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Optimizing MR Scan Design for Model-Based
T1, T2 Estimation From Steady-State Sequences
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Abstract— Rapid, reliable quantification of MR relaxation
parameters T1 and T2 is desirable for many clinical appli-
cations. Steady-state sequences such as Spoiled Gradient-
Recalled Echo (SPGR) and Dual-Echo Steady-State (DESS)
are fast and well-suited for relaxometry because the signals
they produce are quite sensitive to T1 and T2 variation.
However, T1, T2 estimation with these sequences typically
requires multiple scans with varied sets of acquisition
parameters. This paper describes a systematic framework
for selecting scan types (e.g., combinations of SPGR and
DESS scans) and optimizing their respective parameters
(e.g., flip angles and repetition times). The method is
based on a Cramér-Rao Bound (CRB)-inspired min-max
optimization that finds scan parameter combinations that
robustly enable precise object parameter estimation. We
apply this technique to optimize combinations of SPGR
and DESS scans for T1, T2 relaxometry in white matter
(WM) and grey matter (GM) regions of the human brain at
3T field strength. Phantom accuracy experiments show
that SPGR/DESS scan combinations are in excellent
agreement with reference measurements. Phantom
precision experiments show that trends in T1, T2 pooled
sample standard deviations reflect CRB-based predictions.
In vivo experiments show that in WM and GM, T1 and T2
estimates from a pair of optimized DESS scans exhibit
precision (but not necessarily accuracy) comparable to that
of optimized combinations of SPGR and DESS scans. To our
knowledge, T1 maps from DESS acquisitions alone are new.
This example application illustrates that scan optimization
may help reveal new parameter mapping techniques from
combinations of established pulse sequences.

Index Terms— T1, T2 relaxometry, optimal experimental
design, Cramér-Rao bound, magnetic resonance imaging.

I. INTRODUCTION

FAST, accurate quantification of spin-lattice and spin-spin
relaxation parameters T1 and T2 has been of longstanding

interest in MRI. Many researchers have suggested that T1, T2
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maps may serve as biomarkers for monitoring the progression
of various disorders [1]. Neurological applications include:
lesion classification in multiple sclerosis [2]; tumor characteri-
zation [3], [4]; and symptom onset prediction in stroke [5], [6].
In addition, T1, T2 have shown promise for detecting hip and
knee cartilage degeneration [7], [8] and for assessing cardiac
dysfunction due to iron overload [9] or edema [10]. Motivated
by this broad interest in T1, T2 mapping, this paper describes
a systematic method to guide MR scan design.

Classical pulse sequences such as inversion/saturation
recovery (IR/SR) or (single) spin echo (SE) yield relatively
simple methods for T1 or T2 estimation, respectively; however,
these methods require several scans, each with long repetition
time TR, leading to undesirably long acquisitions. Numerous
modifications such as the Look-Locker method [11], multi-
SE trains [12], or fast k-space trajectories [13]–[15] have
been proposed to accelerate T1 [16]–[19] and T2 [20]–[23]
relaxometry with these classical sequences. These techniques
are more sensitive to model non-idealities [24]–[26], and are
still speed-limited by the long TR required for (near)-complete
T1 recovery.

Steady-state (SS) pulse sequences [27], [28] permit
short TR, and are thus inherently much faster than classical
counterparts. SS techniques are well-suited for relaxometry
because the signals produced are highly sensitive to T1 and T2
variation. However, short TR times also cause SS signals to be
complex functions of both desired and undesired (nuisance)
parameters, complicating quantification. Furthermore, some
such methods [29], [30] still require scan repetition, though
individual scans are now considerably shorter. Despite these
difficulties, the potential for rapid scanning with high
T1, T2 sensitivity has motivated numerous SS relaxometry
studies [29]–[38].

The dual-echo steady-state (DESS) sequence [39] was
recently proposed as a promising SS imaging technique for
T2 estimation [35]. Because it produces two distinct signals
per excitation, the DESS sequence can reduce scan repetition
requirements by recording twice as much data per scan.
As with other SS methods, the resulting signals [40], [41] are
complicated functions of T1, T2, and other parameters. Prior
works have isolated T2 dependencies using either algebraic
manipulations of the first- and second-echo signals [35], [36]
or separate scans to first estimate nuisance parameters [42].
Although DESS concurrently encodes rich T1 and T2 infor-
mation, these methods have shied away from using DESS for
T1 estimation, either through bias-inducing approximations, or
noise-propagating sequential estimation, respectively.
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Whether it be with DESS, other sequences, or even combi-
nations thereof, it is generally unclear how to best assemble a
scan profile (i.e., a collection of scans) for a fixed amount of
scan time. Furthermore, for a given scan profile, it is typically
not obvious how to best select acquisition parameters (e.g., flip
angles, repetition times, etc.) for relaxometry. In this paper, the
term scan design refers to the related problems of scan profile
selection and scan parameter optimization.

Historically, scan design for relaxometry has predomi-
nantly been explored using figures of merit related to esti-
mator precision. In particular, several studies have used the
Cramér-Rao Bound (CRB), a statistical measure that bounds
the minimum variance of an unbiased estimator. Earlier works
have used the CRB and variations to select inversion times
for recovery experiments [43], [44], flip angles for spoiled
gradient-recalled echo (SPGR) sequences [45], and echo
times for SE experiments [46]. More recent studies have
considered additional scan design challenges, including scan
time constraints [47], multiple latent parameters [48], multi-
ple scan parameter types [49], and latent parameter spatial
variation [50], [51].

The aforementioned studies consider scan parameter
optimization for profiles consisting of only one pulse sequence.
In contrast, this paper introduces a general framework for
robust, application-specific scan design for parameter estima-
tion from combinations of pulse sequences. The framework
first finds multiple sets of scan parameters that achieve precise
estimation within a tight, application-specific range of object
parameters (e.g., T1, T2, etc.). The framework then chooses
the one scan parameter set most robust to estimator precision
degradation over a broader range of object parameters. As a
detailed example, we optimize three combinations of DESS
and SPGR sequences for T1, T2 mapping. For a fixed total
scan time, we find that well-chosen DESS scans alone can be
used to estimate both T1 and T2 with precision and robust-
ness comparable to combinations of DESS and SPGR. This
example illustrates that, with careful scan profile design, well-
established pulse sequences can find use in new estimation
problems.

This paper is organized as follows. Section II uses a general
signal model to describe a CRB-inspired min-max optimiza-
tion problem for robust, application-specific scan optimization.
Section III adapts the DESS signal models to our framework
and optimizes three practical DESS/SPGR combinations to
show that, even in the presence of radiofrequency (RF) field
inhomogeneity, DESS is a promising option for T1, T2 relax-
ometry. Section IV describes simulation, phantom, and in vivo
experiments and discusses corresponding results. Section V
discusses practical challenges and suggests future directions.
Section VI summarizes key contributions.

II. A CRB-INSPIRED SCAN SELECTION METHOD

A. A Generalized Signal Model
A broad class of MR pulse sequences useful for parameter

mapping produce, after reconstruction, a set of noisy images
yd(·) that can be described with the following general model:

yd(r) = fd (x(r); ν(r), pd ) + ϵd (r), d = 1, . . ., D, (1)

where x(r) ∈ CL collects L latent object parameters, at
position r; ν(r) ∈ CK gathers K known object parameters
at r; pd ∈ RP denotes a set of P scan parameters chosen for
the dth dataset; fd : CL×CK ×RP $→ C is a (pulse-sequence
dependent) function that models the noiseless signal obtained
from the dth dataset; and ϵd ∼ CN (0, σ 2

d ) is assumed,
for sake of simplicity, to be independent, complex Gaussian
noise1 [54], [55]. (As a concrete example, for T2(·) mapping
from single SE datasets, x(·) could collect spin density and
T2(·); ν(·) could collect known off-resonance and RF field
inhomogeneities; and pd could assign the dth echo time,
chosen to yield image yd(·).)

A scan profile consists of D datasets from a combination of
pulse sequences. Let y(r) := [y1(r), . . ., yD(r)]� ∈ CD collect
the noisy signals at r from all datasets, P := [p1, . . ., pD] ∈
RP×D gather the corresponding scan parameters, and vector
function f : CL × CK × RP×D $→ CD naturally extend
scalar function f , where (·)� denotes vector transpose. Then
the log-likelihood function is (to within a constant independent
of x(r)):

ln L(x(r)) = −1
2
∥y(r)− f(x(r); ν(r), P)∥2

"−1/2 , (2)

where covariance matrix " := diag(σ 2
1 , . . ., σ 2

D) is diagonal
due to the assumption of independence between scans.

Under suitable regularity conditions2, the Fisher information
matrix I(x(r); ν(r), P) ∈ CL×L [56] is a measure useful for
characterizing the precision of unbiased estimates of x(r) from
y(r), given ν(r) and P:

I(x(r); ν(r), P) := E
(

[∇x ln L(x(r))]† [∇x ln L(x(r))]
)

= [∇xf(x(r); ν(r), P)]†

× "−1 [∇xf(x(r); ν(r), P)] , (3)

where E(·) denotes expectation; ∇x denotes a row gradient
with respect to x at fixed r; and (·)† denotes Hermitian
transpose. In particular, the matrix Cramér-Rao Bound (CRB)
[57] ensures that any unbiased estimator x̂(r) satisfies

cov (̂x(r); ν(r), P) ≽ I−1(x(r); ν(r), P), (4)

where for arbitrary, equally sized matrices A and B, matrix
inequality A ≽ B means A − B is positive semi-definite.
In the following, we design an optimization problem based
on the CRB to guide MR scan design for relaxometry.

B. Min-Max Optimization Problem for Scan Design
Following [58], we focus on minimizing a weighted average

of the variances in each of the L latent object parameter esti-
mates. A reasonable objective function for overall estimator

1Though the noise distribution of k-space raw data is usually well-modeled
as complex white Gaussian, the noise distribution of the dth reconstructed
image yd (·) depends both on the acquisition and reconstruction. If single
receive channel k-space data is fully-sampled on a Cartesian grid, each dataset
yd (·) is recoverable via separate Fourier transform, and is thus complex
Gaussian and independent across datasets. However, if k-space data is multi-
channel, undersampled, and/or non-Cartesian, it may be preferable that yd (·)
be estimated by more sophisticated techniques, e.g., [52], [53]. In such cases,
reconstructed image noise is unlikely to be Gaussian-distributed.

2In particular, f must be analytic in complex components of x at each r.
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precision is therefore given by

#(x(r); ν(r), P) = tr
(

WI−1(x(r); ν(r), P)W�
)
, (5)

where W ∈ RL×L is a diagonal, application-specific matrix
of weights, preselected to control the relative importance
of precisely estimating the L latent object parameters; and
tr(·) denotes the matrix trace operation. For scan design, we
would like to minimize (5) with respect to scan parameters P.

The CRB depends not only on P but also on the spatially
varying object parameters x(·) and ν(·). Thus, one cannot
perform scan design by “simply” minimizing # over the scan
parameters P. Instead, we pose a practical and application-
dependent min-max optimization problem for scan design: we
seek candidate scan parameters P̆ over a search space P that
minimize the worst-case, i.e., maximum cost #̃ t, as viewed
over “tight” parameter ranges Xt and Nt:

P̆ ∈ arg min
P∈P

#̃ t(P), where (6)

#̃ t(P) = max
x∈Xt
ν∈Nt

#(x; ν, P). (7)

Here, we select latent object parameter set Xt based on
the application and known parameter set Nt based on the
spatial variation typically observed in the known parameters
ν(·). Min-max approach (6) should ensure good estimation
precision over a range of parameter values.

Since # is in general non-convex with respect to P, it may
have multiple global minimizers as well as other scan parame-
ters that are nearly global minimizers. To improve robustness
to object parameter variations, we form an expanded set of
candidate scan parameters by also including scan parameters
that yield costs to within a tolerance δ ≪ 1 of the optimum.
Mathematically, we define this expanded set of candidate scan
parameter combinations (for a given scan profile) as

S :=
{

P : #̃ t(P)− #̃ t(P̆) ≤ δ#̃ t(P̆)
}
. (8)

To select amongst these candidate scan parameters, we employ
a robustness criterion: we select the single scan parameter P∗

that degrades the least when the worst-case cost is viewed over
widened object parameter sets Xb ⊇ Xt and Nb ⊇ Nt:

P∗ = arg min
P∈S

#̃b(P), where (9)

#̃b(P) = max
x∈Xb
ν∈Nb

#(x; ν, P). (10)

To compare different scan profiles, we select corresponding
search spaces P to satisfy acquisition constraints (e.g., total
scan time), but otherwise hold optimization parameters W,
δ, Xt,b, and Nt,b fixed. Since # is data-independent, we can
solve (6) and (9) offline for each scan profile. The result of
each profile’s min-max optimization process (9) is a corre-
sponding optimized scan parameter matrix P∗ that is suitable
for the range of latent x and known ν object parameters
specified in Xt and Nt , and is robust to variations in those
parameters over broader sets Xb and Nb, respectively.

III. APPLICATION: OPTIMIZING SS SEQUENCES
FOR T1, T2 RELAXOMETRY IN THE BRAIN

This section applies the methods of Section II-B to the
problem of scan design for joint T1, T2 estimation from
combinations of SS sequences. Section III-A presents a brief
overview of the DESS signals, formulating models to per-
mit estimation of as few nuisance parameters as possible.
Section III-B details how we use optimization problems (6)
and (9) to tailor three combinations of DESS and SPGR
scans for precise T1, T2 estimation in white matter (WM) and
grey matter (GM) regions of the human brain. Section III-C
compares the predicted performance of the three optimized
scan profiles.

A. The DESS Signal Model
The DESS sequence interlaces RF excitations with unbal-

anced spoiler gradients of fixed area [39] to produce two dis-
tinct signals per excitation. If the gradient lobe area is carefully
chosen to dominate through-voxel field inhomogeneity gradi-
ents, yet not introduce significant diffusive effects [59]–[61],
the bulk steady-state signal sD (from a voxel centered at
position r) immediately before (t ≈ 0−) and after (t ≈ 0+)
an RF excitation centered at time t = 0 can be written as

sD(r, 0−) = −i M0(r) tan
α(r)

2
[1− η(r, TR)] and (11)

sD(r, 0+) = i M0(r) tan
α(r)

2

[
1− η(r, TR)

ξ(r, TR)

]
; where

(12)

η(r, t) :=
√

1− E2
2(r, t)

1− E2
2(r, t)/ξ2(r, t)

, and (13)

ξ(r, t) := 1− E1(r, t) cos α(r)
E1(r, t)− cos α(r)

. (14)

Here, Eu(r, t) := exp (−t/Tu(r)) for u ∈ {1, 2} describes
longitudinal or transverse relaxation at time t , respectively;
M0(r) ∈ C is proportional to spin density; flip angle α(r) =
α0κ(r) is decomposed as a nominal (prescribed) value α0 with
spatial variation κ(r) ≈ 1 due to RF field inhomogeneities;
TR is repetition time; and i := √−1. Signal models (11) and
(12) neglect relaxation and off-resonance effects during each
(short) RF pulse3, and assume RF rotations about the î -axis.

We model each voxel’s macroscopic broadening distribution
to be Cauchy(ω̄(r), R′2(r)), where ω̄(r) denotes median off-
resonance frequency and R′2(r) is the broadening bandwidth.
If we time readout gradients to form echoes symmetrically
centered at echo time TE before and after RF excitation, then
the noiseless DESS signals are well approximated as

sD(r,−TE) ≈ sD(r, 0−) E−1
2 (r, TE) e−(R′2(r)+iω̄(r))TE

(15)

sD(r,+TE) ≈ sD(r, 0+) E2(r, TE) e−(R′2(r)−iω̄(r))TE . (16)

3Finite-duration RF effects influence SS signals more strongly for shorter
TR, larger α0, and smaller T2/T1 [62]. In this work, RF pulse durations do not
exceed 11% of repetition times and do not excite nominal flip angles greater
than 35◦. Phantom results (cf. Fig. 1) show that for these scan parameters,
the influence of finite-duration RF effects on T1, T2 estimates is small even
for T2/T1 ≈ 0.1 as in WM/GM.



470 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 36, NO. 2, FEBRUARY 2017

In (15) and (16), nuisance parameters M0(r), R′2(r), κ(r),
and ω̄(r) complicate estimation of T1(r) and T2(r). For sim-
plicity, we take κ(r) to be known from a separately acquired
RF transmit field B+

1 (r) scan. To avoid (separate or joint) ω̄(r)
estimation, we choose to use magnitude DESS data, at the
expense of slight model mismatch (studied with simulations
in Section IV-A) in (1) due to Rician noise. By fixing TE across
acquisitions and defining

ME(r) := M0(r)E2(r, TE)e−R′2(r)TE , (17)

we can rewrite magnitude signals as functions of L = 3 latent
and K = 1 known object parameters, collected as x(r) :=
[ME(r), T1(r), T2(r)]� and ν(r) := κ(r), respectively:

f1(x(r); ν(r), p) := |sD(r,−TE)|

= ME(r) tan
α(r)

2
E−2

2 (r, TE) [1−η(r,TR)]

(18)

f2(x(r); ν(r), p) := |sD(r,+TE)|

= ME(r) tan
α(r)

2

[
1− η(r, TR)

ξ(r, TR)

]
; (19)

where p := [α0, TR]� collects the P = 2 scan parameters we
are free to optimize. From here, we use the scan design method
described in Section II to select an optimized p corresponding
to each DESS scan within a particular scan profile.

B. Scan Design Details

There are numerous candidate scan profiles involving DESS
and/or other pulse sequences that may be useful for fast, accu-
rate T1, T2 mapping. In this work, we consider combinations
of DESS and SPGR scans [63]. With proper RF phase cycling
and gradient spoiling, the SPGR signal sS can be expressed
without any explicit T2(r) dependence:

sS(r, TE)= i ME(r) sin α(r) (1−E1(r, TR))

1− E1(r, TR) cos α(r)
. (20)

SPGR’s reduced dependence on spatially varying unknowns
is reason for its use for T1 mapping [30]–[32] and subsequent
T2 mapping from other sequences [29], [42]. In a similar
spirit, we examine scan profiles containing SPGR over other
SS sequences because we predict that the SPGR sequence’s
T2-independence may help estimators disentangle T2 from
other unknown sources of DESS signal contrast.

As written in (20), each SPGR scan also leaves
p = [α0, TR]� as P = 2 scan parameters available to
optimize. A given scan profile consisting of CSPGR SPGR and
CDESS DESS scans yields D = CSPGR + 2CDESS datasets.
We optimize such a scan profile by solving (9) over
a dimension-P D = 2(CSPGR + 2CDESS) space of scan
parameters.

We select constraints on search space P based on hard-
ware limitations and desired scan profile properties. Since
each pair of DESS signals must share the same choice
of p, the search space is reduced to ACSPGR

0,SPGR × ACDESS
0,DESS ×

T CSPGR
R,SPGR × T CDESS

R,DESS (superscripts denote Cartesian powers).
We assign flip angle ranges A0,SPGR = A0,DESS ← [5, 90]◦

to restrict RF energy deposition. We set feasible TR solu-
tion sets TR,SPGR ← [12.2,+∞) ms and TR,DESS ←
[17.5,+∞) ms based on pulse sequence designs that con-
trol for other scan parameters. These control parameters are
described in further detail in Section IV, and are held fixed
in all subsequent SPGR and DESS experiments. To equi-
tably compare optima from different scan profiles, we require
TR := [TR,1, . . ., TR,CSPGR, TR,CSPGR+1, . . ., TR,CSPGR+CDESS ]�
to satisfy a total time constraint, ∥TR∥1 ≤ TR,max. For a
scan profile consisting of CSPGR SPGR and CDESS DESS
scans, these constraints collectively reduce the search space
dimension from P D to 2(CSPGR + CDESS)− 1.

Prior works have considered T1 or T2 estimation from as
few as 2 SPGR [29], [45] or 1 DESS [35] scan(s), respectively.
We likewise elect to optimize the (CSPGR, CDESS) ← (2, 1)
scan profile as a benchmark. We choose TR,max ← 2(12.2) +
1(17.5) = 41.9ms and select other scan profiles capable of
meeting this time constraint. Requiring that candidate profiles
contain CDESS ≥ 1 DESS scans for T2 contrast and satisfy
D ≥ L(= 3) for well-conditioned estimation, we note that
(1, 1) and (0, 2) are the only other eligible profiles.

In the ensuing experiments, we focus on precise T1, T2
estimation in the brain and design latent object parameter
ranges Xt = ME,t × T1,t × T2,t and Nt = Kt accordingly.
Noting that T1 ∼ 10T2, we choose W ← diag(0, 0.1, 1) in
(5) to place roughly equal importance on precise T1 vs. T2
estimation. Since W places zero weight on ME estimation
(obviating the need for complex differentiation in (3)), it is
easily shown that # depends on ME only through a constant
scale factor; thus it suffices to consider ME,t ← 1. We select
T1,t ← [800, 1400]ms and T2,t ← [50, 120]ms to correspond
with WM and GM regions of interest (ROIs) at 3T [64], [65].
We take Kt ← [0.9, 1.1] to account for 10% spatial variation
in flip angle. Broadened ranges Xb ← 1 × [400, 2000]ms ×
[40, 200]ms and Kb ← [0.5, 2] are constructed to encour-
age solutions robust to a wide range of object parameters.
We assume constant noise variance σ 2

1 = . . . = σ 2
D := σ 2,

where σ 2 ← 1.49× 10−7 is selected to reflect measurements
from normalized phantom datasets (cf. Sections IV.B.1 and
S.V.A-S.V.B for acquisition details). Lastly, we set δ ← 0.01
to select a robust scan parameter P∗ with associated worst-case
cost #̃ t(P∗) within 1% of global optimum #̃ t(P̆).

C. Scan Profile Comparisons
We solve (6) and (9) via grid search to allow illustration

(§S.I in Supplement4) of #̃ t(P) as well as worst-case T1, T2
standard deviations σ̃ t

T1
(P) and σ̃ t

T2
(P), each defined as

σ̃ t
T1

(P) : = max
x∈Xb
ν∈Nb

σT1(x; ν, P) and (21)

σ̃ t
T2

(P) : = max
x∈Xb
ν∈Nb

σT2(x; ν, P), (22)

where σT1(x; ν, P) and σT2(x; ν, P) are corresponding diag-
onal elements of inverse Fisher matrix I−1(x; ν, P). Grid
searches for the (2, 1), (1, 1), and (0, 2) profiles each took

4Supplementary material is available in the /media tab on IEEEXplore.
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TABLE I
PERFORMANCE SUMMARY OF DIFFERENT SCAN PROFILES, OPTIMIZED BY SOLVING (9) SUBJECT TO SCAN TIME CONSTRAINT

T R,max = 41.9 ms. THE FIRST COLUMN DEFINES EACH PROFILE. THE NEXT FOUR COLUMNS DESCRIBE P∗ . THE LATTER

THREE PAIRS OF COLUMNS SHOW HOW WORST-CASE σT1
, σT2

, AND Ψ VALUES DEGRADE FROM TIGHT TO BROAD RANGES.
FLIP ANGLES ARE IN DEGREES; ALL OTHER VALUES ARE IN MILLISECONDS

about 4, 43, and 28 minutes, respectively. All experiments
described hereafter were carried out using MATLAB® R2013a
on a 3.5 GHz desktop with 32 GB RAM.

Table I compares optimized scan parameters for profiles
consisting of (2, 1), (1, 1), and (0, 2) SPGR and DESS scans,
respectively. In addition to σ̃ t

T1
(P∗) and σ̃ t

T2
(P∗), Table I

presents analogous worst-case standard deviations σ̃ b
T1

(P) and
σ̃ b

T2
(P) over Xb×Kb to show how each estimator degrades over

the broadened object parameter range. When viewed over tight
range Xt×Kt , the (0, 2) profile provides a 11.5% reduction in
worst-case cost over the other choices. Extending to broadened
range Xb×Kb, this reduction grows dramatically to 31.4%. We
thus observe that while the different optimized profiles afford
similar estimator precision over a narrow range of interest, the
(0, 2) profile may be preferable due to its robustness to a wide
range of object parameters.

As the DESS sequence has already found success for
T2 mapping from even one scan [35], it is reassuring but
unsurprising that our analysis finds two DESS scans to yield
the most precise T2 estimates. More interestingly, our methods
suggest that, with a minimum CDESS = 2 scans, DESS can be
used to simultaneously estimate T1 as well. In fact, for certain
choices of parameter ranges, a second DESS scan is predicted
to afford T̂1 precision comparable to two SPGR scans.

IV. EXPERIMENTAL VALIDATION AND RESULTS

To test our approach to optimized scan design (described
in Section II-B), we next estimate T1 and T2 maps
(using maximum-likelihood (ML) and regularized least
squares (RLS) methods detailed in Section S.II) from datasets
collected using the scan profiles optimized in Section III.
In Section IV-A, we study estimator statistics from simulated
data. In Sections IV.B-IV.C, we progress to phantom and
in vivo datasets to evaluate scan profile performance and
estimator robustness under increasingly complex settings. For
the latter experiments, we use reference parameter maps from
classical (long) pulse sequences, in lieu of ground truth maps.

A. Numerical Simulations

We select T1 and T2 WM and GM values based on pre-
viously reported measurements at 3T [64], [65] and extrap-
olate other unimportant latent object parameters M0 and T ∗2
from measurements at 1.5T [66]. We assign these parameter
values to the discrete anatomy of the BrainWeb digital phan-
tom [66], [67] to create ground truth M0, T1, T2, and T∗2 maps.

We then choose acquisition parameters based on Table I (with
fixed TE = 4.67ms) and apply models (20) and (15)–(16)
to the 81st slices of these true maps to compute noiseless
217× 181 SPGR and DESS image-domain data, respectively.

For each scan profile, we corrupt the corresponding (com-
plex) noiseless dataset F with additive complex Gaussian
noise, whose variance σ 2 ← 1.49×10−7 is set to match CRB
calculations. This yields realistically noisy datasets Y ranging
from 105-122 SNR, where SNR is defined here as

SNR(F, Y) := ∥F∥F

∥Y− F∥F
. (23)

We use each profile’s noisy magnitude dataset |Y| to com-
pute estimates M̂E, T̂1, and T̂2 (images and histograms in
Section S.III). We then evaluate estimator bias and variance
from latent ground truth T1 and T2 maps.

In these simulations, we intentionally neglect to model a
number of physically realistic effects because their inclusion
would complicate study of estimator statistics. First and fore-
most, we assume knowledge of a uniform transmit field, to
avoid confounding B+

1 and T1, T2 estimation errors. For a
similar reason, spatial variation in the sensitivity of a single
receive coil is also not considered. We omit modeling partial
volume effects to ensure deterministic knowledge of WM and
GM ROIs. We will explore the influence of these (and other)
nuisance effects on scan design in later subsections.

To isolate bias due to estimator nonlinearity from regu-
larization bias, we minimize the ML initialization cost (S.1)
only, and do not proceed to solve RLS problem (S.2). This
permits consideration of T1, T2 estimation from each of the
7733 WM or 9384 GM data points as voxel-wise independent
realizations of the same estimation problem. To minimize
quantization bias, we optimize (S.1) using a very finely spaced
dictionary of signal vectors from 1000 T1 and T2 values
logarithmically spaced between [102, 103.5] and [101, 102.5],
respectively. Using 106 dictionary elements, solving (S.1) took
less than 7 minutes for each tested scan design P∗.

Table II5 verifies that, despite model nonlinearity and Rician
noise, estimation bias in WM- and GM-like voxels is neg-
ligible. Sample standard deviations are consistent with σ̃ t

T1

and σ̃ t
T2

(cf. Table I). In WM and GM, we observe that the
(1, 1) and (0, 2) profiles afford high T̂ML

1 precision, while the

5Each sample statistic presented hereafter is rounded off to the highest
place value of its corresponding uncertainty measure. For simplicity, each
uncertainty measure is itself endowed one extra significant figure. Decimal
points indicate the significance of trailing zeros.
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TABLE II
SAMPLE MEANS ± SAMPLE STANDARD DEVIATIONS OF T1 AND T2 ML

ESTIMATES IN WM AND GM ROIs OF SIMULATED DATA, COMPARED

ACROSS DIFFERENT OPTIMIZED SCAN PROFILES. SAMPLE MEANS

EXHIBIT INSIGNIFICANT BIAS, AND SAMPLE STANDARD

DEVIATIONS ARE CONSISTENT WITH WORST-CASE

STANDARD DEVIATIONS σt
T1

AND σt
T2

REPORTED IN

TABLE I. ALL VALUES ARE REPORTED

IN MILLISECONDS

(2, 1) and (0, 2) scans afford high T̂ML
2 precision. In agree-

ment with the predictions of #̃ t and #̃b, these simulation
studies suggest that at these SNR levels, an optimized profile
containing 2 DESS scans can permit T1 and T2 estimation
precision in WM and GM comparable to optimized profiles
containing SPGR/DESS combinations.

B. Phantom Experiments

This subsection describes two experiments. In the first
experiment, we compare the SPGR/DESS scan profiles
described in Table I (as well as a reference profile consisting of
IR and SE scans) against nuclear magnetic resonance (NMR)
measurements from the National Institute for Standards and
Technology (NIST) [68]. These measurements provide infor-
mation about ROI sample means and ROI sample standard
deviations (Fig. 1), which we define as first- and second-
order statistics computed across voxels within an ROI. In the
second experiment, we repeat the SPGR/DESS scan profiles
10 times and compute sample standard deviation maps across
repetitions (not shown). Taking ROI sample means of these
maps gives pooled sample standard deviations (Table III),
which indicate relative scan profile precision.

1) Within-ROI Statistics: We acquire combinations of
(2, 1), (1, 1), and (0, 2) SPGR and DESS coronal scans of a
High Precision Devices® MR system phantom T2 array. For
each scan profile, we prescribe the optimized flip angles α̂0

and repetition times T̂R listed in Table I, and hold all other
scan parameters fixed. We achieve the desired nominal flip
angles by scaling a 20 mm slab-selective Shinnar-Le Roux
excitation [69], of duration 1.28 ms and time-bandwidth prod-
uct 4. For each DESS (SPGR) scan, we apply 2 (10) spoiling
phase cycles over a 5 mm slice thickness. We acquire all
steady-state phantom and in vivo datasets with a 256×256×8
matrix over a 240 × 240 × 30 mm3 field of view (FOV).
Using a 31.25 kHz readout bandwidth, we acquire all data
at minimum TE ← 4.67ms before or after RF excitations.
To avoid slice-profile effects, we sample k-space over a 3D
Cartesian grid. After Fourier transform of the raw datasets,
only one of the excited image slices is used for subsequent
parameter mapping. Including time to reach steady-state, each
steady-state scan profile requires 1 m 37s scan time.

To validate a reference scan profile for use in in vivo
experiments, we also collect 4 IR and 4 SE scans. For (phase-
sensitive, SE) IR, we hold (TR, TE)← (1400, 14)ms fixed and
vary (adiabatic) inversion time TI ∈ {50, 150, 450, 1350}ms
across scans. For SE, we similarly hold TR ← 1000ms fixed
and vary echo time TE ∈ {10, 30, 60, 150}ms across scans.
We prescribe these scan parameters to acquire 256 × 256
datasets over the same 240 × 240 × 5 mm3 slice processed
from the SPGR/DESS datasets. Each IR and SE scan requires
5 m 58 s and 4 m 16 s, for a total 40 m 58 s scan time.

We additionally collect a pair of Bloch-Siegert shifted
3D SPGR scans for separate B+

1 estimation [70]. We insert a
9 ms Fermi pulse (peak amplitude Bpk

1 ← 0.075G) at ±8 kHz
off-resonance into an SPGR sequence immediately following
on-resonant excitation. We estimate regularized B̂+

1 maps [71]
from the resulting pair of datasets. We then estimate flip angle
variation κ̂ as B̂+

1 /Bpk
1 , calibrate κ̂ (via separate measurements

described in Section S.IV), and thereafter take κ as known.
For consistency, we account for flip angle variation when
estimating T1 and T2 from both the candidate (SPGR/DESS)
and reference (IR/SE) aforementioned scan profiles. With
a repetition time of 21.7 ms, this B+

1 mapping acquisition
requires 1 m 40 s total scan time.

Fig. 1 plots sample means and sample standard deviations
computed within circular ROIs of phantom T1 and T2 ML
estimates (reconstruction details, analogous plots for RLS esti-
mates, and images in Sections S.V.A-S.V.C). The highlighted
orange and yellow parameter spaces correspond to design
ranges Xt and Xb. T1 estimates from both the candidate (2, 1),
(1, 1), and (0, 2) (SPGR, DESS) and reference (4, 4) (IR, SE)
profiles are in reasonable agreement with NIST estimates [68]
across the vial range. T2 estimates from all profiles are also in
good agreement with NIST for vials within Xb. SPGR/DESS
profiles likely underestimate large T2 values (≥ 200ms) due to
greater influence of diffusion in DESS [59]–[61]. SPGR/DESS
profiles possibly overestimate and the IR/SE profile likely
underestimates short (≤ 30ms) and very short (≤ 15ms) T2
values, respectively, due to poorly conditioned estimation.

2) Across-Repetition Statistics: In a second study, we
repeat the (2, 1), (1, 1), and (0, 2) scan profiles 10 times each
and separately estimate T1 and T2 for each repetition of each
scan profile. We then estimate the standard deviation across
repetitions on a per-voxel basis, to produce sample standard
deviation maps for each profile. Each ROI voxel of the sample
standard deviation map is a better estimate of the popula-
tion standard deviation (which the CRB characterizes) than
the ROI sample standard deviation from a single repetition,
because the latter estimate is contaminated with slight spatial
variation of voxel population means (due to imaging non-
idealities such as Gibbs ringing due to k-space truncation).

Table III reports pooled sample standard deviations and
pooled standard errors of the sample standard deviations
(computed via expressions in [72]) for phantom vials within
(or nearly within) tight design range Xt (marked orange in
Fig. S.7). Due to error propagation from coil combination
and κ̂ estimation, pooled ML sample standard deviations
cannot be compared in magnitude to worst-case predicted
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Fig. 1. Phantom within-ROI sample statistics of T1 and T2 ML estimates from optimized SPGR/DESS and reference IR/SE scan profiles vs.
NIST NMR measurements [68]. Markers and error bars indicate ROI sample means and ROI sample standard deviations within the 14 labeled and
color-coded vials in Fig. S.7. Tight Xt and broad Xb latent parameter ranges are highlighted in orange and yellow, respectively. Fig. S.8 provides
analogous plots for RLS estimates. Table S.2 replicates sample statistics within Vials 5-8. Our MR measurements are at 293K, while NIST NMR
measurements are at 293.00K. Within the designed parameter ranges, estimates from different acquisitions are in reasonable agreement with NIST
measurements.

TABLE III
PHANTOM POOLED SAMPLE STANDARD DEVIATIONS± POOLED STANDARD ERRORS OF SAMPLE STANDARD DEVIATIONS, FROM OPTIMIZED

SPGR/DESS SCAN PROFILES. EACH ENTRY IS A MEASURE OF UNCERTAINTY OF A TYPICAL VOXEL’S T1 OR T2 ML ESTIMATE. FOR

SAKE OF BREVITY, SAMPLE STATISTICS CORRESPONDING ONLY TO PHANTOM VIALS WITHIN (OR NEARLY WITHIN) TIGHT

DESIGN RANGE Xt (COLOR-CODED ORANGE IN FIG. S.7) ARE REPORTED. ‘V#’ ABBREVIATES VIAL NUMBERS.
ALL VALUES ARE REPORTED IN MILLISECONDS

standard deviations (Table I); however, trends of empirical and
theoretical standard deviations are overall similar. In particular,
the optimized (0, 2) DESS-only scan profile affords T1 ML
estimation precision (in vials whose T1, T2 is similar to that
of WM/GM) comparable to optimized (2, 1) and (1, 1) mixed
(SPGR, DESS) profiles. Also in agreement with predictions,
the optimized (2, 1) and (0, 2) profiles afford greater T2 ML
estimation precision than the optimized (1, 1) profile.

C. In Vivo Experiments
In a single long study of a healthy volunteer, we acquire

the same optimized scan profiles containing (2, 1), (1, 1), and
(0, 2) SPGR and DESS scans (cf. Table I), as well as the
reference profile containing (4, 4) IR and SE scans. We obtain
axial slices from a 32-channel Nova Medical® receive head
array. To address bulk motion between acquisitions and to
compare within-ROI statistics, we rigidly register each coil-
combined image to an IR image (details in Section S.V.D)

prior to parameter mapping. All acquisition (cf. Section IV-B.
1) and reconstruction (cf. Sections S.V.A-S.V.B) details are
otherwise the same as in phantom experiments.

Fig. 2 compares brain T1 and T2 ML estimates from
optimized scan profiles (Fig. S.9 and Fig. S.10 provide corre-
sponding colorized and grayscale RLS estimates, respectively).
Though in-plane motion is largely compensated via registra-
tion, through-plane motion and non-bulk motion likely persist,
and will influence ROI statistics. Due to motion (and scan
duration) considerations, we examine within-ROI statistics
from a single repetition as in Section IV-B.1, and do not
attempt across-repetition statistics as in Section IV-B.2.

Visually, T̂1 maps from steady-state profiles exhibit similar
levels of contrast in WM/GM regions well away from cere-
brospinal fluid (CSF) as that seen in the reference T̂1 estimate.
Since we did not optimize any scan profiles for estimation in
high-T1 regions, it is expected that greater differences may
emerge in voxels containing or nearby CSF. In particular,
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Fig. 2. Left : WM and GM ROIs, overlaid on a representative anatomical (coil-combined IR) image. Separate WM ROIs are distinguished with anterior/
posterior (A/P) and right/left (R/L) directions. Four small anterior cortical GM polygons are pooled into a single ROI (cyan). Right : Colorized T1
and T2 ML estimates from the brain of a healthy volunteer. Columns correspond to profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1 DESS),
(0 SPGR, 2 DESS), and (4 IR, 4 SE) acquisitions. Parameter maps are cropped in post-processing for the purpose of display. Figs. S.9 (colorized)
and S.10 (grayscale) provide analogous full-FOV maps estimated via both ML and RLS estimators. Colorbar ranges are in milliseconds.

T1 is significantly underestimated within and near CSF by the
(0, 2) DESS-only profile. This suggests that with the signal
models used in this work, including at least one SPGR scan
in an optimized profile may offer greater protection against
estimation bias in high-T1 regions.

Table IV summarizes within-ROI sample means and sample
standard deviations computed6 over four separate WM ROIs
containing 96, 69, 224, and 148 voxels and one pooled cortical
GM ROI containing 156 voxels (cf. Fig. 2). Within-ROI T̂1
sample standard deviations are comparable across steady-state
profiles. In agreement with Table I, T2 estimates from the
optimized (1, 1) scan profile exhibit higher within-ROI sample
variation than corresponding (2, 1) and (0, 2) T̂2 maps.

In most cases, T̂1 within-ROI sample means from opti-
mized SPGR/DESS scan profiles do not deviate substantially
from each other or from reference IR/SE measurements. Two
notable exceptions are T̂ ML

1 in anterior left and posterior
right WM from (1, 1) and (0, 2) profiles: these estimates
are significantly lower and higher than analogous estimates
from other profiles, respectively. Results thus suggest that the
optimized (2, 1) scan profile yields WM T̂ ML

1 estimates that
are more consistently similar to IR WM T̂ ML

1 estimates than
other optimized SPGR/DESS profiles.

6We have taken effort to try and select ROIs that reflect expected anatomy
in all coil-combined and registered images, including adjacent slices in
images from 3D acquisitions. However, we acknowledge the possibility of
some contamination across tissue boundaries, especially WM and/or CSF
contamination into cortical GM.

Systematic differences in T̂2 sample means are evident
across scan profiles, particularly within WM ROIs. Curiously,
the (1, 1) profile agrees most consistently (in WM/GM T̂ ML

2
within-ROI sample mean) with reference estimates, though
with relatively high sample variation. The (2, 1) and (0, 2)
SPGR/DESS profiles produce consistently lower WM T̂ ML

2
than the reference IR/SE profile, though the (0, 2) profile is in
reasonable agreement with other steady-state estimates [73].
These discrepancies may due to differences in sensitivity
to multi-compartmental relaxation [74]. Specifically, different
signal models with different scan parameter choices might be
more or less sensitive to the model mismatch incurred by
neglecting to distinguish the multiple T2 components within
each voxel. Section S.VI studies T2 estimation bias due to
multi-compartmental relaxation in more detail.

V. DISCUSSION AND FUTURE WORK

Phantom experiments show that optimized scan profiles
consisting of (2, 1), (1, 1), and (0, 2) (SPGR, DESS) scans
yield accurate WM/GM T1, T2 estimates, and that empiri-
cal precision trends across profiles agree reasonably with
CRB-based predictions. However, in vivo experiments reveal
that even with scan optimization, it may be challenging to
achieve clinically viable levels of precision from the afore-
mentioned steady-state profiles, at least at 3T. At the expense
of greater scan time, it is of course possible that optimized pro-
files containing greater numbers of SPGR, DESS, and/or other
steady-state scans can provide clinically acceptable precision
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TABLE IV
WITHIN-ROI SAMPLE MEANS ± WITHIN-ROI SAMPLE STANDARD DEVIATIONS OF T1 AND T2 ML ESTIMATES FROM THE BRAIN OF A HEALTHY

VOLUNTEER. SAMPLE STATISTICS ARE COMPUTED WITHIN ROIs INDICATED IN FIG. 2. ALL VALUES ARE REPORTED IN MILLISECONDS

levels. For these and other more complicated scan profiles,
estimator dependence on scan parameters becomes even less
intuitive, increasing the need for scan design.

The proposed scan design framework addresses spatial
variation in object parameters through a min-max design
criterion. The min-max criterion guarantees an upper bound on
a weighted sum of variances and assumes no prior knowledge
of distributions. However, in general it is non-differentiable
in P, precluding gradient-based optimization. Furthermore, it
is conservative by nature, and often selects scan parameters
based on corner cases of the object parameter space. To reduce
the influence of corner cases, it may be desirable to instead
construct a cost function related to the coefficient of variation
as in [44], [46]–[48], perhaps by setting parameter weights
W−1 ← diag(x) for x ̸= 0 in (5).

As a less conservative alternative to min-max design, other
recent works [50], [51] have addressed object parameter spatial
variation by instead constructing cost functions related to the
Bayesian CRB [75], which characterizes the expected preci-
sion with respect to a prior distribution on object parameters.
Bayesian cost functions are usually differentiable and can also,
with appropriate priors, penalize object parameter coefficients
of variation instead of variances, as in [50]. However, prior
distributions are generally unknown, and may need to be
estimated from data, as in [51].

Careful calibration of flip angle scaling κ is essential for
accurate T1, T2 estimation from SPGR/DESS scan profiles.
In this work, we estimate κ from separate acquisitions and
adjust nominal flip angles prior to reconstruction, but acknowl-
edge that non-idealities in those separate acquisitions may
themselves cause resultant B̂+

1 errors to propagate into our
T1, T2 estimates. To reduce error propagation, it may be desir-
able to instead design scan profiles to permit joint estimation
of κ , in addition to other latent object parameters. Unfortu-
nately, we find that optimizing the (2, 1) or (0, 2) profile to
allow for four-parameter x(r) := [ME(r), T1(r), T2(r), κ(r)]�
estimation results in unacceptably high amplification of the
worst-case T1 standard deviation. (Incidentally, precise T2 ML
and RLS estimation alone from the (2, 1) or (0, 2) profile is
possible [42].) It remains an open scan design question as to
whether time spent collecting Bloch-Siegert data for separate
B+

1 mapping could instead be better spent collecting additional
SPGR, DESS, and/or other data for joint estimation.

By working with closed-form signal expressions, we neglect
to model several higher-order effects. However, it is apparent

that the nonlinear estimation procedures required for many
mapping problems can amplify the influence of these sec-
ondary effects, often inducing substantial bias. Since the
CRB (as described) applies only to unbiased estimators, it
is thus desirable to use signal models that are as complete
as possible for CRB-based scan design. In theory, scan opti-
mization approach (9) is even compatible with acquisitions
where a closed-form model relating data to latent and scan
parameters is unknown, as in [22], [76]. In practice, difficulties
arise in efficient computation of signal gradients required
in (3), which may demand more specialized techniques, as
in [77]. Designing scan profiles involving such complex signal
models would likely necessitate optimization techniques more
involved than the simple grid searches used in this work.

VI. CONCLUSION

We have introduced a CRB-inspired min-max optimiza-
tion approach to aid robust, application-specific MR scan
selection and optimization for precise parameter estimation.
As a detailed example, we have optimized combinations of
fast SPGR and DESS scans for T1, T2 relaxometry in WM and
GM regions of the human brain at 3T. Numerical simulations
show that at typical noise levels and with accurate flip angle
prior knowledge, WM- and GM-like T1, T2 ML estimates from
optimized scans are nearly unbiased, and so worst-case CRB
predictions yield reliable bounds on ROI sample variances.
Phantom accuracy experiments show that optimized combina-
tions of (2, 1), (1, 1), or (0, 2) (SPGR, DESS) scans are in
excellent agreement with NIST and IR/SE measurements over
the designed latent object parameter range of interest. Phantom
precision experiments show that these SPGR/DESS combina-
tions exhibit trends in pooled sample standard deviations that
reasonably reflect CRB predictions.

In vivo experiments suggest that with optimization, the
(0, 2) profile can yield comparable T̂1, T̂2 precision to the
more conventional (2, 1) [42] scan profile in well-isolated
WM/GM ROIs; however, the (0, 2) T1 estimates are unreliable
within and near the CSF and do not agree with IR measure-
ments in WM as consistently as the (2, 1) profile. This and
other disagreements across profiles in vivo may be attributable
to differences in signal model sensitivities to neglected higher-
order effects. Nevertheless, this simple example application
illustrates that scan optimization may enable new parameter
mapping techniques from established pulse sequences.
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This supplement elaborates upon methodology details and presents additional figures that could not be in-
cluded in the Manuscript [1] due to page restrictions. Section S.I provides visualizations of scan parameter
optimization problem (9) in the Manuscript and relates min-max scan design to prior art. Section S.II de-
scribes methods for latent object parameter estimation from optimized scan profiles. Section S.III presents
images and histograms corresponding to Manuscript Section IV.A. Section S.V elaborates upon image
reconstruction and parameter estimation details for phantom and in vivo experiments (Manuscript Sec-
tions IV.B-IV.C). Lastly, Section S.VI explores the effect of model mismatch due to multi-exponential
relaxation on single-component T

2

estimation.

S.I Optimized Scan Design: Further Details

S.I.A Scan Profile Comparisons

Fig. S.1 displays heat maps of worst-case latent parameter standard deviations e�t

T1
, e�t

T2
and worst-case

cost e t as pairs of flip angles are varied away from the optimized scan design P

⇤. When present hereafter,
boxes group subfigures corresponding to the same scan profile. Viewing the bottom row of subfigures,
it is evident that e t

(P

⇤
) takes similar values for the different scan profiles. However, it is apparent that

the (C
SPGR

, C
DESS

) = (0, 2) profile is substantially more robust to flip angle variation than other tested
profiles (namely, (2, 1) and (1, 1)). Optimized worst-case cost over broadened latent parameter ranges
e
 

b

(P

⇤
) captures this by expanding the range of possible flip angles from K

t

= [0.9, 1.1] to K
b

= [0.5, 2] to
account for factor-of-two spatial variation in relative flip angle . As a result, we find that the properties of
“broad” search criterion e

 

b

(·) provide a stronger reason to select the (0, 2) scan for joint T
1

, T
2

estimation
in the brain than the properties of “tight” search criterion e

 

t

(·).

S.I.B Relation to Prior Art

To relate our work to other scan design methods, we apply min-max scan design to the well-studied
problem of scan design for T

1

estimation from two SPGR scans and compare our results with those of

1
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Figure S.1: Worst-case standard deviations e�t

T1
(top), e�t

T2
(middle), and cost e t (bottom), versus pairs of nominal flip angles, holding other

scan parameters fixed at selected profile P

⇤. Subfigures (a)-(i), (j)-(l), and (m)-(o) correspond to scan profiles containing (C
SPGR

, C
DESS

) =

(2, 1), (1, 1), and (0, 2) SPGR and DESS scans, respectively. Selected scan parameters (starred) are within � = 1% of global minimizers and
retain as much estimator precision as possible over a wide range of latent object parameters. All axes range from 5 to 90 degrees, in 5-degree
increments. Colorbar ranges are [0, 100], [0, 10], and [0, 20] milliseconds for rows of e�t

T1
, e�t

T2
, and e

 

t subfigures, respectively. The optimized
(0, 2) profile appears most robust to flip angle variation.
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Figure S.2: Worst-case standard deviation e�t

T1
versus pairs of nominal SPGR flip angles, holding other

scan parameters fixed at selected profile P

⇤. Fig. S.2a (replicated from [2]) illustrates e�t

T1
(at single-

point design ranges X
t

:= M
E,t ⇥ T

1,t  (1, 1000ms) and N
t

:= K  1) as flip angles are varied
but T

R

 [800, 800]Tms remains fixed. Fig. S.2b (related to [3]) shows that lower e�t

T1
is achievable by

allowing T

R

to vary as well. Figs. S.2c and S.2d illustrate how corresponding optimized designs change
when e�t

T1
is instead evaluated over GM/WM ROIs X

t

 1⇥ [800, 1400]ms and K
t

 [0.9, 1.1]. Selected
scan parameters (starred) are within � = 1% of global minimizers. Colorbar ranges are in milliseconds.

[2, 3]. We study [2, 3] over other works [4–6] because our purpose here is to demonstrate the utility of
considering a range of design parameters, perhaps through our min-max formulation. The methods of
[2, 3] are amenable to this purpose, as they study special cases of min-max optimization problem (6) in
which the object parameter space X

t

⇥N
t

is a single point.
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Subfigure [Method] S.2a [2] S.2b [3] S.2c [1] S.2d [1]
T
1,t 1000ms 1000ms [800, 1400]ms [800, 1400]ms

K
t

1 1 [0.9, 1.1] [0.9, 1.1]
T
R,SPGR

[800,1)ms [12.2,1)ms [800,1)ms [12.2,1)ms
A

0,SPGR

[1, 120]� [1, 120]� [1, 120]� [1, 120]�

T
R,max

1600ms 1600ms 1600ms 1600ms

b↵spgr

0

(29, 112)� (31, 100)� (23, 107)� (24, 102)�

bT spgr

R (800, 800)ms (1010, 590)ms (800, 800)ms (870, 730)ms
e�t

T1
(P⇤), single-pt X

t

⇥N
t

1.97ms 1.89ms 2.04ms 1.99ms
e�t

T1
(P⇤), WM/GM X

t

⇥N
t

3.47ms 3.41ms 3.18ms 3.13ms
Run Time 6s 5m11s 2m29s 2h5m13s

Table S.1: Description and performance summary of four methods for optimization of two SPGR scans
for precise T

1

estimation. Columns correspond with subfigures of Fig. S.2. Column 2 replicates results
given in [2], which optimizes ↵ at fixed T

R

and nominal x,⌫ values. Column 3 uses ideas presented in [3]
to improve [2] by optimizing both ↵ and T

R

, under a time constraint. Columns 4-5 repeat the experiments
of Columns 2-3, but over X

t

⇥N
t

corresponding to WM/GM at 3T.

Table S.1 summarizes how, with appropriate choices of parameter spaces, weights, and constraints, previ-
ous methods relate to min-max scan design (corresponding illustrations provided in Fig. S.2). To assess
the utility of min-max design, we compare worst-case standard deviation e�t

T1
(computed with unity M

0

and constant noise variance �2  1.49 ⇥ 10

�7 as in the Manuscript) over the same WM/GM parameter
space X

t

⇥N
t

. Comparing Columns 2 and 4, we observe an 8.7% reduction in WM/GM e�t

T1
through min-

max consideration for flip angle optimization. Similarly comparing columns 3 and 5, we observe an 8.6%
reduction in WM/GM e�t

T1
through min-max consideration for flip angle and repetition time optimization.

Each min-max grid-search takes roughly 25⇥ longer than its min-only counterpart. This substantial in-
crease in (offline) computation time could likely be reduced through gradient-based optimization, at the
expense of forgoing global for instead local optima.

S.II Latent Object Parameter Estimation
from Optimized Scan Profiles

To experimentally validate scan designs, we require a method to obtain parameter estimates from data
collected using the optimized scan parameters P

⇤. Here, we describe maximum-likelihood (ML) and
regularized least-squares (RLS) optimization approaches for latent object parameter estimation.

When the reconstructed images have V voxels centered at positions r
1

, . . . , rV , an ML estimator bX
ML

(N,P⇤
)

minimizes over X the negative log-likelihood

 

ML

(X;N,P⇤
) =

1

2

��
⌃

�1/2
(Y � F(X;N,P⇤

))

��2
F
, (S.1)

where matrices Y := [y(r

1

), . . . ,y(rV )] 2 CD⇥V , X := [x(r

1

), . . . ,x(rV )] 2 CL⇥V , and N :=

[⌫(r
1

), . . . ,⌫(rV )] 2 CK⇥V are discretizations over V voxel locations of vector counterparts; matrix
function F : CL⇥V ⇥CK⇥V ⇥CP⇥D 7! CD⇥V naturally extends f ; P⇤ remains the optimized scan profile
from (9); and k·kF denotes the Frobenius norm.
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Often, it is reasonable to assume that each latent object parameter map is (possibly piecewise) smooth. To
exploit this prior knowledge, we estimate X by minimizing over search space X V an extension of (S.1)
that includes regularization:

b
X

RLS

(N,P⇤
) 2 argmin

X2XV

 

RLS

(X;N,P⇤
), where (S.2)

 

RLS

(X;N,P⇤
) =  

ML

(X;N,P⇤
) +

LX

l=1

Rl([X]

T
l ) (S.3)

and [·]r extracts the rth row of its argument. Here, we have introduced regularizer functions Rl(·) : CV 7!
R for l 2 {1, . . . , L}, which in this work are chosen as

Rl(·) := �l

JX

j=1

�l

⇣
[C(·)]j

⌘
, (S.4)

where �l is a regularization parameter; �l : C 7! R is a (possibly edge-preserving) convex penalty
function, selected based on expected properties of the lth latent object parameter; C 2 RJ⇥V is a finite
differencing matrix; and j indexes a total J direction-dependent differencing operations.

Typically,  RLS

(X;N,P⇤
) is non-convex in X, precluding global optimization. We instead seek a local

minimizer of (S.3) using the projected Levenberg-Marquardt method [7] with a step-halving line search to
ensure monotonic convergence in cost.

For non-convex cost functions like (S.3), initialization quality is important. In this work, we initialize (S.2)
by first isolating nonlinear dependencies via the “variable-projection” method [8], and then minimizing
(S.1) using a nonlinear least-squares (NLS) algorithm. Specifically, we note that ML

(X;N,P⇤
) is voxel-

wise separable, and thereby find a global minimizer of (S.1) in a single iteration of matching pursuit [9, 10]
with a precomputed dictionary of signal vectors.

Following an analysis similar to that of [11] for the NLS objective (S.1), one can show that if f is a smooth,
injective mapping and dictionary quantization error is neglected, then b

X

ML

(N,P⇤
) is asymptotically effi-

cient. At reasonable noise levels, we thus expect P⇤ to permit low ML estimation variance. For suitable
regularizers, minimizing (S.3) with initialization b

X

ML

(N,P⇤
) then only further reduces variance.

Even for nonlinear f(·), the ML estimate b
X

ML

is asymptotically unbiased. For Gaussian noise models,
increasing sample size is statistically equivalent to increasing signal-to-noise ratio (SNR). Thus, in re-
gions where the data provides sufficiently high SNR (and is thus approximately Gaussian-distributed even
in magnitude [12]), bX

ML

will exhibit negligible bias, and the CRB can be used to reliably predict ML
estimation error. Table II in Section IV empirically explores the validity of this high-SNR assumption,
through simulations at realistic noise levels.

S.III Numerical Simulations

Fig. S.3 displays latent object parameter estimates bTML

1

and b
T

ML

2

from the optimized scan profiles along-
side (5⇥ magnified) absolute differences with respect to the ground truth (corresponding sample statistics
within WM/GM regions of interest are summarized in Table II). Difference images suggest that, with care-
ful scan optimization, all three scan profiles permit T

1

and T

2

to be jointly estimated with low error.
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Figure S.3: T

1

and T

2

ML estimates and corresponding errors, from data synthesized using the op-
timized scan profiles in Table I. Subfigures (a)-(d), (e)-(h), and (i)-(l) correspond to scan profiles
(C

SPGR

, C
DESS

) = (2, 1), (1, 1), and (0, 2) SPGR and DESS scans, respectively. Colorbar ranges cor-
responding to T

ML

1

and T

ML

2

estimates are [0, 2000]ms and [0, 200]ms, respectively. Magnitude error maps
are computed with respect to latent, ground truth (m) T

1

and (n) T
2

maps, and are respectively presented
with 5⇥ magnified colorbar ranges [0, 400]ms and [0, 40]ms to aid comparison.
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Figure S.4: Histograms of T
1

and T
2

estimates from noisy independent measurements of a single nominal
WM or GM value. In each plot, two normal distributions are overlaid, each with latent means T

1

and T
2

.
In (a)-(b) and (c)-(d), the solid green curve is N (T

1

, (e�t

T1
)

2

) and N (T
2

, (e�t

T2
)

2

), respectively. In (a)-(d), the
dashed maroon curves have variances computed from the Fisher information at a priori unknown T

1

, T
2

values in WM or GM. These plots correspond to an optimized (0, 2) scan profile; analogous plots for other
profiles are visually similar. At realistic noise levels, parameter estimates distribute with minimal bias and
near-Gaussian shape. Thus, the CRB can be used to reliably approximate bTML

1

and bTML

2

errors.
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Fig. S.4 histograms (voxel-wise independent) ML estimates bTML

1

and bTML

2

from the (0, 2) scan profile.
Each histogram is over a WM or GM ROI, within which all voxels are assigned the same single-component
true T

1

and T
2

nominal value, listed in Table II.

Overlaid in dashed maroon are normal distributions with latent means T
1

and T
2

and variances computed
from the Fisher matrix at T

1

, T
2

values in WM or GM. It is apparent that despite finite SNR and Rician
noise, bTML

1

and bTML

2

exhibit negligible bias and near-Gaussian shape, suggesting locally linear behavior
of the DESS signal model in T

1

and T
2

(bTML

1

and bTML

2

distributions from other profiles are similar).

The subfigures of Fig. S.4 superimpose in solid green a second set of normal distributions, with the same
means T

1

and T
2

as before, but worst-case standard deviations e�t

T1
and e�t

T2
. The separations between these

distribution pairs visually depict how estimator variances specific to WM or GM T
1

and T
2

values differ
from worst-case variances. Using the fixed latent object parameters to optimize scan profiles can tailor
scans for precise estimation in either WM or GM. In contrast, the proposed min-max formulation finds
scan parameters that ensure precise estimation in both WM and GM.

S.IV Flip Angle Scaling Calibration

In initial experiments, we found that even small (e.g., ⇠5%) modifications of flip angle scaling esti-
mate b from Bloch-Siegert (BS) shifted SPGR scans resulted in significant (e.g., ⇠10-15%) changes in
SPGR/DESS b

T

1

estimates. Here, we investigate possible b estimation bias by comparing (via a separate
study) b from Bloch-Siegert (BS) [13] versus reference Double Angle (DA) [14] measurements.

We collect 8-channel BS and DA data in a structureless FIRST-BIRN gel phantom [15] (T
1

⇡ 520ms via
separate IR measurements). For DA (SPGR) scans, we prescribe nominal flip angles b↵

0

 [45

�, 90�
]

T

and long repetition times T
R

 [3200, 3200]Tms. Except for a reduced 256 ⇥ 256 ⇥ 6 matrix, all other
BS and SPGR acquisition details are the same as in Section IV.B.1.

We separately normalize and combine (via an extension of [16]) each pair of BS and DA coil datasets.
To reduce errors due to k-space truncation in regularized  estimates, we mask out coil-combined image
voxels outside and very near the phantom encasing. Initializing with respective method-of-moments esti-
mates, we apply the methods of [17] and [18] to produce regularized  estimates from coil-combined BS
versus DA images.

Fig. S.5 reveals that well inside the phantom, BS and DA  estimates exhibit paraboloidal spatial profiles
(as expected), but differ in scaling. Specifically, within a centered ROI of 6758 voxels, the ratio of RLS
DA b to RLS BS b has ROI sample mean ± ROI sample standard deviation of 1.050 ± 0.0044.

To reduce error propagation due to b bias but retain the speed of BS acquisitions, we choose to scale up
BS  estimates in all phantom and in vivo experiments by 5.0%. We find empirically that even this crude
correction factor greatly improves bT

1

agreement across SPGR/DESS and reference IR/SE scan profiles.

S.V Experimental Details

This section provides further details on phantom and in vivo experiments discussed in Sections IV.B and
IV.C. Sections S.V.A and S.V.B provide phantom reconstruction details about SPGR/DESS and IR/SE
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Figure S.5: Method of Moments (top) and RLS (bottom) estimates of flip angle scaling  in a FIRST-
BIRN gel phantom, from Bloch-Siegert (left) and Double-Angle (right) data. Well away from the phantom
encasing, both estimates exhibit a paraboloidal spatial profile, but differ in scaling by 4.8 ± 0.71%.
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experiments. Unless explicitly mentioned in Section IV.C, these details pertain to brain reconstructions
as well. Sections S.V.C and S.V.D discuss additional phantom and in vivo images and tables; in addition,
Section S.V.D provides image registration details.

S.V.A SPGR/DESS (Phantom) Reconstructions

We acquire all phantom datasets using a GE Discovery™ MR750 3.0T scanner with an 8-channel re-
ceive head array. We separately normalize and combine coil data from each scan profile using a natural
extension of [16] to the case of multiple datasets. For each optimized SPGR/DESS scan profile P

⇤,
we pre-cluster known parameter maps N into 10 clusters using k-means++ [19] and use each of the 10
cluster means to compute a corresponding dictionary of signal vectors from 300 T

1

and T
2

values loga-
rithmically spaced between [10

1.5, 103.5] and [10

0.5, 103], respectively. We then iterate over clusters and
use each dictionary in conjunction with corresponding coil-combined magnitude image data to produce
ML parameter estimates b

X

ML

(N,P⇤
). We subsequently solve RLS problem (S.2) with initialization

b
X

ML

(N,P⇤
) to obtain regularized estimates b

X

RLS

(N,P⇤
) for each P

⇤. We design regularizers to en-
courage parameter estimates from different scan profiles to exhibit similar levels of smoothness. Letting
l 2 {1, 2, 3} enumerate latent object parameters {M

0/E,T1

,T
2

}, we choose mild regularization parame-
ters (�

1

, �
2

, �
3

) := D ⇥ (2

�26, 2�21, 2�23

) to scale with the number of datasets. For all scan profiles, we
use a corner-rounded approximation to the `

1

potential function,

�l(·) := �2

l

q
1 + |·/�l|2 � 1

�
(S.5)

where (�
1

, �
2

, �
3

) := (2

�2, 25 ms, 22 ms) are fixed to values on the order of anticipated standard deviations.
We iteratively update X until convergence criterion

��
X

(n) �X

(n�1)

��
F
< 10

�7

��
X

(n)
��
F

(S.6)

is satisfied. For all steady-state profiles tested, ML initializations and RLS reconstructions of phantom
datasets require less than 3m30s and 9s, respectively.

S.V.B IR/SE (Phantom) Reconstructions

We first jointly coil-combine all 8-channel IR and SE phantom datasets to produce complex images. We
next estimate T

1

along with nuisance parameters M

0

exp (�T
E

/T
2

) and inversion efficiency map ✏ via
(S.1) and (S.3) from the 4 complex coil-combined IR images. By using the same flip angle scaling map b
as is used for SPGR/DESS profiles, we estimate T

1

using a signal model similar to one proposed in [20],
which accounts for imperfect excitation/refocusing and imperfect inversion. We then take bothT

1

and  as
known and estimateT

2

along with nuisance parameter M
0

(accounting for imperfect excitation/refocusing
and incomplete recovery) via (S.1) and (S.3) from the 4 complex coil-combined SE images. We hold all
other reconstruction details identical to those of SPGR/DESS reconstructions. For all steady-state scan
profiles tested, ML initializations and RLS reconstructions of brain datasets require less than 3m and 7s,
respectively.

As an aside: we initially attempted to circumvent sequential T
1

, then T

2

estimation by instead jointly
estimating M

0

, T
1

, T
2

, and ✏ from the IR and SE datasets together. Even using magnitude data and
signal models, this resulted in heavily biased parameter maps, possibly due to the dependence of adiabatic
inversion efficiency on relaxation parameters [21].

10



 

 

 
(2SP,1DE) (1SP,1DE) (0SP,2DE) (4IR,4SE)

T
1
 M

L
T

1
 R

L
S

0

400

800

1200

1600

2000

 

 

T
2

 M
L

T
2

 R
L

S

0

100

200

300

400

500

Figure S.6: Colorized T

1

and T

2

ML and RLS estimates from an HPD® quantitative phantom. Columns
correspond to scan profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1 DESS), (0 SPGR, 2 DESS),
and (4 IR, 4 SE) acquisitions. Rows distinguish T

1

and T

2

ML and RLS estimators. Fig. S.7 provides
identical grayscale images which enumerate vials. Colorbar ranges are in milliseconds.

S.V.C Phantom Images and Tables

Figs. S.6 and S.7 compare phantom T

1

and T

2

ML and RLS estimates in color and grayscale from opti-
mized scan profiles. Vials are enumerated in Fig. S.7 in descending T

1

and T
2

order. Vials corresponding
to tight X

t

and broad X
b

parameter ranges are highlighted with orange and yellow labels, respectively.
Within these vials of interest, parameter maps from different scans appear visually similar.
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Figure S.7: Grayscale T

1

and T

2

ML and RLS estimates from an HPD® quantitative phantom. Columns
correspond to scan profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1 DESS), (0 SPGR, 2 DESS), and
(4 IR, 4 SE) acquisitions. Rows distinguish T

1

and T

2

ML and RLS estimators. Vials are enumerated
and color-coded to correspond with data points in Fig. S.8. Fig. S.6 provides identical colorized images.
Colorbar ranges are in milliseconds.

In higher-T
1

vials (and the surrounding water), more bias is apparent in b
T

1

ML and RLS estimates from
the (0, 2) scan profile than from the (2, 1) and (1, 1) scan profiles. With the signal models used in this
study, the images suggest that scan profiles consisting of at least one SPGR scan may offer increased
protection against T

1

estimation bias.

Fig. S.8 expands Fig. 1 by plotting phantom within-ROI sample statistics of both ML and RLS T

1

,T
2

estimates. Table S.2 replicates sample statistics in Fig. S.8 for vials 5-8. Compared to ML initializations,
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Figure S.8: Phantom within-ROI sample statistics of T
1

and T

2

estimates from optimized SPGR/DESS
and reference IR/SE scan profiles, vs. NIST NMR measurements [22]. Markers and error bars indicate
ROI sample means and ROI sample standard deviations within the 14 labeled and color-coded vials in
Fig. S.7. Figs. S.8a-S.8b correspond with ML estimates and replicate Figs. 1a-1b for sake of compari-
son. Figs. S.8c-S.8d correspond with RLS estimates. Tight X

t

and broad X
b

latent parameter ranges
are highlighted in orange and yellow, respectively. Table S.2 replicates sample statistics within Vials 5-
8. Our MR measurements are at 293K, while NIST NMR measurements are at 293.00K. Within the
designed parameter ranges, estimates from different acquisitions are in reasonable agreement with NIST
measurements.
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(2SP,1DE) (1SP,1DE) (0SP,2DE) (4IR,4SE) NIST NMR
V5 bTML

1

1450 ± 50. 1380 ± 41 1600 ± 130 1380 ± 44 1332 ± 0.8

V5 bTRLS

1

1450 ± 26 1370 ± 16 1540 ± 98 1380 ± 37

V6 bTML

1

1100 ± 30. 1050 ± 39 1120 ± 39 1100 ± 74 1044 ± 3.2

V6 bTRLS

1

1100 ± 15 1040 ± 14 1110 ± 16 1100 ± 64

V7 bTML

1

870 ± 22 830 ± 29 880 ± 29 870 ± 25 801.7 ± 1.70

V7 bTRLS

1

865 ± 7.1 820 ± 11 860 ± 18 870 ± 21

V8 bTML

1

680 ± 12 640 ± 18 670 ± 12 658 ± 8.8 608.6 ± 1.03

V8 bTRLS

1

674 ± 7.6 637 ± 7.4 662 ± 6.6 658 ± 7.1

V5 bTML

2

131 ± 5.5 140 ± 10. 141 ± 8.4 143 ± 4.9 133.27 ± 0.073

V5 bTRLS

2

131 ± 5.2 145 ± 9.1 139 ± 7.1 142 ± 4.8

V6 bTML

2

91 ± 3.5 99 ± 6.0 95 ± 4.2 96 ± 2.7 96.89 ± 0.049

V6 bTRLS

2

91 ± 3.4 104 ± 6.2 93 ± 3.7 96 ± 2.6

V7 bTML

2

64 ± 2.2 69 ± 3.9 65 ± 2.1 69 ± 1.2 64.07 ± 0.034

V7 bTRLS

2

65 ± 2.1 71 ± 4.3 64 ± 1.9 69 ± 1.2

V8 bTML

2

46 ± 1.5 50. ± 2.3 46 ± 1.1 47.6 ± 0.87 46.42 ± 0.014

V8 bTRLS

2

46 ± 1.5 50. ± 2.3 46 ± 1.0 47.5 ± 0.85

Table S.2: Phantom within-ROI sample means ± sample standard deviations of T
1

and T

2

estimates from
optimized SPGR/DESS and reference IR/SE scan profiles, vs. NIST NMR measurements (cf. slide 22 of
e-poster corresponding to [22]). For sake of brevity, sample statistics corresponding only to phantom vials
within (or nearly within) tight design range X

t

(color-coded orange in Fig. S.7) are reported. Fig. S.8 plots
sample statistics for all vials. ‘V#’ abbreviates vial numbers. All values are reported in milliseconds.

(weakly) regularized estimates reduce error bars without introducing substantial additional bias.

S.V.D Brain Registration Details, Images, and Tables

For each coil-combined dataset, we compute a separate 2D rigid transformation (with respect to the
T
I

= 50ms IR dataset) via the MATLAB® function imregtform and then apply the transformation
via imwarp. We choose to use rigid transformations instead of affine distortions to avoid scaling; how-
ever in doing so we sacrifice compensating for small through-plane rotations. We do not find registration
to substantially change subsequently estimated relaxation maps; however, this extra step substantially im-
proves alignment of (especially cortical GM) ROIs in bT

1

and bT
2

estimates from different scan profiles.

Fig. S.9 expands Fig. 2 by comparing both ML and RLS T

1

,T
2

estimates across scan profiles. Fig. S.10
replicates Fig. S.9 in grayscale. Table S.3 is similar to Table IV, except for RLS estimates. Compared to
ML counterparts, RLS estimates in general reduce within-ROI sample variation without incurring signifi-
cant additional bias.

S.VI Multi-exponential Relaxation
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Figure S.9: Grayscale T

1

and T

2

ML and RLS estimates from the brain of a healthy volunteer. Columns
correspond to profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1 DESS), (0 SPGR, 2 DESS), and
(4 IR, 4 SE) acquisitions. Rows distinguish T

1

and T

2

ML and RLS estimators. Fig. S.10 provides
identical grayscale images. Colorbar ranges are in milliseconds.
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Figure S.10: Grayscale T
1

and T

2

ML and RLS estimates from the brain of a healthy volunteer. Columns
correspond to profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1 DESS), (0 SPGR, 2 DESS), and
(4 IR, 4 SE) acquisitions. Rows distinguishT

1

and T

2

ML and RLS estimators. Fig. S.9 provides identical
colorized images. Colorbar ranges are in milliseconds.
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ROI (color) (2SP,1DE) (1SP,1DE) (0SP,2DE) (4IR,4SE)

bTRLS

1

anterior right WM (yellow) 840 ± 24 770 ± 20. 840 ± 43 780 ± 20.
anterior left WM (magenta) 740 ± 51 670 ± 37 740 ± 54 760 ± 23

posterior right WM (green) 890 ± 79 860 ± 61 960 ± 82 810 ± 24

posterior left WM (blue) 870 ± 62 850 ± 50. 880 ± 78 820 ± 35

anterior GM (cyan) 1200 ± 200 1200 ± 220 1300 ± 230 1300 ± 180

bTRLS

2

anterior right WM (yellow) 40. ± 1.3 54 ± 3.4 46 ± 1.5 55 ± 1.9
anterior left WM (magenta) 40. ± 1.7 50. ± 4.4 43 ± 1.7 53 ± 1.8
posterior right WM (green) 43 ± 2.8 60. ± 6.7 51 ± 3.7 58 ± 2.3

posterior left WM (blue) 43 ± 1.7 57 ± 4.7 49 ± 2.5 57 ± 1.8
anterior GM (cyan) 50 ± 12 60 ± 15 60 ± 11 59 ± 6.4

Table S.3: Within-ROI sample means ± within-ROI sample standard deviations of T
1

and T

2

RLS es-
timates from the brain of a healthy volunteer. Sample statistics are computed within ROIs indicated in
Fig. 2. All values are reported in milliseconds.

ROI (color) [10, 30]T [10, 60]T [10, 150]T

bTML

2

anterior right WM (yellow) 54 ± 3.0 56 ± 1.9 54 ± 2.4
anterior left WM (magenta) 50. ± 2.2 54 ± 1.8 54 ± 2.4
posterior right WM (green) 55 ± 2.6 58 ± 2.2 61 ± 2.6

posterior left WM (blue) 50 ± 2.2 57 ± 2.0 61 ± 2.1
anterior GM (cyan) 58 ± 6.5 61 ± 6.8 57 ± 7.3

Table S.4: Within-ROI sample means ± within-ROI sample standard deviations of monoexponential T
2

ML estimates, from pairs of in vivo SE datasets. Column headers indicate echo times T

E

(ms) of SE
datasets. Sample statistics are computed within ROIs indicated in Fig. 2. Single-component bTML

2

estimates
in WM depend on SE echo times.

This section explores the effect of model mismatch due to multi-component relaxation on single-component
T

2

estimation bias, through numerical simulations and in vivo experiments.

We simulate multi-exponential data to arise from three non-exchanging pools of myelinated water (T
1

, T
2

) 
(500, 20)ms, intracellular and extracellular water (T

1

, T
2

)  (1000, 80)ms, and free water (T
1

, T
2

)  
(3500, 250)ms [23, 24]. We assign pool fractions of (0.15, 0.80, 0.05) in WM and (0, 0.95, 0.05) in
GM to the 81st slice of the BrainWeb digital phantom [25, 26] to create ground truth M

0

, T

1

, and
T

2

compartment-wise maps. We simulate component-wise IR signals (acquisition parameters in Sec-
tion IV.B.1) and add them to yield noiseless multi-component IR data. We likewise simulate and then
add component-wise SE signals to construct three scan profiles consisting of pairs of multi-component SE
datasets with variable T

E

2
�
[10, 30]T, [10, 60]T, [10, 150]T

 
. To avoid confounding sources of bias, we

assume knowledge of a uniform transmit field and a uniform sensitivity profile of a single-channel receive
coil. We estimate a single-component bT

1

ML map from multi-component IR data, which we then use to
estimate a single-component bT

2

ML map from each multi-exponential SE scan profile.

The upper rows of Figs. S.11 and S.12 compare (in color and grayscale) bT
2

maps from simulated multi-
exponential SE data. The lower rows compare in vivo b

T

2

maps from corresponding subsets of the SE
reference profile discussed in Section IV.C. As echo times are further separated, bT

2

in WM approaches bT
2

in GM, creating an apparent reduction in bT
2

WM/GM contrast.
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Figure S.11: Colorized monoexponentialT
2

ML estimates from pairs of (top) multi-exponential simulated
and (bottom) in vivo SE datasets. Columns denote SE dataset echo times. Fig. S.12b provides identical
grayscale images. Colorbar ranges are in milliseconds.

Table S.4 summarizes bTML

2

sample means and sample standard deviations (computed within WM/GM
ROIs depicted in Fig. 2) from in vivo SE scan profiles. Single-component bTML

2

estimates depend on
SE echo times more significantly in WM than in GM. Comparing with Table IV, trends suggest that
disagreement in bTML

2

estimates across scan profiles may in part be attributable to the substantial differences
of acquisition parameters (e.g. echo time) used in different pulse sequences.
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