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Fast Variance Prediction for Iteratively
Reconstructed CT Images With Locally

Quadratic Regularization
Stephen M. Schmitt, Student Member, IEEE, Mitchell M. Goodsitt, and Jeffrey A. Fessler ∗, Fellow, IEEE

Abstract— Predicting noise properties of iteratively
reconstructed CT images is useful for analyzing recon-
struction methods; for example, local noise power spec-
trum (NPS) predictions may be used to quantify the
detectability of an image feature, to design regularization
methods, or to determine dynamic tube current adjust-
ment during a CT scan. This paper presents a method
for fast prediction of reconstructed image variance and
local NPS for statistical reconstruction methods using
quadratic or locally quadratic regularization. Previous meth-
ods either require impractical computation times to gen-
erate an approximate map of the variance of each recon-
structed voxel, or are restricted to specific CT geometries.
Our method can produce a variance map of the entire image,
for locally shift-invariantCT geometries with sufficiently fine
angular sampling, using a computation time comparable
to a single back-projection. The method requires only the
projection data to be used in the reconstruction, not a
reconstruction itself, and is reasonably accurate except
near image edges where edge-preserving regularization
behaves highly nonlinearly. We evaluate the accuracy of our
method using reconstructions of both simulated CT data
and real CT scans of a thorax phantom.

Index Terms— Bayes methods, computed tomography,
optimization methods, reconstruction algorithms.

I. INTRODUCTION

ITERATIVE reconstruction (IR) methods for computed
tomography (CT) are receiving increased attention for

their improved resolution and noise properties compared to
FBP [1]–[3]. However, the statistical properties of IR images
are difficult to compute compared to FBP. Closed-form but
computationally intractable matrix expressions exist [4] for
the mean and covariance matrix of the reconstructed images,
so faster prediction methods are desirable. Image variance
information is useful for image analysis and regularization
design [5]. In addition, adjusting X-ray tube current during
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a scan has the potential to reduce dose [6], [7], and with
sufficiently fast variance prediction, it could be feasible to
compute the proper tube current adjustment during a scan to
meet a certain variance target.

One way to determine the noise level in reconstructed
images would be by finding the empirical variance from an
ensemble of reconstructions. This method is extremely com-
putationally intensive, requiring numerous reconstructions, and
would require unacceptable X-ray dose for in vivo human data.
The empirical approach determines the mean and variance
of all voxels simultaneously, providing complete variance
maps. Prior work on variance prediction has exploited the
approximate shift-invariance of projection and back-projection
operations to develop DFT-based approximations for the vari-
ance map of images reconstructed from scans having locally
shift-invariant system geometries with sufficiently fine angular
sampling. When it is possible to assume global shift-invariance
of projection and back-projection (e.g., [8], [9], for PET), the
DFT of projection and back-projection can be calculated once
and applied to find the variance map of an entire volume.
When one can assume only local shift invariance rather than
global shift invariance, then DFT-based methods are useful for
theoretical analysis but require projection and back-projection
for each voxel of interest to calculate the DFT [10] and are
impractical in general for producing a variance map for an
entire large volume. For systems having sufficient symmetries
(e.g., cylindrical 3D PET [10]), one can precompute and store
a collection of DFT arrays; such computation and storage
appears prohibitive for axial CT and inapplicable to short-
scan and helical CT. There are methods specific for 2D fan-
beam [11], 3D step-and-shoot [12], 3D axial CT [13], and 3D
helical CT [14] that further approximate the DFT such that the
computational load of predicting variance maps for an entire
volume is greatly reduced.

The main contribution of this paper is a method for pre-
dicting the variance of iteratively reconstructed CT images
with locally shift-invariant scan geometries. The proposed
method is significantly faster than previous methods and does
not require any estimate or reconstruction of the image, only
the scan geometry and the weighting data to be used in the
reconstruction. We also extend our previous methods [14]
to deal with general weightings in the data-fit term and to
accommodate space-variant regularizers such as the uniform-
resolution regularizer described in [15]. Previous methods
for specific geometries [11], [13], [14] are special cases of
the formulation derived here. Section II specifies the general
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form of the CT reconstruction problem to which our meth-
ods apply and provides an overview of the first steps in
many existing variance prediction methods. The general vari-
ance prediction methods described require the local fre-
quency response (LFR) of the projection, weighting, and
back-projection operator. Section III shows how we apply an
approximation to the LFR, derived in the Appendix,1 to vari-
ance prediction; Section III-B provides a further simplification
specific to 3DCT geometries where all of the rays have a
reasonably small cone-angle, such as in axial or helical scans.
Section IV validates the variance predictions by comparing
with the empirical variance of images reconstructed from
repeated phantom scans, in both a simulation study and a real-
world study.

II. BACKGROUND

A. Problem Domain
This paper develops methods for predicting the variance

(i.e., var(x̂ j )) of statistical image reconstructions that take the
general form

x̂ = argminx L(Y; x)+ αR(x). (1)

Here, L is a data-fit term, commonly the negative log-
likelihood of the Nobs vectorized observations Y given an
image vector x composed of Nvox voxel attenuations. The
observation vector Y can represent either estimates of photon
counts or of line integrals. The function R(x) is a regulariza-
tion penalty. We make the following assumptions:

1) The covariance of Y is diagonal, and can be estimated
from the data and knowledge of the instrumentation.

2) Given an image x, the elements of Y are statisti-
cally independent, and the likelihood of a particular
observation Yi is modeled in terms of the projection
[Ax]i �

∑Nvox
j=1 ai j x j , such that

L(Y; x) =
Nobs∑

i=1

Li (Yi ; [Ax]i); (2)

the Nobs × Nvox system matrix A has elements ai j

representing the projection of voxel j onto observation i .
This form can account for both weighted least-squares
data-fit terms, in which Yi represents a line integral
estimate and the log-likelihood is given by

Li (Yi ; [Ax]i) = 1

2
wi (Yi − [Ax]i )

2, (3)

and for a Poisson likelihood, in which Yi represents a
photon count, and the log-likelihood is given by [16]:

Li (Yi ; [Ax]i) = Ȳi −Yi ln Ȳi , Ȳi � bi e
−[Ax]i +ri . (4)

It is important to note that any mismatch between L in
(2) and a hypothetical “true” likelihood L̆ that perfectly
matches the true physics of a CT system does not
affect our prediction methods. Even if L is a poor
approximation of L̆, and the resulting reconstruction
x̂ is a poor image, our methods can still predict the
variance of x̂, so long as L is correctly characterized.

1Supplementary material in the supplementary files / multimedia tab.

In particular, our method accurately predicts the variance
even in the usual case where there is model mismatch
between the system matrix A and the actual scanner
physics. An accurate characterization of the A used in a
particular reconstruction algorithm is much more impor-
tant to predicting the variance of that reconstruction
than whether A accurately characterizes the physics. (Of
course, the usefulness of the reconstructed image x̂ will
depend on the accuracy of A.)

3) The regularizer takes the general form

R(x) =
NC∑

d=1

rd

∑

k

ψ([Cd x]k). (5)

In the common case of a regularizer that penalizes first
differences between neighboring voxels, d indexes the
directions over which we take the differences, Cd is a
first differencing matrix between voxels in that direction,
and rd is the relative strength of the regularizer in that
direction. We assume the regularizer penalty ψ is twice-
differentiable at 0, and scaled such that ψ ′′(0) = 1.

These assumptions account for many common choices of data-
fit terms and regularization penalties. Under these conditions
on the reconstruction, we adapt [4] to the following form for
the approximate covariance of the resulting reconstruction:

cov(x̂) ≈ (ATWA + α∇2 R(x̆))−1ATŴA·
(ATWA + α∇2 R(x̆))−1, (6)

where the diagonal matrices W and Ŵ are defined as:

[W]ii � ∂2

∂y2 Li (Yi ; y)

∣
∣
∣
∣
y=[Ax̆]i

(7)

[Ŵ]ii �var(Yi )

(
∂2

∂y∂Yi
Li (Yi ; y)

∣
∣
∣
∣
y=[Ax̆]i

)2

. (8)

In (6)–(8), x̆ denotes the reconstruction using noise-free
data Ȳ. (Our final formula will not use x̆.)

For a Gaussian log-likelihood in (3) with weight wi for
observation i , the weighting matrix W in (7) is simply these
weights as a diagonal matrix: [W]ii = wi . The matrix Ŵ
has diagonal elements [Ŵ]ii = w2

i var(Yi ); if the weights are
chosen so that wi ≈ 1/var(Yi ), then Ŵ ≈ W.

For the Poisson log-likelihood given in (4), [W]ii = Yi/Ȳ 2
i

and [Ŵ]ii = var(Yi )/Ȳ 2
i ; both are approximately 1/Yi [17].

For both of these statistical models, Ȳi and var(Yi ) are of
course unknown. However, our methods are not extremely
sensitive to the particular values of W and Ŵ, so estimates of
these values are acceptable [4]. Typically those estimates do
not require having x̂ or x̆. We define the matrix P as:

P �
NC∑

d=1

rd CT
d Cd . (9)

We use P as an approximation for the Hessian of the regu-
larizer, ∇2 R(x̆), in approximating (6). The actual Hessian, for
regularizers of the form (5), is given by:

∇2 R(x̆) =
NC∑

d=1

rd CT
d �̈d (x̆)Cd , (10)

fessler
Highlight
This should be Yi, not 1/Yi.
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where �̈d (x) is a diagonal matrix of second derivatives of the
penalty function, evaluated for an image x:

[�̈d (x̆)]kk � ψ̈([Cd x̆]k). (11)

For variance prediction, we use the approximation �̈d (x̆) ≈ I,
such that ∇2 R(x̆) ≈ P. This approximation (for locally
quadratic regularizers like the Huber function) is based on
the idea that the majority of neighboring-voxel differences
in the reconstruction x̆ from noise-free projection data will
be small, since the regularizer penalizes large neighboring-
voxel differences. We hope that for these small differences, the
second derivative of their penalties will be near 1. The utility
of this assumption to our purposes of fast variance prediction
is enormous. First, variance prediction using ∇2 R(x̆) would
require foreknowledge of the noiseless reconstruction x̆. For
non-phantom applications, x̆ is unavailable. Second, even
using a noisy reconstruction x̂ requires the time to compute x̂,
which is much greater than the computation time of our
fast methods. Using x̂ would diminish the practical utility of
our methods. Any edge present breaks both the assumption
that ∇2 R(x̆) is shift-invariant, and our ability to use pre-
computation to accelerate our algorithm. Eqn. (9) is exactly
the Hessian of R for quadratic regularization.

B. Methods

In general, the matrix ATWA is not spatially shift-invariant.
If it were shift-invariant, except for the truncation to the
masked space spanned by the image vector x, then ATWA
could be diagonalized with an n-dimensional DSFT (discrete
space Fourier transform):

ATWA = F∗D
{

H W
}

F ,

where H W (�ν) would be the n-dimensional DSFT of the
impulse response of ATWA, and D is a “diagonalization”
operator:

(D {H } X) (�ν) = H (�ν)X (�ν),
and F is the DSFT with the spatial extent limited by the image
support. It is defined as:

(Fx)(�ν) =
∑

k

xk exp
(
−j2π �νT�nk

)
(12)

[F∗X]k =
∫

[
− 1

2 ,
1
2

]n X (�ν) exp
(
j2π �νT�nk

)
d�ν, (13)

where �ν has units of cycles per sample. Each voxel x j in an
image x is centered at a spatial position denoted �x j , and we
assume that these voxel centers are aligned on a grid such that

�x j = V�n j + �o, (14)

where �n j is a voxel index with integer coordinates, V is a voxel
spacing matrix (e.g., V = diag(�x ,�x ,�z) for the common
choice of rectangular-cuboid voxels), and �o is a spatial offset.

The local impulse response (LIR) of ATWA for the
voxel j is defined by

hW
j � ATWAe j , (15)

where e j is defined as the unit vector with a single 1 at
position j . This LIR can be written exactly as the impulse e j

operated on by a frequency-domain filter H W
j (�ν):

hW
j = F∗D

{
H W

j

}
Fe j , (16)

where
H W

j = D
{

exp
(
j2π �νT�n j

)}
FhW

j . (17)

The diagonal term “centers” the transform at the j th voxel
using the shift property of the DSFT. We will refer to H W

j
as a local frequency response (LFR). In the region near
voxel j , ATWA is typically approximately spatially shift-
invariant, leading us to an approximation

[ATWA]kj ≈ eT
k F∗D

{
H W

j

}
Fe j , (18)

for voxel k near voxel j , which is suggested by (15) and (16).
Except at the edges of the reconstructed image, P can also be
represented in terms of its frequency response R(�ν):

P = F∗D {R} F . (19)

With both of these matrices diagonalized, (6) approximately
simplifies, locally to a voxel j , to

cov(x̂) ≈ F∗D
{

Sj
}
F , (20)

where

Sj (�ν) �
H Ŵ

j (�ν)
(H W

j (�ν)+ αR(�ν))2 (21)

is the local noise power spectrum (NPS) of the noise in the
reconstruction. Representing the covariance using the NPS
in (20) makes the approximation that FF∗ is an identity
operation. In practice it is not exactly an identity because of
the finite spatial support of the image considered by the finite
sum in (12), but we follow previous work that makes similar
approximations [18]. Note here the distinction between H W

j

and H Ŵ
j ; H Ŵ

j comes from the same derivation as (15)–(18),

but with Ŵ substituted for W.
If ATWA were shift-invariant, so that (18) were exact and

not a local approximation, (21) would be the global NPS of
the noise. Extracting the variance of one voxel can be done
by left- and right-multiplying the covariance matrix by unit
vectors:

var(x̂ j ) = eT
j cov(x̂)e j ;

plugging in the approximation (20) to this expression simpli-
fies it to an integral of the local NPS:

var(x̂ j ) ≈
∫

[
− 1

2 ,
1
2

]n S j (�ν) d�ν (22)

Prior work used (22) for variance prediction; [9] and [19] find
an empirical LFR from the Fourier transform of hW

j , found by
projecting, weighting, and back-projecting e j . This empirical
LFR H W

j is then numerically integrated in (22). Other work
derives a closed form for H W

j based on the specific CT
geometry and projection method used for A and simplifies (22)
for these specific realizations of H W

j ; [11] has an approximate
closed form for 2D fan-beam CT, and [12] has one for a
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restricted subset of 3DCT geometries. The Appendix derives
an approximate closed form for H W

j for locally shift-invariant
CT geometries that we use for variance prediction.

III. VARIANCE PREDICTION

A. Application to General n-Dimensional CT

Our variance prediction method uses the integral (22) with
the NPS expression (21). The local frequency response H W

j is
approximated using (61), found in the supplementary material,
which is a factorization of H W

j into the two terms J and E W
j :

H W
j (�ν) ≈ J (�ν)E W

j

( �ν
||�ν||

)

. (23)

In the supplement we derive this approximate factoriza-
tion by separating a continuous-operator approximation of
ATWA into a weighting-like term (that becomes E W

j ) and a
continuous-operator analog of the unweighted operator ATA.
We then apply a first-order Taylor expansion that makes the
projection look, local to a voxel of interest and a source
position, like a single parallel-beam view with an extra magni-
fication factor. The LFR of this single parallel-beam view can
be represented as a slice through the J term; which slice that
we take at a particular voxel and source position becomes part
of E W

j . The simplest version of J , for the usual rectangular-
cuboid voxels, is given by (65) in the supplement as:

J (�ν) = sinc2(ν1)sinc2(ν2)sinc2(ν3)

||�ν|| .

This ratio contains the expected 1/||�ν|| term in the frequency
response of projection followed by back-projection with no
weighting. The E W

j term contains the angle-dependent weight-
ing and is given by (63) in the supplement as

E W
j

( �ν
||�ν||

)

=
∑

σ∈B j

( �ν
||�ν||

)

ũ j,σ det(R j,σ ) det(V)
(
∂
∂σ θ̂

T
j,σV−T �ν

||�ν||
) .

Here, ũ j,σ in (48) denotes the element of the statistical
weights W corresponding to the ray from the source at
position σ through the j th voxel along ray direction θ̂ j,σ ;
det(R j,σ ) in (40) is related to the magnification at the j th
voxel of the cone-beam geometry; V in (14) denotes the voxel
spacing; and B j(

�ν
||�ν|| ) in (50) is the set of source positions σ

where θ̂ j,σ is perpendicular to V−T�ν.
The separation (23) assumes that ATWA can be approxi-

mated by a continuous operator, and therefore that the detector
elements are closely and regularly spaced. We assume that the
geometry can be approximated local to a voxel by a Taylor
expansion, i.e., that the function that, for any fixed source
position, maps a spatial position to its corresponding detector
position, is smooth. This is reasonable for standard X-ray CT
geometries built from curved or flat detectors, but might not
hold for some baggage CT systems that have unusual sets of
detector segments with gaps. Such gaps could preclude local
shift invariance.

The utility of this factorization is that the first term, J , does
not depend on the voxel location j or weighting W; the second
term, E W

j does, but does not depend on the magnitude ||�ν||

of the location in frequency space and so has one fewer
dimension than the argument of H W

j . Representing �ν in spher-

ical coordinates, such that � � ||�ν|| is the spatial frequency
magnitude and �� � �ν/||�ν|| is the frequency direction, (22)
becomes (see supplementary materials for details):

var(x̂ j ) ≈
∫

Sn

∫ �max

0

H Ŵ
j (�,

��)
(H W

j (�,
��)+ αR(�, ��))2 �

n−1 d� d ��

≈
∫

Sn

∫ �max

0

J (�ν)E Ŵ
j (

��)
(J (�ν)E W

j (
��)+ αR(�, ��))2 �

n−1 d� d ��

= α−1

⎛

⎝
∫

Sn

E Ŵ
j (

��)
E W

j (
��)

·
∫ �max

0

α−1 E W
j (

��)J (�ν)
(α−1 E W

j (
��)J (�ν)+ R(�, ��))2 �

n−1 d� d ��
)

= α−1
∫

Sn

E Ŵ
j (

��)
E W

j (
��)G(α−1 E W

j ( ��), ��) d ��, (24)

where n = 3 for 3D images and n = 2 for 2D images.
Here, the integral over Sn is taken over the surface of the
n-dimensional sphere and �� represents a particular point on
the surface, so (24) is an (n − 1)-dimensional integral. The
object-independent function G(γ, ��) is defined as

G(γ, ��) �
∫ �max( ��)

0

γ J (�, ��)
(γ J (�, ��)+ R(�, ��))2 �

n−1 d�, (25)

where �max( ��) is the maximum extent of � in [−1/2, 1/2]n:

�max( ��) = 1

2|| ��||∞
.

In general, G cannot be computed in a closed form, but it is
well-behaved and only depends on, other than its arguments
γ and ��, the regularizer, which determines R(�ν), and the
scale-invariant form of the voxel, which determines J (�ν). The
J term will be the same for all cuboids that can tile space,
for example, but not the same as the J term for an image
reconstructed using blob-based voxels [20].

For a particular voxel shape and regularizer, we precompute
a single table of values of G and use that table to predict
variance maps via (24) for multiple voxels, any regularization
parameter α, any weighting W, any voxel spacing or scan
geometry.

B. Application to 3D Axial and Helical Cone-Beam CT

Section VII-F of the Appendix in the supplemental materials
derives the following further approximation to the two-term
factorization (23) seen in the previous section that is specific
to 3DCT geometries with small cone angles:

H W
j (�ν) ≈ Jcyl(�ν)E W

j,cyl(�), (26)

shown in (71) (in the supplementary materials). In this small
cone-angle factorization, the first term Jcyl(�ν) = J (�ν) sec�
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in (70) is again independent of voxel location j and weight-
ing W. The second term E j,cyl in (72) is:

E W
j,cyl(�) ≈ Dsd

2�3
x�z

Dso

∑

σ∈B j (�)

ũ j,σ
|| �� j,σ ||2
D3

2, j,σ

| csc(�− σ)|,

where Dsd and Dso denote the distances between the source
and the detector and to the isocenter respectively, �� j,σ in (66)
denotes the ray segment from the source at σ to voxel
position �x j , and D2, j,σ in (67) denotes the length of the
projection of that segment into the xy-plane. Unlike the E j in
the previous section, here it is a function of only one variable,
the azimuthal angle � of �ν in 3D cylindrical coordinates.

These terms are derived from the factorization used in (23),
applying a further approximation that takes advantage of the
fact that, for a small cone angle, this spherically separable
approximation is nearly cylindrically separable except close
to the missing cone in frequency space around the ν3 axis.
Appendix Section VII-F shows that for the purposes of vari-
ance prediction, accuracy near this missing cone is less
important.

Using the LFR approximation (26), we rearrange the vari-
ance prediction integral (22) by changing from Cartesian
coordinates to cylindrical coordinates (ρ,�, ν3), to be

var(x̂ j ) ≈ α−1
∫ 2π

0

E Ŵ
j,cyl(�)

E W
j,cyl(�)

Gcyl(α
−1 E W

j,cyl(�),�) d�,

(27)
where we define another object-independent function Gcyl:

Gcyl(γ,�) �
∫ ρmax(�)

0

∫ 1
2

− 1
2

γ Jcyl(�ν)
(γ Jcyl(�ν)+ R(�ν))2 ρ dν3 dρ.

(28)
In this case, ρmax = 1/(2max{| cos�|, | sin�|}). Again, Gcyl
has no closed form but is a well-behaved function of only two
parameters that we precompute and tabulate. We compute this
table only once for a given differencing matrix C and voxel
shape; a particular image, weighting, system geometry, or reg-
ularization parameter α does not change the table Gcyl. Using
the table, variance prediction via (27) simply requires looking
up values of Gcyl and numerically integrating them in 1D. This
integration can be evaluated using a coarse discretization of �
with reasonably accurate predicted variance, especially given
that the integrand is periodic and integrated over one period,
a case in which numerical integration converges quickly [21].
While the method of derivation is changed, this is the form
for fast variance prediction given in [14], which also reduces
to the form given in [13] for quadratic regularization and an
axial geometry.

For 3DCT geometries where (26) is an inaccurate approxi-
mation, such as those where a voxel under consideration has
rays passing through it in directions that cover much of S3,
one must revert to (24) for fast variance prediction.

C. Spatially Varying Regularization

In this section we consider the effect on reconstruction
variance of using a spatially varying regularizer such as that
defined in [15], [22] designed to produce a reconstruction

with uniform spatial resolution. Each voxel has an associated
factor κ2

j representing the ’certainty’ of the voxel that mul-
tiplies the effect of α. This factor modulates the smoothing
effect of the regularizer in otherwise less certain regions to
promote uniform resolution at the cost of less uniform voxel
variance. To adapt our variance prediction method to this
situation, we simply define a per-voxel effective regularization
parameter αeff � ακ2

j and evaluate (27) with this αeff .
The effect of using κ2

j in the regularizer is intuitive: assum-
ing that the change in the value of Gcyl in (27) is small when
αeff is varied compared to the change in the α−1 multiplying
the integral, the approximate variance decreases inversely with
increasing certainty κ2

j [8].

D. Object Support Masking

Outside the support of the object there is significant approx-
imation error because, being based on (6), our prediction
method ignores the non-negativity constraint that is often
used in solving the reconstruction problem (1). The empirical
variance outside the object approaches zero, whereas the
predicted variance is positive. We use a method similar to [23]
to identify regions that are outside the support of the object
and set the predicted variance in these regions to zero. Other
compensation methods could be incorporated [10].

IV. RESULTS

To evaluate our fast variance prediction approach (27), we
compared it to an empirical variance map in two cases. In one
case, we computed the empirical variance of reconstructions
from multiple realizations of simulations of noisy projection
data of an XCAT phantom. In the other case, we repeatedly
scanned a physical phantom and computed the empirical
variance from the reconstructions of these scans. In both cases
we used the weighted least-squares data-fit term (3).

A. Simulation Data

For the simulation study, we reconstructed a 512×512×320
voxel section of the XCAT phantom [24] with voxel size
�x × �z = 0.9764 × 0.625mm that covers an anatom-
ical section between the neck and mid-lungs. We simu-
lated a GE third-generation helical system geometry with
a 888 × 64 quarter-offset detector having detector ele-
ment size 1.0239 × 1.0964mm; the detector went through
three turns with a pitch of 1, taking 2952 views. Each recon-
struction used 80 iterations of an ordered-subset method [25]
using 64 subsets. In the regularizer, C was a matrix that takes
3 first differences for each voxel, one each for the adjacent
voxel in each axis. These differences were penalized by a
Huber potential function:

ψ(x) =
{

x2/2, |x | ≤ δ

δ|x | − δ2/2, |x | > δ,
(29)

where the value of δ was 10 Hounsfield units. We looked at
two separate cases for regularization: one with the spatially
varying regularization described in section III-C, and one
without. The regularization parameter α was set empirically
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Fig. 1. Three slices of standard deviation maps for simulated reconstructions using spatially varying regularization; the red line in (c) and (d)
indicates the profile used in (e). Scales in modified Hounsfield units (air is zero, water is 1000). In panels (a)-(d), the upper left is axial, the lower left
is coronal, and the upper right is sagittal. Subsequent figures use the same convention.

Fig. 2. Three slices of standard deviation maps for simulated reconstructions using uniform regularization; the red line in (c) and (d) indicates the
profile used in (e). Scales in modified Hounsfield units.

to 26 in the non-spatially-varying case, and to 214 in the
spatially varying case. The weighting W was normalized so
that unattenuated rays had a weight of 1. Noise was applied to
each of the simulated projections by realizing Poisson random
variables with mean equal to the expected number of photons
with a photon count incident on the phantom of 105 photons
per view. The empirical standard deviation maps were pro-
duced using 89 realizations of the reconstruction in the case
of non-spatially-varying regularization and 111 realizations in
the case of spatially varying regularization. Figures 1(a) (with

spatially varying regularization) and 2(a) (uniform regulariza-
tion) show axial, sagittal, and coronal slices of the 3D map
of the empirical standard deviation from our reconstructions.
Since the empirical standard deviation maps were noisy and
the ground truth standard deviation is spatially slowly varying,
we smoothed the empirical variance maps with a gaussian
kernel with a FWHM of 3 voxels each in each direction.
(Figure 7, in the supplementary material, shows a profile of the
unsmoothed standard deviation.) Figures 1(b) and 2(b) show
the corresponding slices through the 3D predicted standard
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TABLE I
COMPUTATION TIME OF VARIANCE PREDICTION METHODS

(CPU SECONDS); BOTH CASES USED THE SPATIALLY

VARYING REGULARIZATION IN SECT. III-C.

deviation map from (27). Since standard deviation varies
slowly, we computed it once per 4 × 4 × 4 block and
used nearest-neighbor interpolation to fill in the rest. More
sophisticated interpolation could be used, but the interpolation
error is minimal compared to the intrinsic approximation error
of our method. Figure 1(c) and Figure 2(c) show the ground
truth XCAT phantom we used. Figure 1(d) and Figure 2(d)
show the absolute magnitude of the error of our approximated
standard deviation compared to the empirical results. The
gray scale in these figures is transformed to better show the
dynamic range of the error. Figure 1 (e) and Figure 2(e) show
the empirical and predicted standard deviation along a one-
dimensional trans-axial profile through the image, behind the
center of the spine in the phantom, along with the standard
deviation as computed directly from (22) using (17) as the
LFR (labeled ’DFT-based’). Along this profile, dotted red lines
indicate where there is an edge within one voxel. Sections near
the ends of the axial FOV were omitted in all images; the
empirical variance becomes extreme due to a suboptimal OS
algorithm implementation that is somewhat unstable in regions
where the helical sampling is poor. The OS algorithm in [26]
would reduce this instability and reduce the empirical variance
in the (clinically unimportant) end slices.

The computation time of our method for the entire volume
using 4 × 4 × 4 downsampling was 1207 CPU-seconds using
one core of an Intel Core i7–860 with 16 GB of memory.
The empirical reconstructions took an average of 1.71 CPU-
days each using one core of an Intel X5650 processor also
with 16GB of memory. Table I compares the computation time
required to find the empirical variance (using 111 realizations)
with the computation time required to predict the variance for
the entire volume using the DFT-based method and our meth-
ods. We used the DFT-based method only to produce the one-
dimensional profiles shown in Figure 1(e) and Figure 2 (e);
since the computation time is large, we extrapolate to find the
computation time for the entire volume for Table I.

B. Real CT Scans of a Thorax Phantom

For our real-world dataset, we scanned a phantom 10 times
with a GE Discovery CT750 HD scanner and reconstructed
each of the 10 sinograms separately and produced an empirical
variance map of the reconstruction. The phantom was a custom
modified CIRS (Norfolk, VA) Model 003 lung nodule simu-
lator phantom for quantitative CT [27], [28]. The geometry
of the system is the same as the simulated geometry used
in the previous section, with the exception of performing an
axial scan using a 16-row detector and 984 views. Since we

could not ensure that each scan began at the same starting
angle, using multiple realizations of the same helical scan
to produce an empirical variance map was not possible with
our physical CT scanner. For reconstructing the axial scans,
we used a projection matrix A that was correctly aligned to
the starting angle of each scan so that each reconstruction
was aligned to the same voxel grid. We used two different
tube currents (40mA, 200mA) for a low-dose and a high-
dose scan, and in all cases the tube voltage was 120 kVp and
the scan time was 0.5 seconds. We reconstructed each of the
10 sinograms using statistical reconstruction methods. The size
of the reconstruction was 512×512×32 voxels with voxel size
�x ×�z = 0.9764 × 0.625mm, as in the simulated phantom
reconstructions. Each reconstruction used 100 iterations of an
ordered-subset method [25] using 64 subsets. We performed
the reconstructions using two different regularizers. In the
first case, the regularization used a quadratic penalty and
was spatially varying using the method of Section III-C.
Figure 3(c) shows three slices of a sample reconstruction using
these parameters. In the second case, the penalty function used
the Huber potential (29) with a threshold δ of 10 Hounsfield
units and was not spatially varying. Figure 4(c) shows three
slices of a sample reconstruction using these parameters.
In the quadratic-penalty case, the regularization parameter α
was 2−14; in the Huber-penalty case, α = 228. In both cases,
the elements of the weighting matrix W corresponded to the
CT scanner’s estimate of the inverse of the variance of each ray
given the scanner-specific corrections used [29]. Given that we
have several repeated scans of the same object, we computed
the empirical variance of the observations y from this data.
Using this empirical observation variance for the purposes of
evaluating variance prediction would be unrealistic, since in a
clinical setting we do not have this data. When using elements
of the matrix Ŵ for variance prediction, we estimate the
observation variance from the inverse of the scanner-provided
weight.

Figures 3(a) (with spatially varying, quadratic regulariza-
tion) and 4(a) (uniform, Huber-penalized regularization) show
axial, sagittal, and coronal slices of the 3D map of the empir-
ical standard deviation from our real reconstructions. As in
the simulated empirical standard deviation maps, the empirical
maps were noisy, so we smoothed the empirical variance
maps with a 2D gaussian kernel with a FWHM of 5 voxels
each in each direction. (Noisy, unsmoothed maps are shown
in the supplemental material.) Figures 3(b) and 4(b) show
the corresponding slices through the 3D predicted standard
deviation map from (27). We computed the standard deviation
once per 4×4×1 block and used nearest-neighbor interpolation
to fill in the rest. Figures 3(d) and 4(d) show the absolute
magnitude of the error of our approximated standard deviation
compared to the empirical results. Figures 3(e) and 4(e) show
the empirical and predicted standard deviation along a one-
dimensional coronal profile through the center of the image,
along with the standard deviation as computed from (22) using
a DFT variant of (17) as the LFR (labeled ’DFT-based’).

Table I compares the computation time required to find
the empirical variance, in both the simulation study and
the real-world study, with the computation time required to
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Fig. 3. Three slices of standard deviation maps for real reconstructions using spatially varying, quadratic regularization (Hounsfield units). Coronal
and sagittal slices were stretched in the trans-axial direction by a factor of two for visualization. In (c), the scale is modified HU. In (e), the thin black
line indicates empirical SD; the blue line indicates the DFT-based prediction; the thick black line indicates our predicted SD.

Fig. 4. Three slices of standard deviation maps for real reconstructions using spatially uniform, Huber-penalized regularization (Hounsfield units).
Coronal and sagittal slices were stretched in the trans-axial direction by a factor of two for visualization. In (c), the scale is modified HU. In (e), the
thin black line indicates empirical SD; the blue line indicates the DFT-based prediction; the thick black line indicates our predicted SD. Dashed red
lines indicate locations of edges between voxels larger than 10 HU.

predict the variance for the entire volume using the DFT-
based method and our methods. We used the DFT-based
method only to produce the one-dimensional profiles shown

in Figures 1(e), 2(e), 3(e), and 4(e); since the computation
time is large, we extrapolate to find the computation time for
the entire volume for Table I.
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Fig. 5. Cumulative distribution of error of predicted standard devia-
tion versus empirical standard deviation for simulated reconstructions
in Figs. 1–Figs 2.

V. DISCUSSION

The presented methods are able to predict the standard
deviation of most voxels in the simulated reconstructed images
within an error of one Hounsfield unit in both the spatially
varying regularization case (about 85% within 1HU) and the
uniform regularization case (about 95% within 1HU) in less
time than empirical measurement by a factor of over 104.
Figure 5 shows, for the entire CT volume, the percentage of the
image that had an error within a specified bound in both the
spatially varying and uniform regularization cases. Whether
the tradeoff for time at the expense of accuracy provided by
our method is acceptable depends on the application.

Figure 3 shows very good qualitative agreement between
empirical and predicted standard deviation, even away from
the plane of X-ray source rotation, until the furthest end slices
of the reconstruction, which have insufficient data coverage
and would not be presented clinically. Inside the phantom,
the region with the highest error is the center-most section.
Curiously, the DFT-based method has trouble with this region
as well, although not as much as our prediction. The reason
for this discrepancy is unknown. One possibility is that the
OS algorithm had not converged completely. Figure 4 shows
good qualitative agreement between the empirical and pre-
dicted standard deviation, except near edges. Except near
the edges, the standard deviation is nearly constant in both
the empirical and predicted reconstructions. The predicted
standard deviation has a slight variation in the profile that we
can see that seems like it follows a ground-truth slight variation
that exists away from edges. The prediction slightly over-
estimates variance in Figure 3 and underestimates Figure 4;
we are not sure what causes this discrepancy. It is possible
that this is a function of the regularization parameter α
(which is much higher in the Huber case, to compensate
for the edge-preserving effect), and that for an α somewhere
between these two cases the bias crosses zero. The com-
parisons in Figures 1(e), 2(e), 3(e), and 4(e) demonstrate that
the majority of the error incurred by our methods occurs
in the assumptions of quadratic-like regularization and local
shift-invariance that ultimately lead to (22), rather than our
approximations that transform (22) into the more computa-
tionally tractable (27). There is very little difference between
the fast prediction and DFT-based prediction in the profile
in Figure 4(e). This is reasonable considering that the error in
the approximation (23) is highest when the magnitude of the

frequency, ||�ν||, is large, but in these regions the regularization
tends to be strongest, suppressing the error in the resulting
approximate local NPS.

Since we approximate the regularizer as being locally
quadratic, it is not surprising that the main locations of error
within the support of the object are near edges. This effect
of edges on noise properties has also been seen for 2D fan-
beam CT in [30], which postulates that the source of the
high variance near edges is the uncertainty of edge position.
Accurate variance prediction near edges might require a priori
knowledge of edge location. We have investigated small cone
angle geometries that allow us to approximate variance using
the single-integral form (27). For a wider range of CT geome-
tries, such as C-arm CT, where we cannot make a small cone
angle approximation, we could instead use (24), although this
double-integral form would afford less acceleration than the
single-integral form.

In these geometries, more careful attention must also be
paid to B, defined in (50) (in supplementary material), which
represents the set of source positions such that a ray from
the source through a voxel of interest is perpendicular to a
particular frequency. For our specific geometries, (69) is an
approximate closed form for (50). For more general geome-
tries, it may be necessary to find B numerically or to find
another approximation specific to the geometry.

VI. CONCLUSIONS AND FUTURE WORK

We presented a method for approximating the variance of
each voxel of a statistically reconstructed 3DCT image with
quadratic regularization. This method has a computational cost
that is smaller by several orders of magnitude compared to
existing variance prediction methods for helical CT, while
maintaining a reasonable error within regions of interest away
from image edges. Generalizing the methods for nonquadratic
regularizers is a challenging open problem [31]. There are
a few opportunities for further acceleration. When using a
spatially varying regularizer, the change in variance as a
function of space is often more due to the change in the
effective regularization parameter than a change in weighting
or location parameters. It may be possible, then, to evaluate
the integral in (27) on a coarser grid and then interpolate to all
image voxels, with the factor of αeff multiplying the integral
producing much of the spatial variation. We also have not
performed a complete analysis of strategies to numerically
evaluate the integral in (27), although pilot tests have sug-
gested that as few as 24 values of � suffices.

We are also investigating using our approximate factor-
ization (23) of the LFR in other applications that could
benefit from the acceleration it can provide. For example,
the performance of an algorithmic observer for detecting the
presence of a feature can be approximately expressed in the
frequency domain [32, Ch. V]. With a fast prediction for this
performance, enabled by the factorization, we could poten-
tially optimize automatic tube current modulation methods
for a particular feature-detection task, e.g., for low-contrast
features in locally smooth backgrounds where the quadratic
regularizer approximation is reasonable.
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Iteratively Reconstructed CT Images

with Locally Quadratic Regularization:
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This supplementary material for [1] provides further details
(in sections VII-A through VII-E) of the derivation of our
factored approximation for the local frequency response of
CT projection, weighting, and back-projection. Section VII-F
derives further approximations for CT geometries with small
cone angles.

VII. APPENDIX: LFR DERIVATION

A. The ray and projection transforms

We begin by examining one element of hWj , the LIR of
ATWA applied to voxel j. Writing the matrix multiplication
that defines this element as a sum over views i gives:

[
hWj
]
k

=
[
ATWA

]
kj

=
∑

i

[A]ik [W]ii [A]ij . (30)

To specify the projection matrix A, we first use the defini-
tion of a ray transform operator R that transforms a function
f into line integrals through it:

(Rf)(~x, θ̂) ,
∫

R
f(~x+ τ θ̂) dτ, (31)

where ~x is a point on a ray and θ̂ is a unit vector representing
a ray direction. We define our projection matrix as a sampling
of a projection operator P that is simply a rebinning of R:

(Pf)(~s, σ) , (Rf)(~x(~s, σ), θ̂(~s, σ)); (32)

this continuous-domain projection Pf is defined over the (n−
1)-dimensional detector position ~s and 1-dimensional source
position σ. The function ~x(~s, σ) maps a source position and
detector position pair to a point on the ray that connects the
pair. The function θ̂(~s, σ) maps these positions to a unit vector
that lies along the ray direction. We will also use ~s(~x, σ) to
represent the detector coordinate corresponding to the ray that
passes through the source at position σ and the spatial position
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~x. These functions are defined by the geometry of the CT
system under consideration, and are assumed to be known.

With this definition for P , we approximate the elements of
A as discretized samples of the continuous projection:

[A]ik ≈ (PRk)(~si, σi), (33)

that is, the ith observation of a Kronecker impulse at voxel k
is approximately the projection of the kth basis voxel, Rk(~x),
sampled at one detector position ~si with the source at one
position σi. The approximation (33) for one element of the
projection matrix differs from the A matrix typically used
in implementing the reconstruction (1) in two ways. First,
the approximation treats the projection as being measured at
exactly one point, neglecting detector blur. Second, (33) is
defined to be an exact projection at this particular location,
whereas an implemented system matrix A (e.g. [2]) will use
approximations to the integral through a basis function.

In the same way that we replace A with a samples of a
continuous function, we define w(~s, σ) to denote a continuous
(i.e., interpolated) version of the elements of the weighting ma-
trix W. The actual method used for interpolation is relatively
unimportant, but we assume that w is a function such that
w(~si, σi) = [W]ii. With these continuous analogs for A and
W, we rewrite the LIR sum (30) as:
[
hWj
]
k

=
∑

i

(PRj)(~si, σi) (PRk)(~si, σi)w(~si, σi). (34)

For typical clinical CT scans (but not for sparse view acquisi-
tions), this sum is usually sufficiently finely sampled that we
can approximate it with an integral over ~s and σ:
[
hWj
]
k
≈
∫

Σ

∫

Rn−1

(PRj)(~s, σ) (PRk)(~s, σ)u(~s, σ) d~sdσ.

(35)
Here, Σ represents a continuous approximation to the do-
main of σ for which we collect observations; for all the
system geometries we have examined this is a single interval
[σmin, σmax], but for applications such as gated CT this may
be the union of multiple intervals. The term u in (35) is the
product of w with a Jacobian term representing the “size” of
a sample in the sum (34). In the usual case where the detector
pixels have a constant area ∆~s and the spacing (in radians)
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between source positions is a constant ∆σ , then

u(~s, σ) , w(~s, σ)

∆~s∆σ
. (36)

However, for geometries where the spacing is nonuniform, u
will not simply be a scaling of w. The approximation (35)
also includes expanding the domain of detector positions ~s
to Rn−1; to compensate for this we consider the weighting
w(~s, σ), and hence u(~s, σ), to be zero in the regions where
we have no observations.

B. Linearization of projection transform
If we fix a spatial position ~xj and source position σ, this

also fixes a detector location ~sj,σ , ~s(~xj , σ) and ray direction
θ̂j,σ , θ̂(~sj,σ, σ), such that (Rf)(~xj , θ̂j,σ) = (Pf)(~sj,σ, σ).
The coordinate mappings between P andR are usually regular
enough that a first-order Taylor expansion is quite accurate for
small perturbations ∆~x:

(Rf)(~xj + ∆~x, θ̂j,σ) ≈ (Pf)(~sj,σ + Bj,σ∆~x, σ), (37)

where
Bj,σ , ∇~x~s(~x, σ∗)|~x=~xj ,σ∗=σ

(38)

is a (n− 1)×n matrix that “linearizes” the system geometry,
locally to ~xj and σ, to a parallel-beam, flat-panel geometry.
(Adding further Taylor expansion terms to this linearization
makes further derivation considerably more complicated, and
for the geometries we have considered, just one term has
adequate accuracy.) We can also reverse (37) to find a spatial
shift that corresponds to a particular detector position shift:

(Rf)(~xj + B+
j,σ∆~s, θ̂j,σ) ≈ (Pf)(~sj,σ + Bj,σB

+
j,σ∆~s, σ)

= (Pf)(~sj,σ + ∆~s, σ), (39)

where B+
j,σ is the n× (n− 1) pseudo-inverse of Bj,σ .

We will also need the QR factorization of Bj,σ:

Bj,σ = Rj,σQj,σ, (40)

where Rj,σ is a (n − 1) × (n − 1) matrix and Qj,σ is a
(n−1)×n matrix with orthonormal rows; each of these rows
is also orthogonal to θ̂j,σ .

C. Towards local shift invariance
We define a footprint correlation function as:

ckj,σ ,
∫

Rn−1

(PRj)(~s, σ) (PRk)(~s, σ) d~s (41)

i.e., the integral over the detector plane of the product of the
continuous projections of the voxel basis functions Rj and Rk
for a specific source position σ, and related weighting factors:

ŭkj,σ ,
∫
Rn−1(PRj)(~s, σ) (PRk)(~s, σ)u(~s, σ) d~s∫

Rn−1(PRj)(~s, σ) (PRk)(~s, σ) d~s
, (42)

so that the approximation to the LIR in (35) becomes
[
hWj
]
k
≈
∫

Σ

ckj,σŭkj,σ dσ. (43)

Next we simplify each term in the integrand using approxi-
mations that remove most of their dependence on k.

1) Simplifying cjk,σ: We make the usual assumption that
the basis functions for voxels k and j have the same shape,
and differ only by translation, i.e.,

Rk(~x) = Rj(~x− (~xk − ~xj)).
Given this spatial relationship, their ray transforms are related
by translation:

(RRk)(~x, θ̂) =

∫
Rk(~x+ τ θ̂) dτ

=

∫
Rj(~x+ τ θ̂ − (~xk − ~xj)) dτ

= (RRj)(~x− (~xk − ~xj), θ̂). (44)

Using the Taylor expansion in (37), the projection footprint
of nearby voxels are approximately related by the following
translation:

(PRk)(~s, σ) ≈ (PRj)(~s−Bj,σ(~xk − ~xj), σ); (45)

that is, for a fixed σ, the projection of voxel k can be
approximated as a shift of the projection of voxel j, so long
as ~xk is sufficiently close to ~xj . Using (45), we rewrite the
footprint correlation ckj,σ as the autocorrelation of just the
projection of the jth voxel:

ckj,σ ,
∫

Rn−1

(PRj)(~s, σ)(PRk)(~s, σ) d~s

≈
∫

Rn−1

(PRj)(~s, σ)(PRj)(~s−Bj,σ(~xk − ~xj), σ) d~s

= (APRj)(Bj,σ(~xk − ~xj), σ) (46)

, c̃kj,σ, (47)

where A denotes an autocorrelation operator:

(Af)(~x) ,
∫
f(~t)f(~x+ ~t) d~t.

That is, this correlation between the projections of voxels j
and k is approximately a function of the autocorrelation of the
projection of just voxel j, and the dependence on k is only
via its location relative to j.

2) Simplifying ŭkj,σ: For a given source position σ, the
expression for ŭ in (42) is the integral over the detector of
the product of the continuous projections of Rj and Rk with
the weighting function u, normalized by the integral of just
the projections of Rj and Rk. The projections of each of Rj
and Rk have a small support, and so does their product; we
can therefore approximate the effect of (42) as a sifting that
selects one value of u much like a Dirac impulse. We assume
that u in (42) varies slowly with respect to ~s, which is often
true for typical choices of W. The peak of PRj is located
near ~s(~xj , σ), the detector location that corresponds to a ray
originating at the detector at position σ and passing through
the center of the jth voxel location, ~xj . For any other voxel k,
if the integrand of (34) is non-zero, the peak of the projection
of k must overlap the projection of j, meaning it is close
enough to the peak of the projection of k that we can make
the approximation:

ŭkj,σ ≈ ũj,σ , u(~s(~xj , σ), σ). (48)
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We compute ũ by looking up the value of w for the detector
element closest to ~s(~xj , σ) and using (36). With approxima-
tions (46) and (48), the LIR in (43) becomes:

[
hWj
]
k
≈
∫
ũj,σ (APRj)(Bj,σ(~xk − ~xj), σ) dσ. (49)

This is our final “space domain” approximation to the orig-
inal LIR expression in (30). In short, this LIR expression uses
the autocorrelation of the footprints of the voxel evaluated at
projection view coordinates that account for the magnification
through the jth voxel and integrated over all X-ray source
positions. Next we move to the frequency domain to find the
corresponding local frequency response.

D. Local frequency response (LFR) of ATWA

We use the form (49) for the LIR
[
hWj
]
k

to find a corre-
sponding LFR, in (51) through (55) (at the end of this section),
using (17). In (51), we take (17) and insert the approximation
(49) for hWj . In (52), we interchange the sum over voxels k and
the integral over source position σ, and move the ũj,σ term out
of the sum, as it does not depend on k. In (53), we approximate
the sum over k with an integral. This replacement assumes
that, first, the summand term is slowly varying enough that
we can make an integral approximation, and second, that the
summand decays rapidly enough beyond a region of interest
that we can replace it with an integral not just over the image
support, but over Rn. This integral is the continuous Fourier
transform of the footprint (APRj)(Bj,σV~n) over ~n in Rn.

In (54), we replace this inner integral in (53). The integral
represents the continuous n-dimensional Fourier transform of
an (n − 1)-dimensional function, so we must be careful. We
use the derivation found in section VII-G in the Appendix,
where (73) is the inner integral in (53). Here, X = Bj,σV,
f = APRj , and ~x = θ̂j,σ . The resulting replacement in
(54) corresponds to the expression in (74). To complete the
transition to (54), we note that

det

([
Bj,σ

θ̂T
j,σ

])
= det(Rj,σ),

using the Rj,σ from the QR factorization (40).

Finally, in (55), we use the Dirac impulse in (54) to sift
out only a finite number of σ values in the integral such that
θ̂T
j,σV

−T~ν = 0. We define this set to be Bj
(

~ν
||~ν||

)
, as follows:

Bj
(

~ν

||~ν||

)
,
{
σ : θ̂T

j,σV
−T~ν = 0

}
. (50)

Note that Bj depends on spatial frequency variable ~ν only via
its direction, ~ν/||~ν||, and not its magnitude.

HW
j (~ν) = D

{
exp
(
2π~νT~nj

)}
FhWj

= exp
(
2π~νT~nj

)∑

k

[
hWj
]
k

exp
(
−2π~νT~nk

)

≈
∑

k

(∫
ũj,σ (APRj)(Bj,σ(~xk − ~xj), σ) dσ

)
·

exp
(
−2π~νT(~nk − ~nj)

)
(51)

=

∫
ũj,σ

[∑

k

(APRj)(Bj,σV(~nk − ~nj)) ·

exp
(
−2π~νT(~nk − ~nj)

)]
dσ (52)

≈
∫
ũj,σ

[∫
(APRj)(Bj,σV(~n− ~nj)) ·

exp
(
−2π~νT(~n− ~nj)

)
d~n
]

dσ (53)

=

∫
ũj,σ

det(V) det(Rj,σ)
(Fn−1APRj)(B+T

j,σV
−T~ν)·

δ(θ̂T
j,σV

−T~ν) dσ (54)

=
∑

σ∈Bj( ~ν
||~ν|| )

ũj,σ (Fn−1APRj)(B+T
j,σV

−T~ν)

det(V) det(Rj,σ)
(
∂
∂σ θ̂

T
j,σV

−T~ν
) (55)

E. Final LFR Approximation

We further simplify the LFR (55) by approximating
Fn−1APRj . We use the Fourier identity for autocorrelation:

(FnAx)(~ν) = |(Fnx)(~ν)|2 ,
and a Taylor-expansion-based approximation for Fn−1PRj :

(Fn−1PRj)(~u;σ)

exp(2π~uT~sj,σ)

=

∫

Rn−1

(PRj)(~sj,σ + ∆~s;σ) exp(−2π~uT∆~s) d∆~s (56)

≈
∫

Rn−1

(RRj)(~xj + B+
j,σ∆~s, θ̂j,σ) exp

(
−2π~uT∆~s

)
d∆~s

=

∫

Rn−1

∫

R
Rj(~xj + B+

j,σ∆~s+ τ θ̂j,σ)·

exp
(
−2π~uT∆~s

)
dτ d∆~s (57)

=

∫

Rn
Rj(~xj + B̃−1

j,σ ~w) exp
(
−2π~uTSn−1 ~w

)
d~w (58)

In (57), in the argument to Rj , θ̂j,σ is perpendicular to each
column of B+

j,σ , and so together B+
j,σ∆~s+ τ θ̂j,σ spans all of

Rn; by defining

~w ,
[

∆~s
τ

]
, B̃j,σ ,

[
Bj,σ

θ̂j,σ

]
,

and Sn−1 to be the first n−1 rows of the n×n identity matrix,
we can combine everything into an n-dimensional integral
(58) over Rn. By defining ~z , ~xj + B̃−1

j,σ ~w and changing
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the variable of integration in (58) to ~z, we find that:
∫

Rn
Rj(~xj + B̃−1

j,σ ~w) exp
(
−2π~uTSn−1 ~w

)

= det(B̃j,σ) exp
(
2π~uTBj,σ~xj

)
·∫

Rj(~z) exp(−2π~uT Sn−1B̃j,σ︸ ︷︷ ︸
=Bj,σ

~z) d~z

= det(B̃j,σ) exp
(
2π~uTBj,σ~xj

)
(FnRj)(BT

j,σ~u). (59)

By taking the absolute value of our approximation (59):
∣∣(Fn−1PRj)(~u;σ)

∣∣2 ≈ det(Rj,σ)2
∣∣(FnRj)(BT

j,σ~u)
∣∣2 ,

(60)

using the fact that det(B̃j,σ) = det(Rj,σ).

The approximation (60) simplifies (55) to the following LFR
expression:

HW
j (~ν) ≈

∣∣(FnRj)(V−T~ν)
∣∣2

det(V)

∑

σ∈Bj( ~ν
||~ν|| )

ũj,σ det(Rj,σ)(
∂
∂σ θ̂

T
j,σV

−T~ν
)

=

∣∣(FnRj)(V−T~ν)
∣∣2

det(V) ||~ν||
∑

σ∈Bj( ~ν
||~ν|| )

ũj,σ det(Rj,σ)(
∂
∂σ θ̂

T
j,σV

−T ~ν
||~ν||

)

= J(~ν)EWj

(
~ν

||~ν||

)
, (61)

where we define the terms:

J(~ν) ,
∣∣(FnRj)(V−T~ν)

∣∣2

det(V)2 ||~ν|| (62)

EWj

(
~ν

||~ν||

)
,

∑

σ∈Bj( ~ν
||~ν|| )

ũj,σ det(Rj,σ) det(V)(
∂
∂σ θ̂

T
j,σV

−T ~ν
||~ν||

) . (63)

We simplify J(~ν) by assuming that each Rj is equal to a
basis unit voxel Rbasis (for example, a unit cube) scaled by
the voxel spacing V and shifted by ~xj , that is,

Rj(~x) = Rbasis(V
−1(~x− ~xj)).

In this case, J becomes:

J(~ν) =
|(FnRbasis)(~ν)|2

||~ν|| . (64)

In particular, for the usual choice of a unit cube basis, (64)
further simplifies to the following final expression:

J(~ν) =
sinc2(ν1) sinc2(ν2) sinc2(ν3)

||~ν|| . (65)

Importantly, in the factorization of (61), J is independent
of voxel j, the weighting (via u), or even the specific CT
geometry used. The EWj term depends on all of these factors,
but depends only on the frequency via its direction, not its
magnitude. This factorization is key to computational effi-
ciency. To use (63), one must consider the CT geometry of
interest, as shown in Section III-B.

F. Application to 3DCT with small cone angle

In this section, we derive a further approximation to (61)
specific to 3DCT geometries with small cone angles.

In a third-generation helical CT system, the source position
~ps as a function of the source angle σ is given by

~ps(σ) =



−Dso cosσ
−Dso sinσ

p3σ


 ,

where Dso is the source-isocenter distance, Dsd is the source-
detector distance, and p3 is the helical pitch, in units of length
per radian; axial CT is a special case where p3 = 0. We
denote the position of the center of voxel j in Cartesian and
cylindrical coordinates as

~xj =




xj,1
xj,2
xj,3


 =




rj cosφj
rj sinφj
xj,3


 .

The ray from the source at σ to the position ~xj is denoted

~̀
j,σ = ~xj − ~ps(σ). (66)

The first coordinate of the detector position s1(~x;σ) is given
by s1(~xj ;σ) = Dsd atan2(`2,j,σ, `1,j,σ) − σ. The second
coordinate is given by

s2(~xj ;σ) =
Dsd

D2,j,σ
`3,j,σ,

where
D2,j,σ , ||diag(1, 1, 0) ~̀j,σ|| (67)

denotes the length of the projection of ~̀j,σ into the xy-plane.
From these coordinates, we find the matrix Bj,σ , defined in
(38), for this geometry:

Bj,σ = Dsd


 − `2,j,σ

D2
2,j,σ

`1,j,σ
D2

2,j,σ
0

− `1,j,σ`3,j,σ
D3

2,j,σ
− `2,j,σ`3,j,σ

D3
2,j,σ

1
D2,j,σ


 ,

which has a QR-type factorization

Bj,σ = Rj,σQj,σ

Rj,σ =

[
Dsd/D2,j,σ 0

0 Dsd||~̀σ||/D2
2,j,σ

]

QT
j,σ =



−`2,σ/D2,j,σ −`1,σ`3,σ/||~̀σ||D2,j,σ

`1,σ/D2,j,σ −`2,σ`3,σ/||~̀σ||D2,j,σ

0 D2,j,σ/||~̀σ||




For 3D CT, we use (Φ,Θ) to denote the angular coordinates
of 3D spherical spatial frequencies, such that

~ν

||~ν|| = ~Θ =




cos Θ cos Φ
cos Θ sin Φ

sin Θ


 .

If the voxel spacing is equal to the common choice of V =
diag(∆x,∆x,∆z), the argument to the Dirac impulse in (54)
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is equal to

θ̂T
j,σV

−T~Θ =
1

||~̀j,σ||

(
cos Θ

∆x
(r cos(Φ− φ)+

Dso cos(Φ− σ)) +
sin Θ

∆z
(x3 − p3σ)

)
. (68)

For typical clinical 3DCT system geometries, the majority of
the noise power in LFR approximations to Sj(~ν) is located
in regions of spatial frequency with relatively small Θ. Since
we are particularly interested in the region where Θ is small,
and since (x3 − p3σ) is often small, we make the following
approximation to (68):

θ̂T
j,σV

−T~Θ ≈ cos Θ

∆x||~̀j,σ||
(rj cos(Φ− φj) +Dso cos(Φ− σ)),

so that Bj(~Θ), defined in (50) as the set of σ for which
θ̂T
j,σV

−T~Θ = 0, can be approximated as

Bj(~Θ) ≈ Φ± cos−1(−rj(Φ− φj)/Dso). (69)

This approximation is useful because (68) has no closed-
form solution for Bj(~Θ). It also allows us to approximate
EWj (Φ,Θ) cos Θ ≈ EWj (Φ, 0). This facilitates using a 1D
integral instead of a 2D integral for variance prediction.
Defining:

Jcyl(~ν) , J(~ν) sec Θ (70)

EWj,cyl(Φ) , EW (Φ, 0) ≈ EWj (Φ,Θ) cos Θ,

leads to the following approximation to the LFR in (61):

HW
j (~ν) ≈ J(~ν)EWj (Φ,Θ) ≈ Jcyl(~ν)EWj,cyl(Φ). (71)

With this geometry, the expression EWj,cyl(Φ) simplifies to

EWj,cyl(Φ) ≈ D2
sd∆3

x∆z

Dso

∑

σ∈Bj(Φ)

ũj,σ
||~̀j,σ||2
D3

2,j,σ

| csc(Φ− σ)|.

(72)
This approximation is reasonably accurate until |Θ| ap-
proaches π/2 minus the largest cone angle used in the CT
system. For the purposes of variance prediction, the inaccuracy
of the LFR in large-Θ regions has a negligible effect, since
for small cone angle systems, this inaccurate region is a very
small fraction of the entire frequency space that is integrated
in (24).

Figure 6 shows estimates of the local projection-weight-
backprojection frequency responses HW

j and the correspond-
ing approximate noise power spectra Sj for a weighting
matrix W corresponding to an XCAT chest phantom [3].
Three cases are shown: the actual LFR found from (17),
the spherically-separable approximation (61) for general CT
geometries, and the cylindrically-separable approximation (71)
specific to small cone-angle 3DCT. Comparing the first row of
this figure to the second row, the approximate local frequency
response in (61) closely matches the overall appearance of
the DFT-based frequency response except for large-Θ regions.
These are of less importance to approximating the noise power
spectrum, as can be seen in the figures comparing them.
Furthermore, comparing the third row, the result of (71) also

matches the DFT LFR except for large Θ, but again this error
has a diminished effect on the NPS.

G. Fourier Transform of a Projected Function

Let X be an (n − 1) × n matrix, ~x be a unit vector
perpendicular to the rows of X, and X̃ be the n×n extension
of X made by appending ~x to the bottom:

X̃ =

[
X

~xT

]
.

The function f̃ , a function of an n-dimensional vector, is an
extension of f , a function of an (n − 1)-dimensional vector,
that simply evaluates f using the first (n− 1) components of
its argument. We can see from these definitions that f̃(X̃~n) =
f(X~n) 1(~xT~n) = f(X~n), where 1(·) is a constant function
evaluating to one.

With these definitions, the n-dimensional Fourier transform
of f(X~n) is given by:

∫
f(X~n) exp(−j2π~νT~n) d~n (73)

=

∫
f(X~n)1(~xT~n) exp(−j2π~νT~n) d~n

=

∫
f̃(X̃~n) exp(−j2π~νT~n) d~n

= det(X̃)−1

∫
f̃(~m) exp(−j2π~νTX̃−1 ~m) d~m

= det(X̃)−1(Fnf̃)(X̃−T~ν)

= det(X̃)−1(Fn−1f)(X+T~ν)(F11)(~xT~ν), (74)

where X+T is the transpose of the pseudo-inverse of X. The
last line above uses a separation property of the FT; separate
the identity matrix into an arbitrary top half and bottom half:

In =

[
St
Sb

]

where St is an k × n matrix that keeps the first k elements
and discards the rest and Sb is an (n − k) × n matrix that
discards the first k. Then, if h(~x) = f(St~x) · g(Sb~x),

(Fnh)(~ν) = (Fkf)(St~ν) · (Fn−kg)(Sb~ν).

In this case, k = n − 1, h = f̃ , and g = 1, a 1D function
trivially equal to 1 everywhere. We also use the fact that

X̃−T =

[
X+

~xT

]
.

As for the determinant, if we take a QR factorization X =
RQ, where R is a (n−1)×(n−1) matrix and Q is (n−1)×n
with orthonormal rows, then det(X̃) = det(R).
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Fig. 7: Unsmoothed standard deviation profiles corresponding to simulation in Figure 1(e) (top, a) and real phantom data in
Figure 3(e) (bottom, b). Red points indicate the sample standard deviation for each voxel. Black points indicate the 2.5% and
97.5% quantiles of the distribution of the sample standard deviation, assuming the sample standard deviation is the ground
truth and sample realizations are Gaussian. The solid blue line is our proposed standard deviation prediction.


