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Abstract We introduce new optimized first-order methods for smooth unconstrained
convex minimization. Drori and Teboulle (Math Program 145(1–2):451–482, 2014.
doi:10.1007/s10107-013-0653-0) recently described a numerical method for comput-
ing the N -iteration optimal step coefficients in a class of first-order algorithms that
includes gradient methods, heavy-ball methods (Polyak in USSR Comput Math Math
Phys 4(5):1–17, 1964. doi:10.1016/0041-5553(64)90137-5), and Nesterov’s fast gra-
dient methods (Nesterov in Sov Math Dokl 27(2):372–376, 1983; Math Program
103(1):127–152, 2005. doi:10.1007/s10107-004-0552-5). However, the numerical
method in Drori and Teboulle (2014) is computationally expensive for large N , and
the corresponding numerically optimized first-order algorithm in Drori and Teboulle
(2014) requires impractical memory and computation for large-scale optimization
problems. In this paper, we propose optimized first-order algorithms that achieve a
convergence bound that is two times smaller than for Nesterov’s fast gradient methods;
our bound is found analytically and refines the numerical bound in Drori and Teboulle
(2014). Furthermore, the proposed optimized first-order methods have efficient forms
that are remarkably similar to Nesterov’s fast gradient methods.
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1 Introduction

First-order algorithms are used widely to solve large-scale optimization problems in
various fields such as signal and image processing, machine learning, communications
and many other areas. The computational cost per iteration of first-order algorithms is
mildly dependent on the dimension of the problem, yielding computational efficiency.
Particularly, Nesterov’s fast gradient methods [10,12] have been celebrated in various
applications for their fast convergence rates and efficient implementation. This paper
proposes first-order algorithms (OGM1 and OGM2 in Sect. 7) that achieve a worst-
case convergence bound that is twice as small as Nesterov’s fast gradient methods
for smooth unconstrained convex minimization yet have remarkably similar efficient
implementations.

We consider finding a minimizer over Rd of a cost function f belonging to a set
FL(Rd) of smooth convex functions with L-Lipschitz continuous gradient. The class
of first-order (FO) algorithms of interest generates a sequence of points {xi ∈ R

d : i =
0, . . . , N } using the following scheme:

Algorithm Class FO

Input: f ∈ FL(Rd), x0 ∈ R
d .

For i = 0, . . . , N − 1

xi+1 = xi − 1

L

i∑

k=0

hi+1,k f ′(xk). (1.1)

The update step at the i th iterate xi uses a linear combination of previous and current
gradients { f ′(x0), . . . , f ′(xi )}. The coefficients {hi,k}0≤k<i≤N determine the step size
and are selected prior to iterating (non-adaptive). Designing these coefficients appro-
priately is the key to establishing fast convergence. The algorithm class FO includes
gradient methods, heavy-ball methods [15], Nesterov’s fast gradient methods [10,12],
and our proposed optimized first-order methods.

Evaluating the convergence bound of such first-order algorithms is essential.
Recently, Drori and Teboulle (hereafter “DT”) [5] considered the Performance Esti-
mation Problem (PEP) approach to bounding the decrease of a cost function f . For
given coefficients h = {hi,k}0≤k<i≤N , a given number of iterations N ≥ 1 and a given
upper bound R > 0 on the distance between an initial point x0 and an optimal point
x∗ ∈ X∗( f ) � arg minx∈Rd f (x), the worst-case performance bound of a first-order
method over all smooth convex functions f ∈ FL(Rd) is the solution of the following
constrained optimization problem1 [5]:

1 The problem BP(h, N , d, L , R) was shown to be independent of d in [17]; thus this paper’s results are
independent of d.
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BP(h, N , d, L , R) � max
f ∈FL (Rd )

max
x0,...,xN ∈Rd ,
x∗∈X∗( f )

f (xN ) − f (x∗) (P)

s.t. xi+1 = xi − 1

L

i∑

k=0

hi+1,k f ′(xk), i = 0, . . . , N − 1,

||x0 − x∗|| ≤ R.

As reviewed in Sect. 4, DT [5] used relaxations to simplify the intractable problem
(P) to a solvable form.

Nesterov’s fast gradient methods [10,12] achieve the optimal rate of decrease

O
(

1
N2

)
for minimizing a smooth convex function f [11]. Seeking first-order algo-

rithms that converge faster (in terms of the constant factor) thanNesterov’s fast gradient
methods, DT [5] proposed using a (relaxed) PEP approach to optimize the choice of
h in class FO by minimizing a (relaxed) worst-case bound at the N th iteration with
respect to h. In [5], the optimized h factors were computed numerically, and were
found to yield faster convergence than Nesterov’s methods. However, numerical opti-
mization of h in [5] becomes expensive for large N . In addition, the general class FO
requires O(N 2d) arithmetic operations for N iterations and O(Nd) memory for stor-
ing all gradients { f ′(xi ) ∈ R

d : i = 0, . . . , N −1}, which is impractical for large-scale
problems.

This paper proposes optimized first-order algorithms that have a worst-case conver-
gence bound that is twice as small as that of Nesterov’s fast gradient methods, inspired
by DT [5]. We develop remarkably efficient formulations of the optimized first-order
algorithms that resemble those of Nesterov’s fast gradient methods, requiring O(Nd)

arithmetic operations and O(d) memory.
Section 2 reviews the smooth convex minimization problem and introduces the

approach to optimizing h used here and in [5]. Section 3 illustrates Nesterov’s fast
gradient methods that are in class FO. Section 4 reviews DT’s (relaxed) PEP approach
and Sect. 5 uses it to derive a new convergence bound for the secondary variables
in Nesterov’s fast gradient methods. Section 6 reviews DT’s analysis on numerically
optimizing h using (relaxed) PEP for first-order methods, and derives an analyti-
cal form of the optimized coefficients h and a corresponding new analytical bound.
Section 7 investigates efficient formulations of the proposed first-order methods
(OGM1 and OGM2). Section 8 shows that the corresponding analytical upper bound
is tight and Sect. 9 concludes.

2 Problem and approach

2.1 Smooth convex minimization problem

We consider first-order algorithms for solving the following minimization problem

min
x∈Rd

f (x), (M)
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where the following two conditions are assumed:

– f : Rd → R is a convex function of the type C1,1
L (Rd), i.e., continuously differ-

entiable with Lipschitz continuous gradient:

|| f ′(x) − f ′( y)|| ≤ L||x − y||, ∀x, y ∈ R
d ,

where L > 0 is the Lipschitz constant.
– The optimal set X∗( f ) = arg minx∈Rd f (x) is nonempty, i.e., the problem (M) is
solvable.

We focus on measuring the “inaccuracy” f (xN ) − f (x∗) after N iterations to
quantify the worst-case performance of any given first-order algorithm.

2.2 Optimizing the step coefficients h of first-order algorithms

In search of the best-performing first-order methods, DT [5] proposed to optimize h =
{hi,k}0≤k<i≤N in Algorithm FO by minimizing a worst-case bound of f (xN )− f (x∗)
for a given number of iterations N ≥ 1 and initial distance R > 0, by adding arg minh
to problem (P) as follows:

ĥP � arg min
h∈RN (N+1)/2

BP(h, N , d, L , R). (HP)

Note that ĥP is independent2 of L , R, and d. (See footnote 1.) Solving problem (HP)
would give the step coefficients of the optimal first-order algorithm achieving the best
worst-case convergence bound. DT [5] relaxed3 problem (HP) to a tractable form, as
reviewed in Sects. 4 and 6.1. After these simplifications, the resulting solution was
computedby a semidefinite program (SDP) that remains computationally expensive for
large N [5]. In addition, the corresponding numerically optimized first-order algorithm
was impractical for large-scale problems, requiring a linear combination of previous
and current gradients { f ′(x0), . . . , f ′(xi )} at the (i + 1)th iteration.4

To make DT’s work [5] practical, we directly derive the “analytical” solution for h
in a relaxed version of the problem (HP), circumventing the numerical approach in [5].
Interestingly, the analytical solution of the relaxed version of (HP) satisfies a conve-
nient recursion, so we provide practical optimized algorithms similar to Nesterov’s
efficient fast gradient methods.

2 Substituting x′ = 1
R x and f̆ (x′) = 1

L R2 f (Rx′) ∈ F1(R
d ) in problem (P), we get BP(h, N , L , R) =

L R2BP(h, N , 1, 1). This leads to ĥP = arg minhBP(h, N , L , R) = arg minhBP(h, N , 1, 1).
3 Using the term ‘best’ or ‘optimal’ here for DT [5] may be too strong, since DT [5] relaxed (HP) to a
solvable form. We also use these relaxations, so we use the term “optimized” for our proposed algorithms.
4 If coefficients h in Algorithm FO have a special recursive form, it is possible to find an equivalent efficient
form, as discussed in Sects. 3 and 7.

123

fessler
Highlight
this function should also have argument "d" in it throughout this footnote.

fessler
Highlight
for d>= N+2.



Optimized first-order methods for smooth convex. . . 85

3 Nesterov’s fast gradient methods

This section reviews Nesterov’s well-known fast gradient methods [10,12].We further
show the equivalence5 of two of Nesterov’s fast gradient methods in smooth uncon-
strained convex minimization. The analysis techniques used here will be important in
Sect. 7.

3.1 Nesterov’s fast gradient method 1 (FGM1)

Nesterov’s first fast gradient method is called FGM1 [10]:

Algorithm FGM1

Input: f ∈ C1,1
L (Rd) convex, x0 ∈ R

d , y0 = x0, t0 = 1.

For i = 0, . . . , N − 1

yi+1 = xi − 1

L
f ′(xi )

ti+1 =
1 +

√
1 + 4t2i

2

xi+1 = yi+1 + ti − 1

ti+1
( yi+1 − yi ). (3.1)

Note that ti in (3.1) satisfies the following relationships used frequently in later deriva-
tions:

t2i+1 − ti+1 − t2i = 0, t2i =
i∑

k=0

tk, and ti ≥ i + 2

2
, i = 0, 1, . . . . (3.2)

Algorithm FGM1 is in Algorithm Class FO [5, Proposition 2] with:

h̄i+1,k =

⎧
⎪⎨

⎪⎩

ti −1
ti+1

h̄i,k, k = 0, . . . , i − 2,
ti −1
ti+1

(h̄i,i−1 − 1), k = i − 1,

1 + ti −1
ti+1

, k = i,

(3.3)

for i = 0, . . . , N − 1. Note that Algorithm FO with (3.3) is impractical as written
for large-scale optimization problems, whereas the mathematically equivalent version
FGM1 is far more useful practically due to its efficient form.

While the sequence {x0, . . . , xN−1, yN } of FGM1 can be also written in class FO
[5, Proposition 2], only the primary sequence { y0, . . . , yN } is known to achieve the

rate O
(

1
N2

)
for decreasing f [2,10]. DT conjectured that the secondary sequence

5 The equivalence of two of Nesterov’s fast gradient methods for smooth unconstrained convex minimiza-
tion was previously mentioned without details in [18].
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{x0, . . . , xN } of FGM1 also achieves the same O
(

1
N2

)
rate based on the numerical

results using the PEP approach [5, Conjecture 2]; our Sect. 5 verifies the conjecture
by providing an analytical bound using the PEP approach.

3.2 Nesterov’s fast gradient method 2 (FGM2)

In [12], Nesterov proposed another fast gradient method that has a different6 form
than FGM1 and that used a choice of ti factors different from (3.1). Here, we use (3.1)
because it leads to faster convergence than the factors used in [12]. The algorithm
in [12] then becomes FGM2 shown below.

Algorithm FGM2

Input: f ∈ C1,1
L (Rd) convex, x0 ∈ R

d , t0 = 1.

For i = 0, . . . , N − 1

yi+1 = xi − 1

L
f ′(xi )

zi+1 = x0 − 1

L

i∑

k=0

tk f ′(xk)

ti+1 =
1 +

√
1 + 4t2i

2

xi+1 =
(
1 − 1

ti+1

)
yi+1 + 1

ti+1
zi+1

Similar to FGM1, the following proposition shows that FGM2 is in class FO with

h̄i+1,k =
⎧
⎨

⎩

1
ti+1

(
tk − ∑i

j=k+1 h̄ j,k

)
, k = 0, . . . , i − 1,

1 + ti −1
ti+1

, k = i,
(3.4)

for i = 0, . . . , N − 1 with ti in (3.1).

Proposition 1 The sequence {x0, . . . , xN } generated by Algorithm FO with (3.4) is
identical to the corresponding sequence generated by Algorithm FGM2.

Proof Weuse induction, and for clarity, we use the notation x′
0, . . . , x

′
N for Algorithm

FO. Clearly x′
0 = x0. To prove equivalence for i = 1:

6 The fast gradient method in [12] was originally developed to generalize FGM1 to the constrained case.
Here, this second form is introduced for use in later proofs.
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x′
1 = x′

0 − 1

L
h̄1,0 f ′(x′

0) = x0 − 1

L

(
1 + t0 − 1

t1

)
f ′(x0)

=
(
1 − 1

t1
+ 1

t1

) (
x0 − 1

L
f ′(x0)

)
=

(
1 − 1

t1

)
y1 + 1

t1
z1 = x1.

Assuming x′
i = xi for i = 0, . . . , n, we then have

x′
n+1 = x′

n − 1

L
h̄n+1,n f ′(x′

n) − 1

L

n−1∑

k=0

h̄n+1,k f ′(x′
k)

= xn − 1

L

(
1 + tn − 1

tn+1

)
f ′(xn) − 1

L

n−1∑

k=0

1

tn+1

⎛

⎝tk −
n∑

j=k+1

h̄ j,k

⎞

⎠ f ′(xk)

=
(
1 − 1

tn+1

) (
xn − 1

L
f ′(xn)

)

+ 1

tn+1

⎛

⎝xn + 1

L

n−1∑

k=0

n∑

j=k+1

h̄ j,k f ′(xk) − 1

L

n∑

k=0

tk f ′(xk)

⎞

⎠

=
(
1 − 1

tn+1

)
yn+1 + 1

tn+1

⎛

⎝xn + 1

L

n∑

j=1

j−1∑

k=0

h̄ j,k f ′(xk) − 1

L

n∑

k=0

tk f ′(xk)

⎞

⎠

=
(
1 − 1

tn+1

)
yn+1 + 1

tn+1

(
x0 − 1

L

n∑

k=0

tk f ′(xk)

)
= xn+1.

The fifth equality uses the telescoping sum xn = x0 + ∑n
j=1(x j − x j−1) and (1.1)

in Algorithm FO. 	

We show next the equivalence of Nesterov’s two algorithms FGM1 and FGM2 for

smooth unconstrained convex minimization using (3.3) and (3.4).

Proposition 2 The sequence {x0, . . . , xN } generated by Algorithm FGM2 is identical
to the corresponding sequence generated by Algorithm FGM1.

Proof We prove the statement by showing the equivalence of (3.3) and (3.4). We use
the notation h̄′

i,k for the coefficients (3.4) of Algorithm FGM2 to distinguish from
those of Algorithm FGM1.

It is obvious that h̄′
i+1,i = h̄i+1,i , i = 0, . . . , N − 1, and we can easily prove for

i = 0, . . . , N − 1 that

h̄′
i+1,i−1 = 1

ti+1

(
ti−1 − h̄′

i,i−1

) = 1

ti+1

(
ti−1 −

(
1 + ti−1 − 1

ti

))

= (ti − 1)(ti−1 − 1)

ti ti+1
= ti − 1

ti+1

(
h̄i,i−1 − 1

) = h̄i+1,i−1.
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We next use induction by assuming h̄′
i+1,k = h̄i+1,k for i = 0, . . . , n − 1, k =

0, . . . , i . We then have

h̄′
n+1,k = 1

tn+1

⎛

⎝tk −
n∑

j=k+1

h̄′
j,k

⎞

⎠ = 1

tn+1

⎛

⎝tk −
n−1∑

j=k+1

h̄′
j,k − h̄′

n,k

⎞

⎠

= tn − 1

tn+1
h̄′

n,k = tn − 1

tn+1
h̄n,k = h̄n+1,k

for k = 0, . . . , n − 2. Note that this proof is independent of the choice of ti . 	


3.3 A convergence bound for Nesterov’s fast gradient methods

Algorithms FGM1 and FGM2 generate the same sequences {xi } and { yi }, and the
primary sequence { yi } is known to satisfy the bound7 [2,10,12]:

f ( yn) − f (x∗) ≤ L||x0 − x∗||2
2t2n−1

≤ 2L||x0 − x∗||2
(n + 1)2

, ∀x∗ ∈ X∗( f ) (3.5)

for n ≥ 1, which was the previously best known analytical bound of first-order meth-
ods for smooth unconstrained convex minimization; DT’s PEP approach provides a
tighter numerical bound for the sequences {xi } and { yi } compared to the analytical
bound (3.5) [5, Table 1]. Using the PEP approach, Sect. 5 provides a new analytical
bound for the secondary sequence {xi } of FGM1 and FGM2.

Nesterov described a convex function f ∈ C1,1
L (Rd) for which any first-order

algorithm generating the sequence {xi } in the class of Algorithm FO satisfies [11,
Theorem 2.1.7]:

3L||x0 − x∗||2
32(n + 1)2

≤ f (xn) − f (x∗), ∀x∗ ∈ X∗( f ) (3.6)

for n = 1, . . . ,
⌊ d−1

2

⌋
, indicating that Nesterov’s two FGM1 and FMG2 achieve the

optimal rate O
(

1
N2

)
. (Note that the bound (3.6) is valid if the large-scale condition

“d ≥ 2N + 1” is satisfied.) However, (3.6) also illustrates the potential room for
improving first-order algorithms by a constant factor.

To narrow this gap, DT [5] used a relaxation of problem (HP) to find the “optimal”
choice of {hi,k} for Algorithm FO that minimizes a relaxed bound on f (xN ) − f (x∗)
at the N th iteration, which was found numerically to provide a twice smaller bound
than (3.5), yet remained computationally impractical.

We next review the PEP approach for solving a relaxed version of (P).

7 The second inequality of (3.5) is widely known since it provides simpler interpretation of a convergence
bound, compared to the first inequality of (3.5).
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4 DT’s convergence bound for first-order algorithms using PEP

This section summarizes the relaxation scheme for the PEP approach that transforms
problem (P) into a tractable form [5]. The relaxed PEPbounds are used in later sections.

Problem (P) is challenging to solve due to the (infinite-dimensional) functional
constraint on f , so DT [5] cleverly relax the constraint by using a well-known property
for the class of convex C1,1

L functions in [11, Theorem 2.1.5] and further relax as
follows:

BP1(h, N , d, L , R) � max
G∈R(N+1)d ,

δ∈RN+1

L R2δN (P1)

s.t. Tr
{
G�Ai−1,i (h)G

}
≤ δi−1 − δi , i = 1, . . . , N ,

Tr
{
G�Di (h)G + νu�

i G
}

≤ −δi , i = 0, . . . , N ,

for any given unit vector ν ∈ R
d , by defining δi � 1

L||x0−x∗||2 ( f (xi ) − f (x∗)) and
gi � 1

L||x0−x∗|| f ′(xi ) for i = 0, . . . , N , ∗, and denoting the unit vectors8 ui =
eN+1,i+1 ∈ R

N+1, the (N + 1)× 1 vector δ = [δ0, . . . , δN ]�, the (N + 1)× d matrix

G = [g0, . . . , gN ]�, and the (N + 1) × (N + 1) symmetric matrices:

Ai−1,i (h) � 1

2
(ui−1 − ui )(ui−1 − ui )

� + 1

2

i−1∑

k=0

hi,k

(
uiu�

k + uku�
i

)
,

Di (h) � 1

2
uiu�

i + 1

2

i∑

j=1

j−1∑

k=0

h j,k

(
uiu�

k + uku�
i

)
. (4.1)

DT [5] finally use a duality approach on (P1). Replacing maxG,δ L R2δN by
minG,δ −δN for convenience, the Lagrangian of the corresponding constrained mini-
mization problem (P1) becomes the following separable function in (δ, G):

L(G, δ,λ, τ ; h) = L1(δ,λ, τ ) + L2(G,λ, τ ; h),

where

L1(δ,λ, τ ) � −δN +
N∑

i=1

λi (δi − δi−1) +
N∑

i=0

τiδi ,

L2(G,λ, τ ; h) �
N∑

i=1

λi Tr
{
G�Ai−1,i (h)G

}
+

N∑

i=0

τi Tr
{
G�Di (h)G + νu�

i G
}
,

8 The vector eN ,i is the i th standard basis vector in R
N , having 1 for the i th entry and zero for all other

elements.
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with dual variables λ = (λ1, . . . , λN )� ∈ R
N+ and τ = (τ0, . . . , τN )� ∈ R

N+1+ . The
corresponding dual function is defined as

H(λ, τ ; h) = min
δ∈RN+1

L1(δ,λ, τ ) + min
G∈R(N+1)d

L2(G,λ, τ ; h). (4.2)

Here minδ L1(δ,λ, τ ) = 0 for any (λ, τ ) ∈ Λ, where

Λ =
{
(λ, τ ) ∈ R

N+ × R
N+1+ : τ0 = λ1, λN + τN = 1

λi − λi+1 + τi = 0, i = 1, . . . , N − 1

}
, (4.3)

and −∞ otherwise. In [5], the dual function (4.2) for any given unit vector ν ∈ R
d

was found to be

H(λ, τ ; h) = min
w∈RN+1

{
w�S(h,λ, τ )w + τ�w

}

= max
γ∈R

{
−1

2
γ : w�S(h,λ, τ )w + τ�w ≥ −1

2
γ, ∀w ∈ R

N+1
}

= max
γ∈R

{
−1

2
γ :

(
S(h,λ, τ ) 1

2τ
1
2τ

� 1
2γ

)
 0

}
(4.4)

for any given (λ, τ ) ∈ Λ, where DT [5] define the following (N +1)× (N +1)matrix
using the definition of Ai−1,i (h) and Di (h) in (4.1):

S(h,λ, τ ) �
N∑

i=1

λi Ai−1,i (h) +
N∑

i=0

τi Di (h)

= 1

2

N∑

i=1

λi (ui−1 − ui )(ui−1 − ui )
� + 1

2

N∑

i=0

τiuiu�
i

+ 1

2

N∑

i=1

i−1∑

k=0

⎛

⎝λi hi,k + τi

i∑

j=k+1

h j,k

⎞

⎠
(
uiu�

k + uku�
i

)
. (4.5)

In short, using the dual approach on the problem (P1) yields the following bound:

BD(h, N , L , R) � min
λ∈RN ,

τ∈RN+1,
γ∈R

{
1

2
L R2γ :

(
S(h,λ, τ ) 1

2τ
1
2τ

� 1
2γ

)
 0, (λ, τ ) ∈ Λ

}
,

(D)

recalling that we previously replacedmaxG,λ L R2δN byminG,λ −δN for convenience.
Problem (D) can be solved using any numerical SDP method [3,6] for given h
and N , noting that R is just a multiplicative scalar in (D). Interestingly, this bound
BD(h, N , L , R) is independent of dimension d.
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Overall, DT [5] introduced a series of relaxations to the problem (P), eventually
reaching the solvable problem (D) that provides a valid upper bound as

f (xN ) − f (x∗) ≤ BP(h, N , d, L , R) ≤ BD(h, N , L , R)

where xN is generated by Algorithm FO with given h and N , and ||x0 − x∗|| ≤ R.
This bound is for a given h and later we optimize the bound over h.

Solving problem (D)with a SDPmethod for any given coefficients h and N provides
a numerical convergence bound for f (xN ) − f (x∗) [5]. However, numerical bounds
only partially explain the behavior of algorithms in class FO. An analytical bound
of gradient methods with a constant step 0 < h ≤ 1, for example, was found using
a specific PEP approach [5], but no other analytical bound was discussed in [5].
The next section exploits the PEP approach to reveal a new analytical bound for the
secondary sequence { f (xi )} generated by FGM1 or FGM2 as an example, confirming

the conjecture by DT that the secondary sequence {xi } achieves the same rate O
(

1
N2

)

as the primary sequence { yi } [5, Conjecture 2].

5 A new analytical bound for Nesterov’s fast gradient methods

This section provides an analytical bound for the secondary sequence {xi } in FGM1
and FGM2.

For the h̄ factors in (3.3) or (3.4) of Nesterov’s fast gradient methods, the following
choice of dual variables (inspired by Sect. 6.2) is a feasible point of problem (D):

λ̄i = t2i−1

t2N
, i = 1, . . . , N , (5.1)

τ̄i = ti
t2N

, i = 0, . . . , N , (5.2)

γ̄ = 1

t2N
, (5.3)

with ti in (3.1), as shown in the following lemma.

Lemma 1 The choice (λ̄, τ̄ , γ̄ ) in (5.1), (5.2) and (5.3) is a feasible point of the
problem (D) for the h̄ designs given in (3.3) or (3.4) that are used in Nesterov’s FGM1
and FGM2.

Proof It is obvious that (λ̄, τ̄ ) ∈ Λ using t2i = ∑i
k=0 tk in (3.2). We next rewrite

S(h̄, λ̄, τ̄ ) using (3.4), (5.1) and (5.2) to show that the choice (λ̄, τ̄ , γ̄ ) satisfies the
positive semidefinite condition in (D) for given h̄.

For any h and (λ, τ ) ∈ Λ, the (i, k)th entry of the symmetric matrix S(h,λ, τ )

in (4.5) can be written as
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Si,k(h,λ, τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2

(
(λi + τi )hi,k + τi

∑i−1
j=k+1 h j,k

)
,

i = 2, . . . , N , k = 0, . . . , i − 2,
1
2

(
(λi + τi )hi,k − λi

)
, i = 1, . . . , N , k = i − 1,

λi+1, i = 0, . . . , N − 1, k = i,
1
2 , i = N , k = i.

(5.4)

Inserting h̄ (3.4), λ̄ (5.1) and τ̄ (5.2) into (5.4) and using λ̄i +τ̄i = t2i
t2N

for i = 1, . . . , N ,

we get

Si,k(h̄, λ̄, τ̄ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
t2i
t2N

1
ti

(
tk − ∑i−1

j=k+1 h̄ j,k

)
+ ti

t2N

∑i−1
j=k+1 h̄ j,k

)
,

i = 2, . . . , N , k = 0, . . . , i − 2,

1
2

(
t2i
t2N

(
1 + ti−1−1

ti

)
− t2i−1

t2N

)
, i = 1, . . . , N , k = i − 1,

t2i
t2N

, i = 0, . . . , N − 1, k = i,

1
2 , i = N , k = i,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ti tk
2t2N

, i = 1, . . . , N , k = 0, . . . , i − 1,

t2i
t2N

, i = 0, . . . , N − 1, k = i,

t2N
2t2N

, i = N , k = i,

= 1

2t2N

(
t t� + diag

{
( ť

�
, 0)

})
,

where t = (t0, . . . , tN )� and ť = (t20 , . . . , t2N−1)
�. The second equality uses t2i − ti −

t2i−1 = 0 in (3.2), and diag{t} denotes a matrix where diagonal elements are filled
with elements of a vector t and zero for other elements.

Finally, using γ̄ in (5.3), we have

(
S(h̄, λ̄, τ̄ ) 1

2 τ̄
1
2 τ̄

� 1
2 γ̄

)
=

⎛

⎝
1

2t2N

(
t t� + diag

{
( ť

�
, 0)

})
1

2t2N
t

1
2t2N

t� 1
2t2N

⎞

⎠

= 1

2t2N

{(
t
1

) (
t
1

)�
+ diag

{
( ť

�
, 0, 0)

}}
 0.

	

Using Lemma 1, we provide an analytical convergence bound for the sec-

ondary sequence {xi } of FGM1 and FMG2.
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Theorem 1 Let f : Rd → R be convex and C1,1
L , and let x0, x1, . . . ∈ R

d be gener-
ated by FGM1 or FGM2. Then for n ≥ 1,

f (xn) − f (x∗) ≤ L||x0 − x∗||2
2t2n

≤ 2L||x0 − x∗||2
(n + 2)2

, ∀x∗ ∈ X∗( f ). (5.5)

Proof Using γ̄ (5.3) and t2N ≥ (N+2)2

4 from (3.2), we have

f (xN ) − f (x∗) ≤ BD(h̄, N , L , R) ≤ 1

2
L R2γ̄ ≤ 2L R2

(N + 2)2
, ∀x∗ ∈ X∗( f ) (5.6)

for given h̄ in (3.3) or (3.4), based on Lemma 1. Since the coefficients h̄ in (3.3)
or (3.4) are recursive and do not depend on a given N , we can extend (5.6) for all
iterations (n ≥ 1). Finally, we let R = ||x0 − x∗||. 	


Theorem 1 illustrates using the PEP approach to find an analytical bound for an
algorithm in class FO.We used a SDP solver [3,6] to verify numerically that the choice
(λ̄, τ̄ , γ̄ ) in (5.1), (5.2) and (5.3) is not an optimal solution of (D) for given h̄ in (3.3)
or (3.4). Nevertheless, this feasible point (λ̄, τ̄ , γ̄ ) provides a valid upper bound for
the sequence {xi } of FGM1 and FGM2 as shown in Theorem 1 that is similar to (3.5)
and verifies DT’s conjecture [5, Conjecture 2].

The next section reviews DT’s work [5] on numerically optimizing step coef-
ficients h in the class of first-order methods over the relaxed convergence bound
BD(h, N , L , R). Then, we find an analytical form of the optimized step coefficients
and explicitly show that Algorithm FO with such coefficients achieves a convergence
bound that is twice as small as (3.5) and (5.5).

6 Towards optimized first-order algorithms

6.1 DT’s numerically optimized first-order algorithms

This section summarizes the numerically optimized first-order algorithms described
in [5].

Having relaxed (P) in Sect. 4 to (D), DT proposed to optimize h by relaxing (HP)
as follows:

ĥ � arg min
h∈RN (N+1)/2

BD(h, N , L , R), (HD)

where ĥ is independent of both L and R, sinceBD(h, N , L , R) = L R2BD(h, N , 1, 1).
Problem (HD) is a bilinear optimization problem in terms of h and the dual variables
in (D), unlike the linear SDP problem (D). To simplify, DT [5] introduced a variable
r = {ri,k}0≤k<i≤N :

ri,k = λi hi,k + τi

i∑

j=k+1

h j,k (6.1)
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to convert (HD) into the following linear SDP problem:

r̂ � arg min
r∈RN (N+1)/2

B̆D(r, N , L , R), (RD)

where

B̆D(r, N , L , R) � min
λ∈RN ,

τ∈RN+1,
γ∈R

{
1

2
L R2γ :

(
S̆(r,λ, τ ) 1

2τ
1
2τ

� 1
2γ

)
 0, (λ, τ ) ∈ Λ

}
,

S̆(r,λ, τ ) �1

2

N∑

i=1

λi (ui−1 − ui )(ui−1 − ui )
� + 1

2

N∑

i=0

τiuiu�
i

+ 1

2

N∑

i=1

i−1∑

k=0

ri,k

(
uiu�

k + uku�
i

)
. (6.2)

An optimal solution (r̂, λ̂, τ̂ , γ̂ ) of (RD) for a given N can be computed by any
numerical SDP method [3,6]. DT showed that the resulting values (λ̂, τ̂ , γ̂ ) with the
following ĥ:

ĥi,k =
⎧
⎨

⎩

r̂i,k−τ̂i
∑i−1

j=k+1 ĥ j,k

λ̂i +τ̂i
, λ̂i + τ̂i �= 0,

0, otherwise,
(6.3)

for i = 1, . . . , N , k = 0, . . . , i − 1 become an optimal solution of (HD) [5, Theorem
3],9 where both (HD) and (RD) achieve the sameoptimal value, i.e.,BD(ĥ, N , L , R) =
B̆D(r̂, N , L , R).

The numerical results for problem (HD) in [5] provided a convergence bound that
is about two-times smaller than that of Nesterov’s fast gradient methods for a couple
of choices of N in [5, Tables 1 and 2]. However, numerical calculations cannot verify
the acceleration for all N , and SDP computation for solving (RD) becomes expensive
for large N . In the next section, we analytically solve problem (HD), which is our first
main contribution.

6.2 Proposed analytically optimized first-order algorithms

This section provides an analytical optimal solution of (HD) by reformulating (RD).
We first find an equivalent form of the dual function H(λ, τ ; h) in (4.2) that differs

from (4.4) by using the following equality:

SN ,N (h,λ, τ ) = 1

2
for any (λ, τ ) ∈ Λ, (6.4)

9 Equation (5.2) in [5, Theorem 3] that is derived from (6.1) has typos that we fixed in (6.3).
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i.e., the (N , N )th entry of S(h,λ, τ ) in (4.5) and (5.4) is 1
2 for any (λ, τ ) ∈ Λ.

Hereafter we use the notation

S(h,λ, τ ) �
(

Q(h,λ, τ ) q(h,λ, τ )

q(h,λ, τ )� 1
2

)
, w �

(
w̌

wN

)
, and τ �

(
τ̌

τN

)
,

(6.5)

where Q(h,λ, τ ) is a N × N symmetric matrix, q(h,λ, τ ), w̌ and τ̌ are N × 1
vectors, andwN and τN are scalars.We omit the arguments (h,λ, τ ) in Q(h,λ, τ ) and
q(h,λ, τ ) for notational simplicity in the next derivation. For any given (λ, τ ) ∈ Λ,
we rewrite H(λ, τ ; h) in (4.2) and (4.4) as follows:

H(λ, τ ; h) = min
w∈RN+1

{
w̌

� Qw̌ + τ̌
�
w̌ + 2w̌�qwN + 1

2
w2

N + τN wN

}

= min
w̌∈RN

{
w̌

�
(Q − 2qq�)w̌ + (τ̌ − 2qτN )�w̌ − 1

2
τ 2N

}

= max
γ∈R

{
−1

2
γ : w̌

�
(Q − 2qq�)w̌ + (τ̌ − 2qτN )�w̌ − 1

2τ
2
N ≥ − 1

2γ,

∀w̌ ∈ R
N

}

= max
γ∈R

{
−1

2
γ :

(
Q − 2qq� 1

2 (τ̌ − 2qτN )
1
2 (τ̌ − 2qτN )� 1

2 (γ − τ 2N )

)
 0

}
, (6.6)

where the second equality comes from minimizing the function with respect to wN .
Using (6.6) instead of (4.4) for the function H(λ, τ ; h) and again using the variable

r in (6.1) leads to the following optimization problem that is equivalent to (RD):

r̂ = arg min
r∈RN (N+1)/2

B̆D1(r, N , L , R), (RD1)

where

B̆D1(r, N , L , R) � min
λ∈RN ,

τ∈RN+1,
γ∈R

{
1

2
L R2γ :

(
Q̆ − 2q̆ q̆� 1

2 (τ̌ − 2q̆τN )
1
2 (τ̌ − 2q̆τN )� 1

2 (γ − τ2N )

)
0, (λ, τ )∈Λ

}
,

Q̆(r,λ, τ ) = 1

2

N−1∑

i=1

λi (ǔi−1 − ǔi )(ǔi−1 − ǔi )
� + 1

2
λN ǔN−1ǔ

�
N−1

+ 1

2

N−1∑

i=0

τi ǔi ǔ
�
i + 1

2

N−1∑

i=1

i−1∑

k=0

ri,k

(
ǔi ǔ

�
k + ǔk ǔ

�
i

)
, (6.7)

q̆(r,λ, τ ) = 1

2

N−2∑

k=0

rN ,k ǔk , +1

2
(rN ,N−1 − λN )ǔN−1 (6.8)

for ǔi = eN ,i+1 ∈ R
N . We omit the arguments (r,λ, τ ) in Q̆(r,λ, τ ) and q̆(r,λ, τ )

for notational simplicity. Unlike (RD), we observe that the new equivalent form (RD1)
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has a point at the boundary of the positive semidefinite condition, and we will show
that the point is indeed an optimal solution of both (RD) and (RD1).

Lemma 2 A feasible point of both (RD) and (RD1) is (r̂, λ̂, τ̂ , γ̂ ), where

r̂i,k =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4θi θk
θ2N

, i = 2, . . . , N − 1, k = 0, . . . , i − 2,

4θi θi−1

θ2N
+ 2θ2i−1

θ2N
, i = 1, . . . , N − 1, k = i − 1,

2θk
θN

, i = N , k = 0, . . . , i − 2,
2θN−1

θN
+ 2θ2N−1

θ2N
, i = N , k = i − 1,

(6.9)

λ̂i = 2θ2i−1

θ2N
, i = 1, . . . , N , (6.10)

τ̂i =
⎧
⎨

⎩

2θi
θ2N

, i = 0, . . . , N − 1,

1 − 2θ2N−1

θ2N
= 1

θN
, i = N ,

(6.11)

γ̂ = 1

θ2N
, (6.12)

for

θi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, i = 0,
1+

√
1+4θ2i−1

2 , i = 1, . . . , N − 1,
1+

√
1+8θ2i−1

2 i = N .

(6.13)

Proof The following set of conditions are sufficient for the feasible conditions
of (RD1):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q̆(r,λ, τ ) = 2q̆(r,λ, τ )q̆(r,λ, τ )�,

τ̌ = 2q̆(r,λ, τ )τN ,

γ = τ 2N ,

(λ, τ ) ∈ Λ.

(6.14)

The “Appendix” shows that the point (r̂, λ̂, τ̂ , γ̂ ) in (6.9), (6.10), (6.11) and (6.12) is
the unique solution of (6.14) and also satisfies the feasible conditions of (RD). 	


Note that the parameter θi (6.13) used in Lemma 2 differs from ti (3.1) only at the
last iteration N . In other words, {θ0, . . . , θN−1} is equivalent to {t0, . . . , tN−1} in (3.1)
satisfying (3.2), whereas the last parameter θN satisfies

θ2N − θN − 2θ2N−1 = 0. (6.15)
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The next lemma shows that the feasible point derived in Lemma 2 is an optimal
solution of both (RD) and (RD1).

Lemma 3 The choice of (r̂, λ̂, τ̂ , γ̂ ) in (6.9), (6.10), (6.11) and (6.12) is an optimal
solution of both (RD) and (RD1).

Proof The proof in [7] uses the Karush–Kuhn–Tucker (KKT) conditions of linear
SDP (RD). 	


The optimized step coefficients ĥ of interest are then derived using (6.3) with
the analytical optimal solution (r̂, λ̂, τ̂ , γ̂ ) of (RD). It is interesting to note that the
corresponding coefficients ĥ in (6.16) below have a recursive form that is similar
to (3.4) of FGM2, as discussed further in Sect. 7.

Lemma 4 The choice of (ĥ, λ̂, τ̂ , γ̂ ) in (6.10), (6.11), (6.12) and

ĥi+1,k =
⎧
⎨

⎩

1
θi+1

(
2θk − ∑i

j=k+1 ĥ j,k

)
, k = 0, . . . , i − 1,

1 + 2θi −1
θi+1

, k = i,
(6.16)

for i = 0, . . . , N − 1 with θi in (6.13) is an optimal solution of (HD).

Proof Inserting r̂ (6.9), λ̂ (6.10) and τ̂ (6.11) into (6.3), and noting that λ̂i + τ̂i > 0
for i = 1, . . . , N , we get

ĥi,k = r̂i,k − τ̂i
∑i−1

j=k+1 ĥ j,k

λ̂i + τ̂i
, i = 1, . . . , N , k = 0, . . . , i − 1,

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ2N
2θ2i

(
4θi θk
θ2N

− 2θi
θ2N

∑i−1
j=k+1 ĥ j,k

)
, i = 1, . . . , N − 1, k = 0, . . . , i − 2,

θ2N
2θ2i

(
4θi θi−1

θ2N
+ 2θ2i−1

θ2N

)
= 2θi θi−1+θ2i −θi

θ2i
, i = 1, . . . , N − 1, k = i − 1,

2θk
θN

− 1
θN

∑N−1
j=k+1 ĥ j,k, i = N , k = 0, . . . , i − 2,

2θN−1
θN

+ 2θ2N−1

θ2N
= 2θN θN−1+θ2N −θN

θ2N
, i = N , k = i − 1,

which is equivalent to (6.16). From [5, Theorem 3], the corresponding (ĥ, λ̂, τ̂ , γ̂ )

becomes an optimal solution of (HD). 	

The following theorem shows that Algorithm FO with the optimized ĥ (6.16)

achieves a new convergence bound.

Theorem 2 Let f : Rd → R be convex and C1,1
L and let x0, . . . , xN ∈ R

d be gener-

ated by Algorithm FO with ĥ (6.16) for a given N ≥ 1. Then

f (xN ) − f (x∗) ≤ L||x0 − x∗||2
2θ2N

≤ L||x0 − x∗||2
(N + 1)(N + 1 + √

2)
, ∀x∗ ∈ X∗( f ).

(6.17)
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Proof Using γ̂ (6.12) and θ2N−1 = t2N−1 ≥ (N+1)2

4 from (3.2) and (6.13), we get

γ̂ = 1

θ2N
= 4

(
1 +

√
1 + 8θ2N−1

)2 ≤ 4
(
1 + √

1 + 2(N + 1)2
)2

≤ 2

(N + 1)2 + √
2(N + 1) + 1

≤ 2

(N + 1)(N + 1 + √
2)

.

Then, we have

f (xN ) − f (x∗) ≤ BD(ĥ, N , L , R) = 1

2
L R2γ̂

≤ L R2

(N + 1)(N + 1 + √
2)

, ∀x∗ ∈ X∗( f ),

based on Lemma 4. Finally, we let R = ||x0 − x∗||. 	

Theorem 2 shows that algorithm FO with the optimized ĥ (6.16) decreases the

function f with a bound that is twice as small as that of Nesterov’s fast gradient
methods in (3.5) and (5.5), confirming DT’s numerical results in [5, Tables 1 and 2].

The proposed algorithm requires at most N =
⌈√

L
ε
||x0 − x∗||

⌉
iterations to achieve

the desired accuracy f (xN ) − f (x∗) ≤ ε, while Nesterov’s fast gradient methods

require at most N =
⌈√

2L
ε

||x0 − x∗||
⌉
, a factor of about

√
2-times more iterations.

The next section describes efficient implementations of the corresponding Algo-
rithm FO with ĥ (6.16).

7 Efficient formulations of proposed optimized first-order algorithms

Even though the analytical expression for ĥ in (6.16) that solves (HD) does not require
an expensive SDP method, using ĥ in Algorithm FO would still be computationally
undesirable. Noticing the similarity between (3.4) of FGM2 and (6.16), we can expect
that Algorithm FO with (6.16) may have an equivalent efficient form as FGM2, as
described next. In addition, we find an equivalent form of (6.16) that is similar to (3.3)
of FGM1, so that we can find a formulation that is similar to FGM1 by analogy with
how Proposition 2 shows the equivalence between (3.3) and (3.4).

Proposition 3 The optimized ĥ in (6.16) satisfies the following recursive relationship

ĥi+1,k =

⎧
⎪⎨

⎪⎩

θi −1
θi+1

ĥi,k, k = 0, . . . , i − 2,
θi −1
θi+1

(ĥi,i−1 − 1), k = i − 1,

1 + 2θi −1
θi+1

, k = i,

(7.1)

for i = 0, . . . , N − 1 with θi in (6.13).
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Proof We follow the induction proof of Proposition 2 showing the equivalence
between (3.3) and (3.4). We use the notation ĥ′

i,k for the coefficient (6.16) to dis-
tinguish from (7.1).

It is obvious that ĥ′
i+1,i = ĥi+1,i , i = 0, . . . , N − 1, and we clearly have

ĥ′
i+1,i−1 = 1

θi+1

(
2θi−1 − ĥ′

i,i−1

)
= 1

θi+1

(
2θi−1 −

(
1 + 2θi−1 − 1

θi

))

= (2θi−1 − 1)(θi − 1)

θiθi+1
= θi − 1

θi+1

(
ĥi,i−1 − 1

)
= ĥi+1,i−1.

for i = 0, . . . , N − 1.
We next use induction by assuming ĥ′

i+1,k = ĥi+1,k for i = 0, . . . , n − 1, k =
0, . . . , i . We then have

ĥ′
n+1,k = 1

θn+1

⎛

⎝2θk −
n∑

j=k+1

ĥ′
j,k

⎞

⎠ = 1

θn+1

⎛

⎝2θk −
n−1∑

j=k+1

ĥ′
j,k − ĥ′

n,k

⎞

⎠

= θn − 1

θn+1
ĥ′

n,k = θn − 1

θn+1
ĥn,k = ĥn+1,k

for k = 1, . . . , n − 2. Note that this proof is independent of the choice of θi . 	

Next, we revisit the derivation in Sect. 3 to transform Algorithm FO with (6.16)

or (7.1) into efficient formulations akin to Nesterov’s fast gradient methods, leading
to practical algorithms.

7.1 Proposed optimized gradient method 1 (OGM1)

We first propose the following optimized gradient method, called OGM1, using (7.1)
in Algorithm FO. OGM1 is computationally similar to FGM1 yet the sequence {xi }
generated by OGM1 achieves the fast convergence bound in Theorem 2.

Algorithm OGM1

Input: f ∈ C1,1
L (Rd) convex, x0 ∈ R

d , y0 = x0, θ0 = 1.

For i = 0, . . . , N − 1

yi+1 = xi − 1

L
f ′(xi )

θi+1 =

⎧
⎪⎨

⎪⎩

1+
√
1+4θ2i
2 , i ≤ N − 2

1+
√
1+8θ2i
2 , i = N − 1

xi+1 = yi+1 + θi − 1

θi+1
( yi+1 − yi ) + θi

θi+1
( yi+1 − xi )

Apparently, the proposed OGM1 accelerates FGM1 by using just one additional
momentum term θi

θi+1
( yi+1 − xi ), and thus OGM1 is computationally efficient. Also,
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unlike DT’s approach that requires choosing N for using a SDP solver before iterating,
the proposed OGM1 does not need to know N in advance because the coefficients ĥ
(or θi ) for intermediate iterations (i = 0, . . . , N − 1) do not depend on N .

Proposition 4 The sequence {x0, . . . , xN } generated by Algorithm FO with (7.1) is
identical to the corresponding sequence generated by Algorithm OGM1.

Proof Weuse induction, and for clarity, we use the notation x′
0, . . . , x

′
N for Algorithm

FO. It is obvious that x′
0 = x0, and since θ0 = 1 we get

x′
1 = x′

0 − 1

L
ĥ1,0 f ′ (x′

0

) = x0 − 1

L

(
1 + 2θ0 − 1

θ1

)
f ′(x0)

= y1 + θ0

θ1
( y1 − x0) = x1.

Assuming x′
i = xi for i = 0, . . . , n, we then have

x′
n+1 = x′

n − 1

L
ĥn+1,n f ′ (x′

n

) − 1

L
ĥn+1,n−1 f ′ (x′

n−1

) − 1

L

n−2∑

k=0

ĥn+1,k f ′ (x′
k

)

= xn − 1

L

(
1 + 2θn − 1

θn+1

)
f ′(xn)

− θn − 1

θn+1
(ĥn,n−1 − 1) f ′(xn−1) − 1

L

n−2∑

k=0

θn − 1

θn+1
ĥn,k f ′(xk)

= xn − 1

L

(
1 + θn

θn+1

)
f ′(xn)

+ θn − 1

θn+1

(
− 1

L
f ′(xn) + 1

L
f ′(xn−1) − 1

L

n−1∑

k=0

ĥn,k f ′(xk)

)

= yn+1 + θn

θn+1
( yn+1 − xn)

+ θn − 1

θn+1

(
− 1

L
f ′(xn) + 1

L
f ′(xn−1) + xn − xn−1

)

= yn+1 + θn − 1

θn+1
( yn+1 − yn) + θn

θn+1
( yn+1 − xn) = xn+1.

	


7.2 Proposed optimized gradient method 2 (OGM2)

We propose another efficient formulation of Algorithm FO with (6.16) that is similar
to the formulation of FGM2.
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Algorithm OGM2

Input: f ∈ C1,1
L (Rd) convex, x0 ∈ R

d , θ0 = 1.

For i = 0, . . . , N − 1

yi+1 = xi − 1

L
f ′(xi )

zi+1 = x0 − 1

L

i∑

k=0

2θk f ′(xk)

θi+1 =

⎧
⎪⎨

⎪⎩

1+
√
1+4θ2i
2 , i ≤ N − 2

1+
√
1+8θ2i
2 , i = N − 1

xi+1 =
(
1 − 1

θi+1

)
yi+1 + 1

θi+1
zi+1

The sequence {xi } generated by OGM2 achieves the fast convergence bound in The-
orem 2. Algorithm OGM2 doubles the weight on all previous gradients for {zi }
compared to FGM2, providing some intuition for its two-fold acceleration. OGM2
requires comparable computation per iteration as FGM2.

Proposition 5 The sequence {x0, . . . , xN } generated by Algorithm FO with (6.16) is
identical to the corresponding sequence generated by Algorithm OGM2.

Proof Weuse induction, and for clarity, we use the notation x′
0, . . . , x

′
N for Algorithm

FO. It is obvious that x′
0 = x0, and since θ0 = 1 we get

x′
1 = x′

0 − 1

L
ĥ1,0 f ′(x′

0) = x0 − 1

L

(
1 + 2θ0 − 1

θ1

)
f ′(x0)

= y1 + θ0

θ1
( y1 − x0) = x1.

Assuming x′
i = xi for i = 0, . . . , n, we then have

x′
n+1 = x′

n − 1

L
ĥn+1,n f ′(x′

n) − 1

L

n−1∑

k=0

ĥn+1,k f ′(x′
k)

= xn − 1

L

(
1 + 2θn − 1

θn+1

)
f ′(xn) − 1

L

n−1∑

k=0

1

θn+1

⎛

⎝2θk −
n∑

j=k+1

ĥ j,k

⎞

⎠ f ′(xk)

=
(
1 − 1

θn+1

) (
xn − 1

L
f ′(xn)

)
+ 1

θn+1

(
x0 − 1

L

n∑

k=0

2θk f ′(xk)

)

=
(
1 − 1

θn+1

)
yn+1 + 1

θn+1
zn+1 = xn+1.
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The third equality uses the telescoping sum xn = x0 + ∑n
j=1(x j − x j−1) and (1.1)

in Algorithm FO. 	


8 Discussion

After submitting this work [7], Taylor et al. [17] further studied the PEP approach to
compute the exact worst-case bound of first-order methods, unlike DT [5] and this
paper that use the relaxed PEP. Taylor et al. [17] studied the tightness of relaxations
on PEP introduced in [5] and avoided some strict relaxations.

Inspired by [17, Conjecture 5], we developed the following theorem that shows that
the smallest upper bound in (6.17) for OGM1 and OGM2 is tight, despite the various
relaxations of PEP used in [5] and herein. (Similar tightness results are shown for the
gradient methods with a constant step size 0 < h ≤ 1 in [5].) The following theorem
specifies a worst-case convex function φ(x) in C1,1

L (Rd) for which the optimized
gradient methods achieve their smallest upper bound in (6.17).

Theorem 3 For the following convex functions in C1,1
L (Rd) for all d ≥ 1:

φ(x) =
{

L R
θ2N

||x|| − L R2

2θ4N
, if ||x|| ≥ R

θ2N
,

L
2 ||x||2, otherwise,

(8.1)

both OGM1 and OGM2 exactly achieve the smallest upper bound in (6.17), i.e.,

φ(xN ) − φ(x∗) = L||x0 − x∗||2
2θ2N

.

Proof We show in the “Appendix” that the following property of the coefficients ĥ
(7.1) of OGM1 and OGM2 holds:

i∑

j=1

j−1∑

k=0

ĥ j,k =
{

θ2i − 1, i = 1, . . . , N − 1,
1
2 (θ

2
N − 1), i = N .

(8.2)

Then, starting from x0 = Rν, where ν is a unit vector, and using (8.2), the iterates
of OGM1 and OGM2 are as follows

xi = x0 − 1

L

i∑

j=1

j−1∑

k=0

ĥ j,kφ
′(xk) =

⎧
⎪⎪⎨

⎪⎪⎩

(
1 − θ2i −1

θ2N

)
Rν, i = 0, . . . , N − 1,

(
1 − θ2N −1

2θ2N

)
Rν, i = N ,

where the corresponding sequence {x0, . . . , xN } stays in the affine region of the func-
tion φ(x) with the same gradient value:

φ′(xi ) = L R

θ2N
ν, i = 0, . . . , N .
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Therefore, after N iterations of OGM1 and OGM2, we have

φ(xN ) − φ(x∗) = φ(xN ) = L R2

2θ2N
,

exactly matching the smallest upper bound in (6.17). 	

This result implies that the exact PEP bound BP(ĥ, N , d, L , R) of OGM1 and

OGM2 is equivalent to their relaxed bound BD(ĥ, N , L , R) that is independent of d.
Note that Taylor et al. [17] showed that the exact PEPBP(h, N , d, L , R) is independent
of d. Whereas the OGM bound (6.17) is tight, the FGM bounds (3.5) and (5.5) are not
tight [5,17], somewhat weakening the utility of the fact that the OGM bound (6.17)
is twice smaller than the FGM bounds. However, Figure 5 in [17] shows that the
FGM bounds (3.5) and (5.5) become close to tight asymptotically as N increases, so
the factor of 2 can have practical value when using many iterations. We leave more
complete comparisons as future work.

9 Conclusion

We proposed new optimized first-order algorithms that achieve a worst-case con-
vergence bound that is twice as small as that of Nesterov’s methods for smooth
unconstrained convex minimization, inspired by Drori and Teboulle [5]. The proposed
first-order methods are comparably efficient for implementation as Nesterov’s meth-
ods. Thus it is natural to use the proposed OGM1 and OGM2 to replace Nesterov’s
methods in smooth unconstrained convex minimization. Numerical results in large-
scale imaging applications show practical convergence acceleration consistent with
those predicted by the bounds given here [8,9]. Those applications use regularizers
that have shapes somewhat similar to the worst-case function (8.1).

The efficient formulations of both Nesterov’s methods and the new optimized first-
order methods still seem somewhat magical. Recently, Allen-Zhu and Orecchia [1],
O’Donoghue and Candès [14] and Su et al. [16] studied Nesterov’s FGM formula-
tions, and extending such studies to the new OGM methods should further illuminate
the fundamental causes for their efficient formulations and acceleration. Also, new
optimized first-order methods lack analytical convergence bounds for the intermedi-
ate iterations, whereas numerical bounds are studied in [17]; deriving those analytical
bounds is interesting future work.

Drori recently extended the PEP approach to projected gradient methods for
constrained smooth convex minimization [4]. Extending this approach to general first-
order algorithms including our proposed OGM1 and OGM2 is important future work.
In addition, just asNesterov’s fast gradientmethods have been extended for nonsmooth
composite convex minimization [2,13], extending the proposed optimized first-order
algorithms for minimizing nonsmooth composite convex functions would be a natural
direction to pursue.

While DT’s PEP approach involves a series of relaxations to make the problem
solvable, OGM1 and OGM2 with the step coefficients ĥ that are optimized over the
relaxed PEP upper bound (HD) achieve an exact bound in Theorem 3. However, it

123

fessler
Highlight
for d>= N+2



104 D. Kim, J. A. Fessler

remains an open problem to either prove that the smallest upper bound in (6.17) of
OGM1 and OGM2 is optimal. We leave either proving the above statement for (HP)
or to further optimize the first-order methods as future work.

10 Appendix

10.1 Proof of Lemma 2

We prove that the choice (r̂, λ̂, τ̂ , γ ) in (6.9), (6.10), (6.11) and (6.12) satisfies the
feasible conditions (6.14) of (RD1).

Using the definition of Q̆(r,λ, τ ) in (6.7), and considering the first two conditions
of (6.14), we get

λi+1 = Q̆i,i (r,λ, τ ) = 2q̆2
i (r,λ, τ ) = 1

2τ 2N
τ 2i

=
{

1
2(1−λN )2

λ21, i = 0
1

2(1−λN )2
(λi+1 − λi )

2, i = 1, . . . , N − 1,

where the last equality comes from (λ, τ ) ∈ Λ, and this reduces to the following
recursion:

{
λ1 = 2(1 − λN )2,

(λi − λi−1)
2 − λ1λi = 0. i = 2, . . . , N .

(10.1)

We use induction to prove that the solution of (10.1) is

λi =
{

2
θ2N

, i = 1,

θ2i−1λ1, i = 2, . . . , N ,

which is equivalent to λ̂ (6.10). It is obvious that λ1 = θ0λ1, and for i = 2 in (10.1),
we get

λ2 =
3λ1 +

√
9λ21 − 4λ21
2

= 3 + √
5

2
λ1 = θ21λ1.

Then, assuming λi = θ2i−1λ1 for i = 1, . . . , n and n ≤ N − 1, and using the second
equality in (10.1) for i = n + 1, we get

λn+1 = λ1 + 2λn + √
(λ1 + 2λn)2 − 4λ2n
2

=
1 + 2θ2n−1 +

√
1 + 4θ2n−1

2
λ1

=
⎛

⎝θ2n−1 +
1 +

√
1 + 4θ2n−1

2

⎞

⎠ λ1 = θ2n λ1,
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where the last equality uses (3.2). Then we use the first equality in (10.1) to find the
value of λ1 as

λ1 = 2(1 − θ2N−1λ1)
2

θ4N−1λ
2
1 − 2

(
θ2N−1 + 1

4

)
λ1 + 1 = 0

λ1 = θ2N−1 + 1
4 −

√(
θ2N−1 + 1

4

)2 − θ4N−1

θ4N−1

= 1

θ2N−1 + 1
4 +

√
θ2N−1
2 + 1

16

= 8
(
1 +

√
1 + 8θ2N−1

)2 = 2

θ2N

with θN in (6.13).
Until now, we derived λ̂ (6.10) using some conditions of (6.14). Consequently,

using the last two conditions in (6.14) with (3.2) and (6.15), we can easily derive the
following:

τi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ̂1 = 2
θ2N

, i = 0,

λ̂i+1 − λ̂i = 2θ2i
θ2N

− 2θ2i−1

θ2N
= 2θi

θ2N
, i = 1, . . . , N − 1,

1 − λ̂N = 1 − 2θ2N−1

θ2N
= 1

θN
, i = N ,

γ = τ 2N = 1

θ2N
,

which are equivalent to τ̂ (6.11) and γ̂ (6.12).
Next, we derive r̂ for given λ̂ (6.10) and τ̂ (6.11). Inserting τ̂ (6.11) to the first two

conditions of (6.14), we get

{
q̆i (r̂, λ̂, τ̂ ) = τ̂i

2τ̂N
= θi

θN
,

Q̆i,k(r̂, λ̂, τ̂ ) = 2q̆i (r, λ̂, τ̂ )q̆k(r, λ̂, τ̂ ) = 2θi θk
θ2N

,
(10.2)

for i, k = 0, . . . , N − 1, and considering (6.5) and (10.2), we get

S̆i,k(r̂, λ̂, τ̂ ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2θi θk
θ2N

, i, k = 0, . . . , N − 1,
θi
θN

i = 0, . . . , N − 1, k = N ,
θk
θN

, i = N , k = 0, . . . , N − 1,
1
2 i = N , k = N .

(10.3)
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Finally, using the two equivalent forms (6.2) and (10.3) of S̆(r̂, λ̂, τ̂ ), we get

S̆i,k(r̂, λ̂, τ̂ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2 r̂i,k = 2θi θk

θ2N
, i = 2, . . . , N − 1, k = 0, . . . , i − 2,

1
2 (r̂i,k − λ̂i ) = 2θi θk

θ2N
, i = 1, . . . , N − 1, k = i − 1,

1
2 r̂i,k = θk

θN
, i = N , k = 0, . . . , i − 2,

1
2 (r̂i,k − λ̂i ) = θk

θN
. i = N , k = i − 1,

(10.4)

and this can be easily converted to the choice r̂i,k in (6.9).
For these given (r̂, λ̂, τ̂ ), we can easily notice that

(
S̆(r̂, λ̂, τ̂ ) 1

2 τ̂
1
2 τ̂

� 1
2 γ̂

)
=

⎛

⎝
2

θ2N
θ̌ θ̌

� 1
θ2N

θ̌

1
θ2N

θ̌
� 1

2θ2N

⎞

⎠ = 2

θ2N

(
θ̌
1
2

) (
θ̌
1
2

)�
 0 (10.5)

for θ̌ =
(
θ0, . . . , θN−1,

θN
2

)�
, showing that the choice is feasible in both (RD) and

(RD1). 	


10.2 Proof of (8.2)

We prove that (8.2) holds for the coefficients ĥ (7.1) of OGM1 and OGM2.
We first show the following property using induction:

j−1∑

k=0

ĥ j,k =
{

θ j , j = 1, . . . , N − 1,
1
2 (θN + 1), j = N .

Clearly, ĥ1,0 = 1 + 2θ0−1
θ1

= θ1 using (3.2). Assuming
∑ j−1

k=0 ĥ j,k = θ j for j =
1, . . . , n and n ≤ N − 1, we get

n∑

k=0

ĥn+1,k = 1 + 2θn − 1

θn+1
+ θn − 1

θn+1
(ĥn,n−1 − 1) + θn − 1

θn+1

n−2∑

k=0

ĥn,k

= 1 + θn

θn+1
+ θn − 1

θn+1

n−1∑

k=0

ĥn,k = θn+1 + θ2n

θn+1

=
{

θn, n = 1, . . . , N − 2,
1
2 (θN + 1), n = N − 1,

where the last equality uses (3.2) and (6.15).
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Then, (8.2) can be easily derived using (3.2) and (6.15) as

i∑

j=1

j−1∑

k=0

ĥ j,k =
{∑i

j=1 θ j , i = 1, . . . , N − 1,∑N−1
j=1 θ j + 1

2 (θN + 1), i = N ,

=
{

θ2i − 1, i = 1, . . . , N − 1,
1
2 (θ

2
N − 1), i = N .
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