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Detector Blur and Correlated Noise Modeling for
Digital Breast Tomosynthesis Reconstruction

Jiabei Zheng, Member, IEEE , Jeffrey A. Fessler, Fellow, IEEE , and Heang-Ping Chan

Abstract— This paper describes a new image reconstruc-
tion method for digital breast tomosynthesis (DBT). The
new method incorporates detector blur into the forward
model. The detector blur in DBT causes correlation in the
measurement noise. By making a few approximations that
are reasonable for breast imaging, we formulated a regu-
larized quadratic optimization problem with a data-fit term
that incorporates models for detector blur and correlated
noise (DBCN). We derived a computationally efficient sepa-
rable quadratic surrogate (SQS) algorithm to solve the opti-
mization problem that has a non-diagonal noise covariance
matrix. We evaluated the SQS-DBCN method by reconstruct-
ing DBT scans of breast phantoms and human subjects. The
contrast-to-noiseratio and sharpness of microcalcifications
were analyzed and compared with those by the simulta-
neous algebraic reconstruction technique. The quality of
soft tissue lesions and parenchymalpatterns was examined.
The results demonstrate the potential to improve the image
quality of reconstructed DBT images by incorporating the
system physics model. This paper is a first step toward
model-based iterative reconstruction for DBT.

Index Terms— Digital breast tomosynthesis, detector
blur, correlatednoise, model-based iterative reconstruction.

I. INTRODUCTION

D
IGITAL breast tomosynthesis (DBT) has been devel-

oped to reduce the problem of overlapping tissue in

conventional two-dimensional mammography [1]–[3]. In DBT,

the commonly used reconstruction method is filtered back pro-

jection (FBP) [4]–[9]. Studies have demonstrated the promise

of iterative reconstruction (IR) methods in DBT [2], [10]–[15].

Among commercial DBT systems, Hologic and Siemens use

FBP and General Electric (GE) uses an adaptive statistical iter-

ative reconstruction (ASIR). Among the IR methods, model-

based iterative reconstruction (MBIR) methods incorporate the

physics model of the system and the statistical model of signal

detection. MBIR methods have been investigated extensively

in CT and superior image quality has been observed [16]–[20].
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However, existing MBIR methods for CT do not consider

noise correlation/aliasing and detector blur because clinical CT

systems use individual detector elements. Modeling detector

blur and correlated noise was attempted only recently in cone-

beam CT (CBCT) using flat-panel detectors [21]–[23]. For

DBT, although some studies on MBIR methods have been con-

ducted [24], [25], they considered only limited aspects of the

system model, such as modeling the scattered radiation or the

statistical model of the measurement noise. To our knowledge,

no studies have incorporated the models of image degradation

factors of the DBT imaging system, including the crosstalk of

the flat-panel detector and the resulting noise correlation. Our

goal is to develop MBIR methods with more comprehensive

modeling of the system physics and computationally efficient

algorithms for DBT reconstruction.

In a DBT system using an indirect detector, light diffu-

sion in the phosphor or the scintillator introduces crosstalk

between neighboring pixels. The finite pixel size and light

diffusion contribute to blurring of the measured image and

correlation in noise. Neglecting detector blur leads to blurring

of the reconstructed objects, strongly affecting small features

such as microcalcifications (MC). In CT applications, several

projectors have been proposed that account for the finite pixel

size, such as the distance-driven projector [26] and the sepa-

rable footprint projector [27]. We have proposed a segmented

separable projector (SG projector) for DBT geometries [28].

Current DBT reconstruction algorithms generally treat the

measurement at each detector element to be independent ran-

dom variables, which differs from the physical process in the

DBT detector. Tilley et al. and Stayman et al. studied the effect

of modeling the detector blur and correlated noise in least-

squares reconstruction for CBCT with simulated phantoms and

found superior noise-resolution trade-offs with their proposed

approach [21]–[23]. Our feasibility study [29] showed similar

promise for DBT scans. In this paper, we further refine

our implementation of DBT reconstruction accounting for

detector blur and the resulting noise correlation, incorporate

adaptive regularization strength, analyze the image quality by

the contrast and sharpness of the signals and the tissue texture

using phantom and human subject DBT scans, and compare

the reconstructed image quality with and without modeling

detector blur and noise correlation.

DBT is a limited-angle x-ray tomography technique using

low-dose high-resolution projections. It is an ill-posed problem

with sparse projection view (PV) sampling. As a result, small

measurement fluctuation such as noise could cause large

perturbations of the reconstructed images in the absence of

suitable regularization. On the other hand, the PVs of DBT are
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noisy by nature since the total x-ray dose of all PVs is kept to

be about the same as that of a mammogram. Regularization

is therefore crucial for iterative reconstruction algorithms to

prevent noise amplification and maintain consistency. Several

studies have been conducted on regularization of limited-angle

reconstruction. For example, the total variation (TV) method

was applied to tomographic reconstruction [11], [30]. Selective

diffusion regularization was proposed to enhance MCs while

reducing noise [31]. Other regularization methods used the

bilateral filter [32], [33]. In this paper, we use a regularization

strategy based on a hyperbola potential function, which is

convex and edge-preserving. We model detector blur and noise

correlation and formulate the reconstruction as a regularized

quadratic optimization problem. The problem needs to be

solved with an iterative algorithm. Based on the form of

the data-fit term and the regularization, we chose to apply

a slightly modified separable quadratic surrogate (SQS) [34]

method. Although the SQS method requires more iterations

to converge than coordinate descent methods, it enforces non-

negativity constraints on the reconstructed image [35], [36].

Section II introduces our detector blur model and the

assumptions used for its simplification. We describe the

optimization problem and the cost function for regularized

reconstruction. Section III introduces the geometry of our DBT

system and the figures of merit used for quantitative compar-

isons of image quality. Results in Section IV demonstrate the

usefulness of the method by comparing its reconstructed image

quality with that by simultaneous algebraic reconstruction

technique (SART) using DBT of both breast phantom and

human subjects. We also compare the images reconstructed

by modeling both detector blur and noise correlation to those

without modeling either component to study their impact on

the image quality. Section V discusses the potential of MBIR

for improving DBT image quality and future work.

II. METHODS

A. Formulation of the Reconstruction Problem

We first mathematically formulate the reconstruction prob-

lem using a few assumptions based on the imaging charac-

teristics of DBT. Let Ai denote the N × M projector matrix

for the i th projection angle, for i = 1, . . . , Np, where Np

denotes the number of PV angles. Let N denote the number

of pixels in a DBT projection image and M the number of

object voxels to be reconstructed. Let f denote the length-

M vector corresponding to the unknown array of attenuation

coefficients in the imaged volume and Yi the length-N vector

corresponding to the measured PV image at the i th projection

angle. Considering the detector blur and the Lambert-Beer

law for attenuation, a reasonable model for the expectation

Ȳi is [22]:

Ȳi = I0Bi exp(−Ai f), (1)

where Bi denotes the blurring operation in N × N matrix

form and I0 is the constant expected projection value if there

is no object present in the imaged volume, assuming there is

no non-uniformity due to Heel effect or cone-beam geometry.

In this work, we assume that Bi is projection-angle-dependent

but linear shift-invariant within a given projection. Focal spot

blur is ignored in the current study. If the incident intensity I0

is nonuniform over the PV then one could replace the scale

I0 with a diagonal matrix.

One challenge in performing image reconstruction with the

model in (1) is that the matrix Bi before the exponential is

not diagonal [21]–[23]. To address this challenge for DBT, we

assume that the image f consists of two parts (f = fb + fs),

where fb is a low-frequency background whose projections

are approximately uniform within the support of the blurring

kernel (Bi Ai fb ≈ Ai fb), and fs is a small structure such as MC

in DBT whose attenuation contributes only a small amount to

the projection values (Ai fs ≪ 1). These assumptions are more

reasonable in breast imaging than in CT of body parts that

include bone or other high-attenuation objects. Under these

assumptions, we use the following approximation:

Bi exp (−Ai f) = Bi exp (−Ai fs) exp (−Ai fb)

≈ Bi (1 − Ai fs) exp (−Bi Ai fb)

= (1 − Bi Ai fs) exp (−Bi Ai fb)

≈ exp (−Bi Ai fs) exp (−Bi Ai fb)

= exp (−Bi Ai f) . (2)

Then we have the following simplification of (1) for DBT:

Ȳi ≈ I0 exp(−Bi Ai f). (3)

The expectation ȳi of the log-transformed projection yi is

approximately:

ȳi = log(I0/Yi ) = Bi Ai f. (4)

Compared with the reconstruction problem without detector

blur, we simply need to include a blurring operation in the

forward projection step. The transpose of Bi is also relatively

easy to implement in the back-projection step needed for

iterative image reconstruction.

The cost function of the reconstruction problem should

also account for the covariance matrix of the noise in the

measurements yi . DBT systems usually use a flat-panel

direct or indirect detector. In our model, we assume an indirect

CsI phosphor/a:Si active matrix flat panel detector. The image

noise contains two major components: quantum noise from

the x-ray photons and electronic noise of the detector. The

quantum noise in the imaging process is affected by the

detector blur but the detector electronic noise is not.

Accounting for both quantum and electronic noise, we fol-

low [22] and use the following model for the noise covariance

Ki of the i th projection view:

Ki = Bi K
q
i B

′
i + Kr

i , (5)

where
′

denotes the transpose of a matrix. K
q
i and Kr

i denote

diagonal matrices with elements corresponding to the vari-

ances of quantum noise and readout noise at each detector

element, respectively. Section VII of the Supplementary Mate-

rial shows the detailed derivation of (5).

Assuming yi follows approximately a Gaussian distribu-

tion, yi ∼ N
(

ȳi , Ki

)

, we formulate for DBT the following
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regularized image reconstruction problem with non-diagonal

weighting:

f̂ = argmin
f

1

2

∑Np

i=1

∥

∥yi − Bi Ai f
∥

∥

2

(Bi K
q
i B

′
i +Kr

i )
−1 + R(f)

= argmin
f

1

2

∑Np

i=1

∥

∥Si yi − Si Bi Ai f
∥

∥

2

2
+ R (f), (6)

where R(f) denotes the regularization term and the inverse

matrix square root of the noise covariance is

Si = (Bi K
q
i B

′
i + Kr

i )
−1/2. (7)

B. Implementing Si

Since (Bi K
q
i B

′
i + Kr

i ) is non-diagonal, implementing mul-

tiplication by Si is usually very challenging, and this is

the key difficulty in using the optimization formulation (6).

In CT applications, one possible method is to solve another

inner optimization problem with a set of conjugate gradi-

ent iterations [22]. In DBT, we can dramatically simplify

the implementation by making some reasonable assumptions.

Unlike body CT where there exist large bones and even

perhaps metal objects of significant size that are strongly

attenuating, the compressed breast has a fairly consistent

thickness mainly composed of soft tissue. As a first-order

approximation, we treat quantum noise variance as constant

across all detector elements in a given projection angle:

K
q
i = σ

q2
i I, (8)

where I denotes the N × N identity matrix. Sec-

tions VIII and IX of the Supplementary Material describe the

justification of this approximation. In addition, we treat all

detector elements in a given projection view as having similar

readout noise variance:

Kr
i = σ r2

i I. (9)

Let hi denote the point spread function of the detector.

We obtained hi by the inverse Fourier transform of the

modulation transfer function (MTF) of the detector for a GE

Essential mammography system [37], which also agreed with

our own measurement on the prototype DBT system using

the edge method [38]. We diagonalize the blurring operation

by Bi = Q−1Hi Q, where Q denotes the discrete Fourier

transform (DFT) matrix, and Hi = Diag(DFT{h}i ) denotes

the corresponding frequency response. We then implement the

operation of multiplying Si by a vector using FFT operations

without needing any iterative method for matrix inversion:

Si = Q−1(σ
q2
i Hi H

′
i + σ r2

i I)−1/2Q, (10)

where σ
q
i and σ r

i with lower case superscripts q and r

denote noise standard deviations for the PVs after log trans-

form, or equivalently the noise level relative to the recorded

x-ray intensity. The corresponding noise standard deviations

before log transform are denoted by σ
Q
i and σR

i with upper

case superscripts Q and R. We estimate σR
i from dark current

images without x-ray exposure by subtracting two dark current

images to remove possible structured noise from the detector,

then calculating a mean standard deviation σR
i from noise

patches on the subtracted image and dividing it by
√

2. The

breast boundary is automatically detected on each PV [39].

We then estimate the mean x-ray intensity Ȳi incident on the

detector as the mean pixel value within the breast boundary

and calculate σ r
i as the ratio of σR

i over Ȳi .

Estimating σ
q
i is more complicated since it is difficult to

remove the heterogeneous tissue background from the projec-

tion images. Therefore, we use a DBT scan of a uniform Lucite

slab of approximately the thickness of the phantom or a breast

to estimate σ
q
i . For each PV of the Lucite slab, we select an

array of noise patches and remove the background trend with

a 2-D second order polynomial fitting. Then we calculate the

standard deviation σi as the mean of the standard deviations

estimated from each noise patch. This calculated σi contains

the contribution of both σR
i and σ

Q
i as given by:

σ 2
i = σ

Q2
i ‖hi‖2

2 + σR2
i . (11)

We then derive σ
Q
i of the Lucite slab from the above

relationship using the estimated σi and σR
i :

σ
Q
i =

√

σ 2
i − σR2

i

‖hi‖2
2

. (12)

Treating σ
Q
i as approximately Poisson noise, σ

Q2
i is

proportional to Ȳi and therefore σ
q2
i is inversely proportional

to Ȳi . Using the ratio of Ȳi between a DBT scan and the Lucite

slab, we estimate σ
q

i for the DBT scan to be reconstructed.

In practical implementation, this may be accomplished

by predetermining sets of σ
Q
i (i = 1, . . . , Np) for all Np

projections from Lucite slabs over a range of thicknesses

and x-ray spectra (anode, filter, kilovoltage) combinations

and storing them as a library of look up values. For a given

DBT scan acquired with a certain exposure technique, one

can select an appropriate set that approximates the breast

thickness and exposure technique for reconstruction.

C. Regularization

In the implementation of (7), Si acts as a filter that boosts

high spatial frequencies. The typical frequency response of Si

is shown in Section X of the Supplementary Material. Si would

amplify noise in reconstruction if used without regularization.

Regularization is important for stable reconstruction. We use

a regularization term of the following form:

R (f) = αβ

1 + γ

(
∑

j
η

(

[Cx f] j

)

+ η
(

[

Cyf
]

j

)

+ γ η
(

[

Cx−yf
]

j

)

+ γ η
(

[

Cx+yf
]

j

))

, (13)

where Cx and Cy denote matrices that calculate differences

between neighboring pixels along the x and y-direction,

respectively, as defined in Fig. 1. Cx−y and Cx+y compute

finite differences along the two diagonal directions. j is the

index for all neighboring pixel pairs along one direction. The

distance between two neighboring pixels along the diagonal

direction is larger, resulting in relatively weaker correlation

between their pixel values. We therefore use the parameter

γ (γ ≤ 1) to control the weight of regularization in the
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Fig. 1. Geometry of the DBT system used in this study.

diagonal directions. We chose γ to be 0.5 for this study

following [40]. The parameter β controls the strength of

the regularization term. From reconstructing DBT at different

noise levels, we observed that the regularization parameter

needs to be adapted to keep an appropriate balance between the

data-fit term and the regularizer, because the covariance-based

weighting of the data-fit term in (6) depends on the noise

level. Therefore we include a scaling factor α to adaptively

adjust the regularization strength based on the noise level of

the projections. We define α as:

α = Np
∑Np

i=1 σ
q2

i ‖hi‖2
2 + σ r2

i

. (14)

For the regularizer (13), we use a hyperbola potential

function η(t):

η (t) = δ2
(

√

1 + (t/δ)2 − 1
)

. (15)

This form of η (t) is edge-preserving. η (t) is also differen-

tiable, making it easy to implement the optimization algorithm

of the cost function. The parameters δ and β need to be chosen

properly as discussed in Section IV.A. When δ is large relative

to t, (15) is approximately η (t) = t2, which is equivalent to

a quadratic regularization.

D. The Reconstruction Algorithm

Both the quadratic function of the data-fit term and η (t)

are convex and the second-order derivative of η (t) in (15) is

η̈ (t) =
(

1 +
(

t

δ

)2
)−3/2

, (16)

which is less than or equal to 1, enabling the use of the SQS

algorithm to solve the optimization problem [35]. To apply

the SQS algorithm, we need to find an upper bound on the

Hessian of the cost function

� (f) = 1

2

∥

∥

∥ỹ − Ãf

∥

∥

∥

2

2
+ R (f) , (17)

where the whole system matrix and whole (prewhitened)

data vector are given by:

Ã =

⎛

⎜

⎝

Ã1

...

ÃNp

⎞

⎟

⎠
=

⎛

⎜

⎝

S1B1A1

...

SNp BNp ANp

⎞

⎟

⎠
, (18)

ỹ =

⎛

⎜

⎝

ỹ1
...

ỹNp

⎞

⎟

⎠
=

⎛

⎜

⎝

S1y1
...

SNp yNp

⎞

⎟

⎠
. (19)

We first find an upper bound on the Hessian of the regu-

larization term R (f). Since the second-order derivative of the

potential function η (t) is less than or equal to 1, we have

∇2
∑

j
η

(

[Cf] j

)

≤ diag
{∣

∣C′∣
∣ |C| 1

}

= 4I, (20)

where 1 denotes a length-M all-one vector, | · | denotes

element-wise absolute value, I denotes the identity matrix and

C denotes any one of Cx , Cy , Cx+y and Cx−y . As a result,

we have:

∇2 R (f) ≤ αβ

1 + γ
(4 + 4 + 4γ + 4γ ) I = 8αβI. (21)

By finding (below) a diagonal majorizing matrix D such that

D ≥ |Ã
′
||Ã|, the modified SQS algorithm for minimizing the

DBT cost function is (with nonnegativity constraint):

f(n+1) = max
(

f(n) − (D + 8αβI)−1 ∇�
(

f(n)
)

, 0
)

. (22)

The usual choice of D would be D = diag
{

|Ã
′
||Ã|1

}

.

However, implementing |Ã
′
||Ã|1 is difficult since Ã has neg-

ative values because of the high-frequency boosting feature

of Si . Instead, note that the blur frequency response matrix

Hi satisfies Hi H
′
i ≤ I, then we have from (10):

B
′
i S

′
i Si Bi = Q−1H

′
i

(

σ
q2
i Hi H

′
i + σ r2

i I
)−1

Hi Q

≤ Q−1

(

(

σ
q2
i + σ r2

i

)−1
I

)

Q =
(

σ
q2
i + σ r2

i

)−1
I.

(23)

This inequality leads to the following diagonal majorizer:

Ã
′
Ã =

∑Np

i=1
A

′
i B

′
i S

′
i Si Bi Ai

≤
∑Np

i=1

(

σ
q2
i + σ r2

i

)−1
A

′
i Ai ≤ D, (24)

where

D =
∑Np

i=1

(

σ
q2

i + σ r2
i

)−1
diag

{

A
′
i Ai 1

}

(25)

This diagonal majorizer is as easy to implement as the usual

SQS majorizer [34].

In iterative DBT reconstruction, usually only one projection

view is used at a time to update the image. We use the ordered
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subset (OS) approximation [34] to further accelerate the SQS

reconstruction:

∇
∑Np

i=1

∥

∥

∥ỹi − Ãi f

∥

∥

∥

2

2
≈ Np∇

(

∥

∥

∥ỹi − Ãi f

∥

∥

∥

2

2

)

. (26)

The OS reconstruction update is given by:

f(n,i+1) = f(n,i) − (D + 8αβI)−1 ∇�i

(

f(n,i)
)

, (27)

∇�i

(

f(n,i)
)

= ∇ R
(

f(n,i)
)

+ NpÃ
′

i

(

Ãi f
(n,i) − ỹi

)

, (28)

∇ R(f(n,i)) = αβ

1 + γ

(

C
′
x η̇(Cx f(n,i)) + C

′
y η̇(Cyf(n,i))

+γ C′
x−y η̇(Cx−yf(n,i))

+γ C′
x+y η̇(Cx+yf(n,i))

)

. (29)

The iteration counter n is incremented by 1 after all measured

projections have been used once.

The OS approximation used in the reconstruction makes the

method somewhat similar to SART, where also one projection

is used in each update, and facilitates their comparison. The

OS algorithm was proposed for PET and CT reconstruc-

tion [41] where the subsets are better “balanced” than in

DBT. For both CT and DBT, the standard OS–SQS algorithm

is not guaranteed to converge. The OS algorithm could be

made convergent by some relaxation [42], which has not been

implemented in this study.

We use SART as a reference algorithm in this paper;

although not state-of-the-art, SART has been shown to provide

good image quality for reconstructing DBT acquired with

our prototype DBT system [10] and has been evaluated by

other investigators [9], [43]. We implemented the SQS-DBCN

reconstruction with the SG projector [28] and implemented

SART with the ray-tracing projector [10], [44]. We previ-

ously compared the effects of ray-tracing and SF projectors

to SG using SART in a phantom study [28], so here we

focus on examining the new DBCN effects. Artifact reduction

methods [45], [46] were implemented for all reconstruction

methods in this study.

E. Reconstruction Without Detector
Blur or Correlated Noise

We investigated the role of each model component in the

SQS-DBCN method. The SQS-DBCN method includes the

detector blur, the corresponding noise correlation and the reg-

ularization. To examine the effects of the detector blur and the

noise correlation, we studied the following two reconstruction

algorithms:

f̂noDB = argmin
f

1

2

∑Np

i=1

∥

∥yi −Ai f
∥

∥

2
(

K
q
i +Kr

i

)−1 + R (f) , (30)

f̂noNC = argmin
f

1

2

∑Np

i=1

∥

∥yi − Bi Ai f
∥

∥

2
(

K
q
i +Kr

i

)−1 + R (f) .

(31)

The no-detector-blur (noDB) reconstruction method

neglects the detector blur by setting the point spread function

to a Kronecker impulse such that Bi becomes an identity

matrix. This is equivalent to a common approach to SQS

regularized reconstruction that ignores detector blur and

noise correlation. For the no-noise-correlation (noNC)

reconstruction, we kept the detector blur in the system model

while neglecting the noise correlation caused by the detector

blur to evaluate the effect of the correlated noise model in

SQS-DBCN. We also studied the reconstruction with penalized

weighted least-squares (PWLS) cost function [18], [36],

which is equivalent to the SQS-noDB method with location-

dependent noise variance. The results are very similar to

those obtained with the SQS-noDB method as shown in

Section IX of the Supplementary Material. Another case we

investigated was keeping both the detector blur and noise

correlation while neglecting the regularization. In this case,

however, the reconstructed image became extremely noisy

after only 2 or 3 SQS iterations, making it difficult even to

recognize the reconstructed MCs. As a result, we omit the

no-regularization results.

III. MATERIALS

A. DBT System

We used a GE GEN2 prototype DBT system for image

acquisition in this study but the proposed method should be

applicable to other DBT systems. Fig. 1 shows the imaging

geometry. The system uses a CsI phosphor/a:Si active matrix

flat panel detector with a pixel size of 0.1mm×0.1mm and an

area of 1920 × 2304 pixels. The detector is stationary during

image acquisition. The distance from the x-ray source to the

fulcrum at the breast support plate (bottom of the imaged

volume) is 64 cm. There is a 2 cm gap between the fulcrum

and the image plane of the detector. The reconstructed imaged

volumes in this study had a rectangular voxel grid at a voxel

size of 0.1mm × 0.1mm × 1 mm.

B. Breast Phantom and Human Subject DBT

MCs are small calcium deposits in the breast of sizes from

about 0.1 mm to 0.5 mm. Clustered MCs and subtle masses

are important signs of early breast cancer [47]. One of the

main challenges in DBT reconstruction is to reduce noise

while enhancing MCs and preserving the features of mass

margins and the texture of the parenchyma. In this study,

we used a breast phantom with embedded simulated MCs for

evaluating reconstruction methods and parameter selection on

the image quality of MCs. It is difficult to build mass phantoms

with realistic spiculated or ill-defined margins that are strong

indicators of breast cancer; we therefore used real breast DBT

for visual evaluation of the image quality of masses. The

human subject DBTs were previously acquired with approval

of our Institutional Review Board and informed consent for a

lesion detection project.

The breast phantom consists of a stack of five 1-cm-thick

slabs of breast tissue mimicking material [48]. Eight clus-

ters of calcium carbonate specks of nominal size range of

0.15-0.18 mm, eight clusters of 0.18-0.25 mm, and five

clusters of 0.25-0.30 mm were sandwiched at random locations

and depths between the slabs to simulate MCs of different con-

spicuity levels. For the human subject DBT, we selected cases

with spiculated masses that were biopsy-proven to be invasive
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ductal carcinomas. Both the phantom and human subject

DBT were acquired with 60° scan angle, 3° increments and

21 projections. To simulate the DBT acquired with narrow-

angle DBT system, we used the 9 central projections for recon-

struction, corresponding 24° scan angle with 3° increments,

which was close to the 25° scan angle and 3° increments for

a GE commercial system. The x-ray exposure for each DBT

was therefore reduced to less than half of the original values.

C. Figures of Merit (FOMs)

We use two FOMs for quantitative comparisons of recon-

struction quality of MCs: contrast-to-noise ratio (CNR) and

full-width at half maximum (FWHM). To calculate the FWHM

of an MC on a reconstructed image, we apply a 2-D least-

squares Gaussian fitting including a first-order background

plane to a 13 × 13-pixel patch centered at the MC. With

the fitted standard deviation σMC, the FWHM is given by

2.355σMC. To calculate the CNR, we estimate the local noise

level σNP as the root-mean-square noise in a 40 × 40-pixel

noise patch near each cluster after subtracting a low-frequency

background level estimated by a 2-D fitting with a second

order polynomial to the patch. The CNR for an MC is

calculated as CNR = AMC/σNP, where AMC is the maximum

value around the center of the fitted MC patch.

For MCs of a given nominal size range, a set of individual

MCs were manually marked from the clusters at different

locations and depths of the phantom, and the mean CNR and

mean FWHM were calculated from the set to represent the

CNR and FWHM of that MC size range. In total, we marked

30 MCs of 0.15-0.18 mm size, 48 MCs of 0.18-0.25 mm

size and 44 MCs of 0.25-0.30 mm size for the analysis. The

same set of MCs for each size range was used for the FOM

calculation for all reconstruction techniques and parameters.

Although the SQS-DBCN reconstructed DBT is not a linear,

shift-invariant system, we calculate an average noise power

spectrum (NPS) of the heterogeneous phantom background

to provide a comparison of the relative change in the global

texture for the various reconstruction techniques and para-

meters. For each different reconstruction, we calculated the

average NPS using sixty 200 × 200-pixel noise patches from

4 reconstructed slices at 4 different depths. We then took the

radial average NPS for each reconstruction condition. The

locations of the noise patches were chosen such that they did

not contain any MC clusters and the same patch locations were

used for all conditions. There is no FOM to reliably evaluate

the fine details of the margin or spiculations of a cancerous

lesion at present so that these features are compared visually

on the reconstructed breast images.

IV. RESULTS

A. Effects of Regularization Parameters

The performance of the SQS-DBCN method

depends on the parameters of the regularization term.

We reconstructed the phantom DBT with different parameter

combinations and plotted the corresponding CNR curves

for the small-sized (0.15-0.18mm) and medium-sized

(0.18-0.25mm) MCs, as shown in Fig. 2. These CNR curves

Fig. 2. Dependence of CNR on reconstruction parameters. The CNR is
plotted as a function of β for a range of δ. The black dashed lines indicate
the CNR level of the SART. (a) MCs of nominal size 0.15-0.18mm,
(b) MCs of nominal size 0.18-0.25mm.

provide some guidance for parameter selection. The curves for

the large-sized (0.25-0.30mm) MCs have similar trends but

they are not shown because their CNRs are very high and the

parameter settings are not expected to have a strong influence

on their visibility. We did not show the FWHM curves either

because they monotonically increase as β increases due to

the increasing blurring effect of regularization, which is not

useful for guiding parameter selection.

For the breast phantom, Fig. 3 shows the rotational average

of the 2-D in-plane NPS for several sets of parameters.

The pixel size of the slices is 0.1mm × 0.1mm, yielding a

Nyquist frequency of 5 cycles/mm. As the parameters change,

the middle and high frequency noise are mainly affected, while

the low frequency noise almost stays the same. Fig. 3(c)

shows the dependence of the NPS values on β at several

frequencies. When weaker regularization is used (β < 18),

the high-frequency NPS is higher than low-frequency NPS. On

reconstructed images, the high level of high-frequency noise

is superimposed with some salt-and-pepper noise, which is a

very unfavorable visual feature. As the regularization strength

is increased (larger β values), these noisy spikes become less

and less noticeable.

For each MC size, there is a different ‘optimal’ parameter

combination that yields maximum CNR. However, the para-

meter combination that yields the best CNR for MCs may

generate artificially appearing texture for soft tissues or spu-

rious noise in the background. Combining curves for both
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Fig. 3. Dependence of NPS on regularization parameters. (a) NPS with different β values at δ = 0.002/mm. (b) NPS with different δ values at
β = 70. (c) Dependence of noise power on β at five different frequencies at δ = 0.002/mm.

Fig. 4. Comparison of reconstruction methods and parameters using
human subject DBTs with invasive ductal carcinomas. Row (a) SART,
(b) SQS-DBCN, β = 70, δ = 0.002/mm, (c) SQS-DBCN, β = 100,
δ = 0.001/mm. All image patches shown are 180 × 200 pixels in size. The
CNR of the MCs increases from (a) to (c). However, the spiculations and
the tissue textures become more patchy and artificial in (c). All images
are displayed with the same window width setting.

small-sized and medium sized MCs, the optimal parameter

selection is about β = 100 and δ = 0.001/mm. Fig. 4 shows

image patches from two DBTs containing spiculated invasive

ductal carcinoma from a human subject reconstructed using the

SART algorithm and SQS-DBCN with two sets of parameters

as examples, one of which is β = 100, δ = 0.001/mm.

Although this set of parameter provides superior denoising

effects compared with SART, it gives the texture a patchy

appearance (Fig. 4(c)). After visually comparing the images

for a range of δ and β values and considering both the MC

enhancement and the appearance of the soft tissue structure,

we empirically chose β = 70 and δ = 0.002/mm for the

SQS-DBCN algorithm. This parameter pair has a slightly

larger β than the “optimal” value for MC enhancement at

δ = 0.002/mm, but the soft tissue texture is less patchy as

shown in Fig. 4(b). Large β value also reduces spurious salt-

and-pepper noise.

B. Effects of Detector Blur and Correlation Modeling

We compared the performance of SQS-DBCN with SQS-

noDB and SQS-noNC for MC enhancement. Fig. 5 shows the

dependence of CNR on β values at δ = 0.002/mm for these

three different methods, together with the CNR level of SART

as a reference. When δ is fixed at other values, δ = 0.001/mm

or 0.003/mm, the CNR-vs-β curves of the three methods (not

shown) have a similar trend as Fig. 5. Fig. 5 indicates that,

compared with SQS-noDB and SQS-noNC, SQS-DBCN can

achieve a much higher CNR over a wide range of β, providing

more flexible choice of β to preserve the texture quality while

enhancing the MCs. Compared with SART, the SQS-noDB

and SQS-noNC can still provide enhancement for MCs within

a small range of β values. Similar to the SQS-DBCN method,

by visual evaluation of soft tissue texture we observed that

using a slightly larger β than the optimal value yielded better

texture quality with a tradeoff in MC enhancement. Therefore

we chose to use β = 40 for SQS-noDB and β = 30 for

SQS-noNC in the following discussions.

To further investigate the importance of the edge-preserving

hyperbola regularization and the detector blur modeling for

enhancing the MCs and preserving tissue texture in DBT

reconstruction, we compared the SQS-DBCN using quadratic

regularization with and without detector blur modeling. Details

can be found in Section XI of the Supplementary Material.

We found that, with quadratic regularization, a single β cannot

provide good image quality for both MCs and tissue tex-

ture or mass margin, which is crucial for DBT reconstruction.

In addition, the proposed detector blur modeling improves

both the image sharpness and the CNR of MCs in comparison

to without detector blur modeling. The experiments therefore
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Fig. 5. Comparison of reconstruction with different model components.
CNR is plotted as a function of β at δ = 0.002/mm. (a) MCs of
nominal size 0.15-0.18mm, (b) MCs of nominal size 0.18-0.25mm.
The SQS-DBCN method yields MCs with higher CNR compared with
the SQS-noDB or the SQS-noNC reconstruction over a wide range of
β values.

indicate that detector blur modeling is important for DBT

reconstruction regardless of whether edge-preserving regular-

ization is used.

C. Reconstructed MC Clusters Breast Phantom

Fig. 6 shows the reconstructed images for two MC clusters

with SART, SQS-DBCN, SQS-noDB and SQS-noNC. Because

the SART method does not have explicit regularization, we

stopped with 3 iterations to avoid noise amplification. The

mean FWHMs and the CNRs calculated for these clusters

reconstructed with the different methods are also shown. Com-

pared with SART, the MC clusters by the SQS-DBCN method

are sharper on a much less noisy background. Benefiting

from the denoising effect of the regularization, the SQS-noDB

and the SQS-noNC methods are also able to enhance the

MCs. All three methods provide higher CNRs than SART.

However, the SQS-noDB method generates coarser texture in

the background, while the SQS-noNC images are more blurred

with “bumpy” background texture. The MCs reconstructed

by the SQS-DBCN method have smaller FWHMs than those

by the SART method, indicating that the MCs are sharper.

On the other hand, the MCs reconstructed by the SQS-noDB

and the SQS-noNC methods are more blurred, as indicated

by the larger FWHMs. Among the four different methods, the

SQS-DBCN method provides the best CNR enhancement and

the sharpest MCs along with smoother background texture.

To make a more quantitative comparison, we calculated the

mean CNR and mean FWHM of the set of over 30 MCs

in each size range. Fig. 7 shows the mean values of both

FOMs and their standard deviations for the four reconstructed

methods. Compared with SART, SQS-DBCN generates more

conspicuous and sharper MCs (see examples in Fig. 6),

as indicated by higher CNRs and smaller FWHMs. For the

small MCs (0.15-0.18mm), the mean CNR increases by 90.3%

from 4.02 to 7.65 when using the SQS-DBCN reconstruction.

The mean CNRs increase by 136.0% and 205.5% for the

medium and large MCs, respectively. The sharper and more

conspicuous MCs in the SQS-DBCN images are expected

to be detected more easily by radiologists or by machine

vision. The mean CNRs of MCs reconstructed with the SQS-

noNC and the SQS-noDB methods are also higher than those

with SART, due to the enhancement of the signals with more

iterations while the regularization controls the noise in the

background. The mean FWHMs of these two methods, on the

other hand, become almost homogenized for three different

sized MCs, indicating the blurring of the reconstructed images.

Fig. 8 compares the rotationally averaged NPS of the

background of the phantom DBT reconstructed with the four

methods. Compared to SART, the SQS-DBCN, SQD-noDB,

and SQS-noNC methods reduce the high-frequency noise but

increase the lower frequency noise. The SQS-noNC method

with β = 30, δ = 0.002/mm causes the largest changes in the

NPS, which result in the blurry and bumpy background texture.

The SQS-DBCN method with the selected parameters β = 70,

δ = 0.002/mm changes the NPS moderately, corresponding

to the less patchy texture on the images.

In addition to the heterogeneous phantom, we also used the

ACR phantom and a uniform Lucite phantom to study the

difference between SART and SQS-DBCN. The observations

for the ACR phantom are similar to that for the heterogeneous

phantom, as described in Section XII of the Supplementary

Material.

D. Human Subject DBT

To evaluate the visual quality of the tissue texture,

we applied SQS-DBCN to the human subject DBT images.

Fig. 9 shows examples of masses reconstructed from the four

different methods. The parameters used here are the same

as what have been used for the phantom. Similar to the

phantom images, the SQS-DBCN method is able to reduce

noise compared with SART; the MCs appear to be the sharpest

and have the highest contrast among the four methods. When

one of the model components is ignored, although the contrasts

of the MCs still appear higher than those of the SART, they are

more blurry and the tissue texture becomes coarser, affecting

the appearance of the mass margin.

V. DISCUSSION

In this study, we proposed a new SQS-DBCN reconstruction

method for DBT applications. By accounting for the detector

blur and the correlated noise model, the SQS-DBCN method
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Fig. 6. Comparison of MC clusters reconstructed by four methods. The size of these image patches is 180 × 180 pixels. Cluster A: nominal size
0.15-0.18 mm, Cluster B: nominal size 0.18-0.25 mm. The SART method used 3 iterations. The CNR and FWHM (mm) are mean values of MCs
from the clusters shown here. The parameters used for the SQS-DBCN method were β = 70, δ = 0.002/mm. The last two columns show the
reconstructed MC cluster when one of the model components was removed. The parameters used for SQS-noDB were β = 40, δ = 0.002/mm, and
for SQS-noNC were β = 30, δ = 0.002/mm. All SQS reconstructions were run for 10 iterations. The images of the same cluster are displayed with
the same window width setting.

Fig. 7. Comparison of the (a) mean CNR and (b) mean FWHM averaged
over MCs sampled from all clusters in the phantom. The error bars
represent the standard deviations of CNR or FWHM for all MC samples
of a given size.

is able to improve the reconstruction quality of DBT images

both visually and quantitatively.

Parameter selection is a crucial step for achieving good

image quality with the SQS-DBCN method. We investigated

using the CNR of MCs as an FOM for guiding parameter opti-

mization. We found that this FOM has limitations. First, CNR

does not consider the spurious enhancement of noise points

that may cause false MCs, which often occurs concurrently

with strong enhancement of high frequency signals such as

MCs. In this study, the CNR values are measured at known

MC locations. If a reconstruction generates false MCs, it will

not be penalized by the CNR values. Second, MCs are not the

only sign of breast cancer; radiologists also need to recognize

important signs such as architectural distortion or subtle

spiculations from non-calcified lesions in the breast. Some

reconstruction methods or parameter combinations can

Fig. 8. Dependence of NPS on reconstruction methods: SQS-DBCN
(β = 70, δ = 0.002/mm), SQS-noDB (β = 40, δ = 0.002/mm),
SQS-noNC (β = 30, δ = 0.002/mm) and SART. The NPS curves of
SQS-DBCN and SQS-noDB overlaps in the low-frequency range.

generate strong artifacts on the tissue texture, as observed in

CT [49]. As a result, CNR curves provide only an approximate

guide for selecting parameters. As shown in Fig. 2, there

is a wide range of β values where the SQS-DBCN method

outperforms the SART method for enhancing the CNR of

MCs. We used the parameters within this range to reconstruct

human subject images and compared the visual quality of

the soft tissue texture among these selections. We found

that δ = 0.002/mm, β = 70 is a reasonable choice for the

SQS-DBCN method that does not cause strong artifacts and

only trades off a fraction of the MC enhancement.

One challenge in the parameter selection is that differ-

ent cases may require different parameter combinations for

the best image quality due to the variations in the noise

level of images. For the phantom DBT, we can use the

CNR of MCs to guide the parameter selection. However,
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Fig. 9. Comparison of four methods using human subject DBT images with invasive ductal carcinomas. The sizes of the image patches are
150 × 160 pixels (top row) and 300 × 360 pixels (bottom row). The SART method used 3 iterations. The parameters were β = 70, δ = 0.002/mm
for the SQS-DBCN method, β = 40, δ = 0.002/mm for the SQS-noDB method, and β = 30, δ = 0.002/mm for the SQS-noNC method. All SQS
methods were run for 10 iterations. All images are displayed with the same window width setting.

the selected parameters may not work well for some patient

cases. It is difficult to define an FOM for a patient case

to help parameter selection because the target lesion of

a given patient case is usually unknown. For this reason,

we implemented the adaptive parameter adjustment as shown

in (13) and (14). Only β is adjusted in the procedure while

the value of δ is fixed. We will continue to investigate the

strategy for adaptively adjusting the parameters to further

improve the image quality for patient cases when using the

SQS-DBCN method.

One may tend to use quadratic regularization to avoid δ

in the potential function and to reduce the number of hyper-

parameters by one. However, our experiments (Section XI

of the Supplementary Material) indicate that the hyperbola

regularization is superior to quadratic regularization for DBT

reconstruction because of the dual roles played by the hyper-

bola potential function η (t) = δ2
(

√

1 + (t/δ)2 − 1
)

. For

reconstructing soft tissue, the difference between neighboring

pixels is small such that δ = 0.002/mm is large enough for

the potential function to work in the ‘quadratic’ part of the

curve. It therefore behaves like quadratic regularization that

produces relatively smooth and natural soft tissue texture at

large β. For MCs with high gradient between neighboring

pixels, the potential function behaves like linear regularization

such that MCs are preserved even when relatively strong

regularization with large β is used to reduce noise. The

property of the hyperbola function thus matches well with the

requirements for DBT reconstruction.

The comparison of SQS-DBCN, SQS-noDB and SQS-noNC

demonstrates that the effectiveness of the SQS-DBCN method

relies on the completeness of all three model components:

detector blur, noise correlation and regularization. Although

intuitively, the MC enhancement might result from the deblur-

ring effect of modeling detector blur, our results with the SQS-

noNC method demonstrate that modeling noise correlation is

equally important. Our comparison of SQS-DBCN with the

PWLS reconstruction algorithm used in CT (see Section IX

in Supplementary Material) further indicates that statistical

iterative reconstruction methods developed for CT are not

sufficient for DBT because they ignore detector blur and noise

correlation. Similar to the SQS-DBCN method, parameters

of SQS-noDB and SQS-noNC methods were chosen based

on both the CNR performance and the soft tissue texture.

We found that over the range of β values where the CNR

is relatively high (β = 10 to 40 for SQS-noDB and β = 10

to 30 for SQS-noNC), it is more difficult to find a proper β

with satisfactory tissue texture. As shown in Fig. 7(a), with

the chosen β values for these two methods, the mean CNRs

for MCs of all three sizes are lower than those of the SQS-

DBCN method. Fig. 7(b) shows that with the SQS-noDB or the

SQS-noNC methods, the mean FWHMs become similar for

MCs of all three sizes, which is undesirable. The image

patches in Fig. 6 also demonstrate that the background texture

obtained with the SQS-noDB or the SQS-noNC methods looks

blurry and coarse and the MCs are less sharp compared to

those with the SQS-DBCN method. The reconstructed images

of human subject DBT in Fig. 9 support the same conclu-

sion. Further comparison of SQS-DBCN and SQS-noDB with

quadratic regularization also leads to similar observations as

discussed in Section XI of the Supplementary Material. These

results indicate that both the detector blur and the correlated

noise modeling in the SQS-DBCN method are important

components in the reconstruction and that its superior CNR

performance is not simply a result of the regularization.
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Another interesting observation is that the SQS-noDB

method generally performs better than the SQS-noNC method.

Fig. 6 shows that the SQS-noNC images looks more blurry

compared with the SQS-noDB images. Fig. 7 shows that

the SQS-noNC method gives lower CNR values and larger

FWHM values for all three different-sized MCs. In fact, the

SQS-noDB method is equivalent to the SQS-DBCN method

if the true point spread function of the detector blur is a

Kronecker impulse. For the SQS-noDB method, although the

detector blur is ignored, the noise model still matches the

forward model in the data-fitting term of (6). On the other

hand, the SQS-noNC method incorporates the detector blur

in the forward model and ignores the corresponding noise

correlation. The results reveal that such a mismatch in the

modeling degrades image quality. The comparison between

SQS-noDB and SQS-DBCN indicates the importance of the

noise correlation model.

There are a number of limitations for this preliminary

study of an MBIR method for DBT. The SQS-DBCN method

depends on several approximations. We approximate the detec-

tor blur as linear shift-invariant for a given projection and as

independent of the x-ray incident angle to the detector. The

reconstructed object approximately consists of a relatively uni-

form background, where the fibrous tissue and MCs are treated

as high-frequency structures embedded in the background.

We also treat the quantum noise to be relatively constant over

the field of view for a given projection angle. The model for

the SQS-DBCN method only includes the detector blur and the

corresponding noise correlation. Other factors such as x-ray

focal spot blur, beam hardening and scatter are not considered

in our current model. However, even with such a simplified

model and approximations, the SQS-DBCN method enhances

MCs and suppresses noise compared to SART reconstruction,

while preserving tissue texture and mass spiculations for low-

dose DBT scans. The SQS-DBCN implementation not only

provides a practical DBT reconstruction method, but also indi-

cates the potential value of model-based image reconstruction

for DBT. We are currently working on a more detailed model

of the system and relaxing the approximations used to simplify

the reconstruction algorithm.

VI. CONCLUSION

We proposed a DBT reconstruction method that incorporates

detector blur and a correlated noise model as the first step

towards developing an MBIR method for DBT. We have

shown quantitatively and qualitatively that the new SQS-

DBCN method can better enhance MCs compared with SART

while preserving the image quality of mass spiculations and

tissue texture. We have also demonstrated the effectiveness

of the SQS-DBCN method as a result of incorporating the

detector blur, the noise correlation and the regularization at

the same time, indicating that a more complete model-based

reconstruction may further improve the DBT image quality.
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VII. Derivation of noise covariance ��		 
The derivation of the noise covariance ��	of the ith projection view in Equation (5) is similar to the 

Appendix of Tilley et al. [22]; the difference is that our application is for DBT geometry in which the 

imaged volume is very close to the detector. As a result, we neglect the focal spot blur so the blurring 

operation �� in our study only includes the detector blur. For the directly measured projection �� before 

the log transform, we treat it as having a Gaussian distribution: 

 ��~�	�
�, ���, (32) 

where 

 �
� = ���� exp	( − ���), (33) 

 ��� = �������� + ���, (34) 

where the capital letters Q and R in the superscripts denote that these values are for the projections before 

the log transform. 

According to Equation (1) - (3) in Section II.A of the paper, we have: 

 �
� ≈ �� exp	( − �����). (35) 

The expectation of the log-transformed projection �� is approximately: 

 � � = log $���
�% ≈ �����. (36) 

Similar to Tilley et al. [22], we consider the fluctuation of the random noise to be small compared with 

the mean value: 

 
�� − �
��
� ≪ 1. (37) 

Then we have: 
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�� = log $����%
= log $���
�% − log(1 + �� − �
��
� )
≈ � � − �� − �
��
� . 

(38) 

As a result, �� also follows approximately a Gaussian distribution: 

 ��~�(� �, ��), (39) 

where 

 �� = diag $ 1�
�%	��������diag $1�
�% + diag $1�
�%���diag $1�
�%. (40) 

In our application, the blurring kernel -. is symmetric along the horizontal and vertical directions. 

So �� is a symmetric matrix. As we discussed in Section II.A, we assume the low-frequency background 

to be approximately uniform over the support of the blurring kernel while a small structure such as MC 

contributes only a small amount of projection values. As a result, �
� is approximately uniform over the 

support of the blurring kernel. Thus we make the following approximation: 

 diag $1�
�%	�� ≈	��diag $ 1�
�%. (41) 

The covariance matrix �� then simplifies as: 

 
�� ≈ ��diag $1�
�%���diag $1�
�%��� + diag $ 1�
�%���diag $ 1�
�%= ����/��� + ��0, (42) 

where 

 ��/ = diag $1�
�%���diag $1�
�%, (43) 

 ��1 = diag $ 1�
�%���diag $ 1�
�% .	 (44) 

Equations (43) and (44) also indicate that when we assume ��/ = 2�/34 and ��0 = 2�034, it is equivalent to 

assuming diag 56�
78���diag 56�
78 and diag 56�
78���diag 56�
78 to be constant along the diagonal for the ith 

projection angle. 

 

VIII. Justification of the Approximation of Constant Quantum Noise 

For an efficient implementation of 9� , the inverse square root of the covariance matrix, we treat the 

quantum noise standard deviation 2�:as approximately a constant for each given projection angle. To 

illustrate the effect of this approximation, we simulated a breast phantom with CatSim [50, 51] (GE 

Global Research, Niskayuna, NY) to estimate the range of 2�:. We did not include readout noise so that 

the estimation below simulates the situation where the readout noise component is perfectly separated 

from the quantum noise component (Section II.B and Equation (12)). The geometry of the simulated DBT 

system matches the geometry of the experimental system shown in Fig. 1. The phantom consists of a half 

cylinder of fatty tissue embedded with a small cylinder of glandular tissue (Fig. 10). The radius of the half 



cylinder is 6 cm and the radius of the small cylinder is 2 cm. The thickness of both blocks of material is 5 

cm. The phantom simulates a compressed breast of an average thickness with glandular and fatty tissue 

regions such that the dynamic range of the transmitted x-ray intensities incident on the detector 

approximates an extreme situation. In a real breast, the glandular tissue and fatty tissue are 

heterogeneously mixed so that the range will be within this extreme. Fig. 11 shows simulated projections 

at scan angle ; = −12°, 0°, 12° of the phantom. 

 

Fig. 10. The simulated breast phantom with 100% glandular tissue (pink) surrounded by 100% fatty 

tissue (blue). 

 

 

Fig. 11. Simulated projections at scan angle ; = −12°, 0°, 12°. The red boxes mark the locations for 

estimating the range of 2�:. 

Table 1: The range of 2�/ 

Projection angle 
2�/ behind the  

fatty tissue 

2�/ behind the 

glandular tissue 
2�/(glandular)/2�/(fatty) 

-12 0.0666 0.1369 2.06 

0 0.0651 0.1284 1.97 

12 0.0659 0.1378 2.09 



The range of 2�: is estimated from the patches marked with red boxes in Fig. 11. Table 1 shows the results. 

According to Table 1, the ratio between the maximum 2�/ and minimum 2�/ for a given projection angle 

could be as large as 2.09. Therefore, when we use the 2�/ value averaged over the entire projection view 

to represent the noise in our SQS-DBCN reconstruction for a human breast image, the error in treating the 

noise variance as a constant may range from overestimating 2�/ by 100% to underestimating 2�/ by 50% 

in local regions of the projection view. 

We therefore studied the effect of noise estimation error by an amount varying between these two worst-

case scenarios. We multiplied all estimated 2�/ by an ‘estimation factor’, denoted as E, to simulate the 

cases where we overestimate or underestimate the values of 2�/. We performed a series of reconstructions 

for our breast phantom with clusters of MCs (described in Section III.B), by varying the range of E from 

0.5 to 2, while keeping the other parameters the same (F = 0.002, G = 70). The CNR and FWHM of 

MCs are shown in Fig. 12. Examples of reconstructed image patches are shown in Fig. 13. 

 

Fig. 12. CNR and FWHM curves as the estimated noise varies by a factor of  E. 
 

Fig. 12 shows that the reconstructed CNRs of MCs are not strongly affected by small deviations from the 

estimation of 2�:. For the small MCs of nominal size 0.15-0.18 mm, the maximum change in CNR is 22% 

and the maximum change in FWHM is 25%. This is relatively small considering that the ratio between 

the maximum E and the minimum E is 4 in this experiment. For MCs of other sizes, the change in CNR 

and FWHM is even smaller. Fig. 13 shows examples of reconstructed MC patches of three different sizes. 

It can be observed that the quality does not change drastically even in the worst-case scenarios. As a 

result, using a constant 2�: for each projection angle is a reasonable approximation. 

Despite these results, treating quantum noise variance as a constant is a limitation of our current 

implementation of the MBIR. The fact that the image quality obtained from our SQS-DBCN method was 

improved even with the simplifying approximations shows the potential of MBIR methods for DBT, but 

further studies are needed to continue the development and relax the assumptions. 

 

 



 E = 0.5 E = 1 E = 2 

Small 

   

Medium 

   

Large 

   

Fig. 13. Reconstructed MC patches with a range of estimation factors. The images of the same cluster 

are displayed with the same window width setting. 

 

IX. DBT Reconstruction with the Penalized Weighted Least-Squares Cost Function 

In addition to the SQS-DBCN, SQS-noDB and SQS-noNC methods, we studied a fourth DBT 

reconstruction method using the penalized weighted least-squares (PWLS) cost function [18, 36]. Such a 

cost function is widely used in statistical iterative reconstruction for clinical CT systems where the 

detector pixel crosstalk can be ignored. For this implementation, we used the usual diagonal weighting 

matrix based on the estimated statistical variance at each detector pixel. Specifically, the PWLS cost 

function is: 

 JKLMN(�) = 12O ‖�� − ���‖Q73RS
�T6 + U(�), (45) 

where Q� is a diagonal matrix. Let j denote the index of pixels for the ith projection angle, the jth element 

of the diagonal matrix Q� is: 

 Q�VWX = 12�7VYX3, (46) 

where 



 2�7VYX = 2�7VYX��VWX = Z 1��VWX. (47) 

Since we are no longer using constant 2�/ and 2�0 in this implementation, the formula for the adaptive- 

regularization scaling factor [ is different from Equation (14): 

 [KLMN = 1
∑ ∑ ]�7VWX2�7VYX3YRS�T6 /∑ ∑ ]�7VWXYRS�T6

, (48) 

where ]�7VWX = 1 if W is within the detected breast boundary [39] for the ith PV and ]�7VWX = 0 otherwise.  

We still use the SQS algorithm to minimize the cost function JKLMN(�). We refer to this reconstruction 

algorithm as the SQS-PWLS method. The SQS-PWLS method is basically the SQS-noDB method 

(Equation (30)) with detector pixel location-dependent noise variance. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14. Dependence of CNR and FWHM on G  for SQS-DBCN, SQS-noDB and SQS-PWLS at F = 0.002/__. (a) and (c) MCs of nominal size 0.15-0.18 mm, (b) and (d) MCs of nominal size 0.18-

0.25 mm. The SQS-DBCN, SQS-noDB, SQS-noNC CNR curves are the same as those in Fig. 5. 

 



Fig. 14 shows the dependence of CNR and FWHM on G at F = 0.002/__. The results of the SQS-

PWLS method are very similar to those of the SQS-noDB method. The CNRs of the SQS-PWLS method 

are slightly lower than those of the SQS-noDB method, with a maximum difference of 5.3% for the 0.18-

0.25 mm MCs at G = 50. The FWHM curves of SQS-PWLS and SQS-noDB overlap almost completely. 

We also examined the reconstructed image patches of the SQS-PWLS method. There is no visual 

difference between the images reconstructed by SQS-PWLS and SQS-noDB since a CNR difference of 

5.3% is basically indistinguishable for human eyes. The similarity between those two methods is expected 

because we already demonstrated in the previous section that the spatial variation of 2�/  within our 

studied conditions does not strongly affect the reconstructed image quality even in the worst case scenario. 

These results further justify the approximation of using constant noise variance in the SQS-DBCN 

method. The results also demonstrate that the MBIR method in CT that does not consider detector blur is 

not sufficient for DBT, where detector blur is one of the major image quality degrading factor.  

 

X. Frequency Response of 9� 
As discussed in Section II.B of the paper, with the approximations of constant 2�/ and 2�0 for a given 

projection angle, we implemented 9� in the frequency domain with fast Fourier transform (FFT). Fig. 15 

shows the normalized frequency response of 9� that corresponds to the central projection view of our 

experimental phantom. The specific frequency response of 9� will change based on the estimated 2�/ and 2�0, which depend on the projection view angle. As a typical case, Fig. 15 shows that the high-frequency 

response of 9�  is not extremely high such that noise of the projection views will not be amplified 

excessively. 

 
Fig. 15. Normalized frequency response of 9� for the central projection angle of the experimental phantom 

 

XI. SQS-DBCN with Quadratic Regularization 

In the implementation of the SQS-DBCN algorithm, we chose an edge-preserving regularization method 

by using the hyperbola potential function `(a)	(Equation (15)). `(a) increases almost linearly when the 



difference between neighboring pixels is large enough compared with F; however, when F is very large, 

the hyperbola potential function is approximately the quadratic function `(a) = a3 . We studied the 

performance of the SQS-DBCN algorithm with F = 1/__ , which represents a nearly quadratic 

regularizer. Fig. 16 shows the dependence of CNR of MCs on G. The peak of the curve moves to the 

lower-left corner when F increases. When F = 1/__, the peak CNR is only slightly higher than that of 

SART. The MC enhancement is much weaker when a quadratic regularization is used with the SQS-

DBCN method. On a DBT slice, small MCs usually only occupy a few pixels. From the perspective of 

image processing, the entire MC may be processed as an ‘edge’ due to the high local gradient. So the 

MCs are strongly suppressed by a non-edge-preserving regularization. Fig. 17 and Fig. 18 show, 

respectively, examples of MCs in our phantom and soft tissue structures in human breast, such as a 

spiculated mass, reconstructed by SQS-DBCN with quadratic regularization for a range of G. The MCs 

are much more blurred than those by SQS-DBCN with hyperbola regularization as shown in Fig. 17, 

especially when G is large, so that small G is preferred for MCs. For soft tissue structures in human breast, 

SQS-DBCN with quadratic regularization produces texture that appears increasingly rough and “bumpy” 

when G decreases as shown in Fig. 18 so that large G is needed for more smooth and natural tissue texture. 

These results demonstrate that for quadratic regularization a single G cannot provide good image quality 

for both MCs and tissue texture or mass margin, which is crucial for DBT reconstruction.  

The proposed SQS-DBCN model with hyperbola regularization is superior to that with quadratic 

regularization for DBT reconstruction as shown by our analyses. This can be explained by the dual roles 

played by the hyperbola potential function `(a) = F3	b1 + (a/F)3 − 1. For reconstructing soft tissue, 

the difference between neighboring pixels is small such that  F = 0.002/__ is large enough for the 

potential function to work in the ‘quadratic’ part of the curve. It therefore behaves like quadratic 

regularization that produces smooth and natural soft tissue texture at large	G. For MCs with high gradient 

between neighboring pixels, the potential function behaves like linear regularization such that MCs are 

preserved even when relatively strong regularization is used to reduce noise. The property of the 

hyperbola function thus matches well with the requirements for DBT reconstruction. 

 
(a) 

 
(b) 

Fig. 16. Dependence of CNR on reconstruction parameters. (a) MCs of nominal size 0.15-0.18mm, (b) 

MCs of nominal size 0.18-0.25mm. These plots are the same as Fig. 2 with the addition of F = 1/__ 

to approximate quadratic regularization. 

 



 SQS-DBCN (Hyperbola 
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SQS-DBCN (Quadratic 
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Regularization) F = 1/__, G = 5 
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Fig. 17. Comparison of MC clusters reconstructed with different reconstruction conditions. The SQS 

methods (SQS-DBCN or SQS-noDB) use 10 iterations. The images are displayed with the same 

window width setting. 
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Regularization) F = 0.002/__, G = 70 
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Regularization) F = 1/__, G = 20 
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Regularization) F = 1/__, G = 40 

SQS-DBCN (Quadratic 

Regularization) F = 1/__, G = 70 

      

Fig. 18.  Comparison of spiculated mass in human subject DBT. The images are displayed with the 

same window width setting. 

 

We have shown in the paper (Fig. 5 to Fig. 9) the comparison of the SQS-DBCN model to that without 

modeling detector blur, i.e., SQS-noDB (Equation (30)), when the same hyperbola regularization was 

used. To further demonstrate the contribution of detector blur modeling, independent of the edge-

preserving hyperbola regularizer, we compare the SQS-DBCN model and the SQS-noDB model, both 

with quadratic regularization, i.e., by setting F = 1/__. Fig. 19 shows the CNR of MCs as a function of G. With or without modeling detector blur, the CNR curve reaches its peak value at small G. The SQS-

noDB curves reaches its peak at smaller G, making it even more difficult to find a good trade-off to 

enhance the MCs while preserving the texture of soft tissue. Fig. 17 shows examples of MCs 



reconstructed with the SQS-DBCN model and the SQS-noDB model using quadratic regularization for a 

range of G values. For a given G, the MCs by the SQS-noDB model are much more blurred and have 

lower contrast than that by the SQS-DBCN model, indicating that the proposed detector blur modeling 

improves both the image sharpness and the CNR values. This experiment shows that the advantages of 

detector blur modeling persist until G  becomes very small regardless of whether edge-preserving 

regularization is used. 

 
(a) 

 
(b) 

Fig. 19. CNR of MCs of the SQS-DBCN method and the SQS-noDB method when the quadratic 

regularization is used (F = 1/__). (a) MCs of nominal size 0.15-0.18mm, (b) MCs of nominal size 

0.18-0.25mm. 

 

XII. Comparing SART and SQS-DBCN with the ACR Phantom and a Uniform Lucite Phantom 

In addition to the breast phantom with heterogeneous background, we also compared the reconstruction 

methods using the ACR phantom. The results are shown in Fig. 20 and Fig. 21. Fig. 21 shows the third 

speck group on the ACR phantom. The visibility of the MCs is enhanced with the SQS-DBCN method, as 

indicated by the increased mean CNR of the six MCs. 

We also compared the noise pattern in DBT slices of a uniform background reconstructed by the SART 

and the SQS-DBCN method. DBT scan of a 2-inch-thick uniform Lucite slab (about 5 cm) was acquired 

and reconstructed with the two methods. Fig. 22 shows noise patches from a slice at a depth of 2.7 cm in 

the Lucite phantom reconstructed by SART and the SQS-DBCN (F = 0.002, G = 70). Fig. 23 compares 

the noise power spectra obtained from averaging the noise power spectra of multiple noise patches at the 

same depth as the noise patches shown in Fig. 22 for each method. The SQS-DBCN method smooths the 

high-frequency noise but the low frequency noise is stronger compared to the SART method. The SQS-

DBCN method does not generate obvious artifacts on the background with the parameters selected in our 

study.  

 



 
(a) SQS-DBCN 

 
(b) SART 

Fig. 20. Comparison of reconstructed ACR phantom images. The images are displayed with 

the same window width setting. Fig. 21 shows a close-up view of the speck group marked by 

the box shown in Fig. 20. The x-ray source moves along the vertical direction. The horizontal 

artifacts on top and at the bottom of the images are caused by the rectangular block shape of 

the ACR phantom that results in an abrupt transition to air at the edge of the phantom. This 

artifact does not happen in a real breast and is different from the truncation artifacts caused by 

the finite field-of-view coverage by the detector. The stronger enhancement of SQS-DBCN 

compared to SART also causes stronger enhancement of the artifact. 

  

 
(a) SQS-DBCN 

(CNR = 17.5, FWHM = 0.33 mm) 

 
(b) SART 

(CNR = 7.07, FWHM = 0.38 mm) 

Fig. 21. MC patches of reconstructed ACR phantom. The images are displayed with the same window 

width setting. 
 

 

 

 

 



 
(a) SQS-DBCN 

 
(b) SART 

Fig. 22. Comparison of noise patches from a DBT slice of a uniform Lucite phantom reconstructed by 

SQS-DBCN (F = 0.002 , G = 70 ) and SART. Both image patches are obtained from the same 

location in the two reconstructed DBT volume and the size of is 400 d 400 pixels (40 d 40 mm
2
). 

The images are displayed with the same window width setting. 

    

 

Fig. 23. Comparison of noise power spectra of noise patterns for the DBT slice of a uniform Lucite 

phantom reconstructed by SQS-DBCN (F = 0.002, G = 70) and SART at the same depth of the noise 

patches shown in Fig. 22. 
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