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Fast Spatial Resolution Analysis of Quadratic
Penalized Least-Squares Image Reconstruction
With Separate Real and Imaginary Roughness

Penalty: Application to fMRI
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Abstract— Penalized least-squares iterative image recon-
struction algorithms used for spatial resolution-limited
imaging, such as functional magnetic resonance imag-
ing (fMRI), commonly use a quadratic roughness penalty
to regularize the reconstructed images. When used
for complex-valued images, the conventional roughness
penalty regularizes the real and imaginary parts equally.
However, these imaging methods sometimes benefit from
separate penalties for each part. The spatial smoothness
from the roughness penalty on the reconstructed image
is dictated by the regularization parameter(s). One method
to set the parameter to a desired smoothness level is to
evaluate the full width at half maximum of the reconstruction
method’s local impulse response. Previous work has shown
that when using the conventional quadratic roughness
penalty, one can approximate the local impulse response
using an FFT-based calculation. However, that acceleration
method cannot be applied directly for separate real and
imaginary regularization. This paper proposes a fast and
stable calculation for this case that also uses FFT-based
calculations to approximate the local impulse responses of
the real and imaginary parts. This approach is demonstrated
with a quadratic image reconstruction of fMRI data that uses
separate roughness penalties for the real and imaginary
parts.

Index Terms— Local impulse response, local point spread
function (LPSF), quadratic penalized least-squares (QPLS),
separate real and imaginary regularization, magnetic reso-
nance imaging (MRI), functional MRI (fMRI).

I. INTRODUCTION

ITERATIVE image reconstruction methods are growing in
popularity for many imaging problems. These methods
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usually involve iteratively optimizing a cost function that fits
the acquired data to a linear physics-based signal model. Since
measured data is contaminated with noise, the reconstructed
images can have errors due to noise if the problem is badly
conditioned. One way to improve the conditioning and thus
reduce variance is to add a regularization term to the cost
function [1], at a price of additional bias to the reconstructed
image.

Nonquadratic, nonsmooth, or sparsifying regularizers, such
as �1 regularizers, have become increasingly popular. These
types of regularizers are designed to maintain spatially sharp
image transitions and contrast, such as edges. Hence, they are
more effective for high-resolution imaging applications, such
as structural and anatomical imaging in MRI [2]. Functional
magnetic resonance imaging (fMRI), with its mechanistic
partial volume effect and weak functional contrast, may not
benefit from such regularizers [3]. This work focuses on
quadratic roughness penalties that are commonly used for
fMRI, and where the bias is a reduction in spatial resolution.

For complex-valued images, conventional quadratic rough-
ness penalties affect the real and imaginary parts equally.
Sometimes, unconventional roughness penalties are needed,
for example in separate regularization of magnitude and
phase [4]–[6] or real and imaginary parts, which is the topic
of this paper. This type of regularization has been used in
digital holography [7], functional magnetic resonance imaging
(fMRI) [8] and partial Fourier imaging [9].

The regularization parameter determines how smooth
the reconstructed image becomes and it can be challeng-
ing to choose this parameter appropriately. One method
is to base that choice on a user-defined desired spatial
resolution for the reconstructed image [10], as opposed to
standard MSE-based model selection methods such as cross-
validation or SURE [11]. Spatial resolution can be quanti-
fied using the full width at half maximum (FWHM) of the
reconstructions impulse response or, as it is also called, point
spread function (PSF). To find the value of a regularization
parameter that provides the desired resolution, one can tabulate
the FWHM of PSFs that result from a range of regularization
parameter values [10]. Through interpolation, this table is then
used to find a regularization parameter value that yields images
with the desired resolution.
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For computational efficiency it is more convenient if the PSF
for one spatial location is indicative of all other locations. This
occurs when the PSF is shift invariant, i.e., when the PSF, and
hence its FWHM, is uniform across the reconstructed image.
However, for many penalized image reconstruction algorithms
the PSF is shift variant, which can be undesirable. By design-
ing an appropriately spatially variant penalty [8], [10], this
resolution nonuniformity can often be counteracted. However,
one may still need to evaluate the PSF multiple times to find
the spatially dependent regularization parameters that achieve
the desired resolution.

There have been methods proposed to design spatially vary-
ing penalties based on local impulse responses [10], [12] to
correct for the spatially varying resolutions of quadratic penal-
ized least-squares (QPLS) cost functions using conventional
quadratic roughness penalties [10]. There it was shown, one
can use the fast Fourier transform (FFT) to compute quickly
an accurate approximation to the local impulse response [13].
However, that approach is not directly applicable to the case
of separately regularizing the real and imaginary parts of the
image.

This paper presents an FFT-based method to calculate an
approximate local impulse response when using QPLS cost
functions with separate real and imaginary quadratic roughness
penalties. Section II presents the problem and the notation
that is used in the paper. Section III reviews the special case
where the regularizer penalizes the real and imaginary parts
equally. The local impulse response for that case has previ-
ously been derived and we review the details of an FFT-based
accelerated method to calculate it. This formulation moti-
vates a similar accelerated method for the separate real and
imaginary penalty, which is described in Section IV. Finally,
Section V presents two examples with performance analysis
of the accelerated methods and those results are discussed in
Section VI.

II. PROBLEM STATEMENT AND NOTATION

We assume the following discrete and linear noisy signal
model for the acquired data vector y:

y = Ax + ε, (1)

where vector x denotes the object being imaged, system
matrix A is a linear transform from image space to acquired
data space, and vector ε is the additive noise. All vectors
are column vectors and vectors in image space have lex-
icographic ordering if the imaging problem is two dimen-
sional (2D) or higher. The number of acquired data points
is M and the number of voxels that are to be reconstructed is
N . Thus, x is of size N × 1, A is M × N , and y and ε are
M × 1.

Many model-based image reconstruction methods use the
signal model in (1) to facilitate the estimation of x from y, as
is common in MRI [14]. One such estimation method is the
quadratic penalized least-squares (QPLS) estimator. It uses the
model in (1) along with a quadratic penalty function R(·) to

form a minimization problem as follows:

�(x) = 1

2
‖y − Ax‖2 + R(x)

x̂ = arg min
x

�(x) , (2)

where ‖·‖ is the �2-norm, and ‖y − Ax‖2 is the data fit term.
QPLS can be solved efficiently using iterative algorithms such
as conjugate gradient [15]. Although we focus on quadratic
regularizers here for ease of analysis, the proposed method can
be generalized to regularizers like hyperbola and Huber that
are quadratic near zero. However, it is not directly applicable to
problems with nonsmooth regularizers, such as �1 regularizers
used for encouraging sparsity in compressed sensing.

Some applications [7]–[9] use a spatial roughness penalty
that separately penalizes the real and imaginary parts of x:

R(x) = 1

2

(
β1 ‖C1xR‖2 + β2 ‖C2xI‖2

)
, (3)

where x = xR + i xI and the subscripts R and I refer to the
real and imaginary parts respectively. Also, C1 and C2 are
real-valued matrices that compute finite differences between
neighboring voxels of xR and xI respectively (most common
are first and second order finite differences) and β1 and β2 are
the regularization parameters that control the tradeoff between
noise and spatial resolution in the real (x̂R) and imaginary (x̂I)
parts of x̂, respectively. We would like to have a fast method
for choosing β1 and β2 to achieve a desired spatial resolution
for x̂R and x̂I in (2) based on their local impulse responses.

Before we find their local impulse responses we first con-
sider the special case when β1 = β2 = β and C1 = C2 = C .
In this case, the penalty in (3) simplifies to the conventional
roughness penalty as follows:

R(x) = β

2

(
‖C xR‖2 + ‖C xI‖2

)
= β

2
‖C x‖2 . (4)

Here, it suffices to find the local impulse response of the
complex-valued x̂. This local impulse response has been
derived previously in [10]. The next section reviews this work
along with the well-known accelerated way of calculating it
using FFTs.

III. FAST QPLS LOCAL IMPULSE RESPONSE:
CONVENTIONAL ROUGHNESS PENALTY

When using (4) in (2), its local impulse response ln at spatial
position n is given as follows [10]:

ln = (
A′ A + βC ′C

)−1 A′ Aen, n = 1, . . . , N, (5)

where en is a vector with 1 at vector element position n and
zeros elsewhere (Kronecker impulse).

Evaluating (5) directly to calculate ln would require invert-
ing A′ A+βC ′C , which could be time consuming and memory
intensive. However, if A′ A and C ′C are approximately locally
shift invariant linear transforms, as is often the case, one can
use FFT to approximate this inverse rapidly as summarized in
the next two subsections.
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A. Fast Local Impulse Response Calculation:
Circulant Matrices

Suppose A′ A and C ′C are circulant1 matrices. Such matri-
ces exhibit two notable properties. First, circulant matrices are
diagonalizable using the discrete Fourier transform (DFT),
so any linear mapping using A′ A and C ′C can be imple-
mented efficiently using the FFT [16]. Second, circulant
matrices are shift invariant linear transforms, i.e., a circulant
matrix M has the following property:

Men′ = Sn→n′ Men, n′, n = 1, . . . , N, (6)

where Sn→n′ is a permutation matrix that circularly shifts the
response from position n to position n′.

The first property allows us to rewrite A′ A and C ′C as
follows:

A′ A = Q−1Λ Q, C ′C = Q−1Ω Q, (7)

where Q is the DFT matrix, and Λ and Ω are diagonal
matrices given by,

Λ = diag
{

Q A′ Ae1
}
,

Ω = diag
{

QC ′C e1
}
, (8)

where diag{·} is a diagonal matrix with its diagonal elements
given by its vector argument elements. The second property
allows us to find Λ and Ω in (8) for any en as follows:

Λ = diag
{

e−i � (Q en) � (
Q A′ Aen

)}
,

Ω = diag
{

e−i � (Q en) � (
QC ′C en

)}
, (9)

where � is the Hadamard (or element-wise) product, and
e−i � (Q en) is due to the DFT shift theorem.

Using (7) the local impulse response in (5) simplifies to:

ln = (
A′ A + βC ′C

)−1 A′ Aen,

= Q−1 (Λ + βΩ )−1 Λ Qen, (10)

with Λ and Ω given by (9). Thus when A′ A and C ′C
are circulant, one can efficiently calculate the local impulse
response using FFT and its inverse (IFFT) for Q and Q−1

respectively, and by computing (Λ + βΩ )−1 Λ elementwise.

B. Fast Local Impulse Response Calculation:
Approximate Local Shift Invariance

For most imaging problems A′ A and C ′C are not circulant.
However, in many cases they are approximately locally shift
invariant transforms and thus exhibit similar properties in the
neighborhood of any image voxel as a circulant transform
would. An approximately locally shift invariant linear trans-
form M has the following property:

Men′ ≈ Sn→n′ Men, ∀n ∈ Nn′ , n′ = 1, . . . , N, (11)

where Nn′ denotes a neighborhood around voxel index n′.
An example of such a linear transform is when M is Toeplitz.2

1For simplicity we use “circulant” to refer to the general circulant properties
of a linear transform of images of any dimension, e.g., in 2D “circulant” refers
to “block circulant circulant blocks” (BCCB).

2For simplicity we use “Toeplitz” to refer to the general Toeplitz properties
of a linear transform of images of any dimension, e.g., in 2D “Toeplitz” referes
to “block Toeplitz Toeplitz blocks” (BTTB).

The property described in (11) allows one to approximate M
with a circulant based DFT diagonalization as described in
Section III-A.

Suppose both C ′C and A′ A are approximately locally shift
invariant. Using DFT diagonalization and (11), one can locally
approximate A′ A and C ′C as follows:

A′ Aen ≈ Q−1Λ̌ Qen, C ′C en ≈ Q−1Ω̌ Qen, (12)

where Λ̌ and Ω̌ are defined as given in (9) with an additional
constraint that the elements of Λ̌ and Ω̌ are nonnegative
real. This constraint ensures positive semidefiniteness when
locally approximating the positive semidefinate matrices A′ A
and C ′C .

Using (12) one can approximate the local impulse response
in (10) such that:

ln ≈ Q−1
(
Λ̌ + βΩ̌

)−1
Λ̌ Qen. (13)

For most practical penalties, the null space of C is only
uniform images, which is disjoint from the null space of A.
This property, combined with Λ̌ and Ω̌ having nonnegative
real diagonal elements, makes Λ̌ + βΩ̌ invertible and thus
(13) exists by design.

IV. FAST QPLS LOCAL IMPULSE RESPONSE: SEPERATE

REAL AND IMAGINARY ROUGHNESS PENALTY

The method used to derive the local impulse response
presented in Section III does not apply directly when using the
more complicated penalty in (3). To analyze the local impulse
response when using (3), we form a stacked cost function with
separate real and imaginary regularization. This stacked cost
function looks like �(x) with the conventional penalty in (4)
and thus allows us to derive a local impulse response of the
stacked cost function similar to (5), with all the computational
benefits presented in Section III-B.

A. Stacked Cost Function With Separate Real and
Imaginary Regularization

We first rewrite all the matrices and vectors in (2) and (3)
in a stacked format, as follows:

yS =
[

yR
yI

]
, xS =

[
xR
xI

]
,

AS =
[

AR −AI
AI AR

]
, CS =

[
CS1 0

0 CS2

]
,

where CS is block diagonal with CS1 = √
β1C1 and

CS2 = √
β2C2. Note that β1 and β2 can be chosen inde-

pendently of each other and this flexibility is needed in some
applications [7]–[9]. Using these definitions for the stacked
matrices and vectors we form a new stacked cost function
�S(xS) as follows:

�S(xS) = 1

2

∥∥ yS − ASxS
∥∥2 + 1

2
‖CSxS‖2 . (14)

The Appendix shows that by minimizing �S(xS) with
respect to xS we are regularizing the real and imaginary
parts separately and maintaining equality with �(x). Note that
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we use (14) for resolution analysis only, not for numerical
implementation of the image reconstruction method. Next we
characterize the spatial resolution properties of (14) in term of
its stacked local impulse response.

B. Stacked Local Impulse Response

Since the stacked cost function in (14) has the same general
form as the QPLS cost function using the conventional penalty
in (4), we can use the method in [10] to derive the stacked
local impulse response. It is thus written as follows:

lSn = (
A′

S AS + C ′
SCS

)−1 A′
S ASeSn, (15)

with,

lSn =
[

lRn
l In

]
, eSn =

[
(1 − α) en

αen

]
, α ∈ {0, 1}

A′
S AS =

[� (
A′ A

) −� (
A′ A

)
� (

A′ A
) � (

A′ A
)

]
,

C ′
SCS =

[
β1C ′

1C1 0
0 β2C ′

2C2

]
, (16)

where � (
A′ A

)
and � (

A′ A
)

are the real and imaginary parts
of A′ A respectively, and α is set to 0 or 1 to calculate
the stacked local impulse response of xR or xI respectively.
Using (15) we could in principle characterize the spatial
properties of a QPLS reconstruction that separately penalizes
the real and imaginary parts. However, as is the case with
(5), calculating lSn directly would be both computationally
and memory intensive. By using a procedure akin to that in
Section III-B we accelerate this computation using FFTs.

C. Fast Stacked Local Impulse Response Calculation:
Approximate Local Shift Invariance

Suppose A′ A, C ′
1C1 and C ′

2C2 are approximately locally
shift invariant. DFT diagonalization and (11) then gives:

� (
A′ A

)
en ≈ Q−1Λ̌1 Qen,

� (
A′ A

)
en ≈ Q−1Λ̌2 Qen,

C ′
1C1en ≈ Q−1Ω̌1 Qen,

C ′
2C2en ≈ Q−1Ω̌2 Qen, (17)

where Λ̌ = Λ̌1 + iΛ̌2. The diagonal matrices Λ̌, Ω̌1 and
Ω̌2 are defined similar to (9) with the additional constraint
of having only nonnegative real elements. Substituting (17)
into (15) allows us to approximate the stacked local impulse
response as follows:

lSn ≈ Q−1
S

(
Λ̌S + Ω̌S

)−1
Λ̌S QSeSn, (18)

with

Λ̌S =
[

Λ̌1 −Λ̌2

Λ̌2 Λ̌1

]
, Ω̌S =

[
β1Ω̌1 0

0 β2Ω̌2

]
,

QS =
[

Q 0
0 Q

]
. (19)

The expression in (18) is getting closer to being practical for
fast computation using FFTs, but we still must address the fact
that Λ̌S is not a diagonal matrix.

To compute (18) in a stable manner, Λ̌S + Ω̌S must be
invertible for all positive β1 and β2. For this to be true,
it suffices to show that (a) the eigenvalues of Λ̌S and Ω̌S
are nonnegative real, and (b) AS and CS have disjoint null
spaces.

For (b), we note that by converting each vector of the
complex-valued null space basis of A to its stacked format,
they form a basis of the null space of AS. The same rela-
tionship holds for the null space basis vectors of C and CS.
Hence, since C and A have disjoint null spaces by design,
statement (b) above is true.

For (a), we note that since Ω̌S is a diagonal matrix with
nonnegative real diagonal elements according to (19), it suf-
fices to show that the eigenvalues of Λ̌S are nonnegative real.
To show this, we need to express the eigenvalues of Λ̌S in
terms of the nonnegative real diagonal elements of Λ̌.

First, we need to express the elements of Λ̌1 and Λ̌2 as
functions of the elements of Λ̌. Using the approximation
in (12), we get the following:

Q� (
A′ A

)
en = Q� (

A′ Aen
)

≈ Q�
(

Q−1Λ̌ Qen

)

= Q
Q−1Λ̌ Qen +

(
Q−1Λ̌ Qen

)∗

2

= 1

2
v + 1

2
Q

(
Q−1v

)∗
, (20)

where ∗ is the conjugate operator and v is a vector of length
K with its kth element given as:

vk = λ̌k ei � (Q en)k ,

where λ̌k is the kth diagonal element of Λ̌. The expression
in (20) involves a conjugate of the IDFT of v, which for
element n in the vector simplifies as follows:

[(
Q−1v

)∗]
n

=
(

K−1∑
k=0

Qnkvk

)∗

=
K−1∑
k=0

Q∗
nkv

∗
k

=
K−1∑
k=0

Qnkv
∗
k =

[
Q−1v∗]

n
,

where k is the conjugate index that goes with k and v has those
elements, e.g., in 1D its kth element is defined as follows:

[
v
]

k = vk =
{

v0 if k = 0,

vK−k if k = 1, . . . , K − 1.

Thus
(

Q−1v
)∗

is simply an IDFT of v∗. Using this in (20),
we now get for the kth element:

[
Q� (

A′ A
)

en
]

k ≈ 1

2

(
vk + v∗

k

)

= 1

2

(
λ̌k ei � (Q en)k + λ̌k e−i � (Q en)k

)

= 1

2

(
λ̌k + λ̌k

)
ei � (Q en)k .
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Using this expression and (17), the diagonal elements of Λ̌1,
denoted λ̌1k , relate to the nonnegative real elements of Λ̌ as
follows:

λ̌1k ≈ e−i � (Q en)k
1

2

(
vk + v∗

k

)
= 1

2

(
λ̌k + λ̌k

)
. (21)

Thus the elements of Λ̌1 are approximately nonnegative real
under the local impulse response approximation. Similarly, the
elements of Λ̌2 under the local impulse response approxima-
tion relate to the elements of Λ̌ as follows:

λ̌2k ≈ 1

2i

(
λ̌k − λ̌k

)
, (22)

making the elements of Λ̌2 approximately purely imaginary.
The matrix Λ̌S in (19) is a 2 × 2 block matrix where each

block is a K × K diagonal matrix and the main diagonal
is approximately nonnegative real and the off-diagonals are
approximately imaginary. Although this form does not tell us
yet if the eigenvalues of Λ̌S are nonnegative real, we can use
elementary row and column matrix operations to permute it
into a block diagonal matrix and determine if the eigenvalues
of each block are nonnegative real. If this is the case, then
the eigenvalues of Λ̌S are also nonnegative real since its
eigenvalues are invariant to elementary matrix operations.

Permuting Λ̌S into a block diagonal matrix, it has K blocks
of size 2 × 2, with the kth one given as follows:

[
λ̌1k −λ̌2k

λ̌2k λ̌1k

]
. (23)

Since all the blocks along the diagonal have the same form,
we need only determine the eigenvalues of (23). We find the
eigenvalues by solving the following characteristic equation:

∣∣∣∣
λ̌1k − α −λ̌2k

λ̌2k λ̌1k − α

∣∣∣∣ = 0

⇒ α2 − 2λ̌1k α + λ̌2
1k

+ λ̌2
2k

= 0.

Using (21) and (22) the two roots α1,2 are:

α1,2 =
2λ̌1k ±

√
4λ̌2

1k
− 4

(
λ̌2

1k
+ λ̌2

2k

)

2

=
2λ̌1k ±

√
−4λ̌2

2k

2

≈ 1

2

(
λ̌k + λ̌k

)
± 1

2

√(
λ̌k − λ̌k

)2

= 1

2

(
λ̌k + λ̌k

)
± 1

2

(
λ̌k − λ̌k

)

= {λ̌k, λ̌k}.
Since all elements of Λ̌ have been constrained to be nonnega-
tive real under the local impulse response approximation, α1,2,
and hence the eigenvalues of Λ̌S, are also nonnegative real.

By enforcing the approximation in (21) and (22) and
by constraining the elements of Λ̌ to be nonnegative real,
we have now shown that Λ̌S is positive semidefinite. This
property, in conjunction with Ω̌S being positive semidefinite,
and AS and CS having disjoint null spaces, ensures that

Λ̌S +Ω̌S is invertible. Thus the proposed approximate stacked
local impulse response in (18) exists and can be evaluated
quickly.

D. Fast Stacked Local Impulse Response Calculation:
Implementation Details

To implement a fast version of the stacked local impulse
response approximation in (18), we need to form Λ̌S and Ω̌S

fast and efficiently. To do that we use (9) to form Λ̌, Ω̌1 and
Ω̌2 and constrain their diagonals to be nonnegative real by
discarding the imaginary part and setting the real part to be 0
if it is negative. We then use (21) and (22) to form Λ̌1 and Λ̌2

respectively. We compute
(
Λ̌S + Ω̌S

)−1
quickly by using the

2 ×2 block matrix structure of Λ̌S and Ω̌S shown in (19) and
a blockwise matrix inversion. Since all the blocks are diagonal
matrices this inversion is trivial to calculate. As usual we use
FFT and IFFT for Q and Q−1 respectively.

V. SIMULATIONS & RESULTS

To evaluate the accuracy of the fast local impulse responses
proposed in (13) and (18), we investigated the resolution
properties of two MR image reconstruction methods, and
compared the result of (13) and (18) to that of using their
respective slower, but exact, versions in (5) and (15). Both
image reconstruction methods are used for functional MRI
(fMRI). The first is an off-resonance corrected T ∗

2 -weighted
image reconstruction method with the conventional roughness
penalty [17], and the second is a joint R∗

2 and field map
image reconstruction method with a separate real (R∗

2 ) and
imaginary (field map) roughness penalty [8].

The off-resonance corrected T ∗
2 -weighted image reconstruc-

tion method with the conventional roughness penalty is given
as follows [17]:

x̂ = arg min
x

1

2
‖y − Ax‖2 + β

2
‖C x‖2 ,

amn = �(�k(tm)) e−itmω(�rn ) e
−i2π

(�k(tm)·�rn

)
, (24)

where x̂ is the estimated T ∗
2 -weighted image, C is a first order

difference matrix, and amn is an element of the M × N system
matrix A for voxel index n and k-space trajectory index m.
For amn , �rn is the spatial voxel location, �k(tm) is the k-space
trajectory value, �(�k(tm)) is the Fourier transform value of
the continuous-to-discrete basis function, and ω(�rn) is the field
map value used for voxel-based off-resonance correction. The
joint R∗

2 and field map image reconstruction with the separate
real and imaginary roughness penalty is given as follows [8]:

x̂ = arg min
x

1

2
‖y− Ax‖2+ β1

2
‖C1xR‖2+ β2

2
‖C2xI‖2 ,

amn = �(�k(tm)) f (�rn) e−tm x̌(�rn ) (−tm) e
−i2π

(�k(tm)·�rn

)
, (25)

where x̂ = x̂R + i x̂I is the jointly estimated R∗
2 (x̂R) and

field map (x̂I) images, C1 is a first order difference matrix,
C2 is a second order difference matrix (per [18]), and amn is
a system matrix element that has, in addition to the variables
in (24), f (�rn) as the objects initial magnetization voxel
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Fig. 1. Set of 64 × 64 simulation maps, from a previously acquired in vivo human brain fMRI data set, that is used to investigate the performance
of the fast local impulse response method. (a) Initial magnetization map f ; (b) R ∗

2 map; (c) Field map ω.

value after RF excitation, and the complex valued x̌(�rn) as a
reference R∗

2 (real part) and field map (imaginary part) voxel
value that is assumed to be close to x(�rn) to be estimated.

While most variables that make amn in (24) and (25) are
known, spatial maps of ω(�rn), f (�rn), and x̌(�rn) are usually
estimated from additionally acquired data. Here, we will
assume they are known a priori for all n. To investigate
the performance of the proposed fast local impulse response
method, we simulated six versions of A in (24) and (25) by
using three commonly used k-space trajectories �k(t) in fMRI,
and two sets of the spatial simulation maps ω, f , and x̌.

The three single-shot �k(t) trajectories used for the simu-
lations (TE = 30ms, FOV = 220 × 220mm, 4μs sampling)
were spiral-out, spiral-in, and echo-planar imaging (EPI), each
respectively with a readout time of 18.8ms, 18.8ms, and
24.2ms, and sample count M of 4713, 4713, and 4096. For
the two sets of 64 × 64-sized simulation maps (N = 4096),
the first set simulated a simple case, where f was set to a
constant value inside a simulated brain and 0 outside it, and
ω and x̌ were both set to 0. While A′ A is generally not
Toeplitz for both (24) and (25), it is for this simple set of
simulation maps and hence is well suited to the approximate
local shift invariance property needed for accurate fast local
impulse response calculation. Fig. 1 shows the second set of
simulation maps, based on a previously acquired in vivo human
brain fMRI images and thus more realistic. As is common
in many reconstruction problems, A′ A is now approximately
Toeplitz, since most voxels in Fig. 1 have a smooth spatial
transition to neighboring voxels, except voxels by the ventricle
and brain edges.

To investigate the resolution properties of (24) and (25),
the simulations required multiple evaluations of the fast and
slow local impulse responses, while recording their FWHM
dependence on either the regularization parameter values
(β, β1, or β2) or the spatial location of the Kronecker
impulse (en). Both local impulse response methods were
computed and timed in MATLAB R2015b on a worksta-
tion with two 6-core Intel Xeon E5-2630 2.3GHz CPUs
and 64GB of memory. We made the slow local impulse
response computationally efficient, by either precomputing
A′ A when evaluating the FWHM dependence on the regular-
ization parameters, or

(
A′ A + βC ′C

)−1 A′ A (or its stacked

version) when evaluating the FWHM dependence on the
Kronecker impulse location. To make the fast local impulse
response computationally efficient when evaluating its FWHM
dependence on the regularization parameters we precomputed
A′ Aen , while no precomputation was performed when eval-
uating the FWHM dependence on the Kronecker impulse
locations. Furthermore, the fast method formed A and C in a
memory efficient manner3 [8], [17], [19].

A. Comparing FWHM Values of the Slow and Fast Local
Impulse Response Methods at a Single Spatial Location

For both the slow and fast local impulse response methods,
we calculated the FWHM from the magnitude of the complex-
valued local impulse response of the center voxel across
a range of regularization parameter values. The range was
chosen to result in reasonable FWHM values for (24) and (25).

Fig. 2 shows plots of the resulting FWHM dependence on
β for the slow and fast local impulse responses of (24). This
is shown for the three k-space trajectories, and the simple and
human brain simulation maps. Since the system matrix in (24)
requires only a field map out of the simulation maps, Fig. 2a
shows the FWHM results for the simple (all zeros) field map
and Fig. 2b shows it for the human brain field map in Fig. 1c.

To further quantify the difference between the FWHM of
the fast and slow impulse response methods shown in Fig. 2,
Fig. 3 shows a plot of the FWHM%-Error across the same
range of β values. Here, FWHM%-Error is defined as follows,

FWHM%-Error = FWHMfast − FWHMslow

FWHMslow
· 100%,

where FWHMfast and FWHMslow are respectively the FWHM
of the fast and slow local impulse responses. Fig. 3 shows
that FWHMfast is slightly smaller than FWHMslow across the
chosen β range, indicating that the fast method tends to under-
estimate the resolution. The average absolute FWHM%-Error
for the spiral-out, spiral-in, and EPI k-space trajectories were
less than 1.2% and 3.7% for the simple and human brain field
maps respectively. This shows that the FWHM values with
the simple (all zeros) field map has a lower average absolute
FWHM%-Error compared to when the human brain field map

3Available from http://www.eecs.umich.edu/∼fessler/code
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Fig. 2. Plots of the FWHM dependence on the regularization parameterβ
for the slow and fast local impulse responses for the T ∗

2 -weighted image
reconstruction in (24). The plots show the FWHM of the local impulse
response evaluated at the center image voxel. This was performed for
the spiral-out, spiral-in, and EPI k-space trajectories, using both the
(a) simple and (b) human brain field maps.

Fig. 3. Plots of the FWHM%-Error dependence on the regularization
parameter β for the T∗

2-weighted image reconstruction in (24), for all
three k-space trajectories and both sets of simulation field maps. In all
cases the error is less than 7.1%.

is used. This is most likely due to A′ A being Toeplitz in (24)
when the field map is all zeros.

When using (25) to jointly reconstruct R∗
2 and field map,

we can adjust two regularization parameter values, β1 and β2.
For every pair of β1 and β2 values, we get separate estimates
of the complex-valued local impulse responses for R∗

2 and
field map by respectively setting α to 0 or 1 in (15) for
the slow method and (18) for the fast method. For each
estimate we calculate the R∗

2 FWHM (FWHMR) and field
map FWHM (FWHMI) from the magnitude of their complex-
valued local impulse responses. From this we form two
FWHM maps as functions of β1 and β2, i.e., FWHMR(β1, β2)
and FWHMI(β1, β2).

Fig. 4 shows profiles of the resulting FWHMR and FWHMI
maps, for the three k-space trajectories, and the simple and

Fig. 4. Profiles of the FWHM dependence on the regularization
parameter values β1 and β2 of the slow and fast local impulse response
methods for the joint R ∗

2 and field map image reconstruction in (25). The
results for the R ∗

2 FWHM with the spiral-in, spiral-out, and EPI k-space
trajectories are shown for the (a) simple and (c) human brain simulation
maps. Similarly, the field map FWHM are shown for the (b) simple and
(d) human brain simulation maps.

human brain simulation maps. The profiles were selected by
fixing β1 at β̂1 or β2 at β̂2 and plot FWHMR

(
β1, β̂2

)
and

FWHMI

(
β̂1, β2

)
. Here, we chose β̂1 and β̂2 as follows,

β̂1 = arg min
β1∈B

⎛
⎝

⎛
⎝ 1

Nβ2

∑
β2

FWHMR(β1, β2)

⎞
⎠ − 1.35

⎞
⎠ ,

β̂2 = arg min
β2∈B

⎛
⎝

⎛
⎝ 1

Nβ1

∑
β1

FWHMI(β1, β2)

⎞
⎠ − 1.7

⎞
⎠ ,

where B is the set of β1 and β2 values used to generate Fig. 4,
and Nβ1 = Nβ2 = 17 is the number of β1 and β2 values for
a total of 289 (β1, β2) pairs. Here, we chose 1.35 and 1.7 as
sensible FWHM targets for R∗

2 and field map respectively.
Fig. 4a-4b show the FWHMR and FWHMI profiles for the

simple simulation maps, and Fig. 4c-4d for the human brain
simulation maps. Similar to Fig. 2, Fig. 4 shows a good
agreement between the FWHMR and FWHMI of the slow
and fast local impulse responses. This is further highlighted
in Fig. 5 where the FWHMR and FWHMI percent errors
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Fig. 5. Plots of the R ∗
2 and field map FWHM%-Error dependence on the

β1 and β2 values for the profiles in Fig. 4 . This is shown for all three
k-space trajectories and both sets of simulation maps for (a) R ∗

2 and
(b) field map. The absolute error for each β1 or β2 profile value is less
than 5.2� and averaged across β1 or β2 is less than 2.2�.

are shown in Fig. 5a and 5b respectively. Averaged across
β1 or β2, the absolute valued R∗

2 and field map FWHM%-Error
for the three k-space trajectories are all within 2.2% for both
sets of simulation maps. Again we see from Fig. 5 that for
the chosen profiles the fast method largely underestimated the
FWHM values compared to the slow method, although less
so for higher β1 and β2 values. When evaluating the results
across all the 289 (β1, β2) pairs, the average absolute valued
R∗

2 and field map FWHM%-Error was less than 3.1% in all
cases.

We averaged the time for computing the FWHM values
for all the regularization parameter values used for the con-
ventional regularizer (24), with equal regularization of the
two parts, and separate regularization (25) across the six
combinations of k-space trajectories and simulation maps. The
slow method took 35.8s (5.2s to precompute A′ A and 30.6s
to compute the local impulse response for eleven βs) for
(24), and 1289.5s (10.5s to precompute A′ A and 1279.0s to
compute the real and imaginary local impulse responses for
all (β1, β2) pairs) for (25). The fast method took 0.8s (0.75s
to precompute A′ Aen and 0.04s to compute the local impulse
responses for eleven βs) for (24), and 4.5s (2.4s to precompute
A′ Aen and 2.1s to compute both real and imaginary local
impulse response for all (β1, β2) pairs) for (25). The fast
method thus provided on average approximately 44-fold and
286-fold acceleration for (24) and (25) respectively.

B. FWHM Spatial Mapping for Spatially
Varying Regularization

Section V-A demonstrated how the proposed method can
quickly and accurately tabulate the FWHMR and FWHMI
of the local impulse responses at a single voxel location,
by sweeping through a range of regularization parameters.
From these tables we can then estimate the β1 and β2 values
to produce a predetermined image resolution. This is done by
selecting desired FWHM values for the real and imaginary
parts based on practical experience with fMRI, e.g., here we

used 1.35 and 1.7 pixel FWHM for the real and imaginary
parts respectively, since the field map in the imaginary part
is smooth. Then we invert (using a simple 2D interpolation)
the FWHM tables to find the corresponding β1 and β2 values
that provide the desired spatial resolution. For the simple
case when β1 equals β2, the inversion simplifies to a 1D
interpolation. Fig. 2 & 4 show how this inversion is trivial
since the FWHMs are monotone increasing functions of βs.

Since the FWHM tables are formed for a single voxel
location, it may in some cases not reflect accurately the res-
olution properties at other spatial locations. This is especially
relevant when A′ A for the image reconstruction is not shift
invariant or nearly so, e.g., circulant or Toeplitz. In that case,
and depending on the purpose of the image reconstruction,
it can be important to investigate the local spatial resolution
properties at multiple voxel locations and incorporate such
information into the regularization [10]. The now spatially
dependent estimated regularization parameter values can then
be integrated into the penalty in the form of a weighting
map κ = [1, . . . , κn, . . . , κN ]T , where κn is the estimated
regularization parameter at spatial index n [10]. Furthermore,
the separate real and imaginary penalty requires two such
spatial weighting maps, κ R and κ I respectively.

To estimate κ for (24), and κ R and κ I for (25), we used
the fast and slow local impulse response methods. For both
(24) and (25) we only used the human brain simulation
maps in Fig. 1 to demonstrate a more realistic example of
spatial variation of the local impulse response due to A′ A
not being shift invariant. This was explored for all three k-
space trajectories. For 942 internal brain voxels (the brain
edge voxels were excluded), we tabulated the FWHM of
the local impulse responses across the same range of β, β1,
and β2 values used in Section V-A. For the T ∗

2 -weighted
reconstruction in (24) the average compute time across all
voxels for the fast method was 6.6s (0.6s per β), and for
the joint R∗

2 and field map reconstruction in (25) it was
194.1s (0.7s per (β1, β2) pair). The same computation using
the slow method took respectively 97.2s and 7180s, which is
respectively almost 15- and 37-times slower.

From the resulting FWHM tabulation of the proposed fast
method, we estimated β, β1, and β2 at the 942 voxel locations
to respectively give a FWHM, FWHMR and FWHMI of 1.35,
1.35 and 1.7 as described earlier. The regularizers in (24)
and (25) used these voxel dependent estimates as κ , κ R , and
κ I maps. The voxels of the κ , κ R , and κ I maps that were
outside the 942 voxels were set to the spatial average of their
respectively estimated β, β1, and β2 values. These averages
were also used to calculate normalized κ , κ R , and κ I maps,
respectively named κ̌ , κ̌ R , and κ̌ I .

Fig. 6 shows a 3 × 3 image matrix of the resulting κ̌ , κ̌ R ,
and κ̌ I maps. The rows of the image matrix show the results
across the penalized image reconstructions and the columns
shows them across k-space trajectories. We note that both
image reconstructions require higher regularization parameter
values in areas of high intensity in the simulation field map
in Fig. 1c, although this is less prominent for the spiral-in
k-space trajectory. There is also a notable difference in the
overall smoothness between κ̌ (top row) and either κ̌ R or κ̌ I



612 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 2, FEBRUARY 2018

Fig. 6. The 3 × 3 image matrix shows the κ̌ map for the T ∗
2 -weighted

image reconstruction in (24), and κ̌R and κ̌ I maps for the joint R ∗
2 and

field map image reconstruction in (25). The κ̌ , κ̌R, and κ̌ I maps were
generated by respectively normalizing the estimated κ , κR and κ I maps
with their spatial averages. The rows of the image matrix show the results
across the penalized image reconstructions and the columns show them
across the k-space trajectories.

(bottom two rows). This is due to f being in the system matrix
in (25), causing a spatial structure that affects the separate real
and imaginary roughness penalty.

We used the κ , κ R , and κ I maps to form spatially varying
roughness penalties [10] for both (24) and (25). We then
computed, for the 942 voxel locations, the fast local impulse
response for (24) and (25) with said spatially varying rough-
ness penalties and formed a map of their FWHM values. This
process was repeated for (24) and (25) while using spatially
invariant penalties, where their regularization parameters were
estimated from the FWHM tables of the central image voxel.
The resulting FWHM maps from both processes were com-
pared to assess the spatial resolution difference between using
spatially variant and invariant penalties.

Fig. 7 shows the resulting FWHM spatial maps for the
T ∗

2 -weighted (Fig. 7a), and joint R∗
2 (Fig. 7b) and field

map (Fig. 7c) reconstructions. The image matrix rows of
Fig. 7a-7c show the results when using the spatially vari-
ant (top row) and invariant (bottom row) roughness penalties
and the columns show them for different k-space trajectories.
Each color scale for Fig. 7a-7c has the desired FWHM as the
central value. The FWHM variation across the brain when
using the spatially invariant penalties (bottom row) can be
significant, particularly in areas where Fig. 1c is high, while
when using the spatially variant penalties (top row) the FWHM
values are much closer to the desired FWHM across the whole
brain.

To further asses the accuracy of the fast methods we
generated the FWHM maps with the slow methods using
the same process. Out of the six combinations of k-space
trajectories and simulation maps, the joint reconstruction

Fig. 7. FWHM spatial maps for the (a) T ∗
2 -weighted, and joint (b) R ∗

2
and (c) field map image reconstructions when using the spatially varying
(top row) and non-varying (bottom row) roughness penalties.

(spiral-in, field map estimate) gave the poorest average,
median, and interquartile range for the absolute FWHM%-Error
across all the brain voxels (5.8%, 4.2%, and 6.9%
respectively).

VI. DISCUSSION

We presented a fast method to compute an approximate
local impulse response for QPLS image reconstructions (2)
with a quadratic roughness penalty that separately penalizes
the real and imaginary parts (3). This method was shown to
be stable, fast and accurate by comparing the performance of
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the fast and slow methods for a joint R∗
2 and field map image

reconstruction of fMRI data. The fast method was shown to
have an absolute FWHM%-Error average value within 3.1%
for a range of regularization parameter values and 286-times
faster than the slow method. Similarly, when using the con-
ventional roughness penalty in (4) (a special case of (3)) for
a T ∗

2 -weighted image reconstruction of fMRI data, the fast
method was also shown to be stable, fast and accurate, with
an absolute FWHM%-Error average value less than 3.7% and
44-times faster.

We also presented an example of reduced spatial resolution
uniformity when using a spatially invariant roughness penalty
for a QPLS image reconstruction with shift variant resolution
properties, an unfortunate side-effect of some QPLS image
reconstructions. By designing an appropriate spatially variant
roughness penalty [10] using the fast local impulse response
method, we were able to improve spatial resolution uniformity
considerably. Furthermore, when using the fast method for an
image reconstruction with either a separate real and imagi-
nary or conventional roughness penalty, the average, median,
and interquartile range of the absolute FWHM%-Error values
were respectively less than 5.8%, 4.2%, and 6.9%. It was
also 37- or 15-times faster than the slow method for the two
penalties.

All our simulations were based on reconstructing
64 × 64 images. Although it is a modest size, it is still
the most common one for fMRI. Recently, fMRI imaging
has been moving towards acquiring higher resolution 3D
images [20]–[23], resulting in increased compute time and
memory needs for the slow methods compared to the fast
methods, potentially leading to further speed advantages for
the fast methods.

Our analysis was strictly focused on quadratic roughness
penalties and is easily extended to other regularizers that
are locally quadratic near zero. Furthermore, there is prior
work where regularization modulation methods designed for
quadratic regularizers as described here were adapted to non-
quadratic regularizers [24], as was recently shown for an edge
preserving image reconstruction for quantitative susceptibility
mapping (QSM) [25]. Extending this work to non-smooth
regularizers like �1 is a challenging open problem.

Finally, analysis of other separate penalties is also needed,
such as separate magnitude and phase penalties [4], [6], [26].

APPENDIX

COMPARING THE MINIMIZATION OF �S(xS) AND �(x)

This appendix verifies that the stacked minimization prob-
lem in (14) is equivalent to the original problem in (2).

To show that
∥∥yS − ASxS

∥∥2 = ‖ y − Ax‖2 we first note
the following relationship:

yS − ASxS =
[

yR
yI

]
−

[
AR −AI
AI AR

] [
xR
xI

]

=
[ � (y − Ax)

� (y − Ax)

]
. (26)

From this we see that the error of the stacked vectors equals
the stacked error of the original complex valued vectors.

This allows us to relate the two norms as follows:

∥∥ yS − ASxS
∥∥2 =

∥∥∥∥
[ � (y − Ax)

� (y − Ax)

]∥∥∥∥
2

= ‖ y − Ax‖2 ,

and hence the data fit terms of �(x) and �S(xS) are equiva-
lent.

It is easy to show that the stacked penalty in (14) is
equivalent to the penalty in (3), as follows:

1

2
‖CSxS‖2 = 1

2
x′

SC ′
SCSxS

= 1

2

(
β1x′

RC ′
1C1xR + β2x′

IC
′
2C2xI

)

= 1

2

(
β1 ‖C1xR‖2 + β2 ‖C2xI‖2

)
.
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