Fig. 3 presents an example of the pixel-level clustering

in the central axial slice achieved with the PWLS-ULTRA

method for K = 5. Since PWLS-ULTRA clusters patches,

we cluster individual pixels using a majority vote among the

3D patches that overlap the pixel. Class 1 contains most of the

soft tissues; class 2 comprises most of the bones and blood

vessels; classes 3 and 4 have some high-contrast edges oriented

TABLE I

RMSE (HU) AND SSIM OF 2D (FAN-BEAM) IMAGE

RECONSTRUCTIONS WITH FBP, PWLS-EP,

PWLS-DL, PWLS-ST, PWLS-ULTRA

(K = 15), AND PWLS-ULTRA (K = 15)

WITH PATCH-BASED WEIGHTS (τj), FOR

TWO INCIDENT PHOTON INTENSITIES

along specific directions; and class 5 mainly includes low-

contrast edges. Since the clustering step (during both training

and reconstruction) is unsupervised, i.e., different anatomical

structures were not labeled manually, there are also a few

edges with high pixel intensities included in class 2. The

trained (3D) transforms (with η = 50) for each cluster are

also displayed in a similar manner as in Fig. 1. The transforms

show features (e.g., with specific orientations) that clearly

reflect the properties of the patches/tissues in each class.

D. 2D LDCT Reconstruction Results and Comparisons

1) Reconstruction Quality: We evaluate the performance

of various algorithms for image reconstruction from low-

dose fan-beam CT data. Initialized with FBP reconstructions,

we ran the PWLS-EP algorithm for 50 iterations using relaxed

OS-LALM with 24 subsets, and set δ = 10 (HU) and

the regularization parameter β = 216.0 and β = 216.5

for I0 = 1 × 104 and I0 = 5 × 103, respectively. For

PWLS-DL, PWLS-ST, and PWLS-ULTRA, we initialized

with the PWLS-EP reconstruction, and ran 200 outer iterations

with 2 iterations of the image update step with 4 ordered

subsets, i.e., N = 2, M = 4. For PWLS-DL, we pre-learned a

64×256 overcomplete dictionary from 8×8 patches extracted

from five XCAT phantom slices (same slices as used for

transform learning) with a patch stride 1×1, using a maximum

patch-wise sparsity level of 20 and an error threshold or tol-

erance for sparse coding of 10−1. During reconstruction with

PWLS-DL, we used a maximum sparsity level of 25, an error

tolerance of 55, and a regularization parameter of 7.0 × 104

and 6.0 ×104 for I0 = 1×104 and I0 = 5×103, respectively.

For PWLS-ST and PWLS-ULTRA (K = 15), we chose

(β, γ, η) for the two incident photon intensities as follows:
(

2.0 × 105, 20, 75
)

and
(

1.3 × 105, 20, 75
)

for PWLS-ST

(τ j = 1);
(

2.0 × 105, 20, 125
)

and
(

1.0 × 105, 25, 125
)

for

PWLS-ULTRA (τ j = 1), and
(

1.3 × 104, 22, 125
)

and
(

1.0 × 104, 25, 125
)

for PWLS-ULTRA with the weights τ j .

Table I lists the RMSE and SSIM values for reconstruc-

tions with FBP, PWLS-EP, PWLS-DL, PWLS-ST (τ j = 1),

PWLS-ULTRA (K = 15, τ j = 1), and PWLS-ULTRA

(K = 15) with the weights τ j . The adaptive PWLS meth-

ods outperform the conventional FBP and the non-adaptive

PWLS-EP. Both PWLS-DL that uses an overcomplete dictio-

nary and PWLS-ULTRA using a union of learned transforms
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Fig. 3. Pixel-level clustering results (top row) for the central axial slice of the PWLS-ULTRA (K = 5) reconstruction at I0 = 1 × 104. The pixels in
each class are displayed using the intensities in the reconstruction. The corresponding transforms (the first 8 × 8 slice of 8 × 8 × 8 atoms) are in the
bottom row.

TABLE II

RMSE (HU) IN THREE ROIS OF 2D (FAN-BEAM) IMAGE

RECONSTRUCTIONS WITH FBP, PWLS-EP, PWLS-DL,

PWLS-ST, PWLS-ULTRA (K = 15), AND

PWLS-ULTRA (K = 15) WITH PATCH-BASED

WEIGHTS (τj), FOR TWO INCIDENT

PHOTON INTENSITIES

lead to better reconstruction quality than PWLS-ST. Impor-

tantly, PWLS-ULTRA achieves comparable or better image

quality than PWLS-DL. Table II lists the RMSE values in

various ROIs (corresponding to specific tissues) for recon-

structions with the six methods. The three zoom-ins from left

to right in Fig. 4 correspond to ROI-1 to ROI-3 in Table II,

respectively. ULTRA achieve lower RMSE in most of these

ROIs compared to DL. Fig. 4 compares the reconstructions

for PWLS-DL and PWLS-ULTRA without the weights τ j

at I0 = 1 × 104. The ULTRA reconstruction shows fewer

artifacts and better clarity of bone and soft tissue edges in the

selected ROIs.

Fig. 4. Comparison of 2D reconstructions for PWLS-DL (left) and
PWLS-ULTRA (K = 15, right) at I0 = 1 × 104.

2) Runtimes: To compare the runtimes of various

data-driven methods, we ran PWLS-DL, PWLS-ST, and

PWLS-ULTRA (K = 15) (all initialized with the FBP

reconstruction) for 200 outer iterations with 2 iterations of the

image update step and 4 ordered subsets. For PWLS-ULTRA,

we performed the clustering step once every outer iteration.

While the total runtime for the 200 iterations (using a machine

with two 2.80 GHz 10-core Intel Xeon E5-2680 processors)

was 95 minutes for PWLS-DL, it was only 20 minutes for

PWLS-ST and 27 minutes for PWLS-ULTRA. We observed

that PWLS-DL and the proposed methods had similar

convergence rates, but the latter were much faster per iteration,

thus leading to much lower net runtimes. The runtime of

PWLS-DL was quite equally dominated by the sparse coding

(with OMP [55]) and image update steps, whereas for the

transform-based methods, the sparse coding and clustering

involving simple closed-form solutions and thresholding

operations required negligible runtime. The advantage in

runtime was achieved despite using an unoptimized Matlab

implementation of PWLS-ST and PWLS-ULTRA, and using

an efficient MEX/C implementation for sparse coding with

OMP [55] in PWLS-DL. PWLS-DL is far slower for 3D

reconstructions with large 3D patches. Hence, we focus our



1506 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 6, JUNE 2018

TABLE III

RMSE (HU) AND SSIM OF 3D (CONE-BEAM) RECONSTRUCTIONS

WITH FDK, PWLS-EP, PWLS-ST, PWLS-ULTRA (K = 15), AND

PWLS-ULTRA (K = 15) WITH PATCH-BASED WEIGHTS (τj),

FOR TWO INCIDENT PHOTON INTENSITIES

comparisons between the transform learning and dictionary

learning-based schemes for 2D LDCT reconstruction.

E. Low-Dose Cone-Beam CT Results and Comparisons

We evaluate the performance of various algorithms for

reconstructing CT volumes from simulated low-dose cone-

beam data. Initialized with FDK reconstructions, we ran

the PWLS-EP algorithm with edge-preserving parameter

δ = 10 (HU) and regularization parameter β = 214.5 for

50 iterations with 24 subsets for both I0 = 1 × 104 and I0 =

5 × 103. We evaluate PWLS-ST and PWLS-ULTRA without

the patch-based weights. We also evaluate PWLS-ULTRA with

such weights. Initialized with the PWLS-EP reconstruction,

we ran 2 iterations of the image update step for the proposed

methods with 4 subsets. We performed the clustering step

once every 20 outer iterations, which worked well and saved

computation. We chose (β, γ, η) for I0 = 1×104 and I0 = 5×

103 as follows:
(

2.0 × 105, 18, 50
)

and
(

1.5 × 105, 20, 50
)

for

PWLS-ST (τ j = 1); (2.5×105, 18, 75) and
(

1.5 × 105, 20, 75
)

for PWLS-ULTRA (τ j = 1); and
(

1.5 × 104, 18, 75
)

and
(

1.2 × 104, 20, 75
)

for PWLS-ULTRA with the weights τ j .

Table III lists the RMSE and SSIM values of the recon-

structions with FDK, PWLS-EP, PWLS-ST (τ j = 1),

PWLS-ULTRA (K = 15, τ j = 1), and PWLS-ULTRA

(K = 15) with patch-based weights τ j . Both PWLS-ST

and PWLS-ULTRA significantly improve the RMSE and

SSIM compared to FDK and the non-adaptive PWLS-EP.

Importantly, PWLS-ULTRA with a richer union of learned

transforms leads to better reconstructions than PWLS-ST with

a single learned ST. Incorporating the patch-based weights in

PWLS-ULTRA leads to further improvement in reconstruction

quality compared to PWLS-ULTRA with uniform weights

τ j = 1 for all patches. In particular, the patch-based weights

lead to improved resolution for soft tissues in 3D LDCT

reconstructions.

Fig. 5 shows the reconstructions and the corresponding

error (magnitudes) images (shown for the central axial,

sagittal, and coronal planes) for FDK, PWLS-EP, and

PWLS-ULTRA (K = 15) with the patch-based weights. Com-

pared to FDK and PWLS-EP, PWLS-ULTRA significantly

improves image quality by reducing noise and preserving

structural details (see zoom-ins). Fig. 6 shows the RMSE for

each axial slice in the PWLS-EP and PWLS-ULTRA (with the

weights τ j ) reconstructions. PWLS-ULTRA clearly provides

Fig. 5. Comparison of the reconstructions and corresponding error
images (shown for the central axial, sagittal, and coronal planes) for
FDK, PWLS-EP, and PWLS-ULTRA (K = 15) with patch-based weights
at I0 = 1×104. The unit of the display window of the error images is HU.

Fig. 6. RMSE of each axial slice in the PWLS-EP and PWLS-ULTRA
reconstructions for I0 = 1 × 104 (left) and I0 = 5 × 103 (right).

large improvements in RMSE for many slices, with greater

improvements near the central slice.

F. Results for Clinical Data: Chest and Abdomen Scans

We reconstructed the chest volume from helical CT data. For

PWLS-EP, we used the same parameter settings as used for

this data in prior work [50]. Initializing with the PWLS-EP

reconstruction, we ran the PWLS-ULTRA (K = 5) method

with the weights τ j for 78 outer iterations with 3 iterations of

the image update step and 4 subsets. We performed clustering
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Fig. 7. Chest reconstructions (shown for central axial plane) from helical CT data, with the FDK, PWLS-EP, and PWLS-ULTRA (K = 5) methods.

Fig. 8. Chest reconstructions (shown for the central axial, sagittal, and coronal planes in the 3D volume) for PWLS-EP with different regularization
strengths. (a) 1X. (b) 2X. (c) 0.5X. (d) 0.25X. 1X denotes the chosen regularization parameter in [50] that provides a good trade-off between image
resolution and noise reduction. The 2X, 0.5X, and 0.25X denote scaling of the parameter β over the 1X case.

Fig. 9. Chest reconstructions (shown for the central axial, sagittal, and coronal planes in the 3D volume) for PWLS-ULTRA (K = 5) with different
parameter combinations. (a) β = 2 × 105, γ = 25. (b) β = 2 × 105, γ = 20. (c) β = 3 × 105, γ = 20. (d) β = 3 × 105, γ = 25. Larger regularization
strength β would achieve more noise reduction but simultaneously lower spatial resolution, e.g., compare (a) and (d); larger values of γ would
achieve lower sparsities and more noise reduction but potentially oversmooth the image, e.g., compare (c) and (d).

once every 10 outer iterations. We chose β = 2 × 105 and

γ = 25 for PWLS-ULTRA to obtain good visual quality of the

reconstruction. We used the transforms learned from the XCAT

phantom volume with η = 100 to obtain reconstructions with

PWLS-ULTRA for the clinical chest CT data. The supplement

shows that transforms learned from the XCAT phantom pro-

vide similar visual reconstructions as transforms learned from

the PWLS-EP reconstruction of the chest data. This suggests

that the transform learning algorithm may extract quite general

and effective image features without requiring a very closely

matched training dataset, which is a key distinction from the

PICCS and ndiNLM-type methods [8]–[13].

Fig. 7 shows the reconstructions (shown for the cen-

tral axial plane in the 3D volume) for FDK (provided by

GE Healthcare), PWLS-EP (corresponds to Fig. 8(a)), and

PWLS-ULTRA with K = 5 (corresponds to Fig. 9(a)).

The PWLS-ULTRA reconstruction has lower artifacts and

noise. Moreover, the image features and edges are bet-

ter reconstructed by PWLS-ULTRA than by PWLS-EP

or FDK.
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Fig. 10. Abdomen reconstructions (shown for the central axial, sagittal, and coronal planes, and air cropped) from low-dose (120kVp, 150mA
and 35mA with rotation time 0.8 seconds) helical CT data (the same patient) for PWLS-EP and PWLS-ULTRA with patch-based weights (K = 5).
(a) 150 mA, PWLS-EP. (b) 150 mA, PWLS-ULTRA-{τj }. (c) 35 mA, PWLS-EP. (d) 35 mA, PWLS-ULTRA-{τj }.

Fig. 8 shows the reconstructions (shown for the central

axial, sagittal, and coronal planes in the 3D volume) for

PWLS-EP with different regularization strengths β, denoted

as a multiplicative factor of the parameter value in Fig. 7.

Fig. 9 shows the reconstructions for PWLS-ULTRA (with

patch-based weights) with different parameter combinations.

For the sagittal and coronal planes, we show the central

135 out of 222 axial slices. Larger regularization strengths

β would achieve more noise reduction but simultaneously

lower spatial resolution in PWLS-EP and PWLS-ULTRA,

e.g., compare Fig. 8 and Figs. 9(a) and (d). Larger values

of γ would achieve lower sparsities and more noise reduction

but potentially oversmooth the image, e.g., compare Figs. 9(c)

and (d). Small values of γ may introduce additional spurious

noise in the PWLS-ULTRA reconstruction (compare Figs. 9(a)

and (b)). Fig. 11 shows profiles of chest reconstructions

(plotted from the central axial slice) for the PWLS-EP and

PWLS-ULTRA methods. The profile locations are shown in

green lines in Fig. 7. Both PWLS-EP with regularization

strength 2X and PWLS-ULTRA (with patch-based weights) in

Fig. 9(a) have lower noise than the PWLS-EP with regulariza-

tion strength 1X. Though the spatial resolution of PWLS-EP

with regularization strength 2X is close to PWLS-ULTRA in

the selected soft-tissue regions, PWLS-ULTRA reconstructs

bone and spine areas with higher resolution, and preserves

small features better (compare the zoomed-in areas in Fig. 8

and Fig. 9).

We reconstructed the abdomen volume from low-dose

helical CT data. With an initialization of zeros, we ran the

PWLS-EP algorithm with β = 218.0 and β = 219.0 for

20 iterations with 12 subsets for the 150 mA and 35 mA

scans, respectively. For PWLS-ULTRA, we chose β = 1×105,

γ = 25 for the 150 mA scan, β = 1.5 × 105, γ = 30 for

the 35 mA scan, and ran it for 50 outer iterations. The other

parameter settings and the transform were the same as those

used for the chest scan.

Fig. 10 shows the reconstructions (shown for the cen-

tral axial, sagittal, and coronal planes in the 3D volume)

for PWLS-EP and PWLS-ULTRA with patch-based weights

(K = 5) from low-dose abdomen scans. For the sagittal and

coronal planes, we show the central 160 out of 200 axial

slices. The supplement provides PWLS-EP reconstructions

Fig. 11. Vertical (left) and horizontal (right) profiles of chest recon-
structions (plotted from the central axial slice) for the PWLS-EP and
PWLS-ULTRA methods. The profile locations are shown in green lines
in Fig. 7.

Fig. 12. Reconstruction with PWLS-ULTRA (K = 15) without weights
τj (left) at I0 = 1 × 104 compared to the reconstruction with the oracle
scheme without weights τj (right), where the cluster memberships were
pre-determined from the ground truth. RMSE and SSIM values of 30.7
and 0.978 (left), and 29.0 and 0.982 (right) respectively, for the volumes,
indicates that more precise clustering can provide better reconstructions
and sharper edges (see zoom-ins).

with different regularization strengths. The PWLS-ULTRA

reconstructions in Fig. 10 have reduced noise as well as higher

resolution, better structural details and shaper image edges

than the PWLS-EP results. These results are further example

of the potential performance of the proposed PWLS-ULTRA

method in clinical settings.

G. Comparison to Oracle Clustering Scheme

We consider the 3D cone-beam CT data in Section IV-E

with I0 = 1 × 104, and compare the PWLS-ULTRA

(K = 15) method without patch-based weights to an oracle

PWLS-ULTRA scheme without patch-based weights, where

the cluster memberships are pre-determined (and fixed during

reconstruction) by performing the sparse coding and clustering
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step (with the learned transforms) on the patches of the

reference or ground truth volume. The oracle scheme thus

uses the best possible estimate of the cluster memberships.

Otherwise, we used the same parameters for the two cases.

Fig. 12 compares the reconstructions for the two cases. The

proposed PWLS-ULTRA underperforms the oracle scheme by

only 1.7 HU. The more precise clustering leads to sharper

edges for the latter method. This also suggests that there is

room for potentially improving the proposed clustering-based

PWLS-ULTRA scheme, which could be pursued in future

works.

V. CONCLUSIONS

We presented the PWLS-ST and PWLS-ULTRA methods

for low-dose CT imaging, combining conventional penalized

weighted least squares reconstruction with regularization based

on pre-learned sparsifying transforms. Experimental results

with 2D and 3D axial CT scans of the XCAT phantom

and 3D helical chest and abdomen scans show that for

both normal-dose and low-dose levels, the proposed meth-

ods provide high quality image reconstructions compared to

conventional techniques such as FBP or PWLS reconstruction

with a nonadaptive edge-preserving regularizer. The ULTRA

scheme with a richer union of transforms model provides

better reconstruction of various features such as bones, specific

soft tissues, and edges, compared to the proposed PWLS-ST.

Finally, the proposed approach achieves comparable or better

image quality compared to learned overcomplete synthesis

dictionaries, but importantly, is much faster (computationally

more efficient). We leave the investigation of convergence

guarantees and automating the parameter selection for the pro-

posed PWLS algorithms to future work. The field of transform

learning is rapidly growing, and we hope to investigate new

transform learning-based LDCT reconstruction methods, such

as involving rotationally invariant transforms [39], or online

transform learning [58], [59], etc., in future work.
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VII. COMPUTING DR IN ALGORITHM 1

Recall the following definition of DR in (11):

DR , 2β

{

max
k

λmax(Ω
T
kΩk)

} K
∑

k=1

∑

j∈Ck

τjP
T
j Pj . (14)

When {τj} are all identical (or by replacing them with

maxj τj above for a looser majorizer),
∑K

k=1

∑

j∈Ck
P

T
j Pj =

∑Ñ

j=1
P

T
j Pj ∈ R

Np×Np is a diagonal matrix with the diag-

onal entries corresponding to image voxel locations and their

values being the total number of image patches overlapping

each voxel. Moreover, if the patches are periodically posi-

tioned with a stride of 1 voxel along each dimension and

wrap around at image boundaries, then
∑Ñ

j=1
P

T
j Pj = lI.

In this case, DR = 2β{maxk λmax(Ω
T
kΩk)}{maxj τj}lI.

More generally, when τj values differ, we compute
∑K

k=1

∑

j∈Ck
τjP

T
j Pj voxel-wise by summing the τj values

of the patches overlapping the voxel.

VIII. ADDITIONAL EXPERIMENTAL RESULTS

Section IV.E and Table III of [1] compared the perfor-

mance of various methods for low-dose cone-beam (3D) CT

reconstruction, for the XCAT phantom volume. Fig. 13 shows

the reconstructions and the corresponding error (magnitudes)

images (shown for the central axial, sagittal, and coronal

planes) at I0 = 5× 103 for FDK, PWLS-EP, PWLS-ST (with

τj = 1 ∀ j), and PWLS-ULTRA (K = 15) with patch-based

weights τj . PWLS-ULTRA provides better reconstructions and

reconstruction errors compared to the conventional FDK and

the non-adaptive PWLS-EP. PWLS-ULTRA also outperforms

the proposed PWLS-ST scheme, and provides sharper recon-

structions of image edges (see zoom-ins).
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Fig. 13. Comparison of the reconstructions and corresponding error images
(shown for the central axial, sagittal, and coronal planes) for FDK, PWLS-
EP, PWLS-ST (τj = 1, ∀ j), and PWLS-ULTRA (K = 15) with patch-

based weights τj at I0 = 5× 103. The display window of reconstructions is
[800, 1200] HU. The unit of the display window of the error images is HU.
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(a)

(b)

(c) (d)

Fig. 14. The union of transforms learned (with η = 100, K = 5) from (a) patches of the XCAT phantom and (b) from patches of the PWLS-EP reconstruction
of the helical chest CT data are shown in the first and second rows, respectively. Only the first 8×8 slice of 256 (among 512) 8×8×8 atoms are displayed.
The corresponding PWLS-ULTRA-{τj} reconstructions (shown for the central axial, sagittal, and coronal planes) obtained with the transforms (a) and (b)
are shown in (c) and (d), respectively. For the sagittal and coronal planes, we show the central 135 out of 222 axial slices.

Recall that in Section IV.F, we used the transforms learned

from the patches of the XCAT phantom volume to perform

reconstruction of the chest volume from helical CT data.

Alternatively, one could learn the transforms from the patches

of the PWLS-EP reconstruction of the helical CT data. Fig. 14

shows the union of transforms (K = 5) learned from 8×8×8
patches of the XCAT phantom and the PWLS-EP chest recon-

struction, with η = 100. These two union of transforms display

some similar types of features, and provide similar visual

reconstructions in PWLS-ULTRA (with patch-based weights

τj) in Fig. 14. Thus, the transform learning algorithm extracts

quite general and effective sparsifying features for images,

without requiring a very closely matched training dataset.

Fig. 15 provides abdomen reconstructions (shown for the

central axial, sagittal, and coronal planes) from low-dose

(120kVp, 150mA and 35mA) helical CT data for PWLS-EP

with different regularization strengths. We have labeled the

reconstruction with good trade-off between image resolution

and noise in bold for both doses. These images were used to

initialize the PWLS-ULTRA reconstructions in Section IV.F.
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(a) 150 mA, β = 217 (b) 150 mA, β = 2
18 (c) 150 mA, β = 219

(d) 35 mA, β = 218 (e) 35 mA, β = 218.5 (f) 35 mA, β = 2
19

Fig. 15. Abdomen reconstructions (shown for the central axial, sagittal, and coronal planes) from low-dose (120kVp, 150mA and 35mA) helical CT data for
PWLS-EP with different regularization strengths.
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