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Relaxed Linearized Algorithms for Faster X-Ray
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Abstract—Statistical image reconstruction (SIR) methods are
studied extensively for X-ray computed tomography (CT) due
to the potential of acquiring CT scans with reduced X-ray
dose while maintaining image quality. However, the longer
reconstruction time of SIR methods hinders their use in X-ray CT
in practice. To accelerate statistical methods, many optimization
techniques have been investigated. Over-relaxation is a common
technique to speed up convergence of iterative algorithms. For
instance, using a relaxation parameter that is close to two in
alternating direction method of multipliers (ADMM) has been
shown to speed up convergence significantly. This paper proposes
a relaxed linearized augmented Lagrangian (AL) method that
shows theoretical faster convergence rate with over-relaxation
and applies the proposed relaxed linearized AL method to X-ray
CT image reconstruction problems. Experimental results with
both simulated and real CT scan data show that the proposed
relaxed algorithm (with ordered-subsets [OS] acceleration) is
about twice as fast as the existing unrelaxed fast algorithms,
with negligible computation and memory overhead.

Index Terms—Statistical image reconstruction, computed to-
mography, ordered subsets, augmented Lagrangian, relaxation.

I. INTRODUCTION

STATISTICAL image reconstruction (SIR) methods [1, 2]
have been studied extensively and used widely in medical

imaging. In SIR methods, one models the physics of the
imaging system, the statistics of noisy measurements, and
the prior information of the object to be imaged, and then
finds the best fitted estimate by minimizing a cost function
using iterative algorithms. By considering noise statistics
when reconstructing images, SIR methods have better bias-
variance performance and noise robustness. However, the
iterative nature of algorithms in SIR methods also increases
the reconstruction time, hindering their ubiquitous use in X-
ray CT in practice.

Penalized weighted least-squares (PWLS) cost functions
with a statistically weighted quadratic data-fidelity term are
commonly used in SIR methods for X-ray CT [3]. Con-
ventional SIR methods include the preconditioned conjugate
gradient (PCG) method [4] and the separable quadratic sur-
rogate (SQS) method with ordered-subsets (OS) acceleration
[5]. These first-order methods update the image based on the
gradient of the cost function at the current estimate. Due to
the time-consuming forward/back-projection operations in X-
ray CT when computing gradients, conventional first-order
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methods are typically very slow. The efficiency of PCG relies
on choosing an appropriate preconditioner of the highly shift-
variant Hessian caused by the huge dynamic range of the
statistical weighting. In 2-D CT, one can introduce an auxiliary
variable that separates the shift-variant and approximately
shift-invariant components of the weighted quadratic data-
fidelity term using a variable splitting technique [6], leading
to better conditioned inner least-squares problems. However,
this method has not worked well in 3-D CT, probably due to
the 3-D cone-beam geometry and helical trajectory.

OS-SQS accelerates convergence using more frequent image
updates by incremental gradients, i.e., computing image gradi-
ents with only a subset of data. This method usually exhibits
fast convergence behavior in early iterations and becomes
faster by using more subsets. However, it is not convergent
in general [7, 8]. When more subsets are used, larger limit
cycles can be observed. Unlike methods that update all voxels
simultaneously, the iterative coordinate descent (ICD) method
[9] updates one voxel at a time. Experimental results show
that ICD approximately minimizes the PWLS cost function in
several passes of the image volume if initialized appropriately;
however, the sequential nature of ICD makes it difficult to
parallelize and restrains the use of modern parallel computing
architectures like GPU for speed-up.

OS-mom [10] and OS-LALM [11] are two recently pro-
posed iterative algorithms that demonstrate promising fast
convergence speed when solving 3-D X-ray CT image recon-
struction problems. In short, OS-mom combines Nesterov’s
momentum techniques [12, 13] with the conventional OS-SQS
algorithm, greatly accelerating convergence in early iterations.
OS-LALM, on the other hand, is a linearized augmented
Lagrangian (AL) method [14] that does not require inverting
an enormous Hessian matrix involving the forward projection
matrix when updating images, unlike typical splitting-based
algorithms [6], but still enjoys the empirical fast conver-
gence speed and error tolerance of AL methods such as the
alternating direction method of multipliers (ADMM) [15–
17]. Further acceleration from an algorithmic perspective is
possible but seems to be more challenging. Kim et al. [18, 19]
proposed two optimal gradient methods (OGM’s) that use a
new momentum term and showed a

√
2-times speed-up for

minimizing smooth convex functions, comparing to existing
fast gradient methods (FGM’s) [12, 13, 20, 21].

Over-relaxation is a common technique to speed up conver-
gence of iterative algorithms. For example, it is very effective
for accelerating ADMM [16, 17]. The same relaxation tech-
nique was also applied to linearized ADMM very recently
[22], but the speed-up was less significant than expected.
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Chambolle et al. proposed a relaxed primal-dual algorithm
(whose unrelaxed variant happens to be a linearized ADMM
[23, Section 4.3]) and showed the first theoretical justification
for speeding up convergence with over-relaxation [24, Theo-
rem 2]. However, their theorem also pointed out that when the
smooth explicit term (majorization of the Lipschitz part in the
cost function mentioned later) is not zero, one must use smaller
primal step size to ensure convergence with over-relaxation,
precluding the use of larger relaxation parameter (close to
two) for more acceleration. This paper proposes a non-trivial
relaxed variant of linearized AL methods that improves the
convergence rate by using larger relaxation parameter values
(close to two) but does not require the step-size adjustment
in [24]. We apply the proposed relaxed linearized algorithm
to X-ray CT image reconstruction problems, and experimental
results show that our proposed relaxation works much better
than the simple relaxation [22] and significantly accelerates X-
ray CT image reconstruction, even with ordered-subsets (OS)
acceleration.

This paper is organized as follows. Section II shows the
convergence rate of a linearized AL method (LALM) with
simple relaxation and proposes a novel relaxed LALM whose
convergence rate scales better with the relaxation parameter.
Section III applies the proposed relaxed LALM to X-ray CT
image reconstruction and uses a second-order recursive system
analysis to derive a continuation sequence that speeds up
the proposed algorithm. Section IV reports the experimental
results of X-ray CT image reconstruction using the proposed
algorithm. Finally, we draw conclusions in Section V. Online
supplementary material contains many additional results and
derivation details.

II. RELAXED LINEARIZED AL METHODS

We begin by discussing a more general constrained mini-
mization problem for which X-ray CT image reconstruction is
a special case considered in Section III. Consider an equality-
constrained minimization problem:

(x̂, û) ∈ arg min
x,u

{
gy(u) + h(x)

}
s.t. u = Ax , (1)

where gy and h are closed and proper convex functions. In
particular, gy is a loss function that measures the discrepancy
between the linear model Ax and noisy measurement y, and h
is a regularization term that introduces prior knowledge of x to
the reconstruction. We assume that the regularizer h , φ+ ψ
is the sum of two convex components φ and ψ, where φ has
inexpensive proximal mapping (prox-operator) defined as

proxφ(x) , arg min
z

{
φ(z) + 1

2 ‖z− x‖22
}
, (2)

e.g., soft-shrinkage for the `1-norm and truncating zeros
for non-negativity constraints, and where ψ is continuously
differentiable with Lψ-Lipschitz gradients [25, p. 48], i.e.,

‖∇ψ(x1)−∇ψ(x2)‖2 ≤ Lψ ‖x1 − x2‖2 (3)

for any x1 and x2 in the domain of ψ. The Lipschitz condition
of ∇ψ implies the “(quadratic) majorization condition” of ψ:

ψ(x2) ≤ ψ(x1)+〈∇ψ(x1) ,x2−x1〉+ Lψ
2 ‖x2 − x1‖22 . (4)

More generally, one can replace the Lipschitz constant Lψ
by a diagonal majorizing matrix Dψ based on the maximum
curvature [26] or Huber’s optimal curvature [27, p. 184] of ψ
while still guaranteeing the majorization condition:

ψ(x2) ≤ ψ(x1)+〈∇ψ(x1) ,x2−x1〉+ 1
2 ‖x2 − x1‖2Dψ

. (5)

We show later that decomposing h into the proximal part φ
and the Lipschitz part ψ is useful when solving minimization
problems with composite regularization. For example, Sec-
tion III writes iterative X-ray CT image reconstruction as a
special case of (1), where gy is a weighted quadratic function,
and h is an edge-preserving regularizer with a non-negativity
constraint on the reconstructed image.

A. Preliminaries

Solving the equality-constrained minimization problem (1)
is equivalent to finding a saddle-point of the Lagrangian:

L(x,u,µ) , f(x,u)− 〈µ,Ax− u〉 , (6)

where f(x,u) , gy(u) + h(x), and µ is the Lagrange
multiplier of the equality constraint [28, p. 237]. In other
words, (x̂, û, µ̂) solves the minimax problem:

(x̂, û, µ̂) ∈ arg min
x,u

max
µ
L(x,u,µ) . (7)

Moreover, since (x̂, û, µ̂) is a saddle-point of L, the following
inequalities hold for any x, u, and µ:

L(x,u, µ̂) ≥ L(x̂, û, µ̂) ≥ L(x̂, û,µ) . (8)

The non-negative duality gap function:

G(x,u,µ; x̂, û, µ̂) , L(x,u, µ̂)− L(x̂, û,µ)

=
[
f(x,u)− f(x̂, û)

]
− 〈µ̂,Ax− u〉 (9)

characterizes the accuracy of an approximate solution
(x,u,µ) to the saddle-point problem (7). Note that û = Ax̂
due to the equality constraint. Besides solving the classic
Lagrangian minimax problem (7), (x̂, û, µ̂) also solves a
family of minimax problems:

(x̂, û, µ̂) ∈ arg min
x,u

max
µ
LAL(x,u,µ) , (10)

where the augmented Lagrangian (AL) [25, p. 297] is

LAL(x,u,µ) , L(x,u,µ) + ρ
2 ‖Ax− u‖22 . (11)

The augmented quadratic penalty term penalizes the feasibil-
ity violation of the equality constraint, and the AL penalty
parameter ρ > 0 controls the curvature of LAL but does not
change the solution, sometimes leading to better conditioned
minimax problems.

One popular iterative algorithm for solving equality-
constrained minimization problems based on the AL theory
is ADMM, which solves the AL minimax problem (10),
and thus the equality-constrained minimization problem (1),
in an alternating direction manner. More precisely, ADMM
minimizes AL (11) with respect to x and u alternatingly,
followed by a gradient ascent of µ with step size ρ. One
can also interpolate or extrapolate variables in subproblems,
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leading to a relaxed AL method [16, Theorem 8]:




x(k+1) ∈ arg min
x

{
h(x)− 〈µ(k),Ax〉+ ρ

2

∥∥Ax− u(k)
∥∥2

2

}

u(k+1) ∈ arg min
u

{
gy(u) + 〈µ(k),u〉+ ρ

2

∥∥r(k+1)
u,α − u

∥∥2

2

}

µ(k+1) = µ(k) − ρ
(
r

(k+1)
u,α − u(k+1)

)
,

(12)
where the relaxation variable of u is:

r(k+1)
u,α , αAx(k+1) + (1− α)u(k) , (13)

and 0 < α < 2 is the relaxation parameter. It is called over-
relaxation when α > 1 and under-relaxation when α < 1.
When α is unity, (12) reverts to the standard (alternating
direction) AL method [15]. Experimental results suggest that
over-relaxation with α ∈ [1.5, 1.8] can accelerate convergence
[17].

Although (12) is used widely in applications, two concerns
about the relaxed AL method (12) arise in practice. First, the
cost function of the x-subproblem in (12) contains the aug-
mented quadratic penalty of AL that involves A, deeply cou-
pling elements of x and often leading to an expensive iterative
x-update, especially when A is large and unstructured, e.g.,
in X-ray CT. This motivates alternative methods like LALM
[11, 14]. Second, even though LALM removes the x-coupling
due to the augmented quadratic penalty, the regularization
term h might not have inexpensive proximal mapping and
still require an iterative x-upate (albeit without using A). This
consideration inspires the decomposition h , φ + ψ used in
the algorithms discussed next.

B. Linearized AL methods with simple relaxation

In LALM1, one adds an iteration-dependent proximity term:

1
2

∥∥x− x(k)
∥∥2

P
(14)

to the x-update in (12) with α = 1, where P is a positive semi-
definite matrix. Choosing P = ρG, where G , LAI−A′A,
and LA denotes the maximum eigenvalue of A′A, the non-
separable Hessian of the augmented quadratic penalty of AL
is cancelled, and the Hessian of

ρ
2

∥∥Ax− u(k)
∥∥2

2
+ ρ

2

∥∥x− x(k)
∥∥2

G
(15)

becomes a diagonal matrix ρLAI, decoupling x in the x-
update except for the effect of h. This technique is known
as linearization (more precisely, majorization) because it ma-
jorizes a non-separable quadratic term by its linear component
plus some separable qradratic proximity term. In general, one
can also use

G , DA −A′A , (16)

where DA � A′A is a diagonal majorizing matrix of A′A,
e.g., DA = diag{|A|′|A|1} � A′A [5], and still guarantee
the positive semi-definiteness of P. This trick can be applied
to (12) when α 6= 1, too.

To remove the possible coupling due to the regularization
term h, we replace the Lipschitz part of h , φ + ψ in the

1Because (15) is quadratic, not linear, a more apt term would be “majorized”
rather than “linearized.” We stick with the term linearized for consistency with
the literature on LALM.

x-update of (12) with its separable quadratic surrogate (SQS):

Qψ
(
x;x(k)

)
, ψ

(
x(k)

)

+ 〈∇ψ
(
x(k)

)
,x− x(k)〉+ 1

2

∥∥x− x(k)
∥∥2

Dψ
(17)

shown in (4) and (5). Note that (4) is just a special case of
(5) when Dψ = LψI. Incorporating all techniques mentioned
above, the x-update becomes simply a proximal mapping of
φ, which by assumption is inexpensive. The resulting “LALM
with simple relaxation” algorithm is:




x(k+1) ∈ arg min
x

{
φ(x) +Qψ

(
x;x(k)

)
− 〈µ(k),Ax〉

+ ρ
2

∥∥Ax− u(k)
∥∥2

2
+ ρ

2

∥∥x− x(k)
∥∥2

G

}

u(k+1) ∈ arg min
u

{
gy(u) + 〈µ(k),u〉+ ρ

2

∥∥r(k+1)
u,α − u

∥∥2

2

}

µ(k+1) = µ(k) − ρ
(
r

(k+1)
u,α − u(k+1)

)
.

(18)
When ψ = 0, (18) reverts to the L-GADMM algorithm

proposed in [22]. In [22], the authors analyzed the convergence
rate of L-GADMM (for solving an equivalent variational
inequality problem; however, there is no analysis on how
relaxation parameter α affects the convergence rate) and
investigated solving problems in statistical learning using
L-GADMM. The speed-up resulting from over-relaxation was
less significant than expected (e.g., when solving an X-ray
CT image reconstruction problem discussed later). To explain
the small speed-up, the following theorem shows that the
duality gap (9) of the time-averaged approximate solution
wK = (xK ,uK ,µK) generated by (18) vanishes at rate
O(1/K), where K is the number of iterations, and

cK , 1
K

∑K
k=1 c

(k) (19)

denotes the time-average of some iterate c(k) for k = 1 to K.

Theorem 1. Let wK = (xK ,uK ,µK) be the time-averages
of the iterates of LALM with simple relaxation in (18), where
ρ > 0 and 0 < α < 2. We have

G(wK ; ŵ) ≤ 1
K

(
ADψ

+Bρ,DA
+ Cα,ρ

)
, (20)

where the first two constants

ADψ
, 1

2

∥∥x(0) − x̂
∥∥2

Dψ
(21)

Bρ,DA
, ρ

2

∥∥x(0) − x̂
∥∥2

DA−A′A
(22)

depend on how far the initial guess is from a minimizer, and
the last constant depends on the relaxation parameter

Cα,ρ , 1
2α

[√
ρ
∥∥u(0) − û

∥∥
2

+ 1√
ρ

∥∥µ(0) − µ̂
∥∥

2

]2
. (23)

Proof. The proof is in the supplementary material.

Theorem 1 shows that (18) converges at rate O(1/K),
and the constant multiplying 1/K consists of three terms:
ADψ

, Bρ,DA
, and Cα,ρ. The first term ADψ

comes from the
majorization of ψ, and it is large when ψ has large curvature.
The second term Bρ,DA

comes from the linearization trick in
(15). One can always decrease its value by decreasing ρ. The
third term Cα,ρ is the only α-dependent component. The trend
of Cα,ρ when varying ρ depends on the norms of u(0)− û and
µ(0) − µ̂, i.e., how one initializes the algorithm. Finally, the
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convergence rate of (18) scales well with α iff Cα,ρ � ADψ

and Cα,ρ � Bρ,DA
. When ψ has large curvature or DA is

a loose majorizing matrix of A′A (like in X-ray CT), the
above inequalities do not hold, leading to poor scalability of
convergence rate with the relaxation parameter α.

C. Linearized AL methods with proposed relaxation

To better scale the convergence rate of relaxed LALM
with α, we want to design an algorithm that replaces the α-
independent components by α-dependent ones in the constant
multiplying 1/K in (20). This can be (partially) done by
linearizing (more precisely, majorizing) the non-separable AL
penalty term in (12) implicitly. Instead of explicitly adding
a G-weighted proximity term, where G is defined in (16),
to the x-update like (18), we consider solving an equality-
constrained minimization problem equivalent to (1) with an
additional redundant equality constraint v = G1/2x, i.e.,

(x̂, û, v̂) ∈ arg min
x,u,v

{
gy(u) + h(x)

}

s.t. u = Ax and v = G1/2x , (24)

using the relaxed AL method (12) as follows:




x(k+1) ∈ arg min
x





φ(x) +Qψ
(
x;x(k)

)
− 〈µ(k),Ax〉

−〈ν(k),G1/2x〉+ ρ
2

∥∥Ax− u(k)
∥∥2

2

+ρ
2

∥∥G1/2x− v(k)
∥∥2

2





u(k+1) ∈ arg min
u

{
gy(u) + 〈µ(k),u〉+ ρ

2

∥∥r(k+1)
u,α − u

∥∥2

2

}

µ(k+1) = µ(k) − ρ
(
r

(k+1)
u,α − u(k+1)

)

v(k+1) = r
(k+1)
v,α − ρ−1ν(k)

ν(k+1) = ν(k) − ρ
(
r

(k+1)
v,α − v(k+1)

)
,

(25)
where the relaxation variable of v is:

r(k+1)
v,α , αG1/2x(k+1) + (1− α)v(k) , (26)

and ν is the Lagrange multiplier of the redundant equality
constraint. One can easily verify that ν(k) = 0 for k = 0, 1, . . .
if we initialize ν as ν(0) = 0.

The additional equality constraint introduces an additional
inner-product term and a quadratic penalty term to the x-
update. The latter can be used to cancel the non-separable
Hessian of the AL penalty term as in explicit linearization.
By choosing the same AL penalty parameter ρ > 0 for
the additional constraint, the Hessian matrix of the quadratic
penalty term in the x-update of (25) is ρA′A + ρG = ρDA.
In other words, by choosing G in (16), the quadratic penalty
term in the x-update of (25) becomes separable, and the x-
update becomes an efficient proximal mapping of φ, as seen
in (30) below.

Next we analyze the convergence rate of the proposed
relaxed LALM method (25). With the additional redundant
equality constraint, the Lagrangian becomes

L′(x,u,µ,v,ν) , L(x,u,µ)− 〈ν,G1/2x− v〉 . (27)

Setting gradients of L′ with respect to x, u, µ, v, and ν
to be zero yields a necessary condition for a saddle-point

ŵ = (x̂, û, µ̂, v̂, ν̂) of L′. It follows that ν̂ = ∇vL′(ŵ) = 0.
Therefore, setting ν(0) = 0 is indeed a natural choice for
initializing ν. Moreover, since ν̂ = 0, the gap function G′
of the new problem (24) coincides with (9), and we can
compare the convergence rate of the simple and proposed
relaxed algorithms directly.

Theorem 2. Let wK = (xK ,uK ,vK ,µK ,νK) be the time-
averages of the iterates of LALM with proposed relaxation in
(25), where ρ > 0 and 0 < α < 2. When initializing v and ν
as v(0) = G1/2x(0) and ν(0) = 0, respectively, we have

G′(wK ; ŵ) ≤ 1
K

(
ADψ

+Bα,ρ,DA
+ Cα,ρ

)
, (28)

where ADψ
and Cα,ρ were defined in (21) and (23), and

Bα,ρ,DA
, ρ

2α

∥∥v(0) − v̂
∥∥2

2
= ρ

2α

∥∥x(0) − x̂
∥∥2

DA−A′A
. (29)

Proof. The proof is in the supplementary material.

Theorem 2 shows the O(1/K) convergence rate of (25).
Due to the different variable splitting scheme, the term intro-
duced by the implicit linearization trick in (25) (i.e., Bα,ρ,DA

)
also depends on the relaxation parameter α, improving con-
vergence rate scalibility with α in (25) over (18). This theorem
provides a theoretical explanation why (25) converges faster
than (18) in the experiments shown later2.

For practical implementation, the remaining concern is
multiplications by G1/2 in (25). There is no efficient way to
compute the square root of G for any A in general, especially
when A is large and unstructured like in X-ray CT. To solve
this problem, let h , G1/2v+A′y. We rewrite (25) so that no
explicit multiplication by G1/2 is needed (the derivation is in
the supplementary material), leading to the following “LALM
with proposed relaxation” algorithm:




x(k+1) ∈ arg min
x

{
φ(x) +Qψ

(
x;x(k)

)

+ 1
2

∥∥x− (ρDA)
−1

γ(k+1)
∥∥2

ρDA

}

u(k+1) ∈ arg min
u

{
gy(u) + 〈µ(k),u〉+ ρ

2

∥∥r(k+1)
u,α − u

∥∥2

2

}

µ(k+1) = µ(k) − ρ
(
r

(k+1)
u,α − u(k+1)

)

h(k+1) = αη(k+1) + (1− α)h(k) ,
(30)

where

γ(k+1) , ρA′
(
u(k) − y + ρ−1µ(k)

)
+ ρh(k) , (31)

and
η(k+1) , DAx(k+1) −A′

(
Ax(k+1) − y

)
. (32)

When gy is a quadratic loss, i.e., gy(z) = (1/2) ‖z− y‖22,
we further simplify the proposed relaxed LALM by manipu-

2When ψ has large curvature (thus, α-dependent terms do not dominate the
constant multiplying 1/K), we can use techniques as in [29, 30] to reduce
the ψ-dependent constant. In X-ray CT, the data-fidelity term often dominates
the cost function, so ADψ � Bα,ρ,DA

.
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lations like those in [11] (omitted here for brevity) as:




γ(k+1) = (ρ− 1)g(k) + ρh(k)

x(k+1) ∈ arg min
x

{
φ(x) +Qψ

(
x;x(k)

)

+ 1
2

∥∥x− (ρDA)
−1

γ(k+1)
∥∥2

ρDA

}

ζ(k+1) , ∇L
(
x(k+1)

)
= A′

(
Ax(k+1) − y

)

g(k+1) = ρ
ρ+1

(
αζ(k+1) + (1− α)g(k)

)
+ 1

ρ+1g
(k)

h(k+1) = α
(
DAx(k+1) − ζ(k+1)

)
+ (1− α)h(k) ,

(33)
where L(x) , gy(Ax) is the quadratic data-fidelity term, and
g , A′ (u− y) [11]. For initialization, we suggest using
g(0) = ζ(0) and h(0) = DAx(0) − ζ(0) (Theorem 2). The
algorithm (33) computes multiplications by A and A′ only
once per iteration and does not have to invert A′A, unlike
standard relaxed AL methods (12). This property is especially
useful when A′A is large and unstructured. When α = 1, (33)
reverts to the unrelaxed LALM in [11].

Lastly, we contrast our proposed relaxed LALM (30) with
Chambolle’s relaxed primal-dual algorithm [24, Algorithm 2].
Both algorithms exhibit O(1/K) ergodic (i.e., with respect
to the time-averaged iterates) convergence rate and α-times
speed-up when ψ = 0. Using (30) would require one more
multiplication by A′ per iteration than in Chambolle’s relaxed
algorithm; however, the additional A′ is not required with
quadratic loss in (33). When ψ 6= 0, unlike Chambolle’s
relaxed algorithm in which one has to adjust the primal step
size according to the value of α (effectively, one scales Dψ by
1/(2−α)) [24, Remark 6], the proposed relaxed LALM (30)
does not require such step-size adjustment, which is especially
useful when using α that is close to two.

III. X-RAY CT IMAGE RECONSTRUCTION

Consider the X-ray CT image reconstruction problem [3]:

x̂ ∈ arg min
x∈Ω

{
1
2 ‖y −Ax‖2W + R(x)

}
, (34)

where A is the forward projection matrix of a CT scan
[31], y is the noisy sinogram, W is the statistical diagonal
weighting matrix, R denotes an edge-preserving regularizer,
and Ω denotes a box-constraint on the image x. We focus on
the edge-preserving regularizer R defined as:

R(x) ,
∑

i

βi
∑

n

κnκn+siϕi([Cix]n) , (35)

where βi, si, ϕi, and Ci denote the regularization parameter,
spatial offset, potential function, and finite difference matrix
in the ith direction, respectively, and κn is a voxel-dependent
weight for improving resolution uniformity [32, 33]. In our
experiments, we used 13 directions to include all 26 neighbors
in 3-D CT.

A. Relaxed OS-LALM for faster CT reconstruction

To solve X-ray CT image reconstruction (34) using the
proposed relaxed LALM (33), we apply the following sub-
stitution: {

A←W1/2A

y←W1/2y ,
(36)

and we set φ = ιΩ and ψ = R, where ιΩ(x) = 0 if x ∈ Ω,
and ιΩ(x) = +∞ otherwise. The proximal mapping of ιΩ
simply projects the input vector to the convex set Ω, e.g.,
clipping negative values of x to zero for a non-negativity
constraint. Theorems developed in Section II considered the
ergodic convergence rate of the non-negative duality gap,
which is not a common convergence metric for X-ray CT
image reconstruction. However, the ergodic convergence rate
analysis suggests how factors like α, ρ, DA, and Dψ affect
convergence speed (a LASSO regression example can be
found in the supplementary material) and motivates our “more
practical” (over-)relaxed OS-LALM summarized below.

Algorithm 1: Proposed (over-)relaxed OS-LALM for (34).
Input: M ≥ 1, 1 ≤ α < 2, and an initial (FBP) image x.

set ρ = 1, ζ = g = M∇LM (x), h = DLx− ζ
for k = 1, 2, . . . do

for m = 1, 2, . . . ,M do
s = ρ (DLx− h) + (1− ρ)g
x+ =

[
x− (ρDL + DR)

−1
(s +∇R(x))

]
Ω

ζ = M∇Lm(x+)
g+ = ρ

ρ+1 (αζ + (1− α)g) + 1
ρ+1g

h+ = α (DLx
+ − ζ) + (1− α)h

decrease ρ using (37)
end

end

Algorithm 1 describes the proposed relaxed algorithm for
solving the X-ray CT image reconstruction problem (34),
where Lm denotes the data-fidelity term of the mth subset, and
[·]Ω is an operator that projects the input vector onto the convex
set Ω, e.g., truncating zeros for Ω , {x |xi ≥ 0 for all i}. All
variables are updated in-place, and we use the superscript (·)+

to denote the new values that replace the old values. We also
use the substitution s , ρDLx− γ+ in the proposed method,
so Algorithm 1 has comparable form with the unrelaxed
OS-LALM [11]; however, such substitution is not necessary.

As seen in Algorithm 1, the proposed relaxed OS-LALM
has the form of (33) but uses some modifications that violate
assumptions in our theorems but speed up “convergence”
in practice. First, although Theorem 2 assumes a constant
majorizing matrix DR for the Lipschitz term R (e.g., the
maximum curvature of R), we use the iteration-dependent
Huber’s curvature of R [26] for faster convergence (the same in
other algorithms for comparison). Second, since the updates
in (33) depend only on the gradients of L, we can further
accelerate the gradient computation by using partial projection
data, i.e., ordered subsets. Lastly, we incorporate continuation
technique (i.e., decreasing the AL penalty parameter ρ every
iteration) in the proposed algorithm as described in the next
subsection.

To select the number of subsets, we used the rule suggested
in [11, Eqn. 55 and 57]. However, since over-relaxation
provides two-times acceleration, we used 50% of the sug-
gested number of subsets (for the unrelaxed OS-LALM) yet
achieved similar convergence speed (faster in runtime since
fewer regularizer gradient evaluations are performed) and more
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stable reconstruction. For the implicit linearization, we use the
diagonal majorizing matrix diag{A′WA1} for A′WA [5],
the same diagonal majorizing matrix DL for the quadratic loss
function used in OS algorithms.

Furthermore, Algorithm 2 depicts the OS version of the
simple relaxed algorithm (18) for solving (34) (derivation is
omitted here). The main difference between Algorithm 1 and
Algorithm 2 is the extra recursion of variable h. When α = 1,
both algorithms revert to the unrelaxed OS-LALM [11].

Algorithm 2: Simple (over-)relaxed OS-LALM for (34).
Input: M ≥ 1, 1 ≤ α < 2, and an initial (FBP) image x.

set ρ = 1, ζ = g = M∇LM (x)
for k = 1, 2, . . . do

for m = 1, 2, . . . ,M do
s = ρ ζ + (1− ρ)g
x+ =

[
x− (ρDL + DR)

−1
(s +∇R(x))

]
Ω

ζ+ = M∇Lm(x+)
g+ = ρ

ρ+1 (αζ+ + (1− α)g) + 1
ρ+1g

decrease ρ using (37)
end

end

B. Further speed-up with continuation

We also use a continuation technique [11] to speed up con-
vergence; that is, we decrease ρ gradually with iteration. Note
that ρDL +DR is the inverse of the voxel-dependent step size
of image updates; decreasing ρ increases step sizes gradually
as iteration progress. Due to the extra relaxation parameter α,
the good decreasing continuation sequence differs from that in
[11]. We use the following α-dependent continuation sequence
for the proposed relaxed LALM (1 ≤ α < 2):

ρk(α) =





1, if k = 0

π
α(k+1)

√
1−

(
π

2α(k+1)

)2

, otherwise .
(37)

The supplementary material describes the rationale for this
continuation sequence. When using OS, ρ decreases every
subiteration, and the counter k in (37) denotes the number
of subiterations, instead of the number of iterations.

IV. EXPERIMENTAL RESULTS

This section reports numerical results for 3-D X-ray CT im-
age reconstruction using one conventional algorithm (OS-SQS
[5]) and four contemporary algorithms:
• OS-FGM2: the OS variant of the standard fast gradient

method proposed in [10, 19],
• OS-LALM: the OS variant of the unrelaxed linearized

AL method proposed in [11],
• OS-OGM2: the OS variant of the optimal fast gradient

method proposed in [19], and
• Relaxed OS-LALM: the OS variants of the proposed

relaxed linearized AL methods given in Algorithm 1
(proposed) and Algorithm 2 (simple) above (α = 1.999
unless otherwise specified).

A. XCAT phantom

We simulated an axial CT scan using a 1024× 1024× 154
XCAT phantom [34] for 500 mm transaxial field-of-view
(FOV), where ∆x = ∆y = 0.4883 mm and ∆z = 0.625
mm. An 888×64×984 ([detector columns] × [detector rows]
× [projection views]) noisy (with Poisson noise) sinogram is
numerically generated with GE LightSpeed fan-beam geome-
try corresponding to a monoenergetic source at 70 keV with
105 incident photons per ray and no scatter. We reconstructed
a 512 × 512 × 90 image volume with a coarser grid, where
∆x = ∆y = 0.9776 mm and ∆z = 0.625 mm. The statistical
weighting matrix W is defined as a diagonal matrix with
diagonal entries wj , exp(−yj), and an edge-preserving
regularizer is used with ϕi(t) , δ2 (|t/δ| − log(1 + |t/δ|))
(δ = 10 HU) and parameters βi set to achieve a reasonable
noise-resolution trade-off. We used 12 subsets for the relaxed
OS-LALM, while [11, Eqn. 55] suggests using about 24
subsets for the unrelaxed OS-LALM.

Figure 1 shows the cropped images (displayed from 800
to 1200 HU [modified so that air is 0]) from the central
transaxial plane of the initial FBP image x(0), the reference
reconstruction x? (generated by running thousands of itera-
tions of the convergent FGM with adaptive restart [35]), and
the reconstructed image x(20) using the proposed algorithm
(relaxed OS-LALM with 12 subsets) after 20 iterations. There
is no visible difference between the reference reconstruction
and our reconstruction. To analyze the proposed algorithm
quantitatively, Figure 2 shows the RMS differences between
the reference reconstruction x? and the reconstructed image
x(k) using different algorithms as a function of iteration3

with 12 and 24 subsets. As seen in Figure 2, the proposed
algorithm (cyan curves) is approximately twice as fast as the
unrelaxed OS-LALM (green curves) at least in early iterations.
Furthermore, comparing with OS-FGM2 and OS-OGM2, the
proposed algorithm converges faster and is more stable when
using more subsets for acceleration. Difference images using
different algorithms and additional experimental results are
shown in the supplementary material.

To illustrate the improved speed-up of the proposed re-
laxation (Algorithm 1) over the simple one (Algorithm 2),
Figure 3 shows convergence rate curves of different relaxed
algorithms (12 subsets and α = 1.999) with (a) a fixed AL
penalty parameter ρ = 0.05 and (b) the decreasing sequence
ρk in (37). As seen in Figure 3(a), the simple relaxation does
not provide much acceleration, especially after 10 iterations.
In contrast, the proposed relaxation accelerates convergence
about twice (i.e., α-times), as predicted by Theorem 2. When
the decreasing sequence of ρk is used, as seen in Figure 3(b),
the simple relaxation seems to provide somewhat more ac-
celeration than before; however, the proposed relaxation still
outperforms the simple one, illustrating approximately two-
fold speed-up over the unrelaxed counterpart.

3All algorithms listed above require one forward/back-projection pair and
M (the number of subsets) regularizer gradient evaluations (plus some
negligible overhead) per iteration, so comparing the convergence rate as a
function of iteration is fair.
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Fig. 1: XCAT: Cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial FBP image
x(0) (left), the reference reconstruction x? (center), and the reconstructed image x(20) using the proposed algorithm (relaxed
OS-LALM with 12 subsets) after 20 iterations (right).
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(a) 12 subsets
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Fig. 2: XCAT: Convergence rate curves of different OS algorithms with (a) 12 subsets and (b) 24 subsets. The proposed relaxed
OS-LALM with 12 subsets exhibits similar convergence rate as the unrelaxed OS-LALM with 24 subsets.
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(a) Fixed ρ = 0.05
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(b) Decreasing ρk in (37)

Fig. 3: XCAT: Convergence rate curves of different relaxed algorithms (12 subsets and α = 1.999) with (a) a fixed AL penalty
parameter ρ = 0.05 and (b) the decreasing sequence ρk in (37).
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Fig. 4: Chest: Cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial FBP image
x(0) (left), the reference reconstruction x? (center), and the reconstructed image x(20) using the proposed algorithm (relaxed
OS-LALM with 10 subsets) after 20 iterations (right).
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(a) 10 subsets
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Fig. 5: Chest: Convergence rate curves of different OS algorithms with (a) 10 subsets and (b) 20 subsets. The proposed relaxed
OS-LALM with 10 subsets exhibits similar convergence rate as the unrelaxed OS-LALM with 20 subsets.

B. Chest scan

We reconstructed a 600× 600× 222 image volume, where
∆x = ∆y = 1.1667 mm and ∆z = 0.625 mm, from
a chest region helical CT scan. The size of sinogram is
888 × 64 × 3611 and pitch 1.0 (about 3.7 rotations with
rotation time 0.4 seconds). The tube current and tube voltage
of the X-ray source are 750 mA and 120 kVp, respectively.
We started from a smoothed FBP image x(0) and tuned the
statistical weights [36] and the q-generalized Gaussian MRF
regularization parameters [33] to emulate the MBIR method
[3, 37]. We used 10 subsets for the relaxed OS-LALM, while
[11, Eqn. 57] suggests using about 20 subsets for the unrelaxed
OS-LALM. Figure 4 shows the cropped images from the cen-
tral transaxial plane of the initial FBP image x(0), the reference
reconstruction x?, and the reconstructed image x(20) using the
proposed algorithm (relaxed OS-LALM with 10 subsets) after
20 iterations. Figure 5 shows the RMS differences between
the reference reconstruction x? and the reconstructed image
x(k) using different algorithms as a function of iteration with

10 and 20 subsets. The proposed relaxed OS-LALM shows
about two-times faster convergence rate, comparing to its
unrelaxed counterpart, with moderate number of subsets. The
speed-up diminishes as the iterate approaches the solution.
Furthermore, the faster relaxed OS-LALM seems likely to be
more sensitive to gradient approximation errors and exhibits
ripples in convergence rate curves when using too many
subsets for acceleration. In contrast, the slower unrelaxed
OS-LALM is less sensitive to gradient error when using more
subsets and does not exhibit such ripples in convergence
rate curves. Compared with OS-FGM2 and OS-OGM2, the
proposed relaxed OS-LALM has smaller limit cycles and
might be more stable for practical use.

V. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a non-trivial relaxed variant
of LALM and applied it to X-ray CT image reconstruction.
Experimental results with simulated and real CT scan data
showed that our proposed relaxed algorithm “converges” about
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twice as fast as its unrelaxed counterpart, outperforming state-
of-the-art fast iterative algorithms using momentum [10, 19].
This speed-up means that one needs fewer subsets to reach
an RMS difference criteria like 1 HU in a given number
of iterations. For instance, we used 50% of the number of
subsets suggested by [11] (for the unrelaxed OS-LALM) in
our experiment but found similar convergence speed with over-
relaxation. Moreover, using fewer subsets can be beneficial for
distributed computing [38], reducing communication overhead
required after every update.
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[26] H. Erdoğan and J. A. Fessler, “Monotonic algorithms for transmission
tomography,” IEEE Trans. Med. Imag., vol. 18, pp. 801–14, Sept. 1999.

[27] P. J. Huber, Robust statistics. New York: Wiley, 1981.
[28] S. Boyd and L. Vandenberghe, Convex optimization. UK: Cambridge,

2004.
[29] S. Azadi and S. Sra, “Towards an optimal stochastic alternating direction

method of multipliers,” in Proc. Intl. Conf. on Mach. Learning, pp. 620–
8, 2014.

[30] Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao Jr., “An accelerated
linearized alternating direction method of multipliers,” SIAM J. Imaging
Sci., vol. 8, no. 1, pp. 644–81, 2015.

[31] Y. Long, J. A. Fessler, and J. M. Balter, “3D forward and back-projection
for X-ray CT using separable footprints,” IEEE Trans. Med. Imag.,
vol. 29, pp. 1839–50, Nov. 2010.

[32] J. A. Fessler and W. L. Rogers, “Spatial resolution properties of
penalized-likelihood image reconstruction methods: Space-invariant to-
mographs,” IEEE Trans. Im. Proc., vol. 5, pp. 1346–58, Sept. 1996.

[33] J. H. Cho and J. A. Fessler, “Regularization designs for uniform spatial
resolution and noise properties in statistical image reconstruction for 3D
X-ray CT,” IEEE Trans. Med. Imag., vol. 34, pp. 678–89, Feb. 2015.

[34] W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. W. Tsui,
“Realistic CT simulation using the 4D XCAT phantom,” Med. Phys.,
vol. 35, pp. 3800–8, Aug. 2008.

[35] B. O’Donoghue and E. Candès, “Adaptive restart for accelerated gradient
schemes,” Found. Comp. Math., vol. 15, pp. 715–32, June 2015.

[36] Z. Chang, R. Zhang, J.-B. Thibault, K. Sauer, and C. Bouman, “Statis-
tical x-ray computed tomography from photon-starved measurements,”
in Proc. SPIE 9020 Computational Imaging XII, p. 90200G, 2014.

[37] W. P. Shuman, D. E. Green, J. M. Busey, O. Kolokythas, L. M.
Mitsumori, K. M. Koprowicz, J.-B. Thibault, J. Hsieh, A. M. Alessio,
E. Choi, and P. E. Kinahan, “Model-based iterative reconstruction versus
adaptive statistical iterative reconstruction and filtered back projection in
64-MDCT: Focal lesion detection, lesion conspicuity, and image noise,”
Am. J. Roentgenol., vol. 200, pp. 1071–6, May 2013.

[38] J. M. Rosen, J. Wu, T. F. Wenisch, and J. A. Fessler, “Iterative helical
CT reconstruction in the cloud for ten dollars in five minutes,” in Proc.
Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med, pp. 241–4,
2013.



1

Relaxed Linearized Algorithms for Faster X-Ray
CT Image Reconstruction: Supplementary Material

Hung Nien, Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

This supplementary material for [1] has three parts. The first part analyzes the convergence rate of the simple and proposed
relaxed linearized augmented Lagrangian (AL) methods (LALM’s) in [1] for solving an equality-constrained composite convex
optimization problem. We demonstrate the convergence rate bound and the effect of relaxation with a numerical example
(LASSO regression). The second part derives the continuation sequence we used in [1]. The third part shows additional
experimental results of applying the proposed relaxed LALM with ordered subsets (OS) for solving model-based X-ray
computed tomography (CT) image reconstruction problems. The additional experimental results are consistent with the results
we showed in [1], illustrating the efficiency and stability of the proposed relaxed OS-LALM over existing methods.

I. CONVERGENCE RATE ANALYSES OF THE SIMPLE AND PROPOSED LALM’S

We begin by considering a more general equality-constrained composite convex optimization problem (for which the equality-
constrained minimization problem considered in [1] is a special case):

(x̂, û) ∈ arg min
x,u

{
f(x,u) , g(u) + h(x)

}
s.t. Kx + Bu = b , (1)

where both g and h are closed and proper convex functions. We further decompose h , φ+ψ into two convex functions φ and
ψ, where φ is “simple” in the sense that it has an efficient proximal mapping, e.g., soft-shrinkage for the `1-norm, and ψ is
continuously differentiable with Dψ-Lipschitz gradients (defined in [1]). One example of h is the edge-preserving regularizer
with a non-negativity constraint (e.g., sum of a “corner-rounded” total-variation [TV] regularizer and the characteristic function
of the non-negativity set) used in statistical image reconstruction methods [1, 2].

As mentioned in [1], solving a composite convex optimization problem with equality constraints like (1) is equivalent to
finding a saddle-point of the Lagrangian:

L(x,u,µ) , f(x,u)− 〈µ,Kx + Bu− b〉 , (2)

where µ is the Lagrange multiplier of the equality constraint [3, p. 237]. In other words, (x̂, û, µ̂) solves the minimax problem:

(x̂, û, µ̂) ∈ arg min
x,u

max
µ
L(x,u,µ) . (3)

Moreover, since (x̂, û, µ̂) is a saddle-point of L, the following inequalities

L(x,u, µ̂) ≥ L(x̂, û, µ̂) ≥ L(x̂, û,µ) (4)

hold for any x, u, and µ, and the duality gap function:

G(x,u,µ; x̂, û, µ̂) , L(x,u, µ̂)− L(x̂, û,µ) =
[
f(x,u)− f(x̂, û)

]
− 〈µ̂,Kx + Bu− b〉 ≥ 0 (5)

characterizes the accuracy of an approximate solution (x,u,µ) to the saddle-point problem (3). Note that Kx̂ + Bû− b = 0
due to the equality constraint. We consider the following (generalized alternating direction method of multipliers [ADMM])
iteration:




x(k+1) ∈ arg min
x

{
φ(x) + 〈∇ψ

(
x(k)

)
,x〉+ 1

2

∥∥x− x(k)
∥∥2
Dψ
− 〈µ(k),Kx〉+ ρ

2

∥∥Kx + Bu(k) − b
∥∥2
2

+ 1
2

∥∥x− x(k)
∥∥2
P

}

u(k+1) ∈ arg min
u

{
g(u)− 〈µ(k),Bu〉+ ρ

2

∥∥αKx(k+1) + (1− α)
(
b−Bu(k)

)
+ Bu− b

∥∥2
2

}

µ(k+1) = µ(k) − ρ
(
αKx(k+1) + (1− α)

(
b−Bu(k)

)
+ Bu(k+1) − b

)
(6)

and show that the duality gap of the time-averaged solution wK = (xK ,uK ,µK) it generates converges to zero at rate
O(1/K), where K is the number of iterations,

cK , 1
K

∑K
k=1 c(k) (7)

denotes the time-average of some iterate c(k) for k = 1, . . . ,K, ρ > 0 is the corresponding AL penalty parameter, P � 0 is a
positive semi-definite weighting matrix, and 0 < α < 2 is the relaxation parameter.
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Nien and Jeffrey A. Fessler are with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
(e-mail: {hungnien,fessler}@umich.edu). Date of current version: December 11, 2015.
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A. Preliminaries

The convergence rate analysis of the iteration (6) is inspired by previous work [4–9]. For simplicity, we use the following
notations:

w ,




x
u
µ


 , w ,




x
u
λ


 , λ(k+1) , µ(k) − ρ

(
Kx(k+1) + Bu(k) − b

)
, and F (w) ,




−K′λ
−B′λ

Kx + Bu− b


 . (8)

We also introduce three matrices:

H ,




Dψ + P 0 0
0 ρ

αB′B 1−α
α B′

0 1−α
α B 1

αρI


 , M ,




I 0 0
0 I 0
0 −ρB αI


 , and Q , HM =




Dψ + P 0 0
0 ρB′B (1− α) B′

0 −B 1
ρI


 . (9)

The following lemmas show the properties of vectors and matrices defined in (8) and (9) and an identity used in our derivation.

Lemma 1. The matrix H defined in (9) is positive semi-definite for any 0 < α < 2 and ρ > 0.

Proof. For any w, completing the square yields

w′Hw = x′ (Dψ + P) x + ρ
αu′B′Bu + 2(1−α)

α u′B′µ + 1
αρµ

′µ

= ‖x‖2Dψ+P + 1
α

(
‖√ρBu‖22 + 2 · sgn(1− α) |1− α| (√ρBu)

′ ( 1√
ρµ
)

+
∥∥ 1√

ρµ
∥∥2
2

)

= ‖x‖2Dψ+P + 1
α

(
|1− α|

∥∥√ρBu + sgn(1− α) 1√
ρµ
∥∥2
2

+ (1− |1− α|)
(
‖√ρBu‖22 +

∥∥ 1√
ρµ
∥∥2
2

))
. (10)

All terms in (10) are non-negative for any 0 < α < 2 and ρ > 0. Thus under such conditions, w′Hw ≥ 0 for any w, and H
is positive semi-definite.

Lemma 2. For any k ≥ 0, we have w(k) −w(k+1) = M
(
w(k) −w(k+1)

)
.

Proof. Since two stacked vectors (x and u) of w and w are the same, we need only show that µ(k) − µ(k+1) is equal to
α
(
µ(k) − λ(k+1)

)
− ρB

(
u(k) − u(k+1)

)
for any k ≥ 0. By the definition of λ(k+1) in (8), we have

µ(k) − λ(k+1) = ρ
(
Kx(k+1) + Bu(k) − b

)
. (11)

Then, by the definition of the µ-update in (6), we get

µ(k) − µ(k+1) = ρ
(
αKx(k+1) + (1− α)

(
b−Bu(k)

)
+ Bu(k+1) − b

)

= ρ
(
α
(
Kx(k+1) + Bu(k) − b

)
+ B

(
u(k+1) − u(k)

))

= α
(
ρ
(
Kx(k+1) + Bu(k) − b

))
− ρB

(
u(k) − u(k+1)

)

= α
(
µ(k) − λ(k+1)

)
− ρB

(
u(k) − u(k+1)

)
. (12)

Thus the lemma holds.

Lemma 3. For any positive semi-definite matrix M and vectors x1, x2, x3, and x4, we have

(x1 − x2)
′
M (x3 − x4) = 1

2 ‖x1 − x4‖2M − 1
2 ‖x1 − x3‖2M + 1

2 ‖x2 − x3‖2M − 1
2 ‖x2 − x4‖2M . (13)

Proof. The proof is omitted here. It can be verified by expanding out all the inner product and norms on both sides.

B. Main results

In the following theorem, we show that the duality gap defined in (5) of the time-averaged iterates wK = (xK ,uK ,µK) in
(6) converges at rate O(1/K), where K denotes the number of iterations.

Theorem 1. Let wK = (xK ,uK ,µK) be the time-averages of iterates in (6) where ρ > 0, 0 < α < 2, and P is positive
semi-definite. We have

G
(
wK ; ŵ

)
=
[
f
(
xK ,uK

)
− f(x̂, û)

]
− 〈µ̂,KxK + BuK − b〉

≤ 1

K

{
1
2

∥∥x(0) − x̂
∥∥2
Dψ

+ 1
2

∥∥x(0) − x̂
∥∥2
P

+ 1
2α

[√
ρ
∥∥B
(
u(0) − û

)∥∥
2

+ 1√
ρ

∥∥µ(0) − µ̂
∥∥
2

]2}
. (14)
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Proof. We first focus on the x-update in (6). By the convexity of ψ, we have

ψ
(
x(k+1)

)
≤ ψ

(
x(k)

)
+ 〈∇ψ

(
x(k)

)
,x(k+1) − x(k)〉+ 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ

= ψ
(
x(k)

)
+ 〈∇ψ

(
x(k)

)
,x− x(k)〉+ 〈∇ψ

(
x(k)

)
,x(k+1) − x〉+ 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ

≤ ψ(x) + 〈∇ψ
(
x(k)

)
,x(k+1) − x〉+ 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ

(15)

for any x. Moving ψ(x) to the left-hand side leads to

ψ
(
x(k+1)

)
− ψ(x) ≤ 〈∇ψ

(
x(k)

)
,x(k+1) − x〉+ 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ

. (16)

Moreover, by the optimality condition of the x-update in (6), we have

∂φ
(
x(k+1)

)
+∇ψ

(
x(k)

)
+ Dψ

(
x(k+1) − x(k)

)
−K′

(
µ(k) − ρ

(
Kx(k+1) + Bu(k) − b

))
+ P

(
x(k+1) − x(k)

)
3 0 , (17)

so
∂φ
(
x(k+1)

)
3 −∇ψ

(
x(k)

)
−Dψ

(
x(k+1) − x(k)

)
+ K′λ(k+1) −P

(
x(k+1) − x(k)

)
. (18)

By the definition of subgradient for the convex function φ, it follows that

φ(x) ≥ φ
(
x(k+1)

)
+ 〈∂φ

(
x(k+1)

)
,x− x(k+1)〉

= φ
(
x(k+1)

)
+ 〈x(k+1) − x,−K′λ(k+1)〉+ 〈∇ψ

(
x(k)

)
,x(k+1) − x〉+ 〈x(k+1) − x, (Dψ + P)

(
x(k+1) − x(k)

)
〉 (19)

for all x. Rearranging (19) leads to
[
φ
(
x(k+1)

)
− φ(x)

]
+ 〈x(k+1) − x,−K′λ(k+1)〉

≤ −〈∇ψ
(
x(k)

)
,x(k+1) − x〉+ 〈x(k+1) − x, (Dψ + P)

(
x(k) − x(k+1)

)
〉 . (20)

Summing (16) and (20), we get the first inequality:
[
h
(
x(k+1)

)
− h(x)

]
+ 〈x(k+1) − x,−K′λ(k+1)〉 ≤ 〈x(k+1) − x, (Dψ + P)

(
x(k) − x(k+1)

)
〉+ 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ

. (21)

Following the same procedure, by the optimality condition of the u-update in (6), we have

g(u) ≥ g
(
u(k+1)

)
+ 〈∂g

(
u(k+1)

)
,u− u(k+1)〉 = g

(
u(k+1)

)
+ 〈u(k+1) − u,−B′µ(k+1)〉 (22)

for any u. To substitute µ(k+1) in (22), subtracting and adding λ(k+1) on the left-hand side of (12) and rearranging it yield

µ(k+1) = λ(k+1) + (1− α)
(
µ(k) − λ(k+1)

)
+ ρB

(
u(k) − u(k+1)

)
. (23)

Substituting (23) into (22) and rearranging it, we get the second inequality:
[
g
(
u(k+1)

)
− g(u)

]
+ 〈u(k+1) − u,−B′λ(k+1)〉 ≤ 〈u(k+1) − u, ρB′B

(
u(k) − u(k+1)

)
+ (1− α) B′

(
µ(k) − λ(k+1)

)
〉 . (24)

The third step differes a bit from the previous ones because the µ-update in (6) is not a minimization problem. By (11), we
have

Kx(k+1) + Bu(k+1) − b = −B
(
u(k) − u(k+1)

)
+ 1

ρ

(
µ(k) − λ(k+1)

)
. (25)

This gives the third equality:

〈λ(k+1) − µ,Kx(k+1) + Bu(k+1) − b〉 = 〈λ(k+1) − µ,−B
(
u(k) − u(k+1)

)
+ 1

ρ

(
µ(k) − λ(k+1)

)
〉 (26)

for any µ. Summing (21), (24), and (26), we can write it compactly as
[
f
(
x(k+1),u(k+1)

)
−f(x,u)

]
+〈w(k+1)−w, F

(
w(k+1)

)
〉 ≤ 〈w(k+1)−w,Q

(
w(k)−w(k+1)

)
〉+ 1

2

∥∥x(k+1)−x(k)
∥∥2
Dψ

. (27)

By Lemma 2 (note that Q = HM) and Lemma 3, the first term on the right-hand side of (27) can be expressed as

〈w(k+1) −w,H
(
w(k) −w(k+1)

)
〉

= 1
2

∥∥w(k+1) −w(k+1)
∥∥2
H
− 1

2

∥∥w(k+1) −w(k)
∥∥2
H

+ 1
2

∥∥w(k) −w
∥∥2
H
− 1

2

∥∥w(k+1) −w
∥∥2
H
. (28)

Moreover, the first term on the right-hand side of (28) is

1
αρ

∥∥λ(k+1) − µ(k+1)
∥∥2
2

= 1
αρ

∥∥ρB
(
u(k+1) − u(k)

)
+ (1− α)

(
λ(k+1) − µ(k)

)∥∥2
2

(29)
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by (23), and the second term on the right-hand side of (28) is

1
2

∥∥x(k+1) − x(k)
∥∥2
Dψ+P

+ 1
αρ

∥∥ρB
(
u(k+1) − u(k)

)∥∥2
2

+ 2(1−α)
αρ 〈ρB

(
u(k+1) − u(k)

)
,λ(k+1) − µ(k)〉+ 1

αρ

∥∥λ(k+1) − µ(k)
∥∥2
2

= 1
2

∥∥x(k+1) − x(k)
∥∥2
Dψ+P

+ 1
αρ

∥∥ρB
(
u(k+1) − u(k)

)
+ (1− α)

(
λ(k+1) − µ(k)

)∥∥2
2

+ 2−α
ρ

∥∥λ(k+1) − µ(k)
∥∥2
2
. (30)

Substituting (29) and (30) into (28), we can upper bound the inequality (27) by
[
f
(
x(k+1),u(k+1)

)
− f(x,u)

]
+ 〈w(k+1) −w, F

(
w(k+1)

)
〉

≤ 1
2

∥∥w(k) −w
∥∥2
H
− 1

2

∥∥w(k+1) −w
∥∥2
H
− 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ+P

− 2−α
ρ

∥∥λ(k+1) − µ(k)
∥∥2
2

+ 1
2

∥∥x(k+1) − x(k)
∥∥2
Dψ

≤ 1
2

∥∥w(k) −w
∥∥2
H
− 1

2

∥∥w(k+1) −w
∥∥2
H
− 1

2

∥∥x(k+1) − x(k)
∥∥2
P
− 2−α

ρ

∥∥λ(k+1) − µ(k)
∥∥2
2

≤ 1
2

∥∥w(k) −w
∥∥2
H
− 1

2

∥∥w(k+1) −w
∥∥2
H

(31)

because P is positive semi-definite and 2− α > 0 for α ∈ (0, 2).
To show the convergence rate of (6), let (x,u,µ) = ŵ , (x̂, û, µ̂). The last term on the left-hand side of (31) can be

represented as

〈w(k+1) − ŵ, F
(
w(k+1)

)
〉

= 〈x(k+1) − x̂,−K′λ(k+1)〉+ 〈u(k+1) − û,−B′λ(k+1)〉+ 〈λ(k+1) − µ̂,Kx(k+1) + Bu(k+1) − b〉
= 〈λ(k+1),Kx̂−Kx(k+1) + Bû−Bu(k+1) + Kx(k+1) + Bu(k+1) − b〉 − 〈µ̂,Kx(k+1) + Bu(k+1) − b〉
= 〈λ(k+1),Kx̂ + Bû− b〉 − 〈µ̂,Kx(k+1) + Bu(k+1) − b〉
= −〈µ̂,Kx(k+1) + Bu(k+1) − b〉 . (32)

Note that Kx̂ + Bû− b = 0 due to the equality constraint. Using (32) yields

G
(
w(k+1); ŵ

)
=
[
f
(
x(k+1),u(k+1)

)
− f(x̂, û)

]
+ 〈w(k+1) − ŵ, F

(
w(k+1)

)
〉 ≤ 1

2

∥∥w(k) − ŵ
∥∥2
H
− 1

2

∥∥w(k+1) − ŵ
∥∥2
H
. (33)

Summing (33) from k = 0, . . . ,K − 1, dividing both sides by K, and applying Jensen’s inequality to the convex function f ,
we have

G
(
wK ; ŵ

)
=
[
f
(
xK ,uK

)
− f(x̂, û)

]
− 〈µ̂,KxK + BuK − b〉

≤ 1
K

(
1
2

∥∥w(0) − ŵ
∥∥2
H
− 1

2

∥∥w(K) − ŵ
∥∥2
H

)
≤ 1

K · 12
∥∥w(0) − ŵ

∥∥2
H

(34)

since H is positive semi-definite for any α ∈ (0, 2) and ρ > 0 (Lemma 1). To finish the analysis, the remaining task is to
upper bound 1

2

∥∥w(0) − ŵ
∥∥2
H

. Note that 1
2

∥∥w(0) − ŵ
∥∥2
H

can be expressed as

1
2

∥∥x(0) − x̂
∥∥2
Dψ

+ 1
2

∥∥x(0) − x̂
∥∥2
P

+ 1
2α

[
u(0) − û
µ(0) − µ̂

]′ [
ρB′B (1− α) B′

(1− α) B 1
ρI

] [
u(0) − û
µ(0) − µ̂

]
. (35)

The last term in (35) can be further expressed as and upper bounded by

1
2α

[
ρ
∥∥B
(
u(0) − û

)∥∥2
2

+ 2 (1− α) 〈B
(
u(0) − û

)
,µ(0) − µ̂〉+ 1

ρ

∥∥µ(0) − µ̂
∥∥2
2

]

≤ 1
2α

[
ρ
∥∥B
(
u(0) − û

)∥∥2
2

+ 2 |1− α|
∥∥B
(
u(0) − û

)∥∥
2

∥∥µ(0) − µ̂
∥∥
2

+ 1
ρ

∥∥µ(0) − µ̂
∥∥2
2

]

≤ 1
2α

[
ρ
∥∥B
(
u(0) − û

)∥∥2
2

+ 2
∥∥B
(
u(0) − û

)∥∥
2

∥∥µ(0) − µ̂
∥∥
2

+ 1
ρ

∥∥µ(0) − µ̂
∥∥2
2

]

= 1
2α

[√
ρ
∥∥B
(
u(0) − û

)∥∥
2

+ 1√
ρ

∥∥µ(0) − µ̂
∥∥
2

]2
(36)

due to the fact that 0 < α < 2. Combining (34), (35), and (36), we get our final convergence rate bound:

G
(
wK ; ŵ

)
=
[
f
(
xK ,uK

)
− f(x̂, û)

]
− 〈µ̂,KxK + BuK − b〉

≤ 1

K

{
1
2

∥∥x(0) − x̂
∥∥2
Dψ

+ 1
2

∥∥x(0) − x̂
∥∥2
P

+ 1
2α

[√
ρ
∥∥B
(
u(0) − û

)∥∥
2

+ 1√
ρ

∥∥µ(0) − µ̂
∥∥
2

]2}
. (37)

Theorem 1 can be used to show the convergence rates of other AL-based algorithms. The following theorems show the
convergence rates of the simple and the proposed relaxed LALM’s in [1]. From now on, suppose A is an m× n matrix, and
let G , DA −A′A, where DA is a diagonal majorizing matrix of A′A.
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Theorem 2 ([1, Theorem 1]). Let K = A, B = −Im, b = 0m, and P = ρG. The iteration (6) with ρ > 0 and 0 < α < 2
reduces to the simple relaxed LALM that achieves a convergence rate

G(wK ; ŵ) ≤ 1
K

(
ADψ

+Bρ,DA
+ Cα,ρ

)
, (38)

where the first two constants

ADψ
, 1

2

∥∥x(0) − x̂
∥∥2
Dψ

(39)

Bρ,DA
, ρ

2

∥∥x(0) − x̂
∥∥2
DA−A′A

(40)

depend on how far the initial guess is from a minimizer, and the last constant

Cα,ρ , 1
2α

[√
ρ
∥∥u(0) − û

∥∥
2

+ 1√
ρ

∥∥µ(0) − µ̂
∥∥
2

]2
(41)

depends on the relaxation parameter.

Proof. One just uses the substitutions K = A, B = −Im, b = 0m, and P = ρG in Theorem 1 to prove the theorem.

As seen in Theorem 2, the convergence rate of the simple relaxed LALM scales well with the relaxation parameter α iff
Cα,ρ � ADψ

and Cα,ρ � Bρ,DA
. When ψ has large curvature or DA is a loose majorizing matrix of A′A (like in X-ray

CT), the above inequalities do not hold, leading to worse scalability of convergence rate with the relaxation parameter α. This
motivated the proposed relaxed LALM [1] whose convergence rate analysis is shown below.

Theorem 3 ([1, Theorem 2]). Let K =
[
A′ G1/2

]′
, B = −Im+n, b = 0m+n, and P = 0. The iteration (6) with ρ > 0 and

0 < α < 2 reduces to the proposed relaxed LALM [1] that achieves a convergence rate

G′(wK ; ŵ) ≤ 1
K

(
ADψ

+Bα,ρ,DA
+ Cα,ρ

)
, (42)

where ADψ
and Cα,ρ were defined in (39) and (41), and

Bα,ρ,DA
, ρ

2α

∥∥v(0) − v̂
∥∥2
2

= ρ
2α

∥∥x(0) − x̂
∥∥2
DA−A′A

(43)

when initializing v and ν as v(0) = G1/2x(0) and ν(0) = 0n, respectively.

Proof. Applying the substitutions K =
[
A′ G1/2

]′
, B = −Im+n, b = 0m+n, and P = 0 to Theorem 1, except for the upper

bounding (36), yields
G′
(
wK ; ŵ

)
≤ 1

K

(
ADψ

+Dα,ρ

)
, (44)

where

Dα,ρ , 1
2α




u(0) − û
v(0) − v̂
µ(0) − µ̂
ν(0) − ν̂




′ 


ρIm 0 − (1− α) Im 0
0 ρIn 0 − (1− α) In

− (1− α) Im 0 1
ρIm 0

0 − (1− α) In 0 1
ρIn







u(0) − û
v(0) − v̂
µ(0) − µ̂
ν(0) − ν̂


 , (45)

and v and ν are the auxiliary variable and Lagrange multiplier of the additional redundant equality constraint v = G1/2x in
[1], respectively. Note that ν(k) = 0n for k = 0, 1, . . . if we initialize ν as ν(0) = 0n, and ν̂ = 0n [1]. We have ν(0)− ν̂ = 0n.
Hence, (45) is further upper bounded by

Dα,ρ = 1
2α




u(0) − û
v(0) − v̂
µ(0) − µ̂



′ 


ρIm 0 − (1− α) Im
0 ρIn 0

− (1− α) Im 0 1
ρIm






u(0) − û
v(0) − v̂
µ(0) − µ̂




= 1
2α

(
ρ
∥∥u(0) − û

∥∥2
2
− 2 (1− α) 〈u(0) − û,µ(0) − µ̂〉+ 1

ρ

∥∥µ(0) − µ̂
∥∥2
2

)
+ ρ

2α

∥∥v(0) − v̂
∥∥2
2

≤ 1
2α

[√
ρ
∥∥u(0) − û

∥∥
2

+ 1√
ρ

∥∥µ(0) − µ̂
∥∥
2

]2
+ ρ

2α

∥∥G1/2x(0) −G1/2x̂
∥∥2
2

= Cα,ρ + ρ
2α

∥∥x(0) − x̂
∥∥2
DA−A′A

. (46)

Let
Bα,ρ,DA

, ρ
2α

∥∥x(0) − x̂
∥∥2
DA−A′A

. (47)

Thus, the convergence rate of the proposed relaxed LALM [1] is upper bounded by

G′
(
wK ; ŵ

)
≤ 1

K

(
ADψ

+Bα,ρ,DA
+ Cα,ρ

)
. (48)
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C. Practical implementation of the proposed relaxed LALM

Although the proposed relaxed LALM shows better scalability of the convergence rate with the relaxation parameter α,
a straightforward implementation with substitutions in Theorem 3 is not recommended because there is no efficient way to
compute the square root of G for any A in general. For practical implementation, we must avoid using multiplication by G1/2

in both the x- and v-updates. To derive the practical implementation, we first substitue K =
[
A′ G1/2

]′
, B = −I, b = 0,

and P = 0 in (6). This leads to the following iterates (i.e., [1, Eqn. 25]):




x(k+1) ∈ arg min
x

{
φ(x) +Qψ

(
x; x(k)

)
− 〈µ(k),Ax〉 − 〈ν(k),G1/2x〉+ ρ

2

∥∥Ax− u(k)
∥∥2
2

+ ρ
2

∥∥G1/2x− v(k)
∥∥2
2

}

u(k+1) ∈ arg min
u

{
g(u) + 〈µ(k),u〉+ ρ

2

∥∥r(k+1)
u,α − u

∥∥2
2

}

µ(k+1) = µ(k) − ρ
(
r
(k+1)
u,α − u(k+1)

)

v(k+1) = r
(k+1)
v,α − ρ−1ν(k)

ν(k+1) = ν(k) − ρ
(
r
(k+1)
v,α − v(k+1)

)
,

(49)

where Qψ is a separable quadratic surrogate (SQS) of ψ at x(k) [1, Eqn. 17], ru,α is the relaxation variable of u, and rv,α is
the relaxation variable of v. Suppose ν(0) = 0. Then ν(k) = 0 for k = 0, 1, . . ., and (49) can be further simplified as





x(k+1) ∈ arg min
x

{
φ(x) +Qψ

(
x; x(k)

)
− 〈µ(k),Ax〉+ ρ

2

∥∥Ax− u(k)
∥∥2
2

+ ρ
2

∥∥G1/2x− v(k)
∥∥2
2

}

u(k+1) ∈ arg min
u

{
g(u) + 〈µ(k),u〉+ ρ

2

∥∥r(k+1)
u,α − u

∥∥2
2

}

µ(k+1) = µ(k) − ρ
(
r
(k+1)
u,α − u(k+1)

)

v(k+1) = αG1/2x(k+1) + (1− α) v(k) .

(50)

Let h , G1/2v + A′y. By the v-update in (50), we have

h(k+1) = G1/2v(k+1) + A′y

= G1/2
(
αG1/2x(k+1) + (1− α) v(k)

)
+ A′y

= α
(
Gx(k+1) + A′y

)
+ (1− α)

(
G1/2v(k) + A′y

)

= α
(
DAx(k+1) −A′

(
Ax(k+1) − y

))
+ (1− α) h(k) . (51)

To avoid multiplication by G1/2 in the x-update in (50), we rewrite the last three terms in the x-update cost function using
Taylor’s expansion around x(k). That is,

− 〈µ(k),Ax〉+ ρ
2

∥∥Ax− u(k)
∥∥2
2

+ ρ
2

∥∥G1/2x− v(k)
∥∥2
2

∝ ρ
2

∥∥Ax− u(k) − ρ−1µ(k)
∥∥2
2

+ ρ
2

∥∥G1/2x− v(k)
∥∥2
2

∝
(
x− x(k)

)′(
ρA′

(
Ax(k) − u(k) − ρ−1µ(k)

)
+ ρ
(
Gx(k) −G1/2v(k)

))
+ 1

2

∥∥x− x(k)
∥∥2
ρA′A+ρG

=
(
x− x(k)

)′(
ρ
(
A′A + G

)
x(k) − ρA′

(
u(k) + ρ−1µ(k)

)
− ρG1/2v(k)

)
+ 1

2

∥∥x− x(k)
∥∥2
ρ(A′A+G)

=
(
x− x(k)

)′(
ρDAx(k) − ρA′

(
u(k) − y + ρ−1µ(k)

)
− ρh(k)

)
+ 1

2

∥∥x− x(k)
∥∥2
ρDA

∝ 1
2

∥∥x− x(k) + (ρDA)
−1 (

ρDAx(k) − ρA′
(
u(k) − y + ρ−1µ(k)

)
− ρh(k)

)∥∥2
ρDA

= 1
2

∥∥x− (ρDA)
−1 (

ρA′
(
u(k) − y + ρ−1µ(k)

)
+ ρh(k)

)∥∥2
ρDA

. (52)

The practical relaxed LALM without multiplication by G1/2 becomes




x(k+1) ∈ arg min
x

{
φ(x) +Qψ

(
x; x(k)

)
+ 1

2

∥∥x− (ρDA)
−1 (

ρA′
(
u(k) − y + ρ−1µ(k)

)
+ ρh(k)

)∥∥2
ρDA

}

u(k+1) ∈ arg min
u

{
g(u) + 〈µ(k),u〉+ ρ

2

∥∥r(k+1)
u,α − u

∥∥2
2

}

µ(k+1) = µ(k) − ρ
(
r
(k+1)
u,α − u(k+1)

)

h(k+1) = α
(
DAx(k+1) −A′

(
Ax(k+1) − y

))
+ (1− α) h(k) .

(53)

D. Numerical example: LASSO regression

Here we describe a numerical example that demonstrates the convergence rate bound and the effect of relaxation. Consider
the following `1-regularized linear regression problem:

x̂ ∈ arg min
x

{
1
2 ‖y −Ax‖22 + λ ‖x‖1

}
, (54)
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Fig. 1: LASSO regression: Duality gap curves of relaxed LALM with different relaxation parameters and AL penalty parameters.
(a) Bound (42) vs. ergodic gap, and (b) ergodic gap vs. non-ergodic gap.

where A ∈ IRm×n, and n� m in general. This is a widely studied problem in the field of statistics (also known as LASSO
regression) and compressed sensing for seeking a sparse solution of a linear system with small measurement errors. To solve
this problem using the proposed relaxed LALM (53), we focused on the following equivalent equality-constrained minimization
problem:

(x̂, û) ∈ arg min
x,u

{
1
2 ‖y − u‖22 + λ ‖x‖1

}
s.t. u = Ax (55)

with φ = λ ‖·‖1, ψ = 0, DA = λmax(A′A) I, and g = 1
2 ‖· − y‖22. We set x(0) = A†y, u(0) = Ax(0), µ(0) = y − u(0), and

h(0) = DAx(0) −A′
(
Ax(0) − y

)
. Data for numerical instances were generated as follows. The entries of the system matrix

A ∈ IR100×400 were sampled from an iid standard normal distribution. The hidden sparse vector xs ∈ IR400 was a randomly
generated 20-sparse vector, and the noisy measurement y = Axs + n, where n ∈ IR100 was sampled from an iid N (0, 0.1).
The regularization parameter λ was set to be unity in our experiment.

Figure 1 shows the duality gap curves of relaxed LALM with different relaxation parameters (α = 1, 1.999) and AL penalty
parameters (ρ = 0.5, 0.1). As seen in Figure 1(a), the ergodic duality gap G′(wK ; ŵ) converges at rate O(1/k), and the
bound derived in Theorem 3 is a tighter upper bound for large number of iterations. Furthermore, as seen in Figure 1(b),
the non-ergodic duality gap G′

(
w(K); ŵ

)
converges much faster than the ergodic one, and we can achieve about two-times

speed-up by using α ≈ 2 empirically.

II. CONTINUATION WITH OVER-RELAXATION

This section describes the rationale for the continuation sequence in [1]. Consider solving a simple quadratic problem:

x̂ ∈ arg min
x

1
2 ‖Ax‖22 , (56)

using [1, Eqn. 33] with h = 0 and y = 0. If A′A is positive definite (for this analysis only), then (56) has a unique solution
x̂ = 0. Let VΛV′ be the eigenvalue decomposition of A′A, where Λ , diag{λi| 0 < λ1 ≤ · · · ≤ λn = LA}. Updates
generated by [1, Eqn. 33] (with DA = LAI) simplify as follows:





x(k+1) = 1
ρLA

(
(ρ− 1)g(k) + ρh(k)

)

g(k+1) = ρ
ρ+1

(
αA′Ax(k+1) + (1− α)g(k)

)
+ 1

ρ+1g(k)

h(k+1) = α
(
LAx(k+1) −A′Ax(k+1)

)
+ (1− α)h(k) .

(57)

Let x̄ , V′x, ḡ , V′g, and h̄ , V′h. The linear system (57) can be further diagonalized, and the ith components of x̄,
ḡ, and h̄ evolve as follows:

x̄
(k+1)
i = 1

ρLA

(
(ρ− 1)ḡ

(k)
i + ρh̄

(k)
i

)
(58)

and {
ḡ
(k+1)
i = ρ

ρ+1

(
αλix̄

(k+1)
i + (1− α)ḡ

(k)
i

)
+ 1

ρ+1 ḡ
(k)
i

h̄
(k+1)
i = α

(
LAx̄

(k+1)
i − λix̄(k+1)

i

)
+ (1− α)h̄

(k)
i .

(59)
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Plugging (58) into (59) leads to a second-order recursion (of ḡi and h̄i) with a transition matrix

Ti ,
[
αρλi
ρ+1

1
ρLA

(ρ− 1) + (1−α)ρ+1
ρ+1

αρλi
ρ+1

1
ρLA

ρ

α (LA − λi) 1
ρLA

(ρ− 1) α (LA − λi) 1
ρLA

ρ+ (1− α)

]
, (60)

and x̄(k+1)
i is just a linear combination of ḡ(k)i and h̄(k)i . The eigenvalues of the transition matrix Ti defined in (60) determine

the convergence rate of the second-order recursion, and we can analyze the second-order recursive system by studying its
characteristic polynomial:

r2i − ([Ti]11 + [Ti]22) ri + ([Ti]11[Ti]22 − [Ti]12[Ti]21) . (61)

The proposed α-dependent continuation sequence is based on the critical value ρc
1 and the damping frequency ω1 (as ρ ≈ 0)

of the eigencomponent corresponding to the smallest eigenvalue λ1 [2]. The critical value ρc
1 solves

([T1]11 + [T1]22)
2 − 4 ([T1]11[T1]22 − [T1]12[T1]21) = 0 , (62)

and the damping frequency ω1 satisfies [10, p. 581]

cosω1 =
[T1]11 + [T1]22√

4 ([T1]11[T1]22 − [T1]12[T1]21)
. (63)

We solve (62) and (63) using MATLAB’s symbolic toolbox. For (62), we found that

ρc
1 = 2

√
λ1

LA

(
1− λ1

LA

)
(64)

is independent of α. Hence, the optimal AL penalty parameter ρ? , ρc
1 depends only on the geometry of A′A and does not

change for different values of the relaxation parameter α. For (63), we found that

cosω1 ≈
1− α λ1

LA√
1− (2α− α2) λ1

LA

(65)

for ρ ≈ 0. When α = 1, cosω1 ≈
√

1− λ1/LA, and thus ω1 ≈
√
λ1/LA due to the small angle approximation:

cos
√
θ ≈ 1− θ/2 ≈

√
1− θ . (66)

When α ≈ 2, cosω1 ≈ 1 − 2λ1/LA, and ω1 ≈ 2
√
λ1/LA also due to (66). For general 0 < α < 2, we can approximate

cosω1 in (65) using a Taylor series as

cosω1 ≈
(

1− α λ1

LA

)(
1 + 1

2

(
2α− α2

)
λ1

LA
+ [higher-order terms]

)
= 1− α2

2
λ1

LA
+ [higher-order terms] . (67)

We ignore higher-order terms in (67) since λ1/LA is usually very small in practice. Hence, cosω1 ≈ 1 −
(
α
√
λ1/LA

)2
/2,

and ω1 ≈ α
√
λ1/LA due to the small angle approximation (66). This expression covers both the previous unrelaxed (α = 1)

and proposed relaxed (α ≈ 2) cases. Suppose we use the same restart condition as in [2]; that is, restarts occur about every
(1/2) (π/ω1) iterations. If we restart at the kth iteration, we have the approximation

√
λ1/LA ≈ π/(2αk), and the ideal AL

penalty parameter at the kth iteration is

2

√(
π

2αk

)2 (
1−

(
π

2αk

)2 )
= π

αk

√
1−

(
π

2αk

)2
. (68)

That is, the values of ρk(α) are scaled by the value of α.
To demonstrate the speed-up resulting from combining continuation with over-relaxation, Figure 2 shows the convergence

rate curves of the proposed relaxed OS-LALM (12 subsets) using different values of the over-relaxation parameter α when
reconstructing the simulated XCAT dataset. For comparison, the convergence rate curves that do not use continuation (fixed AL
penalty parameter ρ = 0.05) are also shown. As seen in Figure 2(b), the RMS difference of the green curve (relaxed OS-LALM
with α = 1.5) after 10 iterations is about the same as the RMS difference of the blue curve (unrelaxed OS-LALM) after 15
iterations, exhibiting an approximately 1.5-times speed-up. Using larger α (up to two) can further accelerate convergence;
however, the speed-up can be slightly slower than α-times due to the dominance of the constant B in [1, Theorem 2] and the
accumulation of gradient errors with ordered subsets. For instance, the RMS difference of the red curve (relaxed OS-LALM
with α = 1.999) after 5 iterations is a bit larger the RMS difference of the blue curve (unrelaxed OS-LALM) after 10 iterations.
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Fig. 2: XCAT: Convergence rate curves of relaxed OS-LALM (12 subsets) using different values of the over-relaxation parameter
α with (a) fixed AL penalty parameter ρ = 0.05 and (b) proposed decreasing ρk.

III. ADDITIONAL EXPERIMENTAL RESULTS

A. XCAT phantom

Additional experimental results of the simulated XCAT phantom dataset shown in [1] are reported here. Figure 3 shows the
difference images (in the central transaxial plane) of FBP (i.e., x(0)−x?) and OS algorithms with 12 subsets after 10 iterations
(i.e., x(10) − x?). As seen in Figure 3, low-frequency components converge faster than high/mid-frequency components like
streaks and edges with all algorithms. This is common for gradient-based algorithms when the Hessian matrix of the cost
function is more “low-pass/band-cut” like in X-ray CT. The difference image of the proposed relaxed OS-LALM shows less
edge structures and looks more uniform in flat regions. Figure 4 shows the difference images after 20 iterations. We can see
that the proposed relaxed OS-LALM shows very uniform difference images, while the subtle noise-like artifacts remain with
OS-OGM2.

To demonstrate the improvement of our “modified” relaxed LALM (i.e., with ordered subsets and continuation) for X-ray
CT image reconstruction problems, Figure 5 shows convergence rate curves of unrelaxed/relaxed OS-LALM using different
parameter settings with (a) one subset and (b) 12 subsets. All algorithms run 360 subiterations; however, those with OS should
be faster in runtime because they perform fewer forward/back-projections. As seen in Figure 5, convergence rate curves of OS
algorithms are scaled almost perfectly (in the horizontal axis) when using modest number of subsets (M = 12). However, the
scalability might be worse when using more subsets (more severe gradient error accumulation) or in other dataset. Moreover,
solid lines (relaxed algorithms) always show about two-times faster convergence rate than dashed lines (unrelaxed algorithms),
without and with continuation. Note that the solid blue line (relaxed LALM, ρ = 1/6) and the dashed green line (unrelaxed
LALM, ρ = 1/12) in both cases are overlapped after 60 subiterations, implying that halving the AL penalty parameter ρ and
setting relaxation parameter α to be close to two have similar effect on convergence speed in this CT problem (where the data
fidelity term dominates the cost function). Note that when the data-fidelity term dominates the cost function, the constant B
dominates the constant multiplying 1/K in [1, Theorem 2], leading to the better speed-up with α.

We also investigated the effect of majorization (for both the data-fidelity term and the regularizer term) on convergence
speed. Figure 6 shows the convergence rate curves of the proposed relaxed OS-LALM with different (a) data-fidelity term
majorizations and (b) regularization term majorizations. As seen in Figure 6(a), the proposed algorithm diverges when DL is
too small, violating the majorization condition. Larger DL slows down the algorithm. However, multiplying DL by κ-times
does not necessarily slow down the algorithm by κ-times since the weighting matrix of Bα,ρ,DL

is DL−A′WA. Besides, larger
DL helps reduce the gradient error accumulation in fast algorithms [11]. Figure 6(b) shows the convergence rate curves of the
proposed relaxed OS-LALM with regularizer majorization using the maximum curvature and Huber’s curvature, respectively.
We can see that the speed-up of using Huber’s curvature is very significant. Note that ρDL + DR determines the step sizes of
the image update of the proposed relaxed OS-LALM. Better majorization of R (i.e., smaller [DR]i for those voxels that are
still far from the optimum) leads to larger image update step sizes, especially when ρ is small.
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Fig. 3: XCAT: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial FBP
image x(0) − x? and the reconstructed image x(10) − x? using OS algorithms with 12 subsets after 10 iterations.
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Fig. 4: XCAT: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial FBP
image x(0) − x? and the reconstructed image x(20) − x? using OS algorithms with 12 subsets after 20 iterations.

B. Chest scan

Additional experimental results of the chest scan dataset shown in [1] are reported here. Figure 7 shows convergence rate
curves of different relaxed algorithms (10 subsets and α = 1.999) with (a) a fixed AL penalty parameter ρ = 0.05 and (b) the
decreasing sequence ρk proposed in [1]. Like the experimental results with the simulated CT scan shown in [1], the simple
relaxation does not provide much acceleration with a fixed AL penalty parameter, but it works somewhat better when using the
decreasing ρk. Figure 8 and Figure 9 show the difference images (in the central transaxial plane) of FBP and OS algorithms
with 10 subsets after 10 and 20 iterations, respectively. Difference images of the proposed relaxed OS-LALM show the fewest
structured artifacts among all algorithms for comparison.

C. Shoulder scan

We reconstructed a 512× 512× 109 image volume, where ∆x = ∆y = 1.3695 mm and ∆z = 0.625 mm, from a shoulder
region helical CT scan. The size of sinogram is 888×32×7146 (pitch = 0.5, about 7.3 rotations with rotation time 0.8 seconds).
The tube current and tube voltage of the X-ray source are 180 mA and 140 kVp, respectively. The initial FBP image x(0) has
lots of streak artifacts due to low signal-to-noise ratio (SNR), and we tuned the statistical weights and regularization parameters
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Fig. 5: XCAT: Convergence rate curves of unrelaxed/relaxed OS-LALM using different parameter settings with (a) one subset
and (b) 12 subsets. All algorithms run 360 subiterations.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Number of iterations

R
M

S
 d

iff
er

en
ce

 [H
U

]

 

 

1 HU

5 HU

D(loss) = 0.6 diag{A’WA1}
D(loss) = 0.7 diag{A’WA1}
D(loss) = 0.8 diag{A’WA1}
D(loss) = 1.0 diag{A’WA1}
D(loss) = 2.0 diag{A’WA1}
D(loss) = 5.0 diag{A’WA1}

(a) Data-fidelity term majorization

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Number of iterations

R
M

S
 d

iff
er

en
ce

 [H
U

]

 

 

1 HU

5 HU

D(reg.) with maximum curvature
D(reg.) with Huber’s curvature
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Fig. 6: XCAT: Convergence rate curves of the proposed relaxed OS-LALM with different (a) data-fidelity term majorizations
and (b) regularization term majorizations.

using [12, 13] to emulate [14, 15]. We used 20 subsets for the relaxed OS-LALM, while [2, Eqn. 57] suggests using about
40 subsets for the unrelaxed OS-LALM. Figure 10 shows the cropped images from the central transaxial plane of the initial
FBP image x(0), the reference reconstruction x?, and the reconstructed image x(20) using the proposed algorithm (relaxed
OS-LALM with 20 subsets) after 20 iterations. Figure 11 shows the RMS differences between the reference reconstruction x?

and the reconstructed image x(k) using different OS algorithms as a function of iteration with 20 and 40 subsets. As seen in
Figure 11, the proposed relaxed OS-LALM shows faster convergence rate with moderate number of subsets, but the speed-up
diminishes as the iterate approaches the solution. Figure 12 and Figure 13 show the difference images (in the central transaxial
plane) of FBP and OS algorithms with 20 subsets after 10 and 20 iterations, respectively. The proposed relaxed OS-LALM
removes more streak artifacts than other OS algorithms.
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(b) Decreasing ρk proposed in [1]

Fig. 7: Chest: Convergence rate curves of different relaxed algorithms (10 subsets and α = 1.999) with (a) a fixed AL penalty
parameter ρ = 0.05 and (b) the decreasing sequence ρk proposed in [1].
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Fig. 8: Chest: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial FBP
image x(0) − x? and the reconstructed image x(10) − x? using OS algorithms with 10 subsets after 10 iterations.
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Fig. 9: Chest: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial FBP
image x(0) − x? and the reconstructed image x(20) − x? using OS algorithms with 10 subsets after 20 iterations.
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Fig. 10: Shoulder: Cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial FBP image
x(0) (left), the reference reconstruction x? (center), and the reconstructed image x(20) using the proposed algorithm (relaxed
OS-LALM with 20 subsets) after 20 iterations (right).
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Fig. 11: Shoulder: Convergence rate curves of different OS algorithms with (a) 20 subsets and (b) 40 subsets. The proposed
relaxed OS-LALM with 20 subsets exhibits similar convergence rate as the unrelaxed OS-LALM with 40 subsets.
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Fig. 12: Shoulder: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial
FBP image x(0) − x? and the reconstructed image x(10) − x? using OS algorithms with 20 subsets after 10 iterations.
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Fig. 13: Shoulder: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial
FBP image x(0) − x? and the reconstructed image x(20) − x? using OS algorithms with 20 subsets after 20 iterations.
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