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Image Reconstruction for Limited-Angle Electron

Beam X-Ray Computed Tomography With

Energy-Integrating Detectors for Multiphase Flows
Seongjin Yoon , Simo A. Mäkiharju , Jeffrey A. Fessler , Fellow, IEEE, and Steven L. Ceccio

Abstract—We propose a new iterative X-ray computed tomog-
raphy (CT) reconstruction algorithm for electron beam X-ray to-
mography of multiphase flows in metal pipes. This application
uses limited-angle projections due to the fixed configuration, and
semiconductor-type energy-integrating detectors. For the data-
fitting objective function, the proposed method incorporates a
nonlinear Gaussian model with object-dependent variance to ap-
proximate the compound Poisson distribution, and a dual material
decomposition based on images of the volume fractions of metal
(titanium) and liquid (water). The volume fraction-based material
decomposition enables us to use a maximum sum constraint that
helps address the ill-posed nature of the problem. Two different
regularizers, ℓ0 norm and edge-preserving hyperbola regularizers,
are applied differently on each volume fraction image based on the
characteristics of objects in each image. A synthetic phantom sim-
ulation illustrates that the proposed algorithm enables the afore-
mentioned CT system to achieve high quality images by minimizing
artifacts induced by limited-angle data and beam hardening.

Index Terms—Electron beam X-ray tomography (EBXT), statis-
tical reconstruction, limited-angle tomography, compound Poisson
distribution.

I. INTRODUCTION

M
ODERN optical measurement techniques, such as par-

ticle image velocimetry (PIV), can quantify the velocity

(and in some cases even pressure) field in most single phase

fluid flows. However, conventional (near-visible) optical meth-

ods are not usable for most gas-liquid multiphase flows of in-

terest due to refraction of light at the phase interfaces, which
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even at low gas fractions make these flows opaque. To quantify

velocity or phase distribution in multiphase flows, there have

been a few attempts to use X-ray based 2D densitometry or

3D computed tomography (CT) techniques in fluid experiments

[1]–[11]. The major challenge in applying X-ray CT to fluid

flow measurement is temporal blurring. The flows of industrial

and naval interest require measurements at rates much higher

than required for most CT applications. Hence, conventional CT

systems cannot be used for time resolved fluid visualization due

to the excessive temporal blurring induced by the rapid motion.

For faster scanning, electron beam X-ray tomography (EBXT)

has been considered as a promising technology [1], [2], [5]–[8],

[11]. EBXT can improve the temporal resolution when imag-

ing moving objects by removing the mechanical rotation of the

source and detector used in conventional X-ray CT. Instead of

physically rotating a source and detector pair, EBXT deflects an

electron beam by applying electro-magnetic fields to generate

X-rays in a sequence of specific positions along the tungsten

arc, while a fixed array of detectors acquires projection images

as the beam sweeps the arc. Consequently, much higher scan

rates are achievable than by conventional CT.

Although EBXT significantly enhances temporal resolution

compared to conventional CT, it still has several drawbacks. Be-

cause of its fixed source-detector configuration, full-angle CT

data requires angular overlap between the source target and the

detector. The conventional solution was to place an axial offset

between the source and the detector [2]. This axial displace-

ment can generate artifacts due to the misalignment between

the source and detector in 2-D CT as each projection scans dif-

ferent plane. Furthermore, 2-D array detectors are not easily

usable for this configuration because the target blocks detec-

tors. To solve the overlapping problem while enabling the use

of 2-D array detectors, a tungsten coated graphite target was

developed, enabling full-angle CT by making the X-ray source

almost transparent to X-rays [5]. However, it is not yet avail-

able for commercial applications. Fig. 1 shows three different

configurations of EBXT that avoid overlap. This paper focuses

on reconstruction algorithms for limited angle EBXT because

this configuration is readily implementable with commercially

available components, and expandable to 3D CT as well.

Despite the advances in hardware to enable full-angle

EBXT, not much attention has gone into the CT reconstruction

algorithms for the limited angle EBXT. For limited angle CT
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Fig. 1. Three types of EBXT source-detector configurations; (a) limited angle,
(b) full angle with axial offset, (c) full angle with X-ray transparent target.

of two-phase flows, there have been attempts to improve the

result image by thresholding binarization [1] and level-set

binarization [11]. However, binarization can only be applied

to images where all objects of significance have size larger

than reconstruction resolution (i.e., voxel size). The size of

objects (bubbles) in multiphase flows, particularly cavitating

flows, ranges from microns to centimeters. In multi-phase fluid

mechanics, a volume fraction approach is commonly used

to account for smaller objects that cannot be fully resolved,

where the material property is volume-averaged over each

voxel [12]. With volume fraction approaches, each pixel can

have any gray value (i.e., phase fraction) between 0 to 1.

Applying binarization to flows having void fractions varying

continuously from 0 to 1 can cause significant inaccuracy.

Numerous statistical reconstruction methods for poly-

energetic source CT have been published. Among them, dual

energy (DE) CT has been a popular method to account for the

energy-dependent nonlinearity of the X-ray photon attenuation

[13]–[35]. DECT acquisitions can be classified into four cat-

egories: dual source [15], fast kVp switching [28], dual layer

detectors [36] and energy binning detectors [18]. Applying dual

source or dual layer detector to the electron beam is difficult,

as collimators cannot be used in EBXT because the incident

angle of the beam changes along the scan. Fast kVp switching

in EBXT would require synchronization between the sequences

of beam voltage and deflection coils, and may not be achievable

due to limitations of high voltage (HV) supply response time.

Additionally, failed synchronization could cause the beam to

hit the chamber walls, which could cause permanent damage in

fractions of a second. To date, EBXT has used only for single

energy CT, i.e., a single source voltage with energy-integrating

detectors.

Achieving DECT-like results when using only the single

bin energy-integrated data is not straightforward, especially

when only limited angle projection data is available. Unlike the

Poisson maximum likelihood of photon counting detectors, less

attention has gone into finding an accurate probabilistic model

for energy-integrating detectors, and many existing iterative

methods use conventional weighted least square (WLS) method

for data-fitting (likelihood) objective functions [20], [33].

While WLS is a widely accepted method for high photon

count rate, it could fail to accurately estimate parameters when

photon count rates are low. Whiting et al. [37] showed that the

compound Poisson distribution of the energy-integrating data

matches well with the measured probability density function,

and it quickly becomes Gaussian-like when the number of

photons becomes greater than 20. That work also showed

that the mean and the variance of the energy-integrating data

has a linear relation. Recently, Lasio et al. [38] proposed a

simple Poisson log likelihood for energy-integrating detectors

using equivalent photon counts, i.e., total energy divided by

the equivalent mean energy of incident photons. Although

the simple Poisson model was accurate enough for a certain

problem [38], its linear approximation does not fully reflect the

nonlinear physics of the attenuation of photons.

This paper describes a way to take advantage of a dual ma-

terial decomposition method similar to that used for the beam-

hardening removal, while using energy-integrating detectors.

To do this, we used the material decomposition method based

on the volume fraction maps following [35], and a nonlinear

Gaussian approximation (NGA) to simplify the aggregated com-

pound Poisson distribution. Our probability model incorporates

the spectral response of the detector crystals by using a sim-

ple Gaussian and tail mixture model suggested by Srivastava

et al. [39]. While the system configuration considered and re-

construction method proposed are expandable to 3D, this paper

focuses on reconstructing a single CT slice.

Estimating dual material volume fractions using only a single

bin energy-integrated data leads to an ill-posed problem where

the solution is not unique. However, employing the fraction map

has a benefit as its physical constraints, i.e., non-negativity and

the bounded sum, help to narrow the feasible domain. Even with

the constraints, the solution is still not unique. We employ two

regularizers, an edge-preserving and ℓ0 norm regularizer to de-

termine the solution. Based on the dual material decomposition,

different regularizers are applied to the fraction maps depending

on the characteristics of the materials.

II. SYSTEM DESCRIPTION

We designed the reconstruction algorithm and simulation con-

ditions in this study focusing on the forthcoming hardware setup

of the scanning electron beam X-ray tomography (SEBXT) for

the multiphase flow experiments in the University of Michigan.

Fig. 3 shows a schematic diagram of SEBXT. The X-ray source

of SEBXT is based on the 150 kV 20 kW electron beam gun sys-

tem with 170 degree tungsten target. We use 160 degree, 128 pix-

els arc shaped CdTe semiconductor detectors that convert X-ray

photon energy to electrons directly without using scintillators.

All other system specifications are summarized in Table I.

To evaluate the performance of the SEBXT with an em-

phasis on the industrial application such as boilers, we in-
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Fig. 2. (Left) Geometry of the source points, the detector points, and the
region of interest; (Right) corresponding sinogram. The thick red lines in the
sinogram indicate the regions beyond which data is missing due to the limited
angle CT system.

Fig. 3. Schematic diagram of a electron beam gun, tungsten target, object
(titanium pipe with gas-liquid fluids), and energy-integrating detectors.

troduce a synthetic phantom that consists of water-equivalent

structure in a titanium pipe with three circular titanium rods

and various sizes of bubbles, with bubble radius ranging from

0.05 cm to 1.125 cm. Fig. 4 shows the true image of the phan-

tom, represented by volume fraction image of each material.

The locations, sizes, and materials of the objects in the phantom

are summarized in the supplement.

For simplicity, we assume that our measurement data Hi

is total integrated X-ray photon energy obtained by linearly

transforming the integrated current over exposure time along

the ith source-detector pair.

III. RECONSTRUCTION METHODS

For current mode (energy-integrating) semiconductor type

detectors with a polyenergetic source, the actual distribution

of the energy transferred to the detector by photons falls into

the sum of independent compound Poisson random variables,

called the aggregated compound Poisson random variable [40],

which is not practically applicable for the iterative maximum

likelihood estimator due to its complicated form. As a common

approach, the distribution of the measurement data Hi of the

current mode detector is approximated by the normal distribu-

tion [40], [41], and [42]:

Hi ∼ N
(

η(ȳi), σ
2(ȳi)

)

, (1)

TABLE I
SEBXT SYSTEM SPECIFICATION

Source

Type electron beam gun
Voltage 150 kV
Current 133 mA
Target material tungsten
Target radius 80 mm
Range of angles 170 degrees
Number of projections 128
Scanning speed 1000 scans/second

Detector

Type semiconductor
Mode current-integrating
Material CdTe
Radius 80 mm
Range of angles 160 degrees
Number of pixels 128

Face area 1.33 × 1.33 mm2

Exposure time 1.95 ×10−6 sec

Reconstruction image

Field of view 90 × 90 mm2

Total pixels 192 × 192

Fig. 4. True volume fraction images of the phantom

where η is the mean of the measurement data H , σ2 is the vari-

ance of H , i is the index of rays, and ȳi is the ideal expected

transmitted X-ray photon counts at the ith ray. Note that the es-

timator based on (28) differs from conventional WLS methods,

as the variance also depends on ȳi . We refer to this approach as

the nonlinear Gaussian approximation (NGA) hereinafter. After

discretizing the continuous X-ray photon energy level E into Nk

bins with an interval ∆E , we define ȳi(Ek ) as the ideal expected

photon counts at the ith ray and the kth energy bin based on the

Beer’s law:

ȳi(Ek ) ≡
∫ Ek +1/2∆E

Ek −1/2∆E
I0
i (E) exp

(

−
∫

Li

µ(x, E) dl

)

dE , (2)

where k is the energy level index, ∆E is the interval between

energy levels, I0
i (E) is the continuous initial emission spectrum,

∫

Li
· dl is the line integral along the ith ray, and µ(x, E) is the

attenuation coefficient at the spatial location x and energy E .

The main goal of the following section is to define the an-

alytic expression of η and σ2 , apply the maximum likelihood

estimation, and lastly, solve it iteratively using a majorization-

minimization algorithm specifically designed for the given like-

lihood function.
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A. Basis Material Decomposition

In (2), attenuation coefficient µ(x, E) is a function of both

space and energy. For the sake of simplicity, we first decompose

it into the energy-dependent term and space-dependent term.

Sukovic and Clinthorne [17], [19], [20] suggested a decompo-

sition method to split the attenuation coefficient into the mass

attenuation coefficient which depends on energy, and the local

density which depends on space, as follows:

µ(x, E) =

N l
∑

l=1

βl(E)ρl(x), (3)

where Nl is the total number of materials in the object. This

study uses a dual material decomposition model: Nl = 2. βl(E)
is the known mass attenuation coefficient of the lth material

at energy level E , and ρl(x) is the local density at the spatial

location x. Elbakri and Fessler [25] further decomposed the

density map into actual material density and fraction map,

µ(x, E) =

N l
∑

l=1

βl(E) ρ(x) fl(ρ(x)). (4)

In this model, material fraction is assumed to be a function of

the density, where the function can be obtained by the empirical

curve fitting based on the known material data. While this ap-

proach can be used for the specific field where there is a strong

relationship between the density and fraction, it cannot be ap-

plied to more general case where the fraction is not a one-to-one

function of the density. Instead, Long and Fessler [35] intro-

duced a modified volume fraction method in which the fraction

is independent of the density:

µ(x, E) =

N l
∑

l=1

βl(E) ρl fl(x). (5)

This type of decomposition can facilitate applying physical con-

straints. For example, if all materials in the object are considered

in the reconstruction, we can set the constraint
∑

l fl(x) = 1 for

any x. This sum-to-one constraint is called volume conserva-

tion. Usually, X-ray attenuation due to air is negligibly small,

thus the attenuation of the air is assumed to be zero. Then, we

can set the constraint
∑

l fl(x) ≤ 1 for any x, excluding the air

fraction. This volume fraction-sum constraint (VFSC) signifi-

cantly improves the quality of reconstructed images for limited

angle CT, as shown later.

Finally, discretize µ(x, E) using the piecewise constant basis

in energy,

µ(x, Ek ) =

N l
∑

l=1

ul(Ek ) fl(x), (6)

where ul(Ek ) = u(k,l) = βl(Ek )ρl . After discretizing fl(x) in

space, and plugging (6) into (2), the discretized average photon

flux ȳ(i,k) is written as:

ȳ(i,k) = I0
(i,k) exp

(

−
N l
∑

l=1

u(k,l)

[

Af(l)
]

i

)

∆E , (7)

where I0
(i,k) = I0

i (Ek ), [t]i is the ith element of the vector t ∈
RN i , A ∈ RN i ×N j is the projection matrix with its element

a(i,j ) being the Radon transform of the jth spatial basis along

the ith ray, and f(l) = [f(1,l) , . . . , f(N j ,l)

]′
, where [·]′ denotes

transpose. Ni and Nj are the number of rays and the number of

image pixels in space, respectively.

B. Photon Energy Detection Statistics for Current

Mode Detectors

To obtain statistical properties η̄ and σ2 for the total photon

energy probability density function (PDF), assume that the event

of the photo-electric interaction of each photon is independent,

and number of X-ray photons at each discretized energy level

follows independent Poisson distribution.

Y(i,k) ∼ Poisson
(

ȳ(i,k)

)

, (8)

where the parameter (mean) ȳ(i,k) is defined in (7).

Then, a mathematical model is needed to compute the PDF

of energy transferred to the detector for each photon of the

discrete energy level Ek , which is interpreted as the spectral

response B(Ek ) of the detector. Semiconductor type energy-

integrating detectors measure total integrated energy of X-ray

photons by recording the current induced by photoelectrons

when photons interact with the semiconductor. Probability of

photon-electron interaction depends on many factors, such as

the size and material of the detector, and it is hard to compute

analytically. Instead, Srivastava et al. [39] suggested a simplified

empirical model for B(E) as a mixture of Gaussian photo-peak

and uniform continuum:

B(E ′; E) = wEBG (E ′; E , σE)

+ (1 − wE)BC (E ′; E), (9)

BG (E ′; E) =
1√

2πσE
exp

(

− (E ′ − E)2

2σ2
E

)

, (10)

BC (E ′; E) =

{ 1/E if 0 ≤ E ′ ≤ E
0 otherwise

, (11)

σE = k
√
E . (12)

Here, wE is the mixture probability of photo-electric interaction,

and k is the variance coefficient. Without conducting experi-

ments with multiple monoenergetic sources, estimating k and

wE of the detector by experiment is impossible. For the sim-

ulation purpose, we extracted wE from the existing efficiency

data of the commercial 1 mm thick CdTe detector provided by

Amptek [43]. Fig. 5 shows estimated wE for 1 mm thick com-

mercial CdTe semiconductor detector. Note that wE depends on

both the material and the size of the detector, and estimated val-

ues of wE in Fig. 5 are for the simulation only. For actual data

reconstruction, wE must be tuned to fit the spectral response

of the specific detectors. In general, CdTe detector shows good

efficiency at low energy, then gradually loses its efficiency after

the energy higher than 100 keV.

Denote Em (E) as the energy transferred to the detector from

mth photon which originally had energy E . As noted before,
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Fig. 5. Mixture weight of photo-electric interaction wE of 1 mm CdTe detector
(based on the efficiency data from Amptek XR-100T-CdTe [43]).

energy transferring events at the detector are assumed to be

independent, then Em (E) can be seen as independent and iden-

tically distributed (i.i.d.) random variables that have the spectral

response function as their PDFs,

Em (E)
i.i.d.∼ B( · ; E). (13)

To get η̄ and σ2 , we first need to compute the first, second, and

third moment of Em (E) using (9) to (12),

m
(1)
E ≡ E

[

Em ; E
]

=
wE + 1

2
E , (14)

m
(2)
E ≡ E

[

E2
m ; E

]

= wEσ
2
E +

2wE + 1

3
E2 , (15)

m
(3)
E ≡ E

[

E3
m ; E

]

= 3wEEσ2
E +

3wE + 1

4
E3 . (16)

Let Ti be the total energy transferred to the ith detector from

the monoenergetic beam with energy level Ek , then Ti can be

written as the compound Poisson random variable, i.e., sum of

the i.i.d. random variables where the total number is Poisson

random variable:

Ti(Ek ) =

Y i
∑

m=1

Em (Ek ). (17)

The mean, variance, and skewness of Ti(Ek ) can be computed

using the moments of Em (Ek ) in (14) to (16) as

E
[

Ti(Ek )
]

= ȳ(i,k) m
(1)
Ek

, (18)

Var
[

Ti(Ek )
]

= ȳ(i,k) m
(2)
Ek

, (19)

Skew
[

Ti(Ek )
]

=
m

(3)
Ek

√

ȳ(i,k)

(

m
(2)
Ek

)3
. (20)

Details to obtain the statistical properties of the compound Pois-

son random variables can be found in [40]. For the polyenergetic

beam, assume that all Ti(Ek ) at different discretized energy lev-

els are mutually independent. Then the sum Hi =
∑Nk

k=1 Ti(Ek )
becomes the aggregated compound Poisson random variable

[40], and its statistical properties are

E
[

Hi

]

=

Nk
∑

k=1

ȳ(i,k)m
(1)
Ek

, (21)

Var
[

Hi

]

=

Nk
∑

k=1

ȳ(i,k)m
(2)
Ek

, (22)

Skew
[

Hi

]

=

∑Nk

k=1 ȳ(i,k)m
(3)
Ek

(

∑Nk

k=1 ȳ(i,k)m
(2)
Ek

)3/2
, (23)

where ȳ(i,k) is defined in (7).

Since skewness of Hi is non-zero, approximating PDF of Hi

requires at least a three-parameter distribution model to satisfy

all the mean, variance and skewness at the same time. Shifted

gamma distribution is known to be a good candidate to estimate

the compound Poisson distribution [40], defined as

Gtr (h;h(0) , a, b) = G(h − h(0) ; a, b), (24)

where G is the two-parameter gamma distribution. a and b are

the shape and rate parameters of the two-parameter gamma

distribution, respectively. h(0) is the mean-shifting parameter.

To find the parameters that satisfy the statistical properties de-

scribed in (21), (22) and (23), first find a and b from the variance

and skewness, then find h(0) to satisfy the mean by shifting the

two-parameter gamma distribution. Then, we get the following

analytic expressions for the shifted gamma approximation:

ai = 4

(

∑Nk

k=1 ȳ(i,k)m
(2)
Ek

)3

(

∑Nk

k=1 ȳ(i,k)m
(3)
Ek

)2 , (25)

bi = 2

∑Nk

k=1 ȳ(i,k)m
(2)
Ek

∑Nk

k=1 ȳ(i,k)m
(3)
Ek

, (26)

h
(0)
i =

Nk
∑

k=1

ȳ(i,k)m
(1)
Ek

− ai

bi
. (27)

Even though the shifted gamma distribution can approximate

the given compound Poisson approximation accurately, devel-

oping maximum likelihood for the X-ray CT which has massive

amount of parameters to be estimated is not feasible due to

the complicated digamma functions. Hence, we need some sort

of simpler distribution model to design the estimator. As men-

tioned earlier, Gaussian distribution is chosen in the hope of the

central limit theorem. Naive Gaussian approximation based on

the mean (21) and the variance (22) are

Hi ∼ N
(

η(ȳi), σ
2(ȳi)

)

, (28)

η(ȳi) =

Nk
∑

k=1

ȳ(i,k)m
(1)
Ek

, (29)

σ2(ȳi) =

Nk
∑

k=1

ȳ(i,k)m
(2)
Ek

, (30)
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Fig. 6. Comparison of the probability density functions for the energy trans-
ferred to the detector by bichromatic X-ray photons at FWHM region, ȳ(E1 ) =
10, ȳ(E2 ) = 5, E1 = 20, E2 = 100, w1 = w2 = 0.8, k = 0.5, υ = 0.8.

where ȳi =
[

ȳ(i,1) , . . . , ȳ(i,Nk )

]′
. Due to the skewness error,

maximum likelihood estimation of Gaussian approximation al-

ways give a biased result as the mean and the mode of the

compound Poisson distribution are not in the same place. The

difference between the mean and the mode can be seen in Fig. 6

where the mean is at the peak of the Gaussian distribution, and

the mode is at the peak of the gamma or actual distribution. Thus,

we want to move the mean of the Gaussian distribution close

to the mode. For αi > 1, the difference between the mode and

the mean can be found from the approximated shifted gamma

distribution:

E
[

Hi

]

− mode
[

Hi

]

=

(

ai

bi
+ t0i

)

−
(

ai − 1

bi
+ t0i

)

=
1

bi
. (31)

In terms of maximum likelihood, shifting the mean of Gaussian

distribution onto the mode of the actual distribution increases

the accuracy of the estimation when the data is close to the mode,

but it also decreases the accuracy when the data is away from

the mode. As a trade off, we chose a parameter υ̂ that minimizes

the mean-squared error between the actual distribution and the

Gaussian approximation within the full-width at half maximum

(FWHM) region as:

Hi ∼ N
(

η(ȳi) − υ̂i
1

b(ȳi)
, σ2(ȳi)

)

, (32)

υ̂i = arg min
υ

∫ HM−

HM+

(

ptruei
(h) − pH i

(h; ηi , bi , σ
2
i , υ)

)2

dh,

(33)

where ptruei
is the actual marginal PDF, pH i

is the Gaus-

sian approximated marginal PDF, ηi = η(ȳi), bi = b(ȳi), σ
2
i =

σ2(ȳi), HM− and HM+ indicate low and high FWHM bound.

Finding explicit expression for the optimal υ̂i is difficult as the

actual distribution ptrue has a complicated form. For the results

in this paper, we selected υ̂ from the numerical experiments as

the fixed constant υ̂ = 0.8. This value suffices as there are many

other uncertainties that can exceed the approximation error of

using a constant υ̂ value.

To validate the NGA model in (1), we obtained an analytic

expression of the total energy PDF from the following recursive

auto-convolution equation [37]. For a monoenergetic beam,

pT i (E)(t) =
∞

∑

y=1

pT i |Y i (E) (t|Yi(E) = y)

· Pr (Yi(E) = y)

=

∞
∑

y=1

(

pT i |Y i (E) (t|Yi(E) = y − 1)

∗ pT i |Y i (E)(t|Yi(E) = 1)
)

· Pr(Yi(E) = y). (34)

where ∗ denotes 1-D convolution with respect to t. For a polyen-

ergetic beam,

pH i
(t) = p∑

k T i (Ek )(t)

=
(

pT i (E1 ) ∗ pT i (E2 ) ∗ · · · ∗ pT i (EK )

)

(t). (35)

Fig. 6 compares the analytic compound Poisson, shifted Gamma

approximation, NGA, and NGA with mean correction for the

case of bichromatic beam at FWHM region of the actual distri-

bution. Note that the mean total number of photons is 15 in this

case, which is equivalent to the worst case of the actual mean

number of photons of our EBXT machine.

Finally, assuming readout noises ri are additive and indepen-

dent, then η and σ2 follow from the linearity of the expectation

and the variance of independent random variables:

Hi ∼ N
(

η(ȳi) − υ̂
1

b(ȳi)
+ r̄i , σ2(ȳi) + σ2

r i

)

, (36)

where r̄i and σ2
r i

are the mean and variance of the readout noise

ri , respectively.

C. Maximum Likelihood Estimation

For simplicity, we drop readout noise terms hereinafter. We

assume the detector signals are mutually independent, so that

the joint PDF is a product of marginal PDFs derived from (32)

as follows:

pH i
(hi ; ηi , bi , σi) =

1
√

2π σ2
i

exp

(

−
(

hi − ηi + υ̂/bi

)2

2σ2
i

)

,

(37)

where hi is the measurement data of ith ray.

After taking the negative log of pH i
and discarding constant

terms, the proposed data-fitting objective function ΨL (ȳ) is
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defined as follows:

ΨL (ȳ) =

N i
∑

i=1

ψL (ȳi), (38)

ψL (ȳi) =
1

2

(

log σ2
i (ȳi) +

(

hi − ηi(ȳi) + υ̂/bi(ȳi)
)2

σ2
i (ȳi)

)

.

(39)

The data-fitting function ΨL (ȳ) in (38) is not convex. Like all

non-convex problems, iterative solution could be trapped in a

local minimum, thus we need to choose an initial condition

carefully to avoid any undesired local minima. In our case, we

set the initial estimate to be the true titanium pipe image fully

filled with water, which we found worked adequately in practice.

As shown in (7), ȳ is a function of the fraction image f =
[f ′(1) , . . . , f

′
(N l )

]′. Consequently, we want to find f that minimizes

the data-fitting function in (39):

f̂ = arg min
f∈F

ΨL

(

ȳ(f)
)

, (40)

where F is the volume fraction constraint set:

F =
{

f ∈ RN j N l

∣

∣

∣
f(j,l) ≥ 0,

∑

l

f(j,l) ≤ 1

for j = 1, . . . , Nj and l = 1, . . . , Nl

}

. (41)

Finding analytic solution of (40) is not feasible. In general, it

must be solved iteratively. The gradient of ΨL is:

∂ΨL

∂f(j,l)
=

N i
∑

i=1

[

1

2

(

1

σ2
i

− g2
i

)

∂σ2
i

∂f(j,l)

− gi
∂ηi

∂f(j,l)
− υ̂gi

1

b2
i

∂bi

∂f(j,l)

]

(42)

≃
N i
∑

i=1

[

1

2

(

1

σ2
i

− g2
i

)

∂σ2
i

∂f(j,l)
− gi

∂ηi

∂f(j,l)

]

(43)

where gi is defined as:

gi =
hi − ηi + υ̂/bi

σ2
i

. (44)

To derive the approximated gradient (43) from the exact gradient

(42), we need to check the order of each partial derivative term.

One can verify that

1

b2
i

∂bi

∂f(j,l)
∼ O(E), (45)

∂ηi

∂f(j,l)
∼ O(EY), (46)

∂σ2
i

∂f(j,l)
∼ O(E2Y), (47)

where Y is the dimension of the photon counts, and E the energy

level. Since Y ≫ 1, we can safely remove the partial derivative

of bi from (42). This approximation also applies to the precon-

ditioner that is derived later. The remaining partial derivative

terms in (43) can be further expanded by finding the partial

derivative of ȳ(i,k) with respect to f(j,l) as

∂ȳ(i,k)

∂f(j,l)
= − I0

(i,k) u(k,l) a(i,j )

exp

(

−
N l
∑

l=1

u(k,l)

[

Afl
]

i

)

= − a(i,j ) u(k,l) ȳ(i,k) , (48)

∂ηi

∂f(j,l)
=

Nk
∑

k=1

m
(1)
Ek

∂ȳ(i,k)

∂f(j,l)

= − a(i,j )

Nk
∑

k=1

(

u(k,l) m
(1)
Ek

)

ȳ(i,k) , (49)

∂σ2
i

∂f(j,l)
=

Nk
∑

k=1

m
(2)
Ek

∂ȳ(i,k)

∂f(j,l)

= − a(i,j )

Nk
∑

k=1

(

u(k,l) m
(2)
Ek

)

ȳ(i,k) . (50)

Substituting (49) and (50) into (43) yields

∂ΨL

∂f(j,l)
≃

N i
∑

i=1

a(i,j )

[

1

2

(

1

σ2
i

− g2
i

)

n
(2)
(i,l) − gi n

(1)
(i,l)

]

, (51)

where

n
(1)
(i,l) = −

Nk
∑

k=1

u(k,l) m
(1)
Ek

ȳ(i,k) , (52)

n
(2)
(i,l) = −

Nk
∑

k=1

u(k,l) m
(2)
Ek

ȳ(i,k) . (53)

D. Preconditioned Gradient Descent (Approximated

Majorization-Minimization)

So far, we have obtained the data-fitting objective function

(39) and its gradient (51) with respect to the parameters to be

estimated, i.e., the fraction image of the lth material f(j,l) . Using

those equations, we want to find the minimum by taking the

direction of the negative gradient. The preconditioned gradient

descent method is:

f (q+1) = f (q) − N−1
L ∇ΨL

(

f (q)
)

. (54)

Here, preconditioner NL defines the step size. Depending on

the characteristics of the objective function, if the eigenvalues

of N−1
L are too large, the iterates may not converge at all. On the

other hand, if the eigenvalues of N−1
L are too small, convergence

may be slow. Thus finding appropriate step size is crucial for

fast and stable iterative computation.

Computing optimal NL for non-linear problems is challeng-

ing, and can be computationally expensive. In this case, a surro-

gate function Ψ
(q)
L at each iteration step q can be adopted, which
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is easier than the objective function to solve. Then, instead of

minimizing the objective function, we minimize the surrogate

function to move to the next iteration. This process is called

majorization-minimization (MM) [44].

MM involves finding a majorizer Ψ
(q)
L at each iteration step

q that satisfies the following majorization conditions:

Ψ
(q)
L (f) ≥ ΨL (f) for all f , (55)

Ψ
(q)
L (f) = ΨL (f) for f = f (q) . (56)

There are many majorization tricks that satisfy (55) and (56).

Here, we use a separable quadratic surrogate based on a Hessian

approximation. When DL � HΨL (f) for any f , where H{·} is

the Hessian and DL is a diagonal matrix, then one can design a

quadratic surrogate function that satisfies (55) and (56) as

ΨL (f) ≤ Ψ
(q)
L (f ; f (q))

= ΨL (f (q)) + ∇ΨL

(

f (q)
)′ (

f − f (q)
)

+
1

2

(

f − f (q)
)′

DL

(

f − f (q)
)

. (57)

Then, the update finds the minimizer of Ψ
(q)
L (f ; f (q)):

f (q+1) = arg min
f

Ψ
(q)
L (f ; f (q)), (58)

which leads to an update exactly of the form (54).

Designing Ψ
(q)
L that satisfies (57) may lead to slow con-

vergence. Instead, we find an approximate curvature that still

typically decreases the objective function approximately

monotonically.

We approximate the Hessian elements as:

∂2ψLi

∂f(j1 ,l1 )∂f(j2 ,l2 )
≃ 1

σ2
i

∂ηi

∂f(j1 ,l1 )

∂ηi

∂f(j2 ,l2 )

+
gi

σ2
i

(

∂ηi

∂f(j1 ,l1 )

∂σ2
i

∂f(j2 ,l2 )
+

∂σ2
i

∂f(j1 ,l1 )

∂ηi

∂f(j2 ,l2 )

)

− gi
∂2ηi

∂f(j1 ,l1 )∂f(j2 ,l2 )
+

g2
i

σ2
i

∂σ2
i

∂f(j1 ,l1 )

∂σ2
i

∂f(j2 ,l2 )

− 1

2
g2

i

∂2σ2
i

∂f(j1 ,l1 )∂f(j2 ,l2 )
, (59)

where ψLi = ψL (ȳi). Expand all partial derivatives, and sub-

stitute:

∂2ψLi

∂f(j1 ,l1 )∂f(j2 ,l2 )
≃ a(i,j1 )a(i,j2 )w(i,l1 ,l2 ) , (60)

where w(i,l1 ,l2 ) is defined as:

w(i,l1 ,l2 ) ≡
[

1

σ2
i

n
(1)
(i,l1 )n

(1)
(i,l2 )

+
gi

σ2
i

(

n
(1)
(i,l1 )n

(2)
(i,l2 ) + n

(2)
(i,l1 )n

(1)
(i,l2 )

)

− gin
(1)
(i,l1 ,l2 )

+
g2

i

σ2
i

n
(2)
(i,l1 )n

(2)
(i,l2 ) −

g2
i

2
n

(2)
(i,l1 ,l2 )

]

, (61)

Fig. 7. Simplex projections; (a) to-the-closest-point, (b) two-direction.

where n
(1)
(i,l) and n

(2)
(i,l) are defined in (52) and (53) respectively.

n
(1)
(i,l1 ,l2 ) and n

(2)
(i,l1 ,l2 ) are defined as:

n
(1)
(i,l1 ,l2 ) =

Nk
∑

k=1

u(k,l1 )u(k,l2 ) m
(1)
Ek

ȳ(i,k) , (62)

n
(2)
(i,l1 ,l2 ) =

Nk
∑

k=1

u(k,l1 )u(k,l2 ) m
(2)
Ek

ȳ(i,k) . (63)

The approximate Hessian based on the w(i,l1 ,l2 ) terms in (61)

has coupling between the material fraction images. We first form

a block diagonal majorizer for that Hessian that decouples those

images, where the block corresponding to the lth material is:

N
(q)
L(l) = A′W(q)

(l) A, (64)

where W
(q)
(l) = diag

[
∑N l

l2 =1 |w(q)
(i,l,l2 ) |

]N i

i=1
, w

(q)
(i,l,l2 ) denotes

w(i,l,l2 ) at qth iteration, and diag[ts ]
N
s=1 denotes a diagonal ma-

trix with diagonal entries t1 , . . . , tN . Most of the terms in (64)

do not require additional computation as they are already found

when computing the gradient, except n
(1)
(i,l1 ,l2 ) and n

(2)
(i,l1 ,l2 ) .

However, even this block diagonal majorizer would be too ex-

pensive to invert, so we use a diagonal majorizer (separable

quadratic surrogate) [45], [46]:

D
(q)
L(l) = diag

[

A′W(q)
(l) A1

]

, (65)

where 1 is the all-ones vector and diag[t] denotes a diagonal

matrix with diagonal entries being the elements of the vec-

tor t. Forward-projection A1 can be pre-computed, thus addi-

tional overhead required at each step is mostly a single back-

projection. The supplement provides a detailed derivation of the

majorizers (64) and (65).

The iteration (54) needs to consider the non-negative and

volume-fraction-sum constraints F , where the set F is defined

in (41). For the case of dual material decomposition, the fea-

sible domain that satisfies (41) forms a triangle in two dimen-

sional plane. In general, the projection onto the simplex moves

the exterior points to the closest points on the simplex, which

usually involves orthogonal projection as shown in Fig. 7(a).

However, quite often, the direction of the gradient vector nor-

malized by the approximated Hessian is nearly orthogonal to the

hypotenuse due to the ill-posed nature of the problem. In that

case, the orthogonal projection nearly cancels out the update.
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The supplement provides a one-dimensional example when the

projection-to-the-closest point fails. Instead, we used the fol-

lowing two-direction projection scheme:

f
(q+1)
(1) = P1

[

f
(q)
(1) − M

(

D
(q)
L(1)

)−1

∇f( 1 )
Ψ

(q)
L

]

, (66)

f
(q+1)
(2) = P2

[

f
(q)
(2) − M

(

D
(q)
L(2)

)−1

∇f( 2 )
Ψ

(q)
L ; f

(q+1)
(1)

]

, (67)

where P1 [t] and P2 [t; s] are element-wise projection operators

defined as:

P1 [t] = min
[

max
[

t, 0
]

, 1
]

, (68)

P2 [t; s] = min
[

max
[

t, 0
]

, 1 − s
]

, (69)

and M is the masking matrix. Fig. 7(b) shows the graphical rep-

resentation of the two-direction projection. This approximated

projection requires a specific setting: the material correspond-

ing to f(1) needs to have higher attenuation coefficients than the

other. As a material fraction image with higher attenuation con-

verges faster, a lower attenuation material fraction image can

take the advantage of the faster converging higher attenuation

material image. The masking matrix M in (66) and (67) is es-

sential for minimizing limited angle artifacts due to the lack of

information by multiplying zeros to pixels outside the ‘known

outline’ of the object:

M = diag[mj ]
N j

j=1 ,

mj = 1{j ∈ Q}, (70)

where 1{t} is the indicator function, 1 if t is true and 0 otherwise.

Q is the known bounded domain in the image where no objects

are located outside of it.

E. Regularizer

To help ensure a unique solution for this ill-posed problem, we

include a regularizer. An objective function with a regularizer

can be written in an additive form as

f̂ = arg min
f∈F

{

ΨL (f) + κΨR (f)
}

, (71)

where κ denotes a regularization parameter. Regularization term

ΨR does not have to be the same for every material fraction im-

age f(l) . Different regularizers can be applied depending on

the characteristics of the objects in the fraction images. A hard

material (metal) fraction image generally has flatter and sharper-

edged objects than a soft material (liquid) fraction image. By

experiments, we found that a combination of an edge-preserving

hyperbolic regularizer and a sparsity-based ℓ0-norm regularizer

can effectively remove the limited angle artifacts in the hard ma-

terial fraction image, while applying only the edge-preserving

hyperbolic regularizer to the soft material fraction image. The

objective function is:

f̂ = arg min
f∈F

{

ΨL (f) +
∑

l

κ(l)ΨR (f(l)) + κ0 ||f(1) ||0
}

,

(72)

where ||t||0 is defined as

||t||0 =
∑

j

1{tj �= 0}. (73)

ΨR (·) is the edge-preserving hyperbola regularizer defined as

ΨR (f(l)) =

Np
∑

p=1

ψR

(

Cf(l)
)

, (74)

where C is the first-order finite difference matrix, and ψR (t) is

an element-wise scalar hyperbola function defined as

ψR (t) = δ2
R

(

√

1 + (t/δR )2 − 1
)

. (75)

To solve (72), we first need to obtain the gradient descent

solution of the differentiable part, excluding the ℓ0 norm reg-

ularization. A separable preconditioner for the differentiable

regularization term can be found from the spectral radius of the

Hessian matrix. Since the curvature of the hyperbola potential

is bounded, i.e., ψ̈R ≤ 1,

HΨR(l) = C′ diag
[

ψ̈R ([Cf(l) ]p)
]

C

� C′IC � DR ≡ cRI, (76)

where cR is the spectral radius of the matrix C′C. For 2-D

problem, using horizontal and vertical neighbors, cR can be

found as

cR = max (|F{C′
xCx}|) + max

(

|F{C′
yCy}|

)

= 8, (77)

where F{A} is the 1-D discrete Fourier transform operator

taking the first row of A as an input. Finally, the transition

equation for the preconditioned gradient descent in (66) and

(67) can be rewritten after including the regularization terms as

f
(q+1)
(l) = Pl

[

f
(q)
(l) − M

(

D
(q)
(l)

)−1

∇f( l )
Ψ(q)

]

= Pl

[

f
(q)
(l) − M

(

D
(q)
L(l) + κ(l)DR(l)

)−1

·
(

∇f( l )
Ψ

(q)
L + κ(l)∇f( l )

Ψ
(q)
R(l)

)

]

. (78)

The overall objective function (72) including the sparsity

based regularizer can be solved using the iterative shrinkage-

thresholding algorithm (ISTA), which is a proximal gradient

(PG) method [47]. ISTA is an extension of the gradient descent

method, where a shrinkage operator is iteratively applied after

taking the gradient descent step without the sparsity regular-

izer. For ℓ0 norms, the corresponding proximal operator is the

element-wise hard-thresholding shrinkage operator, defined as

T [t; s] = t · 1{|t| > s}. (79)

Then, (72) can be solved by taking the following iterative step:

f
(q+1)
(1) = T

[

P1

[

f
(q)
(1) − M

(

D
(q)
(1)

)−1

∇f( 1 )
Ψ(q)

]]

. (80)

Note that ℓ0 norm regularizer is applied only to the hard material

fraction image l = 1, so there is no change for l = 2. (80) can
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Algorithm 1: Adaptive restart GAPG.

1: z
(0)
(1) = f

(0)
(1) , z

(0)
(2) = f

(0)
(2) , d

(0) = 1
2: for q = 0, 1, · · · do

3: z(q) =
[

z
(q)
(1) , z

(q)
(2)

]

4: f
(q+1)
(1) = Q

[

z
(q)
(1) − M

(

D
(q)
(1)

)−1

∇f( 1 )
Ψ

(

z(q)
)

; κ0

(

D
(q)
(1)

)−1

1

]

5: f
(q+1)
(2) = P2

[

z
(q)
(2) − M

(

D
(q)
(2)

)−1

∇f( 2 )
Ψ

(

z(q)
)

; z
(q)
(1)

]

6: if
∑

l

(

∇f( l )
Ψ

)′(
f
(q+1)
(l) − f

(q)
(l)

)

> 0 then

7: d(q) = 1
8: end if

9: d(q+1) =
(

1 +
√

1 + 4(d(q))2
)

/2

10: z
(q+1)
(1) = f

(q+1)
(1) +

d(q) − 1

d(q+1)

(

f
(q+1)
(1) − f

(q)
(1)

)

11: z
(q+1)
(2) = f

(q+1)
(2) +

d(q) − 1

d(q+1)

(

f
(q+1)
(2) − f

(q)
(2)

)

12: q = q + 1
13: end for

be further simplified by merging the hard-thresholding opera-

tor T [·] and the projection operator P1 [·], which becomes the

truncated hard-thresholding operator:

f
(q+1)
(1) = Q

[

f
(q)
(1) − M

(

D
(q)
(1)

)−1

∇f( 1 )
Ψ(q) ; κ0

(

D
(q)
(1)

)−1

1

]

,

(81)

where the element-wise operator Q[t; s] is defined as

Q[t; s] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if t < s

t if s ≤ t < 1

1 if t ≥ 1

. (82)

While ISTA can be applied to the gradient method with-

out much effort, the convergence speed of ISTA is slow. To

accelerate the convergence of the proximal gradient method,

Nesterov’s momentum-based method is widely used because of

its simplicity. Beck and Teboulle [48] introduced a fast itera-

tive shrinkage-thresholding algorithm (FISTA) that has a con-

vergence rate O(1/q2) using the Nesterov’s linear momentum

acceleration method [49]. While the original FISTA algorithm

is designed for the Lipschitz continuous function, Zuo and Lin

[50] further generalized the algorithm to the quadratic, prefer-

ably separable, surrogate problem that leads to the faster con-

vergence, called the generalized accelerated proximal gradient

method (GAPG). Nesterov’s momentum method can lead to

overshoot; O’Donoghue and Candès [51] suggested a gradient-

based restart approach to avoid the overshoot. We combined the

gradient-based restart scheme with GAPG as an acceleration

method in this study, summarized in Algorithm 1.

IV. SIMULATION RESULT

We performed simulations to assess the effectiveness of the

proposed method, and compared the result with the existing sim-

ple Poisson (SP) method suggested by Lasio et al. [38]. SP con-

verts energy-integrated data into photon-counting-equivalent

data by dividing it by mean energy, and then uses single mate-

rial approximation to avoid the ill-posedness. In Lasio et al., the

exact mean energy after attenuation is used to get the photon-

counting-equivalent data by assuming all location and atten-

uation properties of high density objects are perfectly known

beforehand. Here, we did not apply this mean energy correction

for the SP results as we assume that the location of metal objects

are unknown.

We considered three different cases; SP, NGA with volume-

fraction-sum constraints, and NGA without volume-fraction-

sum constraints; and three different source settings; 5 kW,

20 kW, and noiseless. Minimum and maximum photons/detector

for 5 kW source were 9 and 140, respectively, while those for

20 kW source were 39 and 500. All other simulation conditions

for the source and detectors are identical with the system spec-

ification shown in Table I, and the graphical representation of

the system geometry shown in Fig. 2.

We neglect readout noises, charge sharing between neighbor-

ing detectors and scattering of X-ray photons in the simulation.

We assume the electron beam is ideally pulsed and focused,

i.e., the focal spot area of the electron beam is infinitesimal,

and the source location at each projection is not moving during

data acquisition. (Here, we neglect the effect of charge sharing,

scattering, and finite focal spot to focus on the specific problem

such as beam hardening and limited angle artifacts. Depending

on the system, image blurring due to those factors can signifi-

cantly degrade the result.)

We obtained the initial spectrum using the numerical simula-

tion program ‘SpekCalc v1.1’ [52] with 5 mm aluminum filter.

SpekCalc returns photon flux measured 1 m away from the

source with the right impinging angle. We modulated the initial

spectrum for each ray to consider the effect of the distance and

impinging angle using the following equation:

I0
(i,k) = IS

(k)Ad

(

1

d(i)

)2

cos
(

a(i)

)

, (83)

where I0
(i,k) is the corrected initial emission spectrum of the

ith ray at kth energy level, IS
(k) is the initial emission spectrum

obtained by SpekCalc software at kth energy level, Ad is the

detector face area in cm2 , d(i) is the distance between the source

and detector in m, and a(i) is the impinging angle of the ith ray.

We obtained attenuation coefficients by interpolating the at-

tenuation coefficient tables of NIST [53]. Assuming the pipe

location is known, we initialized volume fraction images as a

fully water-filled pipe, i.e., set the true image of the pipe as the

initial condition of the titanium volume fraction, and the initial

water volume fraction as one inside the pipe, and zero other-

wise. We applied noise on the sinogram in accordance with the

shifted gamma distribution using the parameters shown in (25),

(26), and (27).
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TABLE II
ROOT MEAN SQUARED ERRORS OF THE WATER REGIONS (RMSEw ) FOR

THREE DIFFERENT RECONSTRUCTION METHODS

Method 5 kW 20 kW Noiseless

SP 0.331 0.302 0.293

NGA without VFSC1 0.142 0.106 0.097
NGA with VFSC 0.117 0.096 0.092

1volume-fraction-sum constraints.

Fig. 8. Comparison of reconstruction results with 150 kV, 5 kW source for
three different methods; (a) true image, (b) SP, (c) NGA without volume-
fraction-sum constraints, (d) NGA with volume-fraction-sum constraints. The
red line on (a) is the sampled location of the profiles for comparison shown in
Fig. 9.

We set the shape parameter δR of the hyperbola potential

regularizer to be 0.005 for both the titanium and water volume

fraction images throughout every simulation. The effectiveness

of the regularization parameter for the water image κ(2) can be

different for SP and NGA models, and it depends on the units

of the data-fitting objective functions. Following Fessler and

Rogers [54], we match the regularization parameters to have

the same response of the single pixel local impulse at the cen-

ter of the image for SP and NGA models. Based on the local

impulse resolution test with 2 kW source (equivalent to 20 kW

source with pipe), matching κ(2) for SP is approximately 3200

when regularization parameter for NGA is 3000. The supple-

ment provides local impulse responses for regularized SP and

NGA with 2 kW source. For 5 kW source, we scaled down κ(2)

linearly to match the resolution, 750 for NGA and 800 for SP.

For the NGA model, the regularizer for the titanium image is

different from that of the water image, and we set κ0 and κ(1)

to be 2000 and 7000 for 20 kW source, and 500 and 1750 for

5 kW source, respectively. This material-specific regularization

requires a material decomposition, thus it cannot be applied

to SP.

Fig. 9. Comparisons of profiles for three different source power settings;
(a) 5 kW, (b) 20 kW, (c) noiseless. The location of the sampled profile is shown
in Fig. 8(a).
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To compare the quality of images between SP and NGA, we

first merge the dual material volume fraction maps of NGA into

a single equivalent density image:

f = 7f(1) + f(2) , (84)

where the factor 7 is a rough estimation of the equivalent density

of titanium based on the SP results. Because the true value of the

titanium in SP is unknown as it is based on the single material

(water) assumption, we only consider the root mean square

errors (RMSE) of the water region. To compute water-only

RMSE (RMSEw ), we removed the region where the titanium

volume fraction is higher than 0.01 from the image for both the

SP and NGA results:

RMSEw =

√

1/Nj

∑

j

(

f̂(j,2) − f̄(j,2)

)2
. (85)

Table II shows RMSEw results of three different methods

when the source is set 5 kW, 20 kW, and noiseless. Fig. 8 shows

the results of three different methods with 5 kW source. Fig. 9

shows the comparisons of the center profiles for three different

methods.

In summary, NGA with volume-fraction-sum constraints

gives the best results throughout all the source settings con-

sidered. CT reconstructions based on the limited angle data

typically have crisscross patterned artifacts near the tip of each

object, showing the lack of projection data tangential to the out-

line. Those patterns can be seen on the SP result in Fig. 8(b),

but significantly reduced in Fig. 8(c) and (d). Without volume-

fraction-sum constraints, NGA still reduces cupping artifacts

due to the beam-hardening when compared to SP, as can be

seen from noiseless results in Fig. 9(c). At 20 kW, NGA without

volume-fraction-sum constraints outperforms SP everywhere.

At 5 kW, NGA without volume-sum-fraction constraints still

works better at the water region, but getting more noise at

the tungsten region, where photons/detector becomes extremely

low; minimum of 9 photons/detector. It is seemingly due to

the Gaussian approximation deviating from the original skewed

Compound Poisson distribution.

V. CONCLUSION

We proposed a CT reconstruction method for a limited an-

gle, single bin energy integrating measurement CT system. For

the data-fitting term, the method involved a nonlinear Gaussian

approximation (NGA) model for the energy-integrating statis-

tics combined with the volume fraction material decomposition

method. NGA model can reduce the beam-hardening artifacts

and noise, except in the case when the photon flux is extremely

low. The volume-fraction-sum constraints confine the iterative

solution to be close to the true solution to help solve the original

ill-posed problem, and they are shown to be effective not only

to separate the volume fraction for each material, but also to

reduce the beam-hardening and limited angle artifacts.

We applied ℓ0 norm and edge-preserving hyperbola regular-

izers accordingly depending on the characteristics of materials.

The role of regularizers was to provide additional removal of

small local volume fraction errors and limited angle artifacts.

We used an approximate Hessian along with the separable

quadratic surrogate functions to simplify the minimization step

while maintaining a reasonable convergence speed. The method

has not been proven to monotonically decrease the objective

function for all cases, thus a further study regarding the conver-

gence may be required in the future.

The regularizers we utilized had many parameters to be tuned,

as two regularization schemes are combined. The ℓ0 norm and

edge-preserving hyperbola potential regularizer are connected

by the curvature, and competing with each other. Actual strength

of the ℓ0 norm regularizer depends on the strength parameter

of the edge-preserving regularizer indirectly, as well as its own

strength parameter. Finding optimal values for the strength pa-

rameters may require combining the strength parameters into a

single parameter.

Throughout the simulation, we made several assumptions that

may affect the quality of the result in practice. Those include

no charge sharing, no scattering of X-ray photons, no readout

noise, and ideally pulsed and focused electron beam. Evaluating

the algorithm with real data will be performed in the future, once

the proposed CT system is fully operational.
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This supplementary material contains the geometry of the

synthetic phantom used for simulations in [1], a derivation of

the diagonal majorizer for the data-fitting objective function,

a comparison of two simplex projection schemes in one-

dimensional problem, and local impulse responses of regu-

larized simple Poisson (SP) and nonlinear Gaussian approxi-

mation (NGA).

S1. GEOMETRY OF THE SYNTHETIC PHANTOM USED FOR

SIMULATIONS IN [1]

The synthetic phantom is filled with water-equivalent ma-

terial except for the objects shown in Table S1.

TABLE S1
OBJECT GEOMETRY AND MATERIALS OF THE PHANTOM USED IN [1]

Titanium pipe outer radius: 4.445 cm (1.75 inch)

Titanium pipe inner radius: 4.140 cm (1.63 inch)

Center x(cm) Center y(cm) Radius(cm) Material

0.3750 0.3750 1.1250 air

-2.2000 -0.5000 0.7500 titanium

1.9000 -0.9000 0.3750 titanium

3.0000 0.0000 0.3000 titanium

-2.2500 1.5000 0.2250 air

0.0000 2.7750 0.0750 air

0.0000 3.0000 0.0750 air

0.2250 3.0000 0.0750 air

-0.2250 3.0000 0.0750 air

0.0000 3.2250 0.0750 air

0.2250 2.7750 0.0750 air

0.4500 2.3250 0.0750 air

0.4500 2.5500 0.0750 air

0.6750 2.5500 0.0750 air

0.2250 2.5500 0.0750 air

0.4500 2.7750 0.0750 air

-0.2250 2.7750 0.0750 air

Continued on next page

TABLE S1 – Continued from previous page

Center x(cm) Center y(cm) Radius(cm) Material

-0.4500 2.3250 0.0750 air

-0.4500 2.5500 0.0750 air

-0.6750 2.5500 0.0750 air

-0.2250 2.5500 0.0750 air

-0.4500 2.7750 0.0750 air

2.0250 2.1000 0.0750 air

2.0250 2.3250 0.0750 air

2.2500 2.3250 0.0750 air

1.8000 2.3250 0.0750 air

2.0250 2.5500 0.0750 air

2.2500 2.1000 0.0750 air

2.4750 1.6500 0.0750 air

2.4750 1.8750 0.0750 air

2.7000 1.8750 0.0750 air

2.2500 1.8750 0.0750 air

2.4750 2.1000 0.0750 air

1.8000 2.1000 0.0750 air

1.5750 1.6500 0.0750 air

1.5750 1.8750 0.0750 air

1.3500 1.8750 0.0750 air

1.8000 1.8750 0.0750 air

1.5750 2.1000 0.0750 air

-1.6750 -2.8750 0.0500 air

-1.4250 -2.8750 0.0500 air

-1.1750 -2.8750 0.0500 air

-0.9250 -2.8750 0.0500 air

-1.6750 -2.6250 0.0500 air

-1.4250 -2.6250 0.0500 air

-1.1750 -2.6250 0.0500 air

-0.9250 -2.6250 0.0500 air

-1.6750 -2.3750 0.0500 air

-1.4250 -2.3750 0.0500 air

-1.1750 -2.3750 0.0500 air

-0.9250 -2.3750 0.0500 air

-1.6750 -2.1250 0.0500 air

-1.4250 -2.1250 0.0500 air

Continued on next page
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TABLE S1 – Continued from previous page

Center x(cm) Center y(cm) Radius(cm) Material

-1.1750 -2.1250 0.0500 air

-0.9250 -2.1250 0.0500 air

-0.5165 -2.9165 0.0500 air

-0.3495 -2.9165 0.0500 air

-0.1825 -2.9165 0.0500 air

-0.0155 -2.9165 0.0500 air

0.1515 -2.9165 0.0500 air

0.3185 -2.9165 0.0500 air

-0.5165 -2.7495 0.0500 air

-0.3495 -2.7495 0.0500 air

-0.1825 -2.7495 0.0500 air

-0.0155 -2.7495 0.0500 air

0.1515 -2.7495 0.0500 air

0.3185 -2.7495 0.0500 air

-0.5165 -2.5825 0.0500 air

-0.3495 -2.5825 0.0500 air

-0.1825 -2.5825 0.0500 air

-0.0155 -2.5825 0.0500 air

0.1515 -2.5825 0.0500 air

0.3185 -2.5825 0.0500 air

-0.5165 -2.4155 0.0500 air

-0.3495 -2.4155 0.0500 air

-0.1825 -2.4155 0.0500 air

-0.0155 -2.4155 0.0500 air

0.1515 -2.4155 0.0500 air

0.3185 -2.4155 0.0500 air

-0.5165 -2.2485 0.0500 air

-0.3495 -2.2485 0.0500 air

-0.1825 -2.2485 0.0500 air

-0.0155 -2.2485 0.0500 air

0.1515 -2.2485 0.0500 air

0.3185 -2.2485 0.0500 air

-0.5165 -2.0815 0.0500 air

-0.3495 -2.0815 0.0500 air

-0.1825 -2.0815 0.0500 air

-0.0155 -2.0815 0.0500 air

0.1515 -2.0815 0.0500 air

0.3185 -2.0815 0.0500 air

0.6625 -2.9375 0.0500 air

0.7875 -2.9375 0.0500 air

0.9125 -2.9375 0.0500 air

1.0375 -2.9375 0.0500 air

1.1625 -2.9375 0.0500 air

1.2875 -2.9375 0.0500 air

1.4125 -2.9375 0.0500 air

1.5375 -2.9375 0.0500 air

0.6625 -2.8125 0.0500 air

0.7875 -2.8125 0.0500 air

0.9125 -2.8125 0.0500 air

1.0375 -2.8125 0.0500 air

Continued on next page

TABLE S1 – Continued from previous page

Center x(cm) Center y(cm) Radius(cm) Material

1.1625 -2.8125 0.0500 air

1.2875 -2.8125 0.0500 air

1.4125 -2.8125 0.0500 air

1.5375 -2.8125 0.0500 air

0.6625 -2.6875 0.0500 air

0.7875 -2.6875 0.0500 air

0.9125 -2.6875 0.0500 air

1.0375 -2.6875 0.0500 air

1.1625 -2.6875 0.0500 air

1.2875 -2.6875 0.0500 air

1.4125 -2.6875 0.0500 air

1.5375 -2.6875 0.0500 air

0.6625 -2.5625 0.0500 air

0.7875 -2.5625 0.0500 air

0.9125 -2.5625 0.0500 air

1.0375 -2.5625 0.0500 air

1.1625 -2.5625 0.0500 air

1.2875 -2.5625 0.0500 air

1.4125 -2.5625 0.0500 air

1.5375 -2.5625 0.0500 air

0.6625 -2.4375 0.0500 air

0.7875 -2.4375 0.0500 air

0.9125 -2.4375 0.0500 air

1.0375 -2.4375 0.0500 air

1.1625 -2.4375 0.0500 air

1.2875 -2.4375 0.0500 air

1.4125 -2.4375 0.0500 air

1.5375 -2.4375 0.0500 air

0.6625 -2.3125 0.0500 air

0.7875 -2.3125 0.0500 air

0.9125 -2.3125 0.0500 air

1.0375 -2.3125 0.0500 air

1.1625 -2.3125 0.0500 air

1.2875 -2.3125 0.0500 air

1.4125 -2.3125 0.0500 air

1.5375 -2.3125 0.0500 air

0.6625 -2.1875 0.0500 air

0.7875 -2.1875 0.0500 air

0.9125 -2.1875 0.0500 air

1.0375 -2.1875 0.0500 air

1.1625 -2.1875 0.0500 air

1.2875 -2.1875 0.0500 air

1.4125 -2.1875 0.0500 air

1.5375 -2.1875 0.0500 air

0.6625 -2.0625 0.0500 air

0.7875 -2.0625 0.0500 air

0.9125 -2.0625 0.0500 air

1.0375 -2.0625 0.0500 air

1.1625 -2.0625 0.0500 air

1.2875 -2.0625 0.0500 air

Continued on next page
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TABLE S1 – Continued from previous page

Center x(cm) Center y(cm) Radius(cm) Material

1.4125 -2.0625 0.0500 air

1.5375 -2.0625 0.0500 air

0.0000 3.7500 0.2032 air

3.2476 -1.8750 0.2032 air

-3.2476 -1.8750 0.2032 air

S2. DERIVATION OF THE DIAGONAL MAJORIZER FOR THE

DATA-FITTING OBJECTIVE FUNCTION

For dual material decomposition, one can rewrite the ap-

proximate Hessian in (60) in [1] with matrices as follows:

H̃{Ψ
(q)
L } =

[

A
′ 0

0 A
′

]

W
(q)

[

A 0
0 A

]

=

[

A
′ 0

0 A
′

]

[

W
(q)
(1,1) W

(q)
(1,2)

W
(q)
(1,2) W

(q)
(2,2)

]

[

A 0
0 A

]

. (S1)

where W
(q)
(l1,l2)

= diag
[

w
(q)
(i,l1,l2)

]Ni

i=1
. Note that W

(q) is a

block-diagonal, symmetric matrix. We first find the diagonal

majorizer of W(q) using Corollary S2.1 [2] as:
[

W
(q)
(1,1) W

(q)
(1,2)

W
(q)
(1,2) W

(q)
(2,2)

]

�

[

W
(q)
(1) 0

0 W
(q)
(2)

]

, (S2)

where W
(q)
(l) = diag

[

∑2
l2=1 |w

(q)
(i,l,l2)

|
]Ni

i=1
. By the property

of positive semidefinite matrices,

[

A
′ 0

0 A
′

]

[

W
(q)
(1,1) W

(q)
(1,2)

W
(q)
(1,2) W

(q)
(2,2)

]

[

A 0
0 A

]

�

[

A
′ 0

0 A
′

]

[

W
(q)
(1) 0

0 W
(q)
(2)

]

[

A 0
0 A

]

=

[

A
′
W

(q)
(1)A 0

0 A
′
W

(q)
(2)A

]

. (S3)

Since (S3) does not have coupled terms between the first and

second material fraction images, we can apply the diagonal

majorizer [2], [3], [4] to each decoupled matrix.

A
′
W

(q)
(l)A � diag

[

A
′
W

(q)
(l)A1

]

. (S4)

Corollary S2.1. If B is a Hermitian matrix, then

B � D ≡ diag
[

|B|1
]

, (S5)

where |B| denotes the matrix consisting of the absolute values

of the elements of B.

Proof. Let H ≡ D−B = diag
[

|B|1
]

−B, then

hii =
∑

j

|bij | − bii

=

(

∑

j 6=i

|bij |

)

+ (|bii| − bii) ≥

(

∑

j 6=i

|bij |

)

, (S6)

because |b| − b ≥ 0. Also for j 6= i: hij = −bij so
∑

j 6=i |hij | =
∑

j 6=i |bij | = hii. Thus H is diagonally

dominant so D−B � 0.

S3. COMPARISON OF TWO SIMPLEX PROJECTION SCHEMES

IN ONE-DIMENSIONAL PROBLEM

This section provides an example to show how the two

projection schemes shown in Fig. 7 in [1] affect the iterative

solutions. To simplify, we consider a one-dimensional problem

where there is only a single projection data, and a single

pixel image. Because of the dual material decomposition, total

number of unknown parameters are two; the volume fraction

of titanium f(1) and water f(2). We assume noiseless data, so

that the iterative solution converges to the true solution in the

ideal case.

As a result, the iterative solution with the two-direction

projection shown in Fig. S1(d) converges to the true value, but

the to-the-closest-point projection shown in Fig. S1(c) keeps

rejecting the updates, and the sequence does not converge to

the true value.

Note that even with the two-direction projection, there are

many cases where the iterative solution does not converge

to the true value as the problem is underdefined. However,

the volume-fraction-sum constraint still moves the iterative

solution closer to the true value, compared to the single

material assumption as it finds solution along f(1) = 0 only.

S4. LOCAL IMPULSE RESPONSE

This section demonstrates local impulse responses of regu-

larized simple Poisson (SP) and nonlinear Gaussian approxi-

mation (NGA) to find regularization parameters that match the

resolutions of the reconstructed images. We evaluated local

impulse responses with 150 kV, 2 kW source, which has

similar photon flux as 20 kW source attenuated by a titanium

pipe. Fig. S2 shows the initial impulse shape, and the spatial

and frequency responses of the local impulse for regularized

SP and NGA. The result shows that the resolutions of regu-

larized SP and NGA are well matched when κ(2) = 3200 for

regularized SP, and κ(2) = 3000 for regularized NGA.
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(a) (b)

(c) (d)

Fig. S1. Iteration sequences for one-dimensional (single ray data - single pixel image) problem with two different projection schemes. (a) negative gradient
vector, (b) negative gradient vector normalized by the approximate Hessian, (c) iteration with to-the-closest-point projection, (d) iteration with two-direction
projection. True value is (f1, f2) = (0.5, 0.5). Data is noiseless.
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(a) (b)

Fig. S2. Local impulse responses of the regularized SP and NGA with 2 kW source; (a) local impulse response in spatial domain, (b) frequency response
(absolute).


