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Fast X-Ray CT Image Reconstruction Using a
Linearized Augmented Lagrangian Method

With Ordered Subsets
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Abstract—Augmented Lagrangian (AL) methods for solving
convex optimization problems with linear constraints are attrac-
tive for imaging applications with composite cost functions due
to the empirical fast convergence rate under weak conditions.
However, for problems such as X-ray computed tomography (CT)
image reconstruction, where the inner least-squares problem is
challenging and requires iterations, AL methods can be slow.
This paper focuses on solving regularized (weighted) least-squares
problems using a linearized variant of AL methods that replaces
the quadratic AL penalty term in the scaled augmented La-
grangian with its separable quadratic surrogate function, leading
to a simpler ordered-subsets (OS) accelerable splitting-based algo-
rithm, OS-LALM. To further accelerate the proposed algorithm,
we use a second-order recursive system analysis to design a de-
terministic downward continuation approach that avoids tedious
parameter tuning and provides fast convergence. Experimental
results show that the proposed algorithm significantly accelerates
the convergence of X-ray CT image reconstruction with negligible
overhead and can reduce OS artifacts when using many subsets.

Index Terms—Augmented Lagrangian (AL), computed tomog-
raphy (CT), ordered subsets, statistical image reconstruction.

I. INTRODUCTION

S TATISTICAL methods for image reconstruction have
been explored extensively for computed tomography (CT)

due to the potential of acquiring CT scans with lower X-ray
dose while maintaining image quality. However, the much
longer computation time of statistical methods still restrains
their applicability in practice. To accelerate statistical methods,
many optimization techniques have been investigated. Aug-
mented Lagrangian (AL) methods (including the alternating
direction variants) [1]–[4] are powerful techniques for solving
regularized inverse problems using variable splitting. For
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example, in total-variation (TV) denoising and compressed
sensing (CS) problems, AL methods can separate nonsmooth
regularization terms by introducing auxiliary variables, yielding
simple penalized least-squares inner problems that are solved
efficiently using the fast Fourier transform (FFT) algorithm
and proximal mappings such as the soft-thresholding for the
-norm [5], [6]. However, in applications like X-ray CT image

reconstruction, the inner least-squares problem is challenging
due to the highly shift-variant Hessian caused by the huge dy-
namic range of the statistical weighting. To solve this problem,
Ramani et al. [7] introduced an additional variable that separates
the shift-variant and approximately shift-invariant components
of the statistically weighted quadratic data-fitting term, leading
to a better-conditioned inner least-squares problem that was
solved efficiently using the preconditioned conjugate gradient
(PCG) method with an appropriate circulant preconditioner.
Experimental results showed significant acceleration in 2-D
CT [7]; however, in 3-D CT with cone-beam geometry, it is
more difficult to construct a good preconditioner for the inner
least-squares problem, and the method in [7] has yet to achieve
the same acceleration as in 2-D CT. Furthermore, even when
a good preconditioner can be found, the iterative PCG solver
requires several forward/back-projection operations per outer
iteration, which is very time-consuming in 3-D CT, signifi-
cantly reducing the number of outer-loop image updates one
can perform within a given reconstruction time.
The ordered-subsets (OS) algorithm [8] is a first-order

method with a diagonal preconditioner that uses somewhat
conservative step sizes but is easily applicable to 3-D CT. By
grouping the projections into ordered subsets that satisfy the
“subset balance condition” and updating the image incremen-
tally using the subset gradients, OS algorithms effectively
perform times as many image updates per outer iteration as
the standard gradient descent method, leading to times ac-
celeration in early iterations. We can interpret the OS algorithm
and its variants as incremental gradient methods [9]; when
the subset is chosen randomly with some constraints so that
the subset gradient is unbiased and with finite variance, they
can also be called stochastic gradient methods [10]. Recently,
OS variants [11], [12] of the fast gradient method [13]–[15]
demonstrated dramatic acceleration (about times in early
iterations) over their one-subset counterparts. However, when
increases, fast OS algorithms seem to have “larger” limit

cycles and exhibit artifacts in the reconstructed images. This
problem is also studied in the machine learning literature.
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Devolder showed that the error accumulation in fast gradient
methods is inevitable when an inexact oracle is used, but it
can be reduced by using relaxed momentum, i.e., a growing
diagonal majorizer (or equivalently, a diminishing step size),
at the cost of slower convergence rate [16]. Schmidt et al.
also showed that an accelerated proximal gradient method is
more sensitive to errors in the gradient and proximal mapping
calculations [17].
OS-based algorithms, including the standard one and its

fast variants, are not convergent in general (unless relaxation
[18] or incremental majorization [19] is used, unsurprisingly,
at the cost of slower convergence rate) and possibly introduce
noise-like artifacts. Nevertheless, the effective -times image
updates using OS is still very promising for AL methods. As
an example of combining OS (or stochastic gradients) with AL
methods, Ouyang et al. [20] proposed a stochastic setting for
the alternating direction method of multipliers (ADMM) [4],
[6] that introduces an auxiliary variable for the regularization
term and majorizes the smooth data-fitting term such as the
logistic loss in the scaled augmented Lagrangian using a diag-
onal majorizer with stochastic gradients. For every stochastic
ADMM iteration, only part of the data is visited (for evaluating
the gradient of a subset of the data). This substantially reduces
the cost per stochastic ADMM iteration, and one can run more
stochastic ADMM iterations in a given reconstruction time.
However, stochastic ADMM simply combines the stochastic
gradient method and ADMM, and it reverts to the stochastic
gradient method when no variable splitting is considered.
Therefore, the AL framework in stochastic ADMM extends the
original stochastic gradient method so that it can use variable
splitting for more complicated regularizations such as the
nonsmooth regularization, but it does not greatly accelerate
convergence for problems with smooth regularizers (in which
variable splitting is less compelling than in the nonsmooth
case) like those considered here for low-dose X-ray CT.
In this paper, we focus on solving regularized (weighted)

least-squares problems using a linearized AL method (LALM)
[21]. We majorize the quadratic AL penalty term, instead of the
smooth data-fitting term, in the scaled augmented Lagrangian
using a fixed diagonal majorizer, leading to a much simpler
OS-accelerable splitting-based algorithm, OS-LALM. For fur-
ther acceleration, we use a second-order recursive system anal-
ysis to design a deterministic downward continuation approach
that avoids tedious parameter tuning and provides fast conver-
gence. Experimental results show that the proposed algorithm
significantly accelerates the convergence of X-ray CT image
reconstruction in early iterations with negligible overhead and
greatly reduces OS artifacts in the reconstructed image when
using many subsets.
The paper is organized as follows. Section II reviews the

linearized AL method in a general setting and shows new
convergence properties of the linearized AL method with in-
exact updates. Section III derives the proposed OS-accelerable
splitting-based algorithm for solving regularized least-squares
problems using the linearized AL method and develops a deter-
ministic downward continuation approach for fast convergence
without parameter tuning. Section IV considers solving X-ray
CT image reconstruction problem with penalized weighted

least-squares (PWLS) criterion using the proposed algorithm.
Section V reports the experimental results of applying our
proposed algorithm to X-ray CT image reconstruction. Further
results are shown in the supplementary material. Finally, we
draw conclusions in Section VI.

II. BACKGROUND

A. Linearized AL Method (LALM)

Consider a general composite convex optimization problem

(1)

and its equivalent constrained minimization problem

(2)

where both and are closed and proper convex functions.
In CT, denotes the system (projection) matrix, denotes the
image being reconstructed, is a weighted quadratic data-fitting
term, and is an edge-preserving regularization term. One way
to solve the constrained minimization problem (2) is to use an
(alternating direction) AL method that alternatingly minimizes
the scaled augmented Lagrangian

(3)

with respect to and , followed by a gradient ascent of ,
yielding the following AL iterates [4], [6]

(4)
where is the scaled Lagrange multiplier of the split variable
, and is the corresponding AL penalty parameter.
In the linearized AL method (LALM) [21] (also known as

the split inexact Uzawa method [22]–[24]), one replaces the
quadratic AL penalty term in the -update of (4)

(5)

by its separable quadratic surrogate (SQS) function

(6)

where ensures , and
. This function satisfies the “majorization” condition

.
(7)

It is trivial to generalize to a symmetric positive semi-definite
matrix , e.g., the diagonal matrix used in OS-based algo-
rithms [8], [25], and still ensure (7). When , LALM
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just reverts to the standard AL method. Majorizing with a di-
agonal matrix leads to a simpler -update. The corresponding
LALM iterates are as follows [21]:

(8)
The -update can be written as the proximal mapping of

(9)

where denotes the proximal mapping of defined as

(10)

and

(11)

denotes the “search direction” of the proximal gradient-like
-update that consists of a descent step and a proximal map-
ping step using the same step size, for instance, in (9).
Furthermore, can be written as

(12)

where by the definition of . Hence,
the LALM iterates (8) can be represented as a proximal-point
variant [24] of the standard AL iterates (4) (also known as the
preconditioned ADMM iterates [26] discussed later) by plug-
ging (12) into (8)

(13)

B. Convergence Properties With Inexact Updates

The LALM iteration (8) is convergent for any fixed AL
penalty parameter and any [21], while the standard AL
method is convergent (in the primal) if has full column rank
[4, Th. 8]. Furthermore, even if the AL penalty parameter varies
every iteration, (8) is convergent when is nondecreasing and
bounded above [21]. However, existing convergence analyses
of LALM assume that all updates are exact. In this paper, since
some updates might not be solved exactly, we must consider
the LALM iteration with inexact updates. Specifically, instead
of the exact LALM in (8), we focus on two closely related
inexact LALM variants

(14)

where was defined in (8), and

(15)
These inexact variants of LALM revert to the standard LALM
when and . The -update could also be inexact;
however, for simplicity, we focus on exact updates of . Con-
sidering inexact updates of is a trivial extension.
Our convergence analysis of the inexact LALM is twofold.

First, we show that the equivalent proximal-point variant of the
standard AL iterates (13) can be interpreted as a convergent
ADMM that solves another equivalent constrained minimiza-
tion problem of the form (1) with a redundant split (the proof is
in the supplementary material)

(16)

Therefore, the LALM iteration (8) is a convergent ADMM, and
it inherits the nice properties of ADMM, including the tolerance
of inexact updates [4, Th. 8]. More formally, we have the fol-
lowing theorem.

Theorem 1: Consider a constrained composite convex opti-
mization problem (2) where both and are closed and proper
convex functions. Let and denote a non-negative
sequence such that

(17)

If (2) has a solution , then the sequence of updates
generated by the inexact LALM in (14)

converges to ; otherwise, at least one of the sequences
or diverges.

Theorem 1 shows that the inexact LALM in (14) converges
if the error is absolutely summable. However, it does not
describe how fast the iterates converge and more importantly,
how inexact updates affect the convergence rate. This leads to
the second part of our convergence analysis. In this part, we rely
on the equivalence between LALM and the Chambolle-Pock
first-order primal-dual algorithm (CP) [26]. Consider a minimax
problem

(18)

where

(19)

and denotes the convex conjugate of a function [27, p. 104].
Note that since both and are closed, proper, and convex,
it follows and . The sequence of updates

generated by the CP iterates

(20)
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converges to a saddle-point of (18), and the non-negative
primal-dual gap converges to zero with
rate [26, Th. 1] provided that , where

and denote the
arithemetic means of all previous - and -iterates. Since the CP
iterates (20) solve the minimax problem (18), they also solve the
primal problem

(21)

and the dual problem

(22)

of (18), namely the composite convex optimization problem (1).
Therefore, the CP iterates (20) solve (1) with rate in an
ergodic sense, i.e., with respect to and instead of and

. Furthermore, Chambolle et al. showed that their primal-
dual algorithm is equivalent to a preconditioned ADMM. For
example, the CP iteration (20) for solving (1) is a proximal-point
variant of ADMM with a proximal term weighted by

provided that [26, Section
4.3]. Letting and and choosing

and , the CP iteration (20) is just the proixmal-point
AL method (13) and hence LALM (8) if we initialize as

. This suggests that we can measure the conver-
gence rate of LALM using the primal-dual gap that vanishes
ergodically with rate . Finally, to consider inexact up-
dates, we apply the error analysis technique developed in [17]
to the convergence rate analysis of CP, leading to the following
theorem (the proof is in the supplementary material).

Theorem 2: Consider a minimax problem (18) where both
and are closed and proper convex functions. Suppose it has
a saddle-point , where and are the solutions of the
primal problem (21) and the dual problem (22) of (18), respec-
tively. Let and denote a non-negative sequence
such that

(23)

Then, the sequence of updates generated
by the inexact LALM in (15) is a bounded sequence that con-
verges to and the primal-dual gap of has the
following bound:

(24)

where ,

(25)

(26)

and

(27)

Theorem 2 shows that the inexact LALM in (15) converges
with rate if the square root of the error is absolutely
summable. In fact, even if is not absolutely sum-
mable, say, decreases as , grows as
(note that always grows slower than ), and the primal-
dual gap converges to zero in . To obtain conver-
gence of the primal-dual gap, a necessary condition is that the
partial sum of grows no faster than .
The primal-dual gap convergence bound above is measured

at the average point of the update trajectory. In
practice, the primal-dual gap of converges much
faster. Minimizing the constant in (24) need not provide the
fastest convergence rate. However, the -, -, and -depen-
dence in (24) suggests how these factors affect the convergence
rate of LALM. Note that although we consider only one variable
split in our derivation, it is easy to extend our proofs to support
multiple variable splits by using the variable splitting scheme in
[6]. Conventional LALM in (8) is not OS-accelerable because it
needs one full forward projection for the - and -updates. We
used LALM for analysis and to motivate the proposed algorithm
in Section III, but it is not recommended for practical implemen-
tation in CT reconstruction. By restricting to be a quadratic
loss function, we show next that LALM becomes OS-acceler-
able and can further accelerate the conventional OS algorithms
by decreasing or choosing a small AL penalty paremeter.

III. PROPOSED ALGORITHM

A. OS-LALM: An OS-Accelerable Splitting-Based Algorithm

In this section, we restrict to be a quadratic loss function,
i.e., , and then the minimization
problem (1) becomes a regularized least-squares problem

(28)

Let denote the quadratic data-fitting term in
(28). We assume that is suitable for OS acceleration; i.e., can
be decomposed into smaller quadratic functions
satisfying the “subset balance condition” [8]

(29)

so that the subset gradients approximate the gradient of .
Since is quadratic, its proximalmapping is linear. The -up-

date in LALM (8) has the following simple closed-form solu-
tion:

(30)

Combining (30) with the -update of (8) yields the identity

(31)
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if we initialize as . Letting
denote the split residual and substituting (31) into (8) lead to the
following simplified LALM iterates:

(32)

The net computational complexity of (32) per iteration reduces
to one multiplication by , one multiplication by , and one
proximal mapping of that often can be solved noniteratively
or solved iteratively without using or . Since the gradient
of is , letting (a back-projection of the
split residual) denote the split gradient, we rewrite (32) as

(33)

We call (33) the gradient-based LALM because only the gradi-
ents of are used to perform the updates, and the net compu-
tational complexity of (33) per iteration becomes one gradient
evaluation of and one proximal mapping of .
We interpret the gradient-based LALM (33) as a generalized

proximal gradient descent of a regularized least-squares cost
function with step size and search direction that
is a weighted average of the gradient and split gradient of .
A smaller can lead to a larger step size. When , (33)
happens to be the proximal gradient method or the iterative
shrinkage/thresholding algorithm (ISTA) [28]. In other words,
by using LALM, we can arbitrarily increase the step size of the
proximal gradient method by decreasing , thanks to the simple
-dependent correction of the search direction in (33). To have a
concrete example, suppose all updates are exact, i.e., for
all . From (31) and Theorem 2, we have

as . Furthermore,
. With a reasonable initialization, e.g.,

and consequently, , the constant in (25) can
be rewritten as a function of

(34)

This constant achieves its minimum at

(35)

suggesting that unity might be a reasonable upper bound on
for fast convergence. Note that the ratio of the first term to the
second term in (34) is When the majorization is loose,
i.e., , and the first term in (34) dominates
for since . The upper bound of the

primal-dual gap becomes

(36)

That is, comparing to the proximal gradient method ( ),
the convergence rate (bound) of (33) is accelerated by a factor
of for .
Finally, since (33) requires only the gradients of to perform

updates, it is OS-accelerable. For OS acceleration, we simply
replace in (33) with using the approximation (29)
and incrementally perform (33) for times as a complete iter-
ation, thus leading to the final proposed OS-accelerable LALM
(OS-LALM)

(37)
with for and

. Like typical OS-based algorithms, this algorithm
is convergent when , i.e., (33), but is not guaranteed
to converge for . When , updates generated by
OS-based algorithms approach a “limit cycle” in which updates
stop nearing the optimum, and visible OS artifacts might be ob-
served in the reconstructed image, depending on .

B. Deterministic Downward Continuation

One drawback of conventional LALM is the difficulty of
finding a fixed value for the penalty parameter that provides
the fastest convergence. The optimal penalty parameter
in (35) minimizes the multiplicative constant but depends on
the unknown solution of the problem. Intuitively, a smaller
is better because it leads to a larger step size. However, when
the step size is too large, one can encounter overshoots and
oscillations that slow down the convergence rate at first and
when nearing the optimum. In fact, in (35) also suggests
that should not be arbitrarily small. Rather than estimating

heuristically, we focus on using an iteration-dependent ,
i.e., a continuation approach, for acceleration.
Classic continuation approaches increase as iterations

progress so that previous iterates can serve as a warm start
for subsequent worse-conditioned but more penalized inner
minimization problems [29, Prop. 4.2.1]. To implement this
kind of approaches, one must specify an initial value of the
penalty parameter and a rule for increasing which are usu-
ally problem-dependent. For example, a small provides fast
initial convergence but can cause overshoot (e.g., increasing
the cost function) in early iterations. Choosing a good that
balances convergence rate and overshoot for a given problem
is difficult. Furthermore, most classic continuation approaches
adapt the penalty parameter dynamically by checking some
conditions such as the primal and dual feasibilities and the
decrease of cost function [30]. This can increase computational
complexity per iteration, especially when involving expensive
operations (e.g., and in our case).
In this paper, unlike classic continuation approaches, we con-

sider a downward continuation approach. It is inspired by Nes-
terov's second method [31] that starts as a proximal gradient
method and gradually increases the step size (of the auxiliary
sequence) deterministically. The intuition is that, for a fixed ,
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the step length is typically a decreasing se-
quence because the gradient norm vanishes as we approach the
optimum, and an increasing sequence (i.e., a diminishing step
size) would aggravate the shrinkage of step length, slowing con-
vergence. In contrast, a decreasing sequence can compen-
sate for step length shrinkage and accelerate convergence. Of
course, cannot decrease too fast; otherwise, the soaring step
size might make the algorithm unstable or even divergent. To
design a “good” decreasing sequence for “effective” acceler-
ation, we first analyze how LALM (the one-subset version (33)
for simplicity) behaves for different values of .
Consider a simple quadratic problem

(38)

corresponding to (28) with and . A trivial solution
of (38) is . To ensure a unique solution, we assume that

is positive definite (for this analysis only). Let have
eigenvalue decomposition , where and

. The updates generated by (33) that
solve (38) can be written as

(39)
Furthermore, letting and , the linear system
can be further diagonalized, and we can represent the th com-
ponents of and as

(40)

Solving this system of recurrence relations of and , one can
show that both and satisfy a second-order recursive system
determined by the characteristic polynomial

(41)

The roots of this polynomial determine the convergence rate
of and in (40).
When , where

(42)

the characteristic polynomial (41) has repeated roots. Hence, the
system is critically damped, and and converge geometri-
cally to zero with convergence rate

(43)

When , the characteristic polynomial (41) has distinct
real roots. Hence, the system is over-damped, and and
converge geometrically to zero with convergence rate that is
governed by the dominant root

(44)

Fig. 1. Dominant roots of (41) and the optimal asymptotic convergence
rate for a system with six distinct eigenvalues:

, , , , , and .

It is easy to check that , and is increasing. This
suggests that the critically damped system always converges
faster than the over-damped system. Finally, when , the
characteristic polynomial (41) has complex roots. In this case,
the system is under-damped, and and converge geometri-
cally to zero with convergence rate

(45)

and oscillate at the damped frequency , where

(46)

when . Furthermore, by the small angle approximation:
, if , .

Again, , but behaves differently from . Specif-
ically, is decreasing if , and it is increasing other-
wise. This suggests that the critically damped system converges
faster than the under-damped system if , but it can
be slower otherwise. In sum, the critically damped system is
optimal for eigencomponents having smaller eigenvalues (i.e.,

), while for eigencomponents having larger eigen-
values (i.e., ), the under-damped system is optimal.
The asymptotic convergence rate of the system is dominated

by the smallest eigenvalue . Eventually, only the component
oscillating at frequency persists. Therefore, for the
fastest asymptotic convergence rate, we would like to choose
the AL penalty parameter to be

(47)

Fig. 1 illustrates the dominant roots of (41) and the optimal
asymptotic convergence rate that is the minimum of the largest
dominant root, i.e., , of all possible for a system
with six distinct eigenvalues: , , , , ,
and . For eigencomponents having smaller eigenvalues
( , , and ), the critically damped system has
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the fastest asymptotic convergence rate, while eigencompo-
nents having larger eigenvalues ( , , and ) attain
the fastest asymptotic convergence rate in the under-damping
regime. Moreover, when the smallest eigenvalue is less than

(i.e., an ill-conditioned system), the eigencomponent with
the smallest eigenvalue determines the optimal asymptotic
convergence rate, i.e., , with in (47).
Unlike in (35), this choice of does not depend on the
initialization. It depends only on the geometry of the Hessian

. Furthermore, both and fall in the interval .
Hence, although LALM converges for any , we consider
only in our downward continuation approach.
We can now interpret classic (upward) continuation ap-

proaches based on the second-order recursive system analysis.
Classic continuation approaches usually start from a small for
better-conditioned inner minimization problem. Therefore, ini-
tially, the system is under-damped. Although the under-damped
system has a slower asymptotic convergence rate, the oscillation
can provide dramatic acceleration before the first zero-crossing
of the oscillating components. We can think of the classic
continuation approach as a greedy strategy that exploits the
initial fast convergence rate of the under-damped system and
carefully increases to avoid oscillation and move toward the
critical damping regime. However, this greedy strategy requires
a “clever” update rule for increasing . If increases too fast,
the acceleration ends prematurally; if increases too slow, the
system starts oscillating.
In contrast, we consider a more conservative strategy that

starts from the over-damped regime, say, as suggested in
(47), and gradually reduces to the optimal AL penalty param-
eter . It sounds impractical at first because we do not know
beforehand. To solve this problem, we adopt the adaptive

restart proposed in [32] and generate a decreasing sequence
that starts from and reaches every time the algorithm
restarts. As mentioned before, the system oscillates at frequency

when it is under-damped. This oscillating behavior can
also be observed from the trajectory of updates. For example

(48)

oscillates at the frequency [32]. Hence, we restart the al-
gorithm (i.e., reset the decreasing penalty parameter to be one
and to be the current gradient of ) every time ,
which should occur about every iterations. Sup-
pose we restart at the th iteration, we have the approximation

, and the ideal AL penalty parameter at the
th iteration should be

(49)

The proposed downward continuation approach has the form
(33), where we replace every in (33) with

if

otherwise

(50)

where is a counter that starts from zero, increases by one ev-
erytime is updated, and is reset to zero whenever .
The lower bound is a small positive number for guaran-
teeing convergence. Note that ADMM is convergent if is non-
increasing and bounded below away from zero [33, Corollary
4.2]. As shown in Section II-B (Theorem 1), LALM is a con-
vergent ADMM. Therefore, we can ensure convergence (of the
one-subset version) of the proposed downward continuation ap-
proach if we set a nonzero lower bound for , e.g.,
in our experiments. Note that in (50) is the same for any .
The adaptive restart condition takes care of the dependence on
. That is why we call this approach the deterministic down-

ward continuation approach. When is nonzero and/or is
not positive definite, our analysis above does not hold. How-
ever, the deterministic downward continuation approach works
well in practice for CT. One possible explanation is that the cost
function can usually be well approximated by a quadratic near
the optimum when the minimization problem is well-posed and
is locally quadratic.
Finally, in practice we do not restart our algorithm for X-ray

CT image reconstruction [with ordered subsets, i.e., (37)] for
two reasons. First, according to our analysis, the restart period
is proportional to the square root of the local condition number,
i.e., . Since X-ray CT image reconstruction problems
are usually very ill-conditioned, the algorithm usually termi-
nates before a restart is needed. Second, since OS is used for ac-
celeration, gradients used to compute are not accurate and
might lead to premature restart. In our experimental results, we
did not observe any problems without restart. However, restart
may be useful in other applications.

IV. IMPLEMENTATION DETAILS

In this section, we consider solving the X-ray CT image re-
construction problem

(51)

using the proposed OS-LALM algorithm (37), where is the
system matrix of a CT scan, is the noisy sinogram, is the
statistical weighting matrix, is an edge-preserving regular-
izer, and denotes the convex set for a box constraint (usually
the non-negativity constraint) on . We focus on the edge-pre-
serving regularizer defined as

(52)

where , , , and denote the regularization parameter,
corresponding offset, potential function, and finite difference
matrix in the th direction, respectively, and is a voxel-de-
pendent weight for improving resolution uniformity [34]. In our
experiments, we use 13 directions to include all neighbors in
3-D CT.

A. OS-LALM for X-Ray CT Image Reconstruction

The X-ray CT image reconstruction problem (51) is a con-
strained regularized weighted least-squares problem. To solve
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it using the proposed algorithm (33) and its OS variant (37), we
use the following substitution:

(53)

where denotes the characteristic function of a convex set .
Thus, the inner minimization problem in (33) and its OS variant
(37) becomes a constrained denoising problem. In our imple-
mentation, we solve this inner constrained denoising problem
using iterations of the fast iterative shrinkage/thresholding al-
gorithm (FISTA) [15] starting from the previous update as a
warm start. As discussed in Section II-B, inexact updates can
slow down the convergence rate of the proposed algorithm. In
general, the more FISTA iterations, the faster convergence rate
of the proposed algorithm. However, the overhead of iterative
inner updates is non-negligible for large , especially when the
number of subsets is large. Fortunately, in typical X-ray CT
image reconstruction problems, the majorization is usually very
loose (probably due to the huge dynamic range of the statis-
tical weighting ). Therefore, in most cases, greatly di-
minishing the regularization force in the constrained denoising
problem. In practice, the constrained denoising problem can be
solved up to some acceptable tolerance within just one or two
iterations. For a fair comparison with the OS-based algorithms
[8], [12] used in Section V that majorize the weighted quadratic
data-fitting term using the SQS function with a diagonal Hes-
sian [8], in our experiments, we alsoma-
jorize the quadratic penalty in the scaled augmented Lagrangian
using the SQS function with Hessian (in this case, the inner
minimization problem in (33) and its OS variant (37) becomes a
constrained weighted denoising problem that can also be solved
by FISTA) and incrementally update the image using the subset
gradients with the bit-reversal order [35] that heuristically min-
imizes the subset gradient variance as in other OS-based algo-
rithms. See the supplementary material for the outline of the
proposed OS-LALM algorithm for solving (51).
The SQS function with Hessian is a very loose majorizer.

For fastest convergence, one might wish to use the tightest ma-
jorizer with Hessian . However, this would revert to the
standard AL method (4) with expensive -updates. An alterna-
tive is the Barzilai-Borwein (spectral) method [36] that mimics
the Hessian by , where the scaling factor
is solved by fitting the secant equation in the (weighted)

least-squares sense. Detailed derivation and additional experi-
mental results can be found in the supplementary material.

B. Number of Subsets

As mentioned in Section III-A, the number of subsets
can affect the stability of OS-based algorithms. When is
too large, OS algorithms typically become unstable, causing
artifacts in the reconstructed image. Therefore, finding an
appropriate number of subsets is very important. Since errors
of OS-based algorithms come from the gradient approximation
using subset gradients, artifacts might be supressed using a
better gradient approximation. Intuitively, to have a reasonable
gradient approximation, each voxel in a subset should be
sampled by a minimum number of views . For simplicity, we

consider the central voxel in the transaxial plane. In axial CT,
the views are uniformly distributed in each subset, so we want

(54)

This leads to our maximum number of subsets for axial CT

(55)

Helical CT is more complicated. Since the X-ray source
moves in the direction, a central voxel is only covered by

turns, where is the pitch, denotes the dis-
tance from the X-ray source to the isocenter, and denotes
the distance from the X-ray source to the detector. Therefore,
we want

(56)
This leads to our maximum number of subsets for helical CT

(57)
Note that the maximum number of subsets for helical CT

is inversely proportional to the pitch . We set
and for the proposed algorithm in our

experiments.

V. EXPERIMENTAL RESULTS

This section reports numerical results for 3-D X-ray CT
image reconstruction from real CT scans with different ge-
ometries using various OS-based algorithms, including the
following.
• OS-SQS- : the standard OS algorithm [8] with sub-
sets.

• OS-Nes05- : the OS+momentum algorithm [12] based
on Nesterov's fast gradient method [14] with subsets.

• OS-LALM- - - : the proposed algorithm using a fixed
AL penalty parameter with subsets and FISTA iter-
ations for solving the inner constrained denoising problem.

• OS-LALM- -c- : the proposed algorithm using the de-
terministic downward continuation approach described in
Section III-B with subsets and FISTA iterations for
solving the inner constrained denoising problem.

OS-SQS is a standard iterative method for tomographic recon-
struction, and OS-Nes05 is a state-of-the-art method for fast
X-ray CT image reconstruction using Nesterov's momentum
technique. Unlike other OS-based algorithms, our proposed
algorithm has additional overhead due to the iterative inner
updates. However, when , i.e., with a single gradient
descent for the constrained denoising problem, all algorithms
listed above have the same computational complexity (one
forward/back-projection pair and regularizer gradient eval-
uations per iteration). When majorizing the regularizer, we
use Huber's curvature [37, p. 185] for faster convergence in
all algorithms. Therefore, comparing the convergence rate as
a function of iteration is fair. We measured the convergence
rate using the rms difference (in the region of interest) between
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Fig. 2. Shoulder scan: cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial FBP image (left), the reference
reconstruction (center), and the reconstructed image using the proposed algorithm (OS-LALM-40-c-1) at the 30th iteration (right).

Fig. 3. Shoulder scan: cropped difference images (displayed from to 30 HU) from the central transaxial plane of using OS-based algorithms.

the reconstructed image and the almost converged refer-
ence reconstruction that we generated by running several
iterations of the OS+momentum algorithm with a small ,
followed by 2000 iterations of a convergent (i.e., one-subset)
FISTA with adaptive restart [32]. We used a -generalized
Gaussian [38] potential function in (52), and and were
tuned to emulate GE's Veo method [39]. For reproducible re-
sults using an XCAT phantom, see the supplementary material.

A. Shoulder Scan

In this experiment, we reconstructed a 512 512 109
image from a shoulder region helical CT scan, where the
sinogram has size 888 32 7146 and pitch 0.5. The max-
imum number of subsets suggested by (57) is about 40.
Fig. 2 shows the cropped images from the central transaxial
plane of the initial FBP image, the reference reconstruction,
and the reconstructed image using the proposed algorithm
(OS-LALM-40-c-1) at the 30th iteration (i.e., after 30 for-
ward/back-projection pairs). In Fig. 2, the reconstructed image
using the proposed algorithm looks almost the same as the
reference reconstruction in the display window from 800 to
1200 Hounsfield unit (HU, modified so that air is 0). The recon-
structed image using the OS+momentum algorithm (not shown
here) also looks quite similar to the reference reconstruction.
Fig. 3 shows the difference images, i.e., , for

different OS-based algorithms. The standard OS algorithm
(with both 20 and 40 subsets) exhibits visible streak artifacts
and structured high frequency noise in the difference image.
When , the difference images look similar for the
OS+momentum algorithm and our proposed algorithm, al-
though that of the OS+momentum algorithm is slightly more
structured and nonuniform. When , the difference
image for our proposed algorithm remains uniform, whereas

some noise-like OS artifacts appear in the OS+momentum
algorithm's difference image. The OS artifacts for the OS+mo-
mentum algorithm worsen when increases, e.g.,
(not shown). Apparently OS-LALM has better gradient error
tolerance than previous OS methods, probably due to the way
we compute the search direction and the less aggressive ac-
celeration to the regularization term. Additional experimental
results (an XCAT phantom axial scan and a truncated abdomen
scan) in the supplementary material demonstrate how different
OS-based algorithms behave when exceeds the suggested
maximum number of subsets.
Fig. 4 shows the convergence rate curves (rms differences

between the reconstructed image and the reference re-
construction as a function of iteration) using OS-based
algorithms with 20 and 40 subsets. By exploiting the linearized
AL method, the proposed algorithm accelerates the standard
OS algorithm remarkably. As mentioned in Section III-A, a
smaller can provide greater acceleration due to the increased
step size. Both plots show the acceleration of convergence as
decreases. Note that too large step sizes can cause overshoots
in early iterations. For example, the proposed algorithm with

shows slower convergence rate in first few iterations
but decreases more rapidly later. Our proposed determin-
istic downward continuation approach (50) overcomes this
trade-off. In Fig. 4, the proposed algorithm using deterministic
downward continuation reaches the lowest RMSD (lower than
1 HU) within only 30 iterations. The slightly higher RMSD of
the OS+momentum algorithm with 40 subsets is due to the OS
artifacts seen in Fig. 3.
Fig. 5 illustrates the effectiveness of solving the inner con-

strained denoising problem using FISTA (for X-ray CT image
reconstruction) mentioned in Section IV-A. In Fig. 5, the
convergence rate improves only slightly when using more than
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Fig. 4. Shoulder scan: rms differences between the reconstructed image and the reference reconstruction as a function of iteration using OS-based algo-
rithms with (a) 20 subsets and (b) 40 subsets, respectively. Dotted lines show the rms differences using the standard OS algorithm with one subset.

Fig. 5. Shoulder scan: rms differences between the reconstructed image
and the reference reconstruction as a function of iteration using the proposed
algorithm with different number of FISTA iterations (1, 2, and 5) for solving
the inner constrained denoising problem.

one FISTA iteration for solving the inner constrained denoising
problem. In practice, one FISTA iteration, i.e., , per
subset update suffices for fast and accurate X-ray CT image
reconstruction.

B. GE Performance Phantom

In this experiment, we reconstructed a 1024 1024 90
image from the GE performance phantom (GEPP) axial
CT scan, where the sinogram has size 888 64 984. The
maximum number of subsets suggested by (55) is about 24.
Fig. 6 shows the cropped images from the central transaxial
plane of the initial FBP image, the reference reconstruction,
and the reconstructed image using the proposed algorithm
(OS-LALM-24-c-1) at the 30th iteration. Again, the OS-LALM
image at the 30th iteration is very similar to the reference
reconstruction.
Figs. 7 and 8 show the difference images and convergence

rate curves, respectively. Because of the lower view-redun-
dancy in axial CT scans, the OS+momentum algorithm shows
even more OS artifacts than the standard OS algorithm in the
difference images, leading to a larger limit cycle in Fig. 8. A

relaxed OS+momentum algorithm [40] that uses a diminishing
step size can address this problem but require careful tuning of
the step sizes. In contrast, the proposed OS-LALM algorithm
avoids the need for such parameter tuning; one only needs to
choose the number of subsets .

VI. CONCLUSION

Augmented Lagrangian (AL) methods and ordered subsets
(OS) are two powerful techniques for accelerating optimiza-
tion algorithms using decomposition and approximation,
respectively. This paper combined these two techniques by
considering a linearized variant of the AL method and proposed
a fast OS-accelerable splitting-based algorithm, OS-LALM,
for solving regularized (weighted) least-squares problems. We
also proposed a novel deterministic downward continuation ap-
proach based on a second-order damping system that simplifies
parameter selection; only the number of subsets needs to be
selected, and we provided heuristics for that based on sampling
considerations in (55) and (57). We applied OS-LALM to X-ray
computed tomography (CT) image reconstruction problems
and compared with some state-of-the-art OS methods using
real CT scans with different geometries. Experimental results
showed that OS-LALM exhibits fast convergence rate and
excellent gradient error tolerance.
In (33), the search direction is a weighted average of the

current gradient and the split gradient of corresponding to
a low-pass infinite-impulse-response filter (across iterations).
The gradient error might be suppressed by this low-pass filter,
improving stability. A similar averaging technique (with a
low-pass finite-impulse-response filter) is used in the stochastic
average gradient (SAG) method [41], [42]. In contrast, the
OS+momentum algorithm computes the search direction using
only the current gradient (of the auxiliary image), so the gra-
dient error can accumulate when OS is used, providing a less
stable reconstruction. When the inner constrained denoising
problem is more difficult to solve, one could run more FISTA
iterations or introduce an additional split variable for the reg-
ularizer as in [7] at the cost of higher memory burden, thus
leading to a “high-memory” version of OS-LALM [43]. A
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Fig. 6. GE performance phantom: cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial FBP image (left), the
reference reconstruction (center), and the reconstructed image using the proposed algorithm (OS-LALM-24-c-1) at the 30th iteration (right).

Fig. 7. GE performance phantom: cropped difference images (displayed from to 30 HU) from the central transaxial plane of using OS-based
algorithms.

Fig. 8. GE performance phantom: rms differences between the reconstructed
image and the reference reconstruction as a function of iteration using
OS-based algorithms with 24 subsets. Dotted line shows the rms differences
using the standard OS algorithm with one subset.

recent alternative without variable splitting would be to use
a grouped coordinate descent (GCD) denoising with a GPU
implementation [44], [45].

As future work, we are interested in the convergence rate
analysis of the proposed algorithm with the deterministic down-
ward continuation approach and a more rigorous convergence
analysis of OS-LALM for that is greater than one.
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In this supplementary material, we provide the detailed convergence analysis of a linearized augmented Lagrangian (AL)
method with inexact updates proposed in [1] together with additional experimental results.

I. CONVERGENCE ANALYSIS OF THE INEXACT LINEARIZED AL METHOD

Consider a general composite convex optimization problem:

x̂ ∈ arg min
x

{
g(Ax) + h(x)

}
(1)

and its equivalent constrained minimization problem:

(x̂, û) ∈ arg min
x,u

{
g(u) + h(x)

}
s.t. u = Ax , (2)

where both g and h are closed and proper convex functions. The two inexact linearized AL method (LALM) variants that
solve (2) are as follows: 




∥∥∥x(k+1) − arg min
x
φk(x)

∥∥∥ ≤ δk
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) ,

(3)

and 



∣∣∣φk
(
x(k+1)

)
−min

x
φk(x)

∣∣∣ ≤ εk
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) ,

(4)

where
φk(x) , h(x) + θ̆k

(
x;x(k)

)
, (5)

and
θ̆k
(
x;x(k)

)
, θk

(
x(k)

)
+
〈
∇θk

(
x(k)

)
,x− x(k)

〉
+ ρL

2

∥∥x− x(k)
∥∥2

2
(6)

is the separable quadratic surrogate (SQS) function of

θk(x) , ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
(7)

with L > ‖A‖22 = λmax(A′A), {δk}∞k=0 and {εk}∞k=0 are two non-negative sequences, d is the scaled Lagrange multiplier of
the split variable u, and ρ > 0 is the corresponding AL penalty parameter. Furthermore, in [1], we also showed that the inexact
LALM (with u(0) = Ax(0)) is equivalent to the invexact version of the Chambolle-Pock first-order primal-dual algorithm (CP)
[2]: 




x(k+1) ∈ proxσh
(
x(k) − σA′z̄(k)

)

z(k+1) ∈ proxτg∗
(
z(k) + τAx(k+1)

)

z̄(k+1) = z(k+1) +
(
z(k+1) − z(k)

) (8)

that solves the minimax problem:

(ẑ, x̂) ∈ arg min
z

max
x

{
Ω(z,x) , 〈−A′z,x〉+ g∗(z)− h(x)

}
(9)
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with z = −τd, z̄(0) = z(0), σ = ρ−1t, τ = ρ, and t , 1/L, where proxf denotes the proximal mapping of f defined as:

proxf (z) , arg min
x

{
f(x) + 1

2 ‖x− z‖22
}
, (10)

and f∗ denotes the convex conjugate of a function f . Note that g∗∗ = g and h∗∗ = h since both g and h are closed, proper,
and convex.

A. Proof of Theorem 1

Theorem 1. Consider a constrained composite convex optimization problem (2) where both g and h are closed and proper
convex functions. Let ρ > 0 and {δk}∞k=0 denote a non-negative sequence such that

∞∑

k=0

δk <∞ . (11)

If (2) has a solution (x̂, û), then the sequence of updates
{(

x(k),u(k)
)}∞
k=0

generated by the inexact LALM in (3) converges
to (x̂, û); otherwise, at least one of the sequences

{(
x(k),u(k)

)}∞
k=0

or
{
d(k)

}∞
k=0

diverges.

Proof. To prove this theorem, we first consider the exact LALM:




x(k+1) ∈ arg min
x

{
h(x) + θ̆k

(
x;x(k)

)}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(12)

Note that

θ̆k
(
x;x(k)

)
= θk

(
x(k)

)
+
〈
∇θk

(
x(k)

)
,x− x(k)

〉
+ ρL

2

∥∥x− x(k)
∥∥2

2

= θk
(
x(k)

)
+
〈
∇θk

(
x(k)

)
,x− x(k)

〉
+ ρ

2

∥∥x− x(k)
∥∥2

A′A
+ ρ

2

∥∥x− x(k)
∥∥2

LI−A′A

= θk(x) + ρ
2

∥∥x− x(k)
∥∥2

G
, (13)

where G , LI−A′A � 0. Therefore, the exact LALM can also be written as




x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ ρ

2

∥∥x− x(k)
∥∥2

G

}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(14)

Now, consider another constrained minimization problem that is also equivalent to (1) but uses two split variables:

(x̂, û, v̂) ∈ arg min
x,u,v

{
g(u) + h(x)

}
s.t.

[
u
v

]
=

[
A

G1/2

]

︸ ︷︷ ︸
S

x . (15)

The corresponding augmented Lagrangian and ADMM iterates [3] are

LA(x,u,d,v, e; ρ, η) , g(u) + h(x) + ρ
2 ‖Ax− u− d‖22 + η

2

∥∥G1/2x− v − e
∥∥2

2
(16)

and 



x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ η

2

∥∥G1/2x− v(k) − e(k)
∥∥2

2

}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1)

v(k+1) = G1/2x(k+1) − e(k)

e(k+1) = e(k) −G1/2x(k+1) + v(k+1) ,

(17)

where e is the scaled Lagrange multiplier of the split variable v, and η > 0 is the corresponding AL penalty parameter.
Note that since G is positive definite, S defined in (15) has full column rank. Hence, the ADMM iterates (17) are convergent
[4, Theorem 8]. Solving the last two iterates in (17) yields identities

{
v(k+1) = G1/2x(k+1)

e(k+1) = 0
(18)
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if we initialize e as e(0) = 0. Substituting (18) into (17), we have the equivalent ADMM iterates:




x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ η

2

∥∥G1/2x−G1/2x(k)
∥∥2

2

}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(19)

When η = ρ, the equivalent ADMM iterates (19) reduce to (14). Therefore, LALM is a convergent ADMM. Finally, by using
[4, Theorem 8], LALM is convergent if the error of x-update is summable. That is, the inexact LALM in (3) is convergent if
the non-negative sequence {δk}∞k=0 satisfies

∑∞
k=0 δk <∞.

B. Proof of Theorem 2

Theorem 2. Consider a minimax problem (9) where both g and h are closed and proper convex functions. Suppose it has a
saddle-point (ẑ, x̂). Note that since the minimization problem (1) happens to be the dual problem of (9), x̂ is also a solution
of (1). Let ρ > 0 and {εk}∞k=0 denote a non-negative sequence such that

∞∑

k=0

√
εk <∞ . (20)

Then, the sequence of updates
{(
−ρd(k),x(k)

)}∞
k=0

generated by the inexact LALM in (4) is a bounded sequence that converges
to (ẑ, x̂), and the primal-dual gap of (zk,xk) has the following bound:

Ω
(
zk, x̂

)
− Ω

(
ẑ,xk

)
≤
(
C + 2Ak +

√
Bk
)2

k
, (21)

where zk , 1
k

∑k
j=1

(
−ρd(j)

)
, xk , 1

k

∑k
j=1 x

(j),

C ,
∥∥x(0) − x̂

∥∥
2√

2ρ−1t
+

∥∥(−ρd(0)
)
− ẑ
∥∥

2√
2ρ

, (22)

Ak ,
k∑

j=1

√
εj−1(

1− t ‖A‖22
)
ρ−1t

, (23)

and

Bk ,
k∑

j=1

εj−1 . (24)

Proof. As mentioned before, the inexact LALM is the inexact version of CP with a specific choice of σ and τ and a substitution
z = −τd (if we initialize both algorithms appropriately). Here, we just prove the convergence of the inexact CP by extending
the analysis in [2], and the inexact LALM is simply a special case of the inexact CP. However, since the proximal mapping
in the x-update of the inexact CP is solved inexactly, the existing analysis is not applicable. To solve this problem, we adopt
the error analysis technique developed in [5]. We first define the inexact proximal mapping

u
ε≈ proxφ(v) (25)

to be the mapping that satisfies

φ(u) + 1
2 ‖u− v‖22 ≤ ε+ min

ū

{
φ(ū) + 1

2 ‖ū− v‖22
}
. (26)

Therefore, the inexact CP is defined as




x(k+1) εk≈ proxσh
(
x(k) − σA′z̄(k)

)

z(k+1) ∈ proxτg∗
(
z(k) + τAx(k+1)

)

z̄(k+1) = z(k+1) +
(
z(k+1) − z(k)

) (27)

with στ ‖A‖22 < 1. One can verify that with z = −τd, σ = ρ−1t, and τ = ρ, the inexact CP in (27) is equivalent to the
inexact LALM in (4). Schmidt et al. showed that

u
ε≈ proxφ(v)⇔ v − u− f ∈ ∂εφ(u) (28)

with ‖f‖2 ≤
√

2ε, and for any s ∈ ∂εφ(u),

φ(w) ≥ φ(u) + s′ (w − u)− ε (29)
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for all w, where ∂εφ(u) denotes the ε-subdifferential of φ at u [5, Lemma 2]. When ε = 0, (28) and (29) reduce to the standard
optimality condition of a proximal mapping and the definition of subgradient, respectively. At the jth iteration, j = 0, . . . , k−1,
the updates generated by the inexact CP in (27) satisfy

{(
x(j) − σA′z̄(j)

)
− x(j+1) − f (j) ∈ ∂εj (σh)

(
x(j+1)

)
(
z(j) + τAx(j+1)

)
− z(j+1) ∈ ∂ (τg∗)

(
z(j+1)

)
.

(30)

In other words,
x(j) − x(j+1)

σ
−A′z̄(j) − f (j)

σ
∈ ∂εjh

(
x(j+1)

)
(31)

and
z(j) − z(j+1)

τ
+ Ax(j+1) ∈ ∂g∗

(
z(j+1)

)
, (32)

where
∥∥f (j)

∥∥
2
≤
√

2εj . From (31), we have

h(x) ≥ h
(
x(j+1)

)
+
〈
∂εjh

(
x(j+1)

)
,x− x(j+1)

〉
− εj

= h
(
x(j+1)

)
+
〈
x(j)−x(j+1)

σ ,x− x(j+1)
〉
−
〈
A′z̄(j),x− x(j+1)

〉
−
〈
f (j)

σ ,x− x(j+1)
〉
− εj

= h
(
x(j+1)

)
+ 1

2σ

( ∥∥x(j+1) − x
∥∥2

2
+
∥∥x(j+1) − x(j)

∥∥2

2
−
∥∥x(j) − x

∥∥2

2

)

+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
+
〈
−A′z(j+1),x− x(j+1)

〉
−
〈
f (j)

σ ,x− x(j+1)
〉
− εj

≥ h
(
x(j+1)

)
+ 1

2σ

( ∥∥x(j+1) − x
∥∥2

2
+
∥∥x(j+1) − x(j)

∥∥2

2
−
∥∥x(j) − x

∥∥2

2

)

+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
+
〈
−A′z(j+1),x− x(j+1)

〉
− 1

σ

∥∥f (j)
∥∥

2

∥∥x− x(j+1)
∥∥

2
− εj

≥ h
(
x(j+1)

)
+ 1

2σ

( ∥∥x(j+1) − x
∥∥2

2
+
∥∥x(j+1) − x(j)

∥∥2

2
−
∥∥x(j) − x

∥∥2

2

)

+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
+
〈
−A′z(j+1),x− x(j+1)

〉
−
√

2εj

σ

∥∥x− x(j+1)
∥∥

2
− εj (33)

for any x ∈ Domh. From (32), we have

g∗(z) ≥ g∗
(
z(j+1)

)
+
〈
∂g∗
(
z(j+1)

)
, z− z(j+1)

〉

= g∗
(
z(j+1)

)
+
〈
z(j)−z(j+1)

τ , z− z(j+1)
〉

+
〈
Ax(j+1), z− z(j+1)

〉

= g∗
(
z(j+1)

)
+ 1

2τ

( ∥∥z(j+1) − z
∥∥2

2
+
∥∥z(j+1) − z(j)

∥∥2

2
−
∥∥z(j) − z

∥∥2

2

)
−
〈
−A′

(
z− z(j+1)

)
,x(j+1)

〉
(34)

for any z ∈ Dom g∗. Summing (33) and (34), it follows:
∥∥x(j) − x

∥∥2

2

2σ
+

∥∥z(j) − z
∥∥2

2

2τ
≥
(

Ω
(
z(j+1),x

)
− Ω

(
z,x(j+1)

))

+

∥∥x(j+1) − x
∥∥2

2

2σ
+

∥∥z(j+1) − z
∥∥2

2

2τ
+

∥∥x(j+1) − x(j)
∥∥2

2

2σ
+

∥∥z(j+1) − z(j)
∥∥2

2

2τ

+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
−
√

2εj

σ

∥∥x− x(j+1)
∥∥

2
− εj . (35)

Furthermore,
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉

=
〈
−A′

(
z(j+1) − 2z(j) + z(j−1)

)
,x(j+1) − x

〉

=
〈
−A′

(
z(j+1) − z(j)

)
,x(j+1) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j+1) − x(j)

〉

≥
〈
−A′

(
z(j+1) − z(j)

)
,x(j+1) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j) − x

〉
− ‖A‖2

∥∥z(j) − z(j−1)
∥∥

2

∥∥x(j+1) − x(j)
∥∥

2

≥
〈
−A′

(
z(j+1) − z(j)

)
,x(j+1) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j) − x

〉

− ‖A‖2
(√σ/τ

2

∥∥z(j) − z(j−1)
∥∥2

2
+ 1

2
√
σ/τ

∥∥x(j+1) − x(j)
∥∥2

2

)
(36)

≥
〈
−A′

(
z(j+1) − z(j)

)
,x(j+1) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j) − x

〉

−√στ ‖A‖2

(∥∥z(j) − z(j−1)
∥∥2

2

2τ
+

∥∥x(j+1) − x(j)
∥∥2

2

2σ

)
, (37)
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where (36) is due to Young’s inequality. Plugging (37) into (35), it follows that for any (z,x),
∥∥x(j) − x

∥∥2

2

2σ
+

∥∥z(j) − z
∥∥2

2

2τ
≥
(

Ω
(
z(j+1),x

)
− Ω

(
z,x(j+1)

))
+

∥∥x(j+1) − x
∥∥2

2

2σ
+

∥∥z(j+1) − z
∥∥2

2

2τ

+
(
1−√στ ‖A‖2

)
∥∥x(j+1) − x(j)

∥∥2

2

2σ
+

∥∥z(j+1) − z(j)
∥∥2

2

2τ
−√στ ‖A‖2

∥∥z(j) − z(j−1)
∥∥2

2

2τ

+
〈
−A′

(
z(j+1) − z(j)

)
,x(j+1) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j) − x

〉
−
√

2εj

σ

∥∥x− x(j+1)
∥∥

2
− εj . (38)

Suppose z(−1) = z(0), i.e., z̄(0) = z(0). Summing up (38) from j = 0, . . . , k − 1 and using

〈
−A′

(
z(k) − z(k−1)

)
,x(k) − x

〉
≤
∥∥z(k) − z(k−1)

∥∥2

2

2τ
+ στ ‖A‖22

∥∥x(k) − x
∥∥2

2

2σ
(39)

as before, we have
k∑

j=1

(
Ω
(
z(j),x

)
− Ω

(
z,x(j)

))
+
(

1− στ ‖A‖22
) ∥∥x(k) − x

∥∥2

2

2σ
+

∥∥z(k) − z
∥∥2

2

2τ

+
(
1−√στ ‖A‖2

) k∑

j=1

∥∥x(j) − x(j−1)
∥∥2

2

2σ
+
(
1−√στ ‖A‖2

) k−1∑

j=1

∥∥z(j) − z(j−1)
∥∥2

2

2τ

≤
∥∥x(0) − x

∥∥2

2

2σ
+

∥∥z(0) − z
∥∥2

2

2τ
+

k∑

j=1

εj−1 +

k∑

j=1

2
√

εj−1

σ

∥∥x(j) − x
∥∥

2√
2σ

. (40)

Since στ ‖A‖22 < 1, we have 1 − στ ‖A‖22 > 0 and 1 −√στ ‖A‖2 > 0. If we choose (z,x) = (ẑ, x̂), the first term on the
left-hand side of (40) is the sum of k non-negative primal-dual gaps, and all terms in (40) are greater than or equal to zero.
Let D , 1− στ ‖A‖22 > 0. We have three inequalities:

D ·
∥∥x(k) − x̂

∥∥2

2

2σ
≤
∥∥x(0) − x̂

∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1 +
k∑

j=1

2
√

εj−1

σ

∥∥x(j) − x̂
∥∥

2√
2σ

, (41)

D ·
(∥∥x(k) − x̂

∥∥2

2

2σ
+

∥∥z(k) − ẑ
∥∥2

2

2τ

)
≤
∥∥x(0) − x̂

∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1 +
k∑

j=1

2
√

εj−1

σ

∥∥x(j) − x̂
∥∥

2√
2σ

, (42)

and
k∑

j=1

(
Ω
(
z(j), x̂

)
− Ω

(
ẑ,x(j)

))
≤
∥∥x(0) − x̂

∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1 +
k∑

j=1

2
√

εj−1

σ

∥∥x(j) − x̂
∥∥

2√
2σ

. (43)

All these inequality has a common right-hand-side. To continue the proof, we have to bound
∥∥x(j) − x̂

∥∥
2
/
√

2σ first. Dividing
D from both sides of (41), we have

(∥∥x(k) − x̂
∥∥

2√
2σ

)2

≤


 1

D

∥∥x(0) − x̂
∥∥2

2

2σ
+

1

D

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1

D


+

k∑

j=1

2

(
1

D

√
εj−1

σ

) ∥∥x(j) − x̂
∥∥

2√
2σ

. (44)

Let

Sk , 1

D

∥∥x(0) − x̂
∥∥2

2

2σ
+

1

D

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1

D
, (45)

λj , 2

(
1

D

√
εj−1

σ

)
, (46)

and

uj ,
∥∥x(j) − x̂

∥∥
2√

2σ
. (47)

We have u2
k ≤ Sk +

∑k
j=1 λjuj from (44) with {Sk}∞k=0 an increasing sequence, S0 ≥ u2

0 (note that 0 < D < 1 because
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0 < στ ‖A‖22 < 1), and λj ≥ 0 for all j. According to [5, Lemma 1], it follows that
∥∥x(k) − x̂

∥∥
2√

2σ
≤ Ãk +

(
1

D

∥∥x(0) − x̂
∥∥2

2

2σ
+

1

D

∥∥z(0) − ẑ
∥∥2

2

2τ
+ B̃k + Ã2

k

)1/2

, (48)

where

Ãk ,
k∑

j=1

1

D

√
εj−1

σ , (49)

and

B̃k ,
k∑

j=1

εj−1

D
. (50)

Since Ãj and B̃j are increasing sequences of j, for j ≤ k, we have
∥∥x(j) − x̂

∥∥
2√

2σ
≤ Ãj +

(
1

D

∥∥x(0) − x̂
∥∥2

2

2σ
+

1

D

∥∥z(0) − ẑ
∥∥2

2

2τ
+ B̃j + Ã2

j

)1/2

≤ Ãk +

(
1

D

∥∥x(0) − x̂
∥∥2

2

2σ
+

1

D

∥∥z(0) − ẑ
∥∥2

2

2τ
+ B̃k + Ã2

k

)1/2

≤ Ãk +

(
1√
D

∥∥x(0) − x̂
∥∥

2√
2σ

+
1√
D

∥∥z(0) − ẑ
∥∥

2√
2τ

+

√
B̃k + Ãk

)
. (51)

Now, we can bound the right-hand-side of (41), (42), and (43) as
∥∥x(0) − x̂

∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1 +

k∑

j=1

2
√

εj−1

σ

∥∥x(j) − x̂
∥∥

2√
2σ

≤
∥∥x(0) − x̂

∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1 +

k∑

j=1

2
√

εj−1

σ

(
2Ãk +

1√
D

∥∥x(0) − x̂
∥∥

2√
2σ

+
1√
D

∥∥z(0) − ẑ
∥∥

2√
2τ

+

√
B̃k

)

=

∥∥x(0) − x̂
∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+ B̃kD + 2ÃkD

(
2Ãk +

1√
D

∥∥x(0) − x̂
∥∥

2√
2σ

+
1√
D

∥∥z(0) − ẑ
∥∥

2√
2τ

+

√
B̃k

)

≤
(∥∥x(0) − x̂

∥∥
2√

2σ
+

∥∥z(0) − ẑ
∥∥

2√
2τ

+ 2Ãk
√
D +

√
B̃kD

)2

=

(∥∥x(0) − x̂
∥∥

2√
2σ

+

∥∥z(0) − ẑ
∥∥

2√
2τ

+ 2Ak +
√
Bk

)2

(52)

≤
(∥∥x(0) − x̂

∥∥
2√

2σ
+

∥∥z(0) − ẑ
∥∥

2√
2τ

+ 2A∞ +
√
B∞

)2

(53)

if
{√

εk
}∞
k=0

is absolutely summable (and therefore, {εk}∞k=0 is also absolutely summable), where

Ak , Ãk
√
D =

k∑

j=1

√
εj−1

(1−στ‖A‖22)σ
, (54)

and

Bk , B̃kD =
k∑

j=1

εj−1 . (55)

Hence, from (42), we have
∥∥x(k) − x̂

∥∥2

2

2σ
+

∥∥z(k) − ẑ
∥∥2

2

2τ
≤ 1

D

(∥∥x(0) − x̂
∥∥

2√
2σ

+

∥∥z(0) − ẑ
∥∥

2√
2τ

+ 2A∞ +
√
B∞

)2

<∞ . (56)
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Fig. 1: XCAT phantom: cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial
FBP image x(0) (left), the reference reconstruction x? (center), and the reconstructed image using the proposed algorithm
(OS-LALM-24-c-1) at the 30th iteration x(30) (right).

This implies that the sequence of updates
{(

z(k),x(k)
)}∞
k=0

generated by the inexact CP in (27) is a bounded sequence. Let

C ,
∥∥x(0) − x̂

∥∥
2√

2σ
+

∥∥z(0) − ẑ
∥∥

2√
2τ

. (57)

From (43) and the convexity of h and g∗, we have

Ω
(
zk, x̂

)
− Ω

(
ẑ,xk

)
≤ 1

k

k∑

j=1

(
Ω
(
z(j), x̂

)
− Ω

(
ẑ,x(j)

))

≤
(
C + 2Ak +

√
Bk
)2

k
(58)

≤
(
C + 2A∞ +

√
B∞

)2

k
, (59)

where zk , 1
k

∑k
j=1 z

(j), and xk , 1
k

∑k
j=1 x

(j). That is, the primal-dual gap of (zk,xk) converges to zero with rate O(1/k).
Following the procedure in [2, Section 3.1], we can further show that the sequence of updates

{(
z(k),x(k)

)}∞
k=0

generated by
the inexact CP in (27) converges to a saddle-point of (9) if the dimension of x and z is finite.

II. ADDITIONAL EXPERIMENTAL RESULTS

A. XCAT phantom

We simulated an axial CT scan by using a 1024 × 1024 × 154 XCAT phantom [6] for 500 mm transaxial field-of-view
(FOV), where ∆x = ∆y = 0.4883 mm and ∆z = 0.6250 mm. An 888 × 64 × 984 noisy (with Poisson noise) sinogram is
numerically generated with GE LightSpeed fan-beam geometry [7] corresponding to a monoenergetic source at 70 keV with
105 incident photons per ray and no background event. When reconstructing images, we used a 512× 512× 90 image volume
with a coarser grid, where ∆x = ∆y = 0.9766 mm and ∆z = 0.6250 mm, and an edge-preserving regularizer defined in [1]
with a scaled Fair potential function φ(x) , δ2 (|t| /δ − log(1 + |t| /δ)) for δ = 10 HU, a directional regularization parameter
βi that is inversely proportional to the squared distance to the nearest neighbor in each direction, and a voxel-dependent weight
κn ,

√
[A′W1]n/[A′1]n [8], where the jth diagonal entry of the diagonal weighting matrix W is defined as wj , exp(−yj).

Figure 1 shows the cropped images from the central transaxial plane of the initial FBP image (with Hanning filtering), the
reference reconstruction, and the reconstructed image using the proposed algorithm (OS-LALM-24-c-1) at the 30th iteration.
Figure 2 and Figure 3 show the reconstructed images and the difference images using the OS+momentum algorithm and the
proposed algorithm with different numbers of subsets (M = 12, 24, and 36), respectively. As the number of subsets increases,
the OS+momentum algorithm becomes less stable and generates noise-like artifacts inside the object, degrading the image
quality. In comparison, the proposed algorithm remains stable even with 36 subsets and produces accurate reconstructions.
Finally, Figure 4 shows the convergence rate curves of different OS-based algorithms with different numbers of subsets, and
we can see that with similar fast convergence rate in first few iterations, the proposed algorithm shows better stability even
when using many subsets for acceleration.

B. Shoulder scan with Barzilai-Borwein acceleration

In this experiment, we demonstrated accelerating the proposed algorithm using the Barzilai-Borwein (spectral) method [9]
that mimics the Hessian A′WA by Hk , αkDL. The scaling factor αk is solved by fitting the secant equation:

yk ≈ Hksk (60)
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Fig. 2: XCAT phantom: cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the reconstructed
image x(30) using the OS+momentum algorithm and the proposed algorithm with different numbers of subsets (M = 12, 24,
and 36).
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Fig. 3: XCAT phantom: cropped difference images (displayed from −30 to 30 HU) from the central transaxial plane of
x(30) − x? using the OS+momentum algorithm and the proposed algorithm with different numbers of subsets (M = 12, 24,
and 36).

in the weighted least-squares sense, i.e.,
αk = arg min

α≤1

1
2 ‖yk − αDLsk‖2P (61)

for some positive definite P, where
yk , ∇L

(
x(k)

)
−∇L

(
x(k−1)

)
(62)

and
sk , x(k) − x(k−1) . (63)

We choose P to be D−1
L since D−1

L is proportional to the step sizes of the voxels. By choose P = D−1
L , we are fitting the secant

equation with more weight for voxels with larger step sizes. Note that applying the Barzilai-Borwein acceleration changes
Hk every iteration, and the majorization condition does not necessarily hold. Hence, the convergence theorems developed in
Section I are not applicable. However, ordered-subsets (OS) based algorithms typically lack convergence proofs anyway, and
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Fig. 4: XCAT phantom: RMS differences between the reconstructed image x(k) and the reference reconstruction x? as a
function of iteration using OS-based algorithms with 12, 24, and 36 subsets. The dotted line shows the RMS differences using
the standard OS algorithm with one subset.
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Fig. 5: Shoulder scan: RMS differences between the reconstructed image x(k) and the reference reconstruction x? as a function
of iteration using the proposed algorithm without and with the Barzilai-Borwein acceleration. The dotted line shows the RMS
differences using the standard OS algorithm with one subset.

we find that this acceleration works well in practice. Figure 5 shows the RMS differences between the reconstructed image
x(k) and the reference reconstruction x? of the shoulder scan dataset as a function of iteration using the proposed algorithm
without and with the Barzilai-Borwein acceleration. As can be seen in Figure 5, the proposed algorithm with both M = 20
and M = 40 shows roughly 2-times acceleration in early iterations using the Barzilai-Borwein acceleration.

C. Truncated abdomen scan

In this experiment, we reconstructed a 600 × 600 × 239 image from an abdomen region helical CT scan with transaxial
truncation, where the sinogram has size 888 × 64 × 3516 and pitch 1.0. The maximum number of subsets suggested in [1]
is about 20. Figure 6 shows the cropped images from the central transaxial plane of the initial FBP image, the reference
reconstruction, and the reconstructed image using the proposed algorithm (OS-LALM-20-c-1) at the 30th iteration. This
experiment demonstrates how different OS-based algorithms behave when the number of subsets exceeds the suggested
maximum number of subsets. Figure 7 shows the difference images for different OS-based algorithms with 10, 20, and
40 subsets. As can be seen in Figure 7, the proposed algorithm works best for M = 20; when M is larger (M = 40),
ripples and light OS artifacts appear. However, it is still much better than the OS+momentum algorithm [10]. In fact, the OS
artifacts in the reconstructed image using the OS+momentum algorithm with 40 subsets are visible with the naked eye in the
display window from 800 to 1200 HU. The convergence rate curves in Figure 8 support our observation. In sum, the proposed
algorithm exhibits fast convergence rate and excellent gradient error tolerance even in the case with truncation.
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Fig. 6: Truncated abdomen scan: cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the
initial FBP image x(0) (left), the reference reconstruction x? (center), and the reconstructed image using the proposed algorithm
(OS-LALM-20-c-1) at the 30th iteration x(30) (right).
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Fig. 7: Truncated abdomen scan: cropped difference images (displayed from −30 to 30 HU) from the central transaxial plane
of x(30) − x? using OS-based algorithms.
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Fig. 8: Truncated abdomen scan: RMS differences between the reconstructed image x(k) and the reference reconstruction x?

as a function of iteration using OS-based algorithms with 10, 20, and 40 subsets. The dotted line shows the RMS differences
using the standard OS algorithm with one subset.

APPENDIX
OUTLINE OF THE PROPOSED OS-LALM ALGORITHM

We outlined the proposed OS-LALM algorithm for solving PWLS X-ray CT image reconstruction problems:

x̂ ∈ arg min
x∈Ω
{L(x) + R(x)} , (64)

where L(x) , 1
2 ‖y −Ax‖2W is the weighted quadratic data-fitting term, and R is an edge-preserving regularization term. Let

DL and DR denote the diagonal majorizing matrices of L and R, respectively, and [·]C denote the projection operator onto a
convex set C. The proposed OS-LALM algorithm (with downward continuation) is described in Algorithm 1. The inner loop
is the fast iterative shrinkage/thresholding algorithm (FISTA) [11] for solving the constrained weighted denoising problem:

ẑ ∈ arg min
z∈Ω

{
1
2

∥∥z−
(
x− (ρDL)

−1
s+
)∥∥2

ρDL
+ R(z)

}
. (65)

When n = 1, i.e., with a single gradient descent for (65), Algorithm 1 can be further simplified as Algorithm 2 that takes
1/M forward/back-projection and one regularizer gradient evaluation per iteration (looping over subsets). The computational
complexity of Algorithm 2 is almost the same as standard OS algorithm [12] with negligible overhead.

Algorithm 1: The proposed algorithm (OS-LALM-M -c-n) for solving PWLS X-ray CT image reconstruction problems.
Input: M ≥ 1, n ≥ 1, and initilize x by an FBP image.

initialize ρ = 1, m = 1, ζ = g = M∇L1(x)
for i = 1, 2, . . . do

s+ = ρζ + (1− ρ)g
initialize z = v = x, τ = 1
for j = 1, 2, . . . , n do

σ+ = ρDL

(
v −

(
x−

(
ρDL

)−1
s+
))

z+ =
[
v − (ρDL + DR)

−1
(σ+ +∇R(v))

]
Ω

τ+ =
(
1 +
√

1 + 4τ2
)
/ 2

v+ = z+ + τ−1
τ+ (z+ − z)

end
x+ = z+

ζ+ = M∇Lm+=m+1(x+)
g+ = ρ

ρ+1ζ
+ + 1

ρ+1g

ρ+ = π
i+1

√
1−

(
π

2i+2

)
2

end
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Algorithm 2: The proposed algorithm (OS-LALM-M -c-1) for solving PWLS X-ray CT image reconstruction problems.
Input: M ≥ 1 and initilize x by an FBP image.

initialize ρ = 1, m = 1, ζ = g = M∇L1(x)
for i = 1, 2, . . . do

s+ = ρζ + (1− ρ)g
x+ =

[
x− (ρDL + DR)

−1
(s+ +∇R(x))

]
Ω

ζ+ = M∇Lm+=m+1(x+)
g+ = ρ

ρ+1ζ
+ + 1

ρ+1g

ρ+ = π
i+1

√
1−

(
π

2i+2

)
2

end
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