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Abstract—Undersampling is an effective method for reducing
scan acquisition time for MRI. Strategies for accelerated MRI,
such as parallel MRI and compressed sensing MRI present chal-
lenging image reconstruction problems with nondifferentiable cost
functions and computationally demanding operations. Variable
splitting (VS) can simplify implementation of difficult image recon-
struction problems, such as the combination of parallel MRI and
compressed sensing, CS-SENSE-MRI. Combined with augmented
Lagrangian (AL) and alternating minimization strategies, variable
splitting can yield iterative minimization algorithms with simpler
auxiliary variable updates. However, arbitrary variable splitting
schemes are not guaranteed to converge. Many variable splitting
strategies are combined with periodic boundary conditions. The
resultant circulant Hessians enable O(n log n) computation but
may compromise image accuracy at the spatial boundaries. We
propose two methods for CS-SENSE-MRI that use regularization
with nonperiodic boundary conditions to prevent wrap-around ar-
tifacts. Each algorithm computes one of the resulting variable up-
dates efficiently in O(n) time using a parallelizable tridiagonal
solver. AL-tridiag is a VS method designed to enable efficient com-
putation for nonperiodic boundary conditions. Another proposed
algorithm, ADMM-tridiag, uses a similar VS scheme but also en-
sures convergence to a minimizer of the proposed cost function
using the alternating direction method of multipliers (ADMM).
AL-tridiag and ADMM-tridiag show speeds competitive with pre-
vious VS CS-SENSE-MRI reconstruction algorithm AL-P2. We
also apply the tridiagonal VS approach to a simple image inpainting
problem.

Index Terms—Alternating direction method of multipliers
(ADMM), augmented Lagrangian (AL), denoising, inpainting, Im-
age reconstruction, non-periodic boundaries, parallel magnetic
resonance imaging (MRI), tridiagonal solvers, variable splitting.

I. INTRODUCTION

ACCELERATED scan time benefits many applications of
Magnetic Resonance Imaging (MRI), reducing cost and

motion blurring. A popular strategy for reducing scan time is to
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acquire fewer k-space samples. To compensate for the reduced
sampling, parallel MRI and Compressed Sensing (CS) are often
used. SENSitivity Encoded (SENSE) MRI is a popular frame-
work for parallel MRI [1]. By simultaneously acquiring data
from multiple receive coils with spatially varying sensitivities,
more data can be collected without additional scan time. SENSE
can be combined with CS-inspired techniques to further reduce
acquisition time [2]. Irregular undersampling patterns enable
higher acceleration but require iterative model-based image re-
construction.

CS MRI reconstructs images assuming image sparsity in some
transform domain. To balance adherence of the estimated image
to the noisy, undersampled data with the prior assumption of
sparsity, we seek to minimize a cost function that describes
both. These methods employ regularization with �1 norms that
promote sparsity but also present computational challenges.

Variable splitting (VS) [3]–[5] is a versatile optimization ap-
proach for these cost functions. VS decouples a costly nonlinear
optimization into simpler problems via the augmented La-
grangian (AL) framework. VS converts the original cost function
into a constrained cost function involving additional auxiliary
variables updated with alternating minimization. The AL-P2
algorithm proposed in [4] demonstrated that VS combined with
AL can yield significant speed gains over conjugate gradients
(CG) and monotone fast iterative shrinkage-thresholding al-
gorithm (MFISTA) [6] for CS-SENSE-MRI. However, AL-P2
lacks a convergence guarantee and uses periodic boundary con-
ditions when applying sparsifying transforms. This assumption
leads to a circulant Hessian and an O(n log n) FFT-based so-
lution for one of the inner problems, where n is the number of
pixels.

The use of periodic boundary conditions is not reasonable
for reconstructing 2D axial slices of the brain, when it is sur-
rounded by air at all boundaries. However, when reconstructing
an entire 3D volume, it could be undesirable to impose pe-
riodic boundary conditions across the top and bottom slices.
Non-periodic boundary conditions are also useful in dynamic
imaging with acyclic temporal behavior. For example, Dynamic
Contrast Enhanced (DCE) images differ significantly in the final
frame compared to the initial frame.

Here we present two related variable splitting methods for CS-
SENSE-MRI: ADMM-tridiag and AL-tridiag. ADMM-tridiag
leverages [7] to ensure convergence. Both proposed algorithms
use a regularizer with non-periodic boundary conditions to more
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accurately reflect the reality of the unknown image. Both algo-
rithms incorporate parallelizable tridiagonal solvers that effi-
ciently handle the non-periodic boundary conditions with O(n)
operations. We present numerical results with real in vivo data
to demonstrate the efficacy of the proposed methods.

We also apply the principles to describe novel VS algorithms
for the simpler “special case” of image inpainting using regu-
larization based on a combination of wavelets and anisotropic
total variation (TV) with non-periodic boundary conditions.

II. PROBLEM FORMULATION

The analysis formulation often used for SENSE MRI re-
construction estimates the unknown image, x̂, by seeking
the minimizer of a cost function consisting of a datafit term
plus a regularizer. Regularization is particularly important for
undersampled problems.

Many regularizers have been used for SENSE MRI recon-
struction. For CS-SENSE-MRI, sparsifying transforms such as
wavelets and first-order finite differences are often used with an
�1 norm to promote sparsity [2]. This paper focuses on Cartesian
SENSE reconstruction with regularizers having non-periodic
boundary conditions.

Let Nc denote the number of sensitivity coils, Ns the number
of samples received from each coil, and Nr = NxNy the number
of pixels in the latent image x. We formulate regularized SENSE
reconstruction as the following optimization problem:

x̂ = argmin
x

1

2
‖y − FSx‖2

2 + λ ‖CHx‖1 + λ ‖CVx‖1 (1)

where y ∈ CNc Ns is the undersampled k-space data from all
coils, F ∈ CNc Ns ×Nc Nr is a block diagonal matrix consisting
of undersampled DFT matrices, S ∈ CNc Nr ×Nr is a stack of di-
agonal matrices containing the sensitivity maps, CH ∈ RNr ×Nr

and CV ∈ RNr ×Nr denote finite differences in the horizontal
and vertical directions (equivalent to anisotropic TV), and x̂
is the reconstructed image. The regularization parameter λ > 0
balances adherence to noisy data and prior assumptions that in-
form choice of regularizers. Section III-D extends (1) to include
discrete wavelet transforms. Although we focus on 2D imaging
for notational simplicity, the methods generalize readily to 3D
problems by adding another term to (1).

We choose CH and CV to have non-periodic boundary con-
ditions. This is in contrast to many proposed algorithms that
use finite differences with periodic boundary conditions, such
as AL-P2 [4], RecPF [8], and recMRI [9]. Periodic boundary
conditions have been used for computational convenience, de-
spite being physically unnatural. Non-periodic boundary condi-
tions are preferable in most applications [10]–[12]. Differences
across the boundaries of medical images do not provide useful
information for reconstruction. Furthermore, penalizing differ-
ences across spatial boundaries may degrade image quality when
the region of interest extends to the boundary. For example, a
coronal abdominal image depicts different anatomy at the top
and bottom boundaries. Thus this paper focuses on developing
methods that are fast yet suitable for non-periodic boundary
conditions.

III. VARIABLE SPLITTING METHODS

The non-differentiable �1 norms make (1) a challenging opti-
mization problem. Variable splitting methods like [4], [13], [14]
are useful for such problems. Here, we reformulate (1) in an
equivalent constrained form using the following novel variable
splitting scheme:

û = argmin
u

f (u) (2)

f (u) =
1

2
‖y − Fu2‖2 + λ ‖u0‖1 + λ ‖u1‖1

s.t. u0 = CHx, u1 = CVu3 ,

u2 =
1

2
Su3 +

1

2
Sx, u3 = x. (3)

For convenience, we group x and the auxiliary variables
u0 , . . . , u3 into one column vector: u � (u0 , u1 , u2 , u3 , x).

This variable splitting scheme intentionally separates the hor-
izontal and vertical finite differences operators, applying them
to different auxiliary variables. This separates the tridiagonal
structures in the Hessians resulting from AL, permitting de-
coupled, computationally efficient variable updates further de-
tailed in Section III-C. If the finite difference matrices were
combined in the same auxiliary variable as in AL-P2 [4], the re-
sulting Hessians would have a block-tridiagonal with tridiagonal
blocks (BTTB) structure that cannot take advantage of an O(Nr )
tridiagonal solver.

A. Direct AL Approach: AL-Tridiag

Here we detail the algorithm resulting from directly apply-
ing AL with alternating minimization to (2). The resulting
algorithm, AL-tridiag, does not satisfy the sufficient conditions
for convergence in [7], so currently it lacks convergence guaran-
tees. However, it has worked well in all of our experiments, so
it is possible that future generalized convergence proofs could
be applicable.

We rewrite constrained cost function (2) with a matrix con-
straint as follows:

min
u

f(u) s.t. Pu = 0 (4)

P �

⎡
⎢⎢⎢⎢⎢⎣

−INr
0 0 0 CH

0 −INr
0 CV 0

0 0 −INr Nc

1

2
S

1

2
S

0 0 0 −INr
INr

⎤
⎥⎥⎥⎥⎥⎦

.

The constraint Pu = 0 enforces (3). The augmented Lagrangian
corresponding to (4) is:

L
(
u, η;M

)
= f (u) +

1

2

∥∥Pu − η
∥∥2

M
. (5)

This formulation introduces dual variables, stacked in a vector:
η � (η0 , . . . , η3) ∈ C(3+N c )Nr . Matrix M is a positive definite
diagonal matrix, consisting of user-selected AL penalty param-
eters. The diagonal block corresponding to the ith segment of u
is denoted Mi . The choice of M does not affect the final solu-
tion of (5), but it can affect the convergence rate of the resulting
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algorithm. For many multiplier methods, using positive penalty
parameters guarantees convergence to the solution of the origi-
nal problem that does not involve the penalty parameters [15].
Section III-G discusses heuristics for selecting M.

Ideally, an AL method would update block variables u and η
at iteration n + 1 as follows:

u(n+1) = argmin
u

L
(
u, η(n)

)
(6)

η(n+1) = η(n) − Pu(n+1) . (7)

Our proposed AL-tridiag algorithm uses alternating mini-
mization across u0 , . . . , u3 , x to descend the AL term in (6).
Section III-C and the supplement describe the u variable up-
dates in more detail. Due to the variable splitting design of (3),
each variable update has a direct, closed-form solution with
an efficient implementation, e.g., by FFTs or a parallelizable
tridiagonal solver.

B. ADMM Equivalence for ADMM-Tridiag

To design a minimization algorithm with convergence guar-
antees, we reformulate (2) as an instance of the generalized Al-
ternating Direction Method of Multipliers (ADMM) [7], [16].
This formulation allows us to invoke the convergence proof in
[7] for our second proposed algorithm, ADMM-tridiag.

We first express the matrix constraint P in (4) as a product of
two matrices, P = BA, and incorporate the left matrix B into
the following convex cost function:

min
u,v

f(u) + g(v) s.t. Au = v (8)

g(v) =

{
0, Bv = 0

+∞, Bv �= 0.
(9)

For (8) to satisfy the sufficient conditions for convergence
of ADMM in [7], A must have full rank. For our proposed
algorithm, ADMM-tridiag, we design B and A as follows:

BAu = 0

B �

⎡
⎢⎢⎣

INr
0 0 0 0

0 INr
0 0 0

0 0 INr Nc
0 0

0 0 0 INr
INr

⎤
⎥⎥⎦

A �

⎡
⎢⎢⎢⎢⎢⎢⎣

−INr
0 0 0 CH

0 −INr
0 CV 0

0 0 −INr Nc

1

2
S

1

2
S

0 0 0 −INr
0

0 0 0 0 INr

⎤
⎥⎥⎥⎥⎥⎥⎦

. (10)

For convenience, we describe v in terms of its block ele-
ments: v � (v0 , · · · , v4). The full rank of A, combined with
the following alternating minimization framework, satisfies the
convergence conditions for ADMM [7]. Thus, (8)–(10) de-
scribe an instance of ADMM and guarantees convergence to
a minimizer of (8). To handle the constraints of (8), ADMM-
tridiag uses the following augmented Lagrangian, similar to

Section III-A:

L
(
u, v, η;M

)
= f(u) + g(v) +

1

2

∥∥Au − v − η
∥∥2

M
. (11)

The dual variables η � (η0 , . . . , η4) ∈ CN r (4+N c ) have an
additional block-element compared to the AL case. For con-
venience, we reuse the notation for the dual variables for both
algorithms. The matrix M for ADMM-tridiag is also larger than
in the AL case, consisting of blocks {Mi}i=0,...,4 .

Following [15], [7], ADMM-tridiag alternates between updat-
ing u, v, and the dual variables η. Examining the v update and
recalling (9), we see that the role of v simplifies greatly by con-
sidering the feasible set of v, Ω � {v ∈ C(4+N c )N r : Bv = 0},
resulting in the following alternating updates:

u(n+1) ≈
εn

argmin
u

f (u) +
1

2

∥∥∥Au − v(n) − η(n)
∥∥∥

2

M
(12)

v(n+1) ≈
ζn

argmin
v∈Ω

1

2

∥∥∥Au(n+1) − v − η(n)
∥∥∥

2

M
(13)

η(n+1) = η(n) −
(
Au(n+1) − v(n+1)

)
. (14)

Here, we allow for some inexactness in the updates of u and
v at each iteration, {εn} and {ζn}, respectively. ADMM con-
vergence holds if the inexactness sequences are summable [3,
Theorem 8] [7, Theorem 2.1].

The update for v is simple and exact to machine precision. Due
to the simple structure of B, we have v0 , v1 , v2 = 0 and v4 =
−v3 . The entire update for v reduces to a quadratic minimization
problem for the auxiliary variable v3 of size Nr with simple,
closed-form solution:

v
(n+1)
3 = (M3 + M4)

−1

[
M3

(
−u

(n+1)
3 − η

(n)
3

)

+ M4

(
−x(n+1) + η

(n)
4

)]
. (15)

For the joint minimization of u in (12), ADMM-tridiag employs
alternating minimization, as detailed in Section III-C. If one
round of alternating minimization sufficiently approximates the
joint minimizer of (12), the iterates of ADMM-tridiag, {x(n)},
converge to a minimizer of (1), per [7]. This alternating mini-
mization approach is common in other ADMM methods, such
as [10], [12].

Compared to AL-tridiag in Section III-A, the direct AL ap-
proach to (3), ADMM-tridiag involves one additional variable
split. An alternative way to understand the effect of (10) is to
describe this ADMM algorithm as the result of applying AL to
the following variable splitting scheme for (1):

min
u

1

2
‖y − Fu2‖2 + λ ‖u0‖1 + λ ‖u1‖1 (16)

s.t. u0 = CHx, u2 =
1

2
Su3 +

1

2
Sx,

u1 = CVu3 , u3 = −v3 , v3 = −x (17)

This formulation indirectly enforces u3 = x through additional
auxiliary variable v3 . However, written in this form it is less
clear that the full-rank condition of [7] is satisfied, whereas that
is clear in (8)–(10).
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C. Variable Updates With Parallelizable Tridiagonal Solvers

This section describes the block-variable updates for alternat-
ing minimization of (12). These variable updates are very similar
for both proposed methods, AL-tridiag and ADMM-tridiag, dif-
fering only in tuning parameter indices and use of v and η on
the right-hand side of these updates. For brevity, we give only
the alternating minimization updates for ADMM-tridiag in (12).
The variable updates for AL-tridiag in (6) are very similar as
shown in Algorithm 2 of the Supplement.1

First, we consider the special case where some blocks of
M are constant diagonal matrices. We leave M3 and M4 as
general positive definite diagonal matrices for reasons explained
in Section III-G. Letting Mi � μiI, μi > 0 for i = 0, 1, 2 and
leveraging the constraint that v4 = −v3 , (12) expands to:

u(n+1) = argmin
x,u0 ,...,u3

1

2
‖y − Fu2‖2 + λ ‖u0‖1 + λ ‖u1‖1

+
μ0

2

∥∥∥−u0 + CHx − η
(n)
0

∥∥∥
2

+
μ1

2

∥∥∥−u1 + CVu3 − η
(n)
1

∥∥∥
2

+
μ2

2

∥∥∥∥−u2 +
1

2
Su3 +

1

2
Sx − η

(n)
2

∥∥∥∥
2

+
1

2

∥∥∥−u3 − v
(n)
3 − η

(n)
3

∥∥∥
2

M 3

+
1

2

∥∥∥x + v
(n)
3 − η

(n)
4

∥∥∥
2

M 4

. (18)

ADMM-tridiag uses alternating minimization to update the
blocks of u. The resulting variable updates are:

u
(n+1)
0 = soft

(
CHx(n) − η

(n)
0 ,

λ

μ0

)
(19)

u
(n+1)
1 = soft

(
CVu

(n)
3 − η

(n)
1 ,

λ

μ1

)
(20)

u
(n+1)
2 = H−1

2

(
F′y + μ2

(
1

2
Su

(n)
3 +

1

2
Sx(n) − η

(n)
2

))
(21)

u
(n+1)
3 = H−1

3

(
μ1C

′
V

(
u

(n+1)
1 + η

(n)
1

)

+
μ2

2
S′
(

u
(n+1)
2 − 1

2
Sx(n) + η

(n)
2

)

+ M3

(
−v

(n)
3 − η

(n)
3

))
(22)

x(n+1) = H−1
x

(
μ0C

′
H

(
u

(n+1)
0 + η

(n)
0

)

+
μ2

2
S′
(

u
(n+1)
2 − 1

2
Su

(n+1)
3 + η

(n)
2

)

+ M4

(
−v

(n)
3 + η

(n)
4

))
. (23)

1Supplementary material available in the supplementary files/multimedia tab.

Algorithm 1: ADMM-Tridiag.
1: Initialize x to square root of sum-of-squares (SoS) of

zero-filled iFFT images.
2: Initialize u0 = CHx, u1 = CVu3 , u3 = x,

u2 = 1
2 Su3 + 1

2 Sx, v3 = −x, η = 0
3: for n ≤ total iterations do
4: Compute u

(n+1)
0 via soft-thresholding (19)

5: Compute u
(n+1)
1 via soft-thresholding (20)

6: Compute u
(n+1)
2 via FFTs (21)

7: Compute u
(n+1)
3 via tridiagonal solver (22)

8: Compute x(n+1) via tridiagonal solver (23)
9: Compute v

(n+1)
3 via (15)

10: Compute η(n+1) via (14)
11: end for

The soft-thresholding operator performs element-wise
shrinkage for the �1 norm using a given threshold τ : soft(x, τ) �
sign(x)max (|x| − τ, 0). Thus, (19) and (20) provide sim-
ple, direct solutions for updating u0 and u1 . The bulk of the
computation is “inverting” the following Hessians:

H2 � F′F + μ2I = Q (ΛF + μ2I)Q
′ (24)

H3 � μ1C
′
VCV +

μ2

4
S′S + M3 (25)

Hx � μ0C
′
HCH +

μ2

4
S′S + M4 . (26)

Due to Cartesian undersampling, H2 is diagonalizable via Nc

FFTs, each of which operate efficiently in O(Nr log Nr ) time.
The multi-coil FFT operator is denoted Q. The x update in (23)
uses Hx in (26), a block diagonal matrix with tridiagonal blocks
(BDTB) that can be “inverted” in O(Nr ) time via Gaussian
elimination. Because it is block diagonal, we parallelize this
variable update over the Ny independent blocks. We reformulate
the u3 update as another instance of the same BDTB inverse
problem through permutation and solve (22) using a tridiagonal
solver parallelized over Nx blocks. Each variable update is exact
and easy to implement.

We designed the proposed variable splitting in (2) to enable
these efficient variable updates. The separation of horizontal
and vertical finite differences into u0 and u1 allows for BDTB
structures in H3 and Hx . If the finite difference matrices were
combined in the same auxiliary variable as in AL-P2 [4], the
resulting Hessian would have a block-tridiagonal with tridiago-
nal blocks (BTTB) structure and the associated variable update
would require a more computationally costly solution [17], [18].

Algorithm 1 summarizes the overall procedure for ADMM-
tridiag. All of the variable updates are done in place, so the
memory requirements for storing x, u0 , . . . , u3 , v3 , and η are
8Nr(4 + Nc) bytes for Nr(4 + Nc) complex single-precision
values. For AL-tridiag, the u updates are very similar.

D. Regularization With Finite Differences and Wavelets

The variable splitting scheme in (17) readily generalizes
to combinations of finite difference and orthonormal wavelet
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regularization. Let W be an orthonormal wavelet transform
(e.g., Haar wavelets). Then the following combined TV / wavelet
sparsity cost-function can be manipulated to resemble (1):

1

2
‖y − FSx‖2

2 + λ1 ‖CHx‖1

+ λ1 ‖CVx‖1 + λ2 ‖Wx‖1 (27)

=
1

2
‖y − FSx‖2

2 + λ1

∥∥∥C̃Hx
∥∥∥

1
+ λ1

∥∥∥C̃Vx
∥∥∥

1
(28)

C̃H �

⎡
⎣

CH

αw λ2

λ1
W

⎤
⎦ ; C̃V �

⎡
⎣

CV

(1 − αw ) λ2

λ1
W

⎤
⎦ . (29)

An additional spatial regularization parameter, λ2 , controls
the weight of the wavelet regularization. Due to the orthonor-
mality of W, we can use this regularizer for both AL-tridiag
and ADMM-tridiag, with only minor changes to variable up-
dates (19)–(23). For ADMM-tridiag, the only Hessians affected
by introducing wavelets are:

H̃3 � μ1C
′
VCV +

μ2

4
S′S + M̃3 (30)

H̃x � μ0C
′
HCH +

μ2

4
S′S + M̃4 , (31)

with positive definite matrices M̃3 = M3 +
(1−αw )2

λ2
2

λ2
1

I and

M̃4 = M4 +
α2

w λ2
2

λ2
1

I. Hessians H̃3 and H̃x are still BDTB, and
they can be “inverted” efficiently with a parallelizable tridiag-
onal solver routine. This wavelet-inclusive variation is featured
in experimental results in Section IV-C.

E. Special Case: Image Inpainting

To highlight the value of non-periodic boundary conditions,
we examine a specific application of the proposed variable split-
ting scheme in (2), namely inpainting. Image inpainting fills in
image data that is lost or corrupted. Many image inpainting,
deblurring, and denoising methods use finite difference regular-
izers like anisotropic total variation (TV) [11], [19], [20].

Let D be a binary, diagonal matrix whose nonzero entries de-
note the set of indices in the inpainting domain. Setting FS = D
in the CS-SENSE-MRI cost function (1) leads to the following
simpler image inpainting problem:

x̂ = argmin
x

1

2
‖y − Dx‖2

2 + λ

∥∥∥C̃Hx
∥∥∥

1
+ λ

∥∥∥C̃Vx
∥∥∥

1
, (32)

where C̃H and C̃V are defined in (29).
For inpainting, we simplify the VS scheme developed for

SENSE MRI in (2) to:

û = argmin
u

f (u) (33)

f (u) =
1

2

∥∥∥∥y − D

(
1

2
u2 +

1

2
x

)∥∥∥∥
2

+ λ ‖u0‖1 + λ ‖u1‖1

s.t. u0 = C̃Hx, u1 = C̃Vu2 , u2 = x.

The resulting VS algorithm is a simplification of AL-
tridiag, which we denote AL-tridiag-inpaint. Due to the entirely

diagonal system matrix, the variable updates consist only
of shrinkage and tridiagonal solver updates, eliminating the
need for any FFT-based updates. Similarly, we can general-
ize ADMM-tridiag to the inpainting problem by applying an
extra variable splitting, resulting in an additional quadratic min-
imization problem in each iteration. Section IV-C illustrates the
effect of non-periodic boundary conditions for noisy inpainting.

F. Comparison With AL-P2

We compare ADMM-tridiag with AL-P2 [4], a fast VS
scheme designed for CS-SENSE-MRI. The original AL-P2 ver-
sion in [4] used periodic boundary conditions, whereas here we
modify it for the non-periodic conditions of (1) and call the
modified algorithm AL-P2-NC. The suffix “NC” refers to the
non-circulant Hessian we describe in this section. To define AL-
P2-NC, we stack the finite difference matrices into a tall matrix,
R � [CH;CV ]. Applying the AL-P2 variable splitting scheme
to (1) yields the following constrained cost function:

min
x,u,v ,z

‖y − Fu‖2 + λ ‖v‖1 (34)

s.t. u = Sx, v = Ru, z = x. (35)

Applying the augmented Lagrangian to the constrained cost
function (34) and using alternating minimization results in
variable updates like in [4]:

x(n+1) = H−1
x

(
F′y + μu

(
Sx(n) + ηu

(n)
))

(36)

u(n+1) = H−1
u

(
μuS

′
(
u(n) − ηu

(n)
)

+ μz

(
z(n) − ηz

(n)
))

(37)

v(n+1) = soft

(
Rz(n) + ηv

(n) ,
λ

μu

)
(38)

z(n+1) = H−1
z

(
μvR

′
(
v(n+1) − ηv

(n)
)

+ μz

(
x(n+1) + ηz

(n)
))

. (39)

The scalar AL penalty parameters, μu , μv , μz > 0, do not affect
the final solution but do affect convergence rate. The Hessians
for x and u are simple to invert and are the same as in ADMM-
tridiag:

Hx = μuS
′S + μz I (40)

Hu = F′F + μuI = Q (ΛF + μuI)Q
′. (41)

The Hessian Hz for the z update is BTTB (non-circulant) as
follows:

Hz = μvR
′R + μz I, (42)

for which there is no O (Nr) solver. To “invert” Hz for (39) we
applied one iteration of preconditioned gradient descent with a
circulant preconditioner. The resulting computation per iteration
is essentially identical to that of the original AL-P2 with periodic
boundary conditions in [4].

fessler
Highlight
z

fessler
Sticky Note
The parenthesized terms after the H matrices should be switched between
(36) and (37)
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G. Parameter Selection

For all of the experiments shown in Section IV and in the
supplement, we manually chose the spatial regularization pa-
rameter, λ, so that the converged image x(∞) resembled the true
image (for inpainting and CS-SENSE-MRI simulations in the
supplement) or the fully-sampled body coil image (for in vivo
data).

As with other AL algorithms, the tuning parameters
M0 , . . . ,M4 	 0 do not affect the solution x̂, but they can
greatly affect the convergence rate. To facilitate comparison
with AL-P2-NC, we chose the AL tuning parameters of AL-P2-
NC based on the guidelines provided in [4, Eqns. (40)–(41)] as
follows:

κ (Hu) = 24; κ (Hz) = 12;

κ (Hx) = 0.9κ(S′S). (43)

For consistency, we selected the AL tuning parameters of AL-
tridiag and ADMM-tridiag with a similar heuristic strategy. For
the Hessian of the multi-coil FFT step (21) we selected its as-
sociated parameter, μ2 , such that κ (H2) = 24, exactly as in
AL-P2. Our proposed variable splitting (2) results in Hessians
in which the regularizer is combined with the sensitivity en-
coding, so the remaining AL-P2 tuning rules are inapplicable.
Instead, we selected the remaining tuning parameters (μ0 , μ1 ,
M3 , and M4) to enforce κ (H3) = κ (Hx) = 12. Because our
remaining Hessians H3 and Hx partially consist of C′

VCV and
C′

HCH , respectively, we choose to enforce the condition num-
ber of 12 used for Hz of AL-P2, which is characterized by
the periodic boundary finite differences. We choose to apply
this heuristic over the alternative guideline based on κ(S′S) be-
cause our choices of M3 and M4 in (49)–(50) below make H3

and Hx approximately circulant, but far from diagonal.
First we chose the parameters that interact with the threshold-

ing steps, μ0 and μ1 , based on the maximum value of the initial
image, xmax , and spatial regularization parameter, λ:

μ0 = μ1 =
λ

0.02 xmax
. (44)

This sets the threshold of the shrinkage step in (19) and (20) at
2% of the maximum initial image value. This threshold worked
well for the noise level of the following simulated and in vivo
experiments. Recalling the BDTB structures of H3 (25) and
Hx (26), we designed M3 and M4 to enforce the following
conditions for scalar c3 , c4 > 0:

c3I =
μ2

4
S′S + M3 (45)

c4I =
μ2

4
S′S + M4 . (46)

The constant diagonal term results from allowing a spatially
varying M3 and M4 . Therefore, M3 is higher in regions where
the sum-of-squares (SoS) of the sensitivity maps is low and
vice versa. Intuitively this results in stronger enforcement of
the u3 = −v3 and x = −v3 constraints in spatial regions where
the u2 = 1

2 Su3 + 1
2 Sx constraint provides less information. We

use [21] for an analytical solution for maximum and minimum

Fig. 1. Retrospective Poisson-disk-based undersampling pattern used for in
vivo experiments, with reduction factor of 6 and fully sampled central 16 × 16
phase-encodes.

eigenvalues of C′
HCH and C′

VCV . Due to (45)–(46), H3 and
Hx are approximately circulant, and eigenvalue analysis of H3

and Hx becomes simple:

κ (H3) =
μ1λmax (C′

VCV) + c3

μ1λmin (C′
VCV) + c3

(47)

κ (Hx) =
μ0λmax (C′

HCH) + c4

μ0λmin (C′
HCH) + c4

. (48)

Let ĉ3 and ĉx be the respective solutions for (47) and (48) for
κ (H3) = κ (Hx) = 12. Then the values for M3 and M4 are as
follows:

M3 � max
(
ĉ3I − μ2

4
S′S, 10−3

)
(49)

M4 � max
(
ĉ4I − μ2

4
S′S, 10−3

)
. (50)

This choice of M3 and M4 is informed by the thresholding lev-
els through (44) but also enforces the positive-definite condition
for M3 and M4 . We selected AL-tridiag parameters using the
same procedure.

IV. RESULTS

A. in vivo Experiment Setup

Following [4], we used a 3D in-vivo volunteer data set ac-
quired from a GE 3T scanner (TR = 25 ms, TE = 5.172 ms,
voxel size = 1 ×1.35× 1 mm3) with an 8-channel head coil.
A corresponding body coil dataset was also acquired for sensi-
tivity map estimation and image quality comparison. The fully-
sampled data was 256 × 144 with 128 samples in the read-out
direction along z. We performed the proposed reconstruction
algorithms for two 2D axial slices from retrospectively under-
sampled data. To promote FFT efficiency, we resampled the data
to correspond to an image size of 256 × 128. Fig. 1 shows the
Poisson-disk-based undersampling pattern (reduction factor 6)
in the kx -ky phase-encode plane that included the central 16 ×
16 phase-encodes, pictured in Fig. 1. This sampling corresponds
to one slice of a 3D acquisition with frequency encoding in kz .

We used the central 16 × 16 phase-encodes to generate low
resolution images that were then used with the body coil image
to estimate smooth sensitivity maps [12], shown in Fig. 9 of
the Supplement. The sensitivity values in the air regions were
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Fig. 2. Axial slice 38 of volunteer data (a) square root of sum-of-squares of the zero-filled iFFT coil images, used as an initial estimate for all algorithms; (b)
separately acquired body coil image; (c) x(∞) calculated by MFISTA; (d) difference between body coil image and x(∞) .

Fig. 3. Axial slice 90 of volunteer data (a) square root of sum-of-squares of the zero-filled iFFT coil images, used as an initial estimate for all algorithms; (b)
separately acquired body coil image; (c) x(∞) calculated by MFISTA; (d) difference between body coil image and x(∞) .

truncated in magnitude to control the maximum value in the
sum-of-squares of the sensitivity maps and aid in tuning AL
penalty parameters.

Computation was done on a Genuine Intel Xeon CPU E5-
2680 with a 2.8 GHz 20 core machine with hyper-threading. The
operating system was 64-bit Red Hat 6.7 running gcc version
4.4.7. All algorithms were implemented in Matlab version 8.6
using the image reconstruction toolbox [22], and all algorithms
operated on single precision data. We performed parallelization
of variable updates in (22) and (23) with a Pthreaded MEX
function. The Pthreaded MEX function performed blockwise
Gaussian elimination in parallel across each of the tridiagonal
blocks of H3 and Hx . We allocated 20 Pthreads for these oper-
ations.

The initial estimate for axial slice 38 was the square-root of
the sum-of-squares of the zero-filled iFFT coil images, shown
in Fig. 2. Fig. 2 also shows the qualitative similarity between the
separately acquired body coil image and the MFISTA solution
of (1).

We repeated the experiment with axial slice 90 from the same
in vivo dataset and using the same sampling pattern. The sensi-
tivity maps estimated for this axial slice are shown in Fig. 9 of

the supplement. Fig. 3 shows the initial sum-of-squares estimate,
the separately acquired body coil image, and MFISTA solution,
and the difference between the body coil and MFISTA solution.
For both slice 38 and 90, the converged MFISTA solution shows
lower noise than the body coil image.

For both slice 38 and 90, both proposed algorithms reached
the solution x(∞) (to within machine precision), shown in
Figs. 2(c) and 3(c). For brevity, Figs. 2(c) and 3(c) do not
include x(∞) for AL-tridiag or ADMM-tridiag, because they
are visually indistinguishable from the MFISTA solution. The
solutions x(∞) were also visually similar to the fully sampled
SENSE reconstruction without regularization, x̂SENSE . Image
comparisons are presented in the supplement.

B. Computation Speed Results for in vivo MRI Data

We quantified the convergence rate of these algorithms using
the normalized root mean squared distance (NRMSD) between a
given iterate x(n) and the converged solution, x(∞) , in decibels:

NRMSD � 20 log10

(∥∥x(n) − x(∞)
∥∥

2∥∥x(∞)
∥∥

2

)
(51)
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Fig. 4. Axial slice 38: (a, b) NRMSD comparison of AL-tridiag, ADMM-tridiag, MFISTA, and AL-P2-NC to x(∞) ; (c, d) NRMSE comparison of AL-tridiag,
ADMM-tridiag, MFISTA, and AL-P2-NC to fully sampled SENSE reconstruction.

Fig. 5. Axial slice 90: (a, b) NRMSD comparison of AL-tridiag, ADMM-tridiag, MFISTA, and AL-P2-NC to x(∞) ; (c, d) NRMSE comparison of AL-tridiag,
ADMM-tridiag, MFISTA, and AL-P2-NC to fully sampled SENSE reconstruction.

To generate the solution, x(∞) , we ran MFISTA for 50000
outer iterations with 5 inner NCG iterations. We also calculated
the normalized root mean squared error (NRMSE) between a
given iterate x(n) and the fully-sampled SENSE reconstruction,
x̂SENSE , computed without any regularization.

For computation speed, we measured the wall time of each
algorithm. For the AL and ADMM algorithms, we omitted time
spent tuning AL penalty parameters and compiling Pthreaded
MEX functions. The MFISTA method requires precomputation
of the maximum eigenvalue of S′F′FS via power iteration,
which took approximately 4.3 seconds for in vivo experiments,
whereas all the VS methods avoid this overhead. Computation
time excludes time spent computing this maximum eigenvalue.
For all algorithms, we omitted the time spent computing the
initial sum-of-squares estimate.

As demonstrated in Fig. 4, MFISTA is costlier per iteration
than the proposed methods and AL-P2-NC. AL-tridiag con-
verges slightly faster than ADMM-tridiag due to having fewer
auxiliary and dual variables to update. AL-P2-NC converged
the fastest for this slice.

Fig. 5 shows that axial slice 90 presented a change in relative
computation speed toward x(∞) : AL-tridiag and ADMM-tridiag
converge faster than AL-P2-NC down to -65 dB NRMSD and
up to 500 iterations. In the simulation results shown in the sup-
plement, ADMM-tridiag also converged faster than AL-P2-NC
in the early iterations. Overall, the speed of ADMM-tridiag is
generally comparable to that of AL-P2-NC. For all AL/ADMM
methods, the convergence rate depends on parameter selection;
the heuristics used for parameter design in [4] may perform bet-
ter under some conditions than others. One possible reason for

the difference in relative convergence speeds in experiments for
slice 38 and slice 90 is the smaller anatomical support in slice
90. Due to the head coil geometry, the smaller head circumfer-
ence at slice 90 results in a lower signals from the surface coils,
which may present a more difficult reconstruction problem.

For these axial slices, we also examined the NRMSE be-
tween iterates x(n) and the fully sampled SENSE reconstruction
x̂SENSE without regularization. AL-tridiag and ADMM-tridiag
reach the minimum NRMSE after similar amounts of computa-
tion as AL-P2-NC, approximately 4 seconds and 60 iterations.
By this metric, MFISTA performs slightly worse as a function of
computation time and iterations, and would be far worse when
one accounts for the overhead of running the power iteration to
find the maximum eigenvalue of S′F′FS.

C. Image Inpainting

This section illustrates the benefits of non-periodic boundary
conditions and the proposed variable splitting scheme for an
inpainting problem. Unlike medical images that often have air at
one or more boundaries, natural scenes typically contain useful,
distinct information at the boundaries.

To test the effect of AL-tridiag-inpaint, we took a 432 × 540
digital photograph using a Samsung SM-G930V camera, ran-
domly discarded 75% of the pixels, and added white Gaussian
noise corresponding to 20 dB SNR to the remaining pixels. We
used 2D nearest neighbor interpolation to initialize the inpaint-
ing estimate, pictured in Fig. 6.

To demonstrate the ease with which the proposed formu-
lation accommodates orthonormal wavelets, we estimated the
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Fig. 6. Inpainting images (a) true image; (b) nearest neighbor interpolation of noisy, partial data (SNR = 20 dB, 75% discarded); (c) inpainting estimate using
finite differences with non-periodic boundary conditions and Haar wavelet regularization; (d) inpainting estimate using finite differences with periodic boundary
conditions and Haar wavelet regularization. xtrue .

Fig. 7. Absolute difference image between true image and inpainting reconstruction (×10) (a) using finite differences with non-periodic boundary conditions
and Haar wavelets (NRMSE = 0.153); (b) using finite differences with periodic boundary conditions and Haar wavelets (NRMSE = 0.155); (c) corner detail of
(a); (d) corner detail of (b).

inpainted image using AL-tridiag-inpaint with the modified reg-
ularization operators in (29). We selected regularization param-
eters λ1 and λ2 for good image reconstruction quality, and set
αw = 1 to limit additional memory usage. We also applied the
AL-P2 variable splitting scheme to the inpainting problem, us-
ing finite-differences with periodic boundary conditions and
Haar wavelets. We show the inpainting images estimated using
non-periodic boundary conditions in Fig. 6. All images are dis-
played on the same grayscale axis as the original image, unless
otherwise noted.

Fig. 7 shows the error between the inpainting estimates us-
ing non-periodic vs. periodic boundary conditions. The use of
periodic boundary conditions results in higher error near the
boundaries of the image.

We conducted the inpainting computational speed experi-
ments on the machine described in Section IV-A, and we com-
pute wall time using the same rules as in Section III-G, exclud-
ing time spent tuning AL parameters. We measure NRMSD
to the MFISTA solution, x(∞) , as a function of wall time. As
in the CS-SENSE-MRI experiments, we compare AL-tridiag-
inpaint to a variant of AL-P2 to better understand the effect of
the proposed variable splitting scheme. We apply the AL-P2
variable splitting scheme to the inpainting problem with non-
periodic boundary conditions (32), and we call the resulting AL
algorithm AL-P2-NC-inpaint. Similar to AL-P2-NC, it requires
an inner iterative variable update due to the non-circulant

Hessian. We solve this inner step using one iteration of pre-
conditioned gradient descent with a circulant preconditioner.

Supposing that boundary artifacts are a secondary concern
to computational speed, we also compare the speed of AL-
tridiag-inpaint to AL-P2-inpaint. AL-P2-inpaint is distinct from
AL-P2-NC-inpaint due to its cost function, which uses regular-
izers with periodic boundary conditions. AL-P2-inpaint is not
handicapped by an inner iterative update, because the circu-
lant Hessian can be diagonalized efficiently via FFTs. Though
AL-tridiag-inpaint must complete two tridiagonal solver vari-
able updates for each of AL-P2-inpaint’s FFT-based variable
updates, the O (n) runtime of the tridiagonal solver and the par-
allelized implementation result in comparably fast iterations for
AL-tridiag-inpaint. The average computation time for each it-
eration was 0.0543 seconds for AL-P2-inpaint, 0.1193 seconds
for AL-P2-NC-inpaint, 0.0583 seconds for AL-tridiag-inpaint,
and 0.0745 seconds for ADMM-tridiag-inpaint.

Fig. 8 also demonstrates convergence benefits of the proposed
variable splitting scheme. Both AL-tridiag-inpaint and ADMM-
tridiag-inpaint were able to reach the same x(∞) as MFISTA,
unlike AL-P2-NC.

V. DISCUSSION

The ADMM-tridiag algorithm provides a simple way to en-
sure convergence for variable splitting methods. By examining
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Fig. 8. NRMSD to x(∞) as a function of elapsed computational time for the
proposed inpainting algorithms, AL-tridiag-inpaint and ADMM-tridiag-inpaint,
compared with existing methods AL-P2-NC, and MFISTA.

the constraint matrix and designing B, we show equivalence
between the variable splitting scheme in (8) and ADMM. The
additional variable split and variable update led to paralleliz-
ability of two of the resulting variable updates. For applications
as sensitive as medical diagnosis, an algorithm with conver-
gence guarantees may be preferable to those having unknown
convergence properties.

Unlike AL-P2 [4], the proposed algorithm, ADMM-tridiag,
has a convergence guarantee and addresses non-periodic bound-
ary conditions, while demonstrating comparable computational
speed. Using heuristic parameter tuning based on condition
numbers of variable update Hessians, we demonstrated that the
speeds of AL-P2-NC and ADMM-tridiag are similar but can
vary depending on experimental conditions.

The proposed variable splitting scheme can be useful for a
variety of image processing problems, because many natural
scenes have non-zero values at the boundaries that do not relate
periodically to opposite boundaries. As shown in Section III-E,
the proposed method AL-tridiag is readily adapted to image
denoising and inpainting problems. Image deblurring is also a
good candidate for this proposed variable splitting. Separation
of horizontal and vertical differences has also been explored in
image segmentation [23]. For MRI reconstruction, the benefit
of non-periodic boundary conditions is evident for anatomy
that is not entirely surrounded by air. Additional simulation
experiments in the supplement illustrate the effect of periodic
boundary conditions in reconstructing a sagittal slice of the
brain.

To fully benefit from the max(Nx,Ny ) parallelizable tridiag-
onal updates of AL-tridiag and ADMM-tridiag, one should use
a highly parallel computing platform1, such as a GPU.

The algorithms proposed in this work have several limita-
tions. Though the proposed algorithms are designed to facilitate
fast computation, the convergence speed is highly dependent
on good penalty parameter choice. Though we present some
useful heuristics for choosing the AL convergence parame-
ters, the optimal procedure for designing these parameters is
a difficult analysis problem and still unknown. (For some sim-
pler ADMM methods, optimal parameter tuning has been ana-
lyzed [24].) Moreover, the complexity of convergence parameter

design increases with the number of variable splits, and this work
is built around an additional separation of horizontal and ver-
tical differences into distinct auxiliary variables. The increased
number of tuning parameters introduces another degree of free-
dom. Using non-scalar penalty parameter matrices M3 and M4

further increases the degrees of freedom compared to the simple
scalar choice used in most AL methods.

Though the proposed variable splitting scheme can be easily
extended to 3D reconstruction problems, this would require in-
troducing two additional variable splits, separating each of the
three finite difference directions and introducing a second aux-
iliary variable proxy for x. Though the corresponding variable
updates can be quickly computed with shrinkage and the par-
allelizable tridiagonal solver, this 3D variable splitting scheme
could further complicate penalty parameter analysis.

Finally, the variable splitting scheme at the center of the
proposed algorithms is applicable only for regularization with
first-order finite differences. Though Section III-D shows that
the formulation also accommodates orthonormal wavelet penal-
ties combined with finite differences, this variable splitting
scheme yields no benefit for other sparsity transforms, e.g.,
non-orthonormal wavelets and learned dictionaries.

VI. SUMMARY AND CONCLUSION

This work proposes a variable splitting algorithm for SENSE
MRI reconstruction, ADMM-tridiag. The proposed method of-
fers convergence guarantees and efficient variable updates for
non-periodic boundary conditions. ADMM-tridiag efficiently
handles the non-periodic boundary conditions by separating the
finite differences in the horizontal and vertical directions to
create easily solvable and parallelizable tridiagonal problems.
The method for inducing ADMM equivalence requires only one
additional variable split and variable update.

We also presented a simpler variation of this algorithm: AL-
tridiag. AL-tridiag was derived from the same variable splitting
scheme as ADMM-tridiag, but has a simpler update procedure,
resulting in a slight speed increase albeit without any conver-
gence guarantees. We showed a simple relationship between
AL-tridiag and ADMM-tridiag and compared their convergence
speeds to that of AL-P2-NC and MFISTA. Convergence speed
was evaluated in terms of distance to the solution of the proposed
cost function (1) as well as to the fully sampled SENSE recon-
struction. For retrospectively undersampled in vivo data, the pro-
posed algorithms demonstrated comparable convergence speed
and produced reconstructed images with good image quality.
AL-tridiag was also applied to a noisy image inpainting prob-
lem, demonstrating faster convergence speed than AL-P2-NC,
and improved image fidelity at the boundaries than AL-P2 with
periodic boundary conditions.

All of the proposed algorithms require selection of penalty
parameters. We use heuristics determined in [4] to select these
AL penalty parameters, although we exploited a more general
version of tuning parameters to enable computation of condition
numbers for tridiagonal Hessians. Using methods that adapt the
parameters as a function of iteration [25] might simplify and
accelerate AL methods.
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The supplement also describes a fully parallelizable variant
of ADMM-tridiag inspired by [16] that converged slower than
the proposed methods, as well as additional simulation results
and image quality comparisons.
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Efficient, Convergent SENSE MRI
Reconstruction for Non-Periodic Boundary

Conditions via Tridiagonal Solvers:
Supplementary Material

Mai Le, Student Member, IEEE, Jeffrey A. Fessler, Fellow, IEEE

In this supplementary material for [1], we elaborate on variable updates for AL-tridiag, propose an additional
convergent algorithm for SENSE reconstruction using tridiagonal solvers, called ADMM-FP-tridiag, like those
proposed in [1], and present additional experimental results. ADMM-FP-tridiag is a fully parallelizable variation of
ADMM-tridiag that is amenable to parallelization and has a stronger convergence guarantee because every update
is exact (to within computer precision) so no summability conditions are needed.

I. VARIABLE UPDATES FOR AL-TRIDIAG

Alternating minimization updates for u for ADMM-tridiag corresponding to (12) were presented in Section (III-C) of
[1]. Here we explicitly describe the alternating minimization updates for u in proposed algorithm AL-tridiag.

u
(n+1)
0 =soft

(
CHx

(n) − η(n)0 ,
λ

µ0

)
(54)

u
(n+1)
1 =soft

(
CVu

(n)
3 − η(n)1 ,

λ

µ1

)
(55)

u
(n+1)
2 =H−12

(
F′y + µ2

(
1

2
Su

(n)
3 +

1

2
Sx(n) − η(n)2

))
(56)

u
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)
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(
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2
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)
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(
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(57)
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(
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′
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(
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(n)
0 + η

(n)
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S′
(
u
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2 − 1

2
Su

(n+1)
3 ) + η

(n)
2

)
+ M3

(
u
(n)
3 + η

(n)
3

))
, (58)

where the Hessians H2 and H3 are the same as for ADMM-tridiag, defined in Equations (24)-(25). In AL-tridiag,
Hx , µ0C

′
HCH+ µ2

4 S′S+M3. The updates for u0, u1, and u2, (54)-(56) are identical to those in ADMM-tridiag.
The updates for u3 and x differ only in the rightmost term containing η3 and in the Hessian Hx.

In practice, the implementation differences between AL-tridiag and ADMM-tridiag are further diminished by
choosing the same Hx for both algorithms. Due to the parameter selection technique for ADMM-tridiag described
in (III-G), M3 = M4 for ADMM-tridiag, resulting in identical Hessians for both algorithms.

II. FULLY PARALLELIZED ADMM: ADMM-FP-TRIDIAG

In this supplementary material, we introduce another variation of ADMM-tridiag [1] that expands constraint matrix
P in (4) even further. ADMM-tridiag leverages [2] to ensure convergence via equivalence with the Alternating
Direction Method of Multipliers (ADMM). As discussed in (III-B), ADMM-tridiag relies on one cycle of alternating

M. Le and J. A. Fessler are with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI,
48109 USA (e-mail: {mtle, fessler} @umich.edu).
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minimization to solve the joint minimization problem in (12). Though this is a common approach in many ADMM
methods, we also investigate a fully parallelized alternative, called ADMM-FP-tridiag, which decomposes the
constraint matrix in such a way that the resulting joint minimization problem and the alternating minimization
approach are identical. This lessens the degree to which this update is inexact, but does not compensate for other
sources of inexact computation, such as machine precision. This algorithm is inspired by the fully parallelized
ADMM in [3].

To design a fully parallelized variable update scheme, we define constraint matrices AFP and BFP as follows:

BFP ,




I I 0 0 0 0 0 0

0 0 I I 0 0 0 0 0

0 0 0 0 I I I 0 0

0 0 0 0 0 0 0 I I



, AFP ,




−I 0 0 0 0

0 0 0 0 CH

0 −I 0 0 0

0 0 0 CV 0

0 0 −I 0 0

0 0 0 1
2S 0

0 0 0 0 1
2S

0 0 0 −I 0

0 0 0 0 I




. (59)

This results in a joint minimization problem for u that is entirely decoupled for each block of u. Tradeoffs include
vFP (∈ C7Nr+2NcNr ) that is much larger than v in ADMM-tridiag and more non-trivial blocks of vFP to update.
Likewise, η

FP
is also larger than in ADMM-tridiag.

Choosing Mi , µiI, µi ∈ R for i = 0, . . . , 6, the expansion of (12) is:
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. (60)

The variable updates that result from alternating minimization are:
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The soft-thresholding operator performs element-wise shrinkage for the `1 norm using a given threshold τ : soft(x, τ) ,
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sign(x)max (x− τ, 0). The bulk of the computational cost lies in inverting the following Hessians:

H2,FP , F′F + µ4I = Q (ΛF + µ4I)Q′ (66)

H3,FP , µ3C
′
VCV +

µ5

4
S′S + µ7I (67)

Hx,FP , µ1C
′
HCH +

µ6

4
S′S + µ8I. (68)

As in AL-P2, H2,FP is diagonalizable via FFTs, which operate efficiently in O(n log n) time. The x update in (65)
requires inverting Hx,FP , µ1C

′
HCH + 1

2
1
2µ6S

′S + µ8I, a block diagonal matrix with tridiagonal blocks that can
be inverted in O(n) time via Gaussian elimination. Because it is block diagonal, we parallelize this variable update
over the Ny blocks, whose computations are independent of one another. As in ADMM-tridiag, we reformulate
the u3 update as another instance of the same minimization problem through permutation. The remaining variable
updates are exact and easy to implement.

The updates for vFP all simplify to quadratic problems and can be implemented directly as follows:
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v
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7 . (77)

By enforcing constraints arising from the structure of BFP, the full minimization of vFP reduces to the computation
of just five of the nine block variables: v0, v2, v4, v5, and v7. The extraneous four variables can be expressed in
terms of the remaining four and omitted from the algorithm altogether.

Finally, the dual variables are updated as follows:

η(n+1)
FP

= η(n)
FP
−
(
AFPu

(n+1) − v(n+1)
FP

)
. (78)

ADMM-FP-tridiag is highly amenable to parallelization. Each block update for u can be done in parallel, as can each
block update of vFP, as described in 2. This opportunity for parallelization helps to offset some of the additional
computational cost incurred from the greater number of variable updates per iteration.

In summary, ADMM-FP-tridiag eliminates alternating minimization across the blocks of u and vFP by decoupling
each of the four original variable splitting constraints (2). This results in additional auxiliary variables in vFP and
dual variables η

FP
. However, each block-variable has blocks that can be updated in parallel with one another. This

approach also provides exact variable updates (to within numerical precision) by avoiding alternating minimization.
The procedure for ADMM-FP-tridiag is summarized in Algorithm 2.
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Algorithm 2 ADMM-FP-tridiag

1: Initialize: u0, u1, u2, u3, x, v0, v2, v4, v5, v7, ηFP
2: for n ≤ total iterations do
3: do in parallel
4: Compute u(n+1)

0 using soft-thresholding (61)
5: Compute u(n+1)

1 using soft-thresholding (62)
6: Compute u(n+1)

2 using FFTs (63)
7: Compute u(n+1)

3 using parallelized tridiagonal solver (64)
8: Compute x(n+1) using parallelized tridiagonal solver (65)
9: end parfor

10: do in parallel
11: Compute v(n+1)

0 using (69)
12: Compute v(n+1)

2 using (71)
13: Compute v(n+1)

4 using (73)
14: Compute v(n+1)

5 using (74)
15: Compute v(n+1)

7 using (76)
16: end parfor
17: Compute η(n+1)

FP using (78)
18: end for

A. Parameter Selection for ADMM-FP-tridiag

This proposed algorithm, ADMM-FP-tridiag, has a total of nine AL tuning parameters, substantially more than for
ADMM-tridiag. Using the condition number heuristics from [4] on Hessians (67)-(68) leaves six remaining degrees
of freedom. This is a result of the two tridiagonal Hessians that include entirely different tuning parameters, unlike
the case with ADMM-tridiag:

H3,FP , µ3C
′
VCV +

µ5

4
S′S + M7

Hx,FP , µ1C
′
HCH +

µ6

4
S′S + M8.

The difficulty of designing these parameters is one of the tradeoffs in choosing the fully parallelized alternative of
ADMM-tridiag. Tuning parameters for the following speed comparisons were chosen to enforce the aforementioned
Hessian values, leaving some degrees of freedom unexplored.

B. in vivo Experiment Results for ADMM-FP-tridiag

For the same 3D in-vivo volunteer data set used in [1], we tested the convergence speed of ADMM-FP-tridiag. We
applied ADMM-FP-tridiag to the same undersampled data from axial slices 38 and 90 using the same estimated
smooth sensitivity maps, shown in Figure 9 and undersampling patterns, shown in Figure 1 of [1]. We initialized
ADMM-FP-tridiag with the same zero-filled iFFT image as the other algorithms, shown in Figures 2 and 3 of
[1].

The proposed ADMM-FP-tridiag algorithm was implemented with 20 Pthreads allocated to the tridiagonal updates
in (64) and (65), but no parallelization was implemented across the blocks of u or v. Here we present the same
results as shown in Figures 4 and 5 in [1], with additional convergence speed measurements for ADMM-FP-tridiag.
As was the case for AL-tridiag and ADMM-tridiag, time spent tuning AL penalty parameters for ADMM-FP-tridiag
was not included in computation time.

The fully parallelizable proposed method, ADMM-FP-tridiag, was not implemented with parallelization across the
blocks of u, vFP, or ηFP. For this reason, as well as the substantially larger number of auxiliary and dual variables,
ADMM-FP-tridiag performs the slowest of the algorithms in this comparison. It is likely that finely tuning the AL
penalty parameters of ADMM-FP-tridiag would result in improved speed, but these speed gains likely will not offset
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Fig. 9: Magnitudes of the sensitivity maps estimated using central 16 ×16 phase encodes for axial slice 38 (left)
and axial slice 90 (right).
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Fig. 10: Axial slice 38: (a, b) NRMSD comparison of proposed algorithms, MFISTA, and AL-P2-NC to x(∞); (c,
d) NRMSE comparison of proposed algorithms, MFISTA, and AL-P2-NC to fully sampled SENSE reconstruction..

the additional bookkeeping required for vFP and η
FP

. The use of additional auxiliary variables in ADMM-FP-tridiag
may also require more iterations for information to propagate across block elements of u and vFP.
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Fig. 11: Axial slice 90: (a,b) NRMSD comparison of proposed algorithms, MFISTA, and AL-P2-NC to x(∞); (c,d)
NRMSE comparison of proposed algorithms, MFISTA, and AL-P2-NC to fully sampled SENSE reconstruction.

For axial slice 90, ADMM-FP-tridiag remains the slowest method. However, due to enforcing equivalence with
ADMM, the solution to ADMM-FP-tridiag is within machine precision of x∗, despite the much longer convergence
time. For this reason, we omit images of the solution to ADMM-FP-tridiag for slices 38 and 90.

III. IMAGE QUALITY COMPARISON FOR in vivo DATA

In this section, we compare the image quality of the solution to (1) to the body coil image and the fully sampled
SENSE reconstruction x̂SENSE. For both axial slices 38 and 90, all algorithms in the comparison eventually reach
the same solution, x(∞). The reconstructed image from ADMM-tridiag at 5000 iterations, x̂ is visually similar to
the bodycoil, shown in Figures 12 and 13. ADMM-tridiag is able to reconstruct many of the anatomical details
missing in the initial zero-filled iFFT images. The estimated images for AL-tridiag at 5000 iterations is very similar
to that of ADMM-tridiag and are not pictured.

Figures 12 and 13 also show the absolute difference of the body coil and reconstructed image, as well as the fully
sampled SENSE reconstruction without regularization, x̂SENSE and the difference between the reconstructed image
and SENSE image. The difference image between x̂ and x̂SENSE show that the regions with the highest error are
those in which the g-factor is low due to the head coil geometry. The reconstructed image more closely resembles
the fully sampled SENSE image than the relatively noisy body coil image.
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Fig. 12: in vivo experiment for axial slice 38. Left to right: (a) body coil image; (b) differences between body coil
and ADMM-tridiag; (c) ADMM-tridiag reconstruction; (d) fully sampled SENSE reconstruction; (e) differences
between fully sampled SENSE reconstruction and ADMM-tridiag.
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Fig. 13: in vivo experiment for axial slice 90. Left to right: (a) body coil image; (b) differences between body coil
and ADMM-tridiag; (c) ADMM-tridiag reconstruction; (d) fully sampled SENSE reconstruction; (e) differences
between fully sampled SENSE reconstruction and ADMM-tridiag.

IV. SIMULATED DATA

A. Axial Slice Reconstruction

We also conducted additional experiments on an undersampled digital phantom to measure reconstruction error. We
simulated noisy multi-coil data from a T1-weighted 240 × 200 BrainWeb image with linear phase. We generated
sensitivity maps for a 6-channel head coil array and generated noisy k-space data with SNR of 40. A Poisson-disk
based sampling pattern [5] containing the central 16× 16 phase encodes and with an overall undersampling factor
of 6 was used for undersampling, as shown in Figure 14.

Fig. 14: Poisson-disk-based undersampling pattern used for retrospective undersampling, with reduction factor of
6 and fully sampled central 16×16 phase-encodes.

The central phase encodes were included to capture the rich information near the center of k-space. The Poisson
disk sampling pattern reduces clustering of sample points in the outer regions of k-space. As with the in vivo
experimental data, we chose to compare the proposed methods to AL-P2-NC [4] and MFISTA [6]. To measure the
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convergence rate of these algorithms, we computed the normalized root mean squared distance (NRMSD) between
a given iterate x(n) and the converged solution, x(∞), in terms of decibels (51).

We generated the solution, x(∞), by running MFISTA for 50000 outer iterations with 5 inner NCG iterations.
We solved the inner iterative update for z in AL-P2-NC with preconditioned conjugate gradient using a circulant
preconditioner and 1 inner iteration. We also computed the normalized root mean squared error (NRMSE) between a
given iterate x(n) and xtrue, the noiseless BrainWeb image used to generate the synthetic data. Convergence toward
to the true image xtrue provides useful context for a termination condition for these iterative algorithms.

As in the in vivo experiments, time spent computing the maximum eigenvalue of S′F′FS via power iteration,
required for MFISTA, was not included in computation time. For these simulations, this computation took 60.4
seconds.

0 50 100 150 200
wall time (s)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

N
R

M
S

D
 t

o
 x

*  (
d

B
)

 ADMM-FP-tridiag
 MFISTA-5
 AL-P2-NC
 ADMM-tridiag
 AL-tridiag

(a) NRMSD to solution x(∞) as a func-
tion of computation time.
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(b) Close up of (a).
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(c) NRMSE to noiseless xtrue as a func-
tion of computation time.
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(d) NRMSD to solution x(∞) as a func-
tion of iteration number.
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(e) Close up of (d).
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(f) NRMSE to noiseless xtrue as a func-
tion of iteration number.

Fig. 15: Speed comparison of ADMM-tridiag, AL-tridiag, ADMM-FP-tridiag, MFISTA, and AL-P2-NC for
simulated axial data. Top row shows speed as a function of computation time. Bottom row shows speed as a
function of iteration. From left to right: NRMSD to x(∞), a close-up of performance over the first 100 iterations,
and NRMSE to xtrue.

Figure 15 shows that the fully parallelized variant, ADMM-FP-tridiag has significant computational overhead due to
the additional auxiliary variables updated in each iteration. In terms of NRMSD to the solution x(∞), ADMM-tridiag
and AL-tridiag outperform AL-P2-NC and other methods in the first hundred iterations, having already achieved
-40 dB NRMSD or better. AL-P2-NC eventually overtakes the proposed methods around -50 dB difference to
x(∞). By comparing distance to the noiseless BrainWeb image used for xtrue, AL-tridiag and ADMM-tridiag are
very competitive with AL-P2-NC, reaching similar error levels at similar computation times and iteration numbers.
The proposed algorithms show little improvement in NRMSE after 10 seconds of computation or roughly 120
iterations. Further progression of image estimates to x(∞) do not translate to image quality improvements. In
this simulation, ADMM-FP-tridiag compares more favorably in terms of NRMSE convergence than in the in vivo
experiments.

The blur in the initial estimate is greatly reduced after 5000 iterations of ADMM-tridiag. The reconstructed image
differs from the true, fully-sampled, noiseless image, xtrue, primarily at anatomical edges and centrally located
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Fig. 16: Left to right: (a) sum-of-squares of the zero-filled iFFT coil images, used as an initial estimate used for
all algorithms; (b) ADMM-tridiag solution x̂ after 5000 iterations; (c) xtrue fully sampled, noiseless image; (d)
difference between x̂ and xtrue after 5000 iterations.

ventricles, as shown in Figure 16. The reconstructed image at 5000 iterations has an NRMSE of −21.6 dB.

B. Sagittal Slice Reconstruction

To explicitly demonstrate the effect of non-periodic boundary conditions for MRI, we also reconstructed a 2D
sagittal slice from simulated k-space data. We simulated noisy multi-coil data from a T1-weighted 240 × 200
sagittal BrainWeb image with linear phase. Like in the axial slice experiment, we generated sensitivity maps for
a 6-channel head coil array (arranged in 3 rings of 2 coils each) and generated noisy k-space data with SNR of
40.

We used the Poisson disk undersampling pattern shown in Figure 17, which has an overall reduction factor of 2,
with the central 16 × 16 phase encodes fully sampled. Figure 17 also shows the simulated sensitivity maps to
demonstrate the head coil geometry used for the sagittal orientation.
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Fig. 17: 256 × 128 Poisson-disk-based undersampling pattern used for retrospective undersampling in kx-kz for a
sagittal slice, with reduction factor of 2 and fully sampled central 16×16 phase-encodes; (b) simulated sensitivity
maps showing 3 rings with two coils each

Figure 18 shows NRMSE as a function of computation time and iteration number for the proposed method and for
comparison, AL-P2-NC and MFISTA. For this sagittal slice, AL-tridiag is competitive with AL-P2-NC in quickly
achieving low NRMSE.

V. VARIABLE SPLITTING BALANCE PARAMETER

This section describes possible variations of the proposed algorithms in which the variable splitting scheme does
not exhibit the symmetry in (3), namely,

û = argmin
u

f (u) (79)

f (u) =
1

2
‖y − Fu2‖2 + λ ‖u0‖1 + λ ‖u1‖1
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Fig. 18: Reconstructions of a retrospectively undersampled sagittal simulated dataset (a) AL-tridiag reconstruction
using non-periodic boundary conditions; (b) absolute difference image between (a) and original, fully sampled
image; (c) difference image between (e) and (b) (positive values show areas where circulant boundaries introduced
more error); (d) AL-P2 reconstruction using periodic boundary conditions; (e) absolute difference image between
(c) and original, fully sampled image; (f) boundary detail of (c)
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(a) NRMSE to noiseless, fully-sampled xtrue as a function
of computation time.
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Fig. 19: Speed comparison of ADMM-tridiag, AL-tridiag, ADMM-FP-tridiag, MFISTA, and AL-P2-Nc for simulated
sagittal data. For this sagittal slice reconstruction, AL-tridiag is competitive with AL-P2-NC in achieving final
NRMSE as a function of computation time (a) and iteration number (b).

s.t. u0 = CHx, u1 = CVu3,

u2 = (1− α)Su3 + αSx, u3 = x, (80)

in which the variable splitting balance parameter, α ∈ [0, 1]. In principle, using different choices of α for AL-
tridiag, such as in (79)-(80) could lead to different limits than when α = 1

2 , due to the lack of convergence theory.
However, we found empirically that varying α = {0, 14 , 12 , 34 , 1} in AL-tridiag-inpaint resulted in solutions identical
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to machine precision.

The convergence guarantees of ADMM-tridiag and ADMM-FP-tridiag ensure that the algorithm will converge to
the same solution for any α ∈ [0, 1]. However, the choice of α may affect the convergence rate and is closely
intertwined with the AL parameters.

Unlike the balance parameter for orthonormal wavelets, αw, described in Section III-D, α has a negligible effect
on computation time per iteration. Rather, α affects the convergence rate by controlling the connectivity between
the auxiliary variables and the extent to which one round of alternating minimization solves (6).

To investigate the effect of α on convergence rate, we conducted timing experiments for AL-tridiag-inpaint for
varying α. The simpler inpainting problem includes fewer additional parameters that may obfuscate the role of
α.

For the inpainting problem (33), the resulting Hessians for AL-tridiag-inpaint are:

H2 = (1− α)2 D′D + µ1C̃
′
VC̃V + M2 (81)

Hx = α2D′D + µ0C̃
′
HC̃H + M2. (82)

Because we tune AL parameters µ0, µ1, and M2 to enforce κ (H2) = κ (Hx), this suggests that an even distribution
of the influence of the inpainting operator D across u2 and x also allows for even influence of C̃H and C̃V.

Figure 20 shows computation time comparisons to the MFISTA x(∞) for AL-tridiag-inpaint for varying values of
α. The clear speed margin for α = 0.5 reinforces the specific choice of α in [1].
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Fig. 20: Convergence of |x(n)−x(∞)| in dB versus computation time for AL-tridiag-inpaint as a function of balance
parameter α.
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