
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015 1273

Edge-Preserving Image Denoising via Group
Coordinate Descent on the GPU

Madison Gray McGaffin, Student Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

Abstract— Image denoising is a fundamental operation in
image processing, and its applications range from the direct
(photographic enhancement) to the technical (as a subproblem
in image reconstruction algorithms). In many applications, the
number of pixels has continued to grow, while the serial execution
speed of computational hardware has begun to stall. New
image processing algorithms must exploit the power offered
by massively parallel architectures like graphics processing
units (GPUs). This paper describes a family of image denoising
algorithms well-suited to the GPU. The algorithms iteratively
perform a set of independent, parallel 1D pixel-update subprob-
lems. To match GPU memory limitations, they perform these
pixel updates in-place and only store the noisy data, denoised
image, and problem parameters. The algorithms can handle a
wide range of edge-preserving roughness penalties, including
differentiable convex penalties and anisotropic total variation.
Both algorithms use the majorize–minimize framework to solve
the 1D pixel update subproblem. Results from a large 2D image
denoising problem and a 3D medical imaging denoising problem
demonstrate that the proposed algorithms converge rapidly in
terms of both iteration and run-time.

Index Terms— Image denoising, parallel algorithms, iterative
algorithms, optimization.

I. INTRODUCTION

IMAGE acquisition systems produce measurements
corrupted by noise. Removing that noise is called image

denoising. Despite decades of research and remarkable
successes, image denoising remains a vibrant field [6]. Over
that time, image sizes have increased, the computational
machinery available has grown in power and undergone
significant architectural changes, and new algorithms have
been developed for recovering useful information from
noise-corrupted data.

Meanwhile, developments in image reconstruction have
produced algorithms that rely on efficient denoising rou-
tines [17], [22]. The measurements in this setting are corrupted
by noise and distorted by some physical process. Through
variable splitting and alternating minimization techniques,
the task of forming an image is decomposed into a series

Manuscript received May 21, 2014; revised October 31, 2014; accepted
January 21, 2015. Date of publication February 6, 2015; date of current version
February 19, 2015. This work was supported in part by the National Institutes
of Health through the Office of the Director, New York, NY, USA, under
Grant R01 HL 098686 and NIH Grant U01 EB018753, and in part by Intel
Corporation, Santa Clara, CA, USA. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Xin Li.

The authors are with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: mcgaffin@umich.edu; fessler@umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2015.2400813

of smaller iterated subproblems. One successful family of
algorithms separates “inverting” the physical system’s behav-
ior from denoising the image. Majorize-minimize algorithms
like [1], [13] also involve denoising-like subproblems. These
problems can be very high-dimensional: a routine chest X-ray
computed tomography (CT) scan has the equivalent number
of voxels as a 40 megapixel image and the reconstruction
must account for 3D correlations between voxels.

Growing problem sizes pose computational challenges for
algorithm designers. Transistor densities continue to increase
roughly with Moore’s Law, but advances in modern hardware
increasingly appear mostly in greater parallel-computing capa-
bilities rather than single-threaded performance. Algorithm
designers can no longer rely on developments in processor
clock speed to ensure serial algorithms keep pace with increas-
ing problem size. To provide acceptable performance for
growing problem sizes, new algorithms should exploit highly
parallel hardware architectures.

A poster-child for highly parallel hardware is the graphics
processing unit (GPU). GPUs have always been special-
ized devices for performing many computations in parallel,
but using GPU hardware for non-graphics tasks has in the
past involved laboriously translating algorithms into “graphics
terminology.” Fortunately, in the past decade, programming
platforms have developed around modern GPUs that enable
algorithm designers to harness these massively parallel archi-
tectures using familiar C-like languages.

Despite these advances, designing algorithms for the
GPU involves different considerations than designing for a
conventional CPU. Algorithms for the CPU are often charac-
terized by the number of floating point operations (FLOPs)
they perform or the number of times they compute a cost
function gradient. To accelerate convergence, algorithms may
store extra information (e.g., previous update directions
or auxiliary/dual variables) or perform “global” operations
(e.g., line searches or inner products). These designs can
accelerate an algorithm’s per-iteration convergence or reduce
the number of FLOPs required to achieve a desired level of
accuracy, but their memory requirements do not map well onto
the GPU.

An ideal GPU algorithm is composed of a series of entirely
independent and parallel tasks performing the same operations
on different data. The number of FLOPs can be less important
than the parallelizability of those operations. Operations that
are classically considered fast, like inner products and FFTs,
can be relatively slow on the GPU due to memory accesses.
Memory is also a far more scarce resource on the GPU.

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1274 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

This makes successful, but memory-hungry, frameworks like
the primal-dual algorithm [3] or variable splitting less suitable
on the GPU. Fully exploiting GPU parallelism requires
algorithms with local memory accesses and limited memory
requirements.

This paper presents a pair of image denoising algorithms
for the GPU. To exploit GPU parallelism, the algorithms use
group coordinate descent (GCD) to decompose the image
denoising problem into an iterated sequence of independent
1D pixel-update subproblems. They avoid any additional
memory requirements and are highly parallelizable. Both
algorithms solve these inner pixel-update subproblems using
the well-known majorize-minimize framework [10], [11] and
can handle a range of edge-preserving regularizers. Because of
these properties, the proposed algorithms can efficiently solve
large image denoising problems.

Section I-A introduces the image denoising framework
and poses the two classes of problems our algorithms
solve. Section II describes the shared GCD structure of our
algorithms, and Section III describes how two specific
algorithms solve the inner 1D update problems. The
experimental results from large-image denoising and X-ray
CT reconstruction in Section IV illustrate the proposed
algorithms’ performance, and Section V contains some
concluding remarks.

A. Optimization-Based Image Denoising

Let y ∈ R
N be noisy pixel measurements collected by an

imaging system. In this paper, bold type indicates a vector
quantity, and variables not in bold are scalars; the j th element
of y is written y j . Let w j be some confidence we have in
the j th measurement, e.g., w j = 1

σ 2
j
, the inverse of the

variance of y j . Let x ∈ χ ⊆ R
N be a candidate denoised

image, and let R denote a regularizer on x. The penalized
weighted least squares (PWLS) estimate of the image given
the noisy measurements y is the minimizer of the cost
function J (x):

J (x) = 1

2
||x − y||2W + R(x), (1)

x̂ = argmin
x∈χ

J (x), (2)

where W = diag j

{

w j
}

. The domain χ = χ1 ×χ2 ×· · ·×χN ,
with χ j convex, may codify a range of admissible pixel levels
(e.g., 0-255 for image denoising) or nonnegative values for
e.g., X-ray CT [26]. Similar to a prior distribution on x,
R is chosen to encourage expectations we have for the image.
A simple and popular choice is the first-order edge-preserving
regularizer:

R(x) = β

N
∑

j=1

∑

l∈N j

κ j lψ
(

x j − xl
)

. (3)

This regularizer imposes a higher penalty on x as its
“roughness” (measured as the differences between nearby
pixels) increases. The global parameter β and local parameters
κ j l ≥ 0 adjust the strength of the regularizer relative to
the data-fit term [7]. The set N j contains the neighbors

of the j th pixel, as selected by the algorithm designer.
The neighborhoods do not contain their centers: i.e., j �∈ N j .
In 2D image denoising, using the four or eight near-
est neighbors of the j th pixel are common choices; in
3D common choices are the six cardinal neighbors or the
twenty-six adjacent voxels. This paper focuses on these
first-order neighborhoods in 2D and 3D, but the presented
algorithms can be extended to larger neighborhoods and higher
dimensions.

The symmetric and convex potential function ψ adjusts
qualitatively how adjacent pixel differences are penalized.
Examples of ψ are:

• the quadratic function, ψquad(t) = 1
2 t2;

• smooth nonquadratic regularizers, e.g., the Fair potential
ψFair(t; δ) = δ2(|t/δ| − log (1 + |t/δ|)) [15]; and

• the absolute value function, ψabs(t) = |t|.
Potential functions that are relatively small around the origin
(e.g., ψquad and ψFair) preserve small variations between
neighboring pixels. The absolute value function is
comparatively large around the origin, and can lead to
denoised images with “cartoony” uniform regions [19]. On
the other hand, potential functions that are relatively small
away from the origin (e.g., ψabs and ψFair) penalize large
differences (i.e., edges) less than ψquad. Choosing one of these
potential functions makes R an edge-preserving regularizer,
and avoids over-smoothing edges in the denoised image x̂,
but it also makes the denoising problem (2) more difficult to
solve.

Using ψabs in (3) yields the anisotropic TV regularizer [23].

II. GROUP COORDINATE DESCENT

This section describes the “outer loop” of algorithms
designed to solve (2) rapidly on the GPU. We use a
superscript (n), e.g., x(n), to indicate the state of a variable
in the nth iteration of the algorithm.

Consider optimizing J (x) in (2) with respect to the j th pixel
while holding the other pixels constant at x = x(n):

argmin
x j : x∈χ

w j

2

(

x j − y j
)2 + 2β

∑

l∈N j

κ j lψ
(

x j − x (n)l

)

. (4)

The only pixels involved in this optimization are the j th pixel
and its neighbors, N j . Consequently, if the pixels in N j are
held constant, we can optimize over the j th pixel without any
regard for the pixels outside N j .

Looping j through the pixels of x, j = 1, . . . , N , and
performing the 1D update (4) is called the coordinate descent
algorithm [20]. This algorithm is convergent and monotone
in cost function. However, because each optimization is per-
formed serially, coordinate descent is ill-suited to modern
highly parallel hardware like the GPU.

GCD algorithms instead optimize over a group of elements
of x at a time while holding the others constant. The key
to using GCD on a GPU efficiently is choosing appropri-
ate groups that allow massive parallelism. Let S1, . . . ,SM

be a partition of the pixel coordinates of x; we write
x = [

xS1, . . . , xSM

]

. A GCD algorithm that uses these groups

MCGAFFIN AND FESSLER: EDGE-PRESERVING IMAGE DENOISING VIA GCD ON THE GPU 1275

Fig. 1. Illustration of the groups in (6) for a 2D imaging problem with
N j containing the four or eight pixels adjacent to the j th pixel. Optimizing
over the pixels in S1 (shaded) involves independent 1D update problems for
each pixel in the group.

to optimize (2) will loop over m = 1, . . .M and solve

x(n+1)
Sm

= argmin
xSm :x∈χ

J
(

x(n+1)
S1

, . . . x(n+1)
Sm−1

, xSm , x(n)Sm+1
, . . . , x(n)SM

)

.

(5)

The mth group update subproblem (5) is a |Sm |-dimensional
problem in general. However, we can design the groups
such that each of these subproblems decomposes into |Sm |
completely independent 1D subproblems. If

∀m, ∀ j ∈ Sm, N j ∩ Sm = ∅, (6)

then in each of the group update subproblems (5), the neigh-
bors of all the pixels being optimized are held constant.
By the Markov-like property observed above, this breaks the
optimization over the pixels in Sm into |Sm | independent
1D subproblems.

Figure 1 illustrates a set of groups that satisfies the “contains
no neighbors” (6) requirement for a 2D problem and N j

containing the four or eight pixels adjacent to j . In 3D, both
six-neighbor and twenty-six-neighbor N j use eight groups
arranged in a 2 × 2 × 2 “checkerboard” pattern.

To summarize, we propose GCD algorithms for (2) that loop
over the groups m = 1, . . . ,M and update the pixels in Sm :

x(n+1)
Sm

= argmin
xSm : x∈χ

∑

j∈Sm

�
(n)
j

(

x j
)

, where (7)

�
(n)
j

(

x j
) = w j

2

(

x j − y j
)2 + 2β

∑

l∈N j

κ j lψ
(

x j − x (n)l

)

.

(8)

Each of the �
(n)
j are independent 1D functions and are

minimized in parallel. Because the pixel updates are performed
in-place, this algorithm requires no additional memory beyond
storing x, y, W and the regularizer weights. In many cases,
W and the regularizer weights are uniform, and the algorithm
must store only two image-sized vectors! These low memory
requirements make the GCD algorithm remarkably well-suited
to the GPU. This GCD algorithm is guaranteed to decrease the
cost function J monotonically. Convergence to a minimizer
of J is ensured under mild regularity conditions [11], [12].
Figure 2 summarizes the proposed algorithm structure.

Fig. 2. The GCD algorithm structure. The Parfor block contains |Sk |
minimizations that are independent and implemented in parallel. Section III
details these optimizations.

III. 1D SUBPROBLEMS

The complexity of solving each of the 1D subproblems
in (7) depends on the choice of potential function ψ . In this
paper, we consider two cases:

• when ψ is convex and differentiable (Section III-A); and
• when ψ is the absolute value function, thus convex but

not differentiable (Section III-B).

One could also adapt these methods to non-convex poten-
tial functions ψ , albeit with weaker convergence guarantees.
In all cases, we approximately solve the 1D subproblem (7)
using the well-known majorize-minimize (MM) approach, also
called optimization transfer and functional substitution [5], [8].
In iteration n, the MM framework generates a surrogate
function 	

(n)
j that may depend on x(n) and satisfies the

following “equality” and “lies-above” properties:

	
(n)
j

(

x (n)j

)

= �
(n)
j

(

x (n)j

)

(9)

	
(n)
j

(

x j
) ≥ �

(n)
j

(

x j
) ∀x j ∈ χ j . (10)

Majorize-minimize methods update x j by minimizing 	(n)j ,

x (n+1)
j = argmin

x j∈χ j

	
(n)
j

(

x j
)

. (11)

Because χ j is convex, we find the unconstrained solution
to (11) then project it onto χ j . This update is guaranteed
to decrease both the 1D cost function �(n)j

(

x j
)

and the global
cost function J . Even though we are minimizing the surro-
gate instead of the single-pixel cost function �

(n)
j

(

x j
)

, the
GCD-MM algorithm is convergent [11].

To implement the MM iteration (11), we need to efficiently
construct and minimize the surrogate 	

(n)
j . The 1D cost

function �(n)j is the sum of a quadratic term and
∣

∣N j
∣

∣ often

nonquadratically penalized differences (the ψ
(

x j − x (n)l

)

terms). Figure 3 illustrates an example �(n)j using only three
neighbors and the absolute value potential function. The next
two subsections describe how we construct a surrogate φ(n)j l

for each of the nonquadratic terms in �
(n)
j . Replacing each

ψ
(

x j − x (n)l

)

in (8) with its surrogate φ(n)j l

(

x j
)

gives us the

following majorizer for �(n)j in (11):

	
(n)
j

(

x j
) = w j

2

(

x j − y j
)2 + 2β

∑

l∈N j

κ j lφ
(n)
j l

(

x j
)

. (12)

1276 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

Fig. 3. An example of the pixel-update cost function �
(n)
j with three

neighbors and the absolute value potential function. The majorizer 	(n)j
described in Section III-B1 is drawn at two points: the suboptimal point
x(n)j = −1.0 and the optimum x(n)j = 0.1. In both cases, � = [−3, 3].

Constructing and minimizing (12) requires only a few registers
and a small number of visits to each pixel in N j . This keeps
the number of memory accesses low and the acccess pattern
regular, which is necessary for good GPU performance.

A. Convex and Differentiable Potential Function

First we consider the simpler case of a convex and
differentiable cost function. Define the Huber curvature ω(n)j l as

ω
(n)
j l =

ψ ′
(

x (n)j − x (n)l

)

x (n)j − x (n)l

. (13)

If ω(n)j l is bounded and nonincreasing as
∣

∣

∣x
(n)
j − x (n)l

∣

∣

∣ → ∞,

then the following quadratic surrogate majorizes ψ
(

x j − x (n)j l

)

at x (n)j and has optimal (i.e., minimal) curvature [9, p. 185]:

φ
(n)
j l

(

x j
) = ψ

(

x (n)j

)

+
(

x j − x (n)l

)

ψ ′(x (n)j − x (n)l

)

+ ω
(n)
j l

2

(

x j − x (n)l

)2
. (14)

Many potential functions have bounded and monotone non-
increasing Huber curvatures, including the Fair potential [15]
and the q-Generalized Gaussian potential function sometimes
used in X-ray CT reconstruction [26]. Because the Huber
curvature is optimally small, the closed-form MM update,

x (n+1)
j

= x (n)j −
w j

(

x (n)j − y
)

+ 2β
∑

l∈N j
κ j lψ

′
(

x (n)j − x (n)l

)

w j + 2β
∑

l∈N j
κ j lω

(n)
j l

,

(15)

takes the largest step possible for a quadratic majorizer of
the form (12). To implement (15) efficiently, we use (13) to

replace the ψ ′ terms with the product of ω(n)j l and x (n)j − x (n)l .
The resulting algorithm is implemented with only one potential
function derivative per neighboring pixel.

B. The Absolute Value Potential Function

The quadratic majorizer in (14) applies to a class of
differentiable potential functions. TV uses the absolute value
potential function, and ψabs is not differentiable at the origin.
In the previous section’s terminology, the curvature ω

(n)
j l

“explodes” if x (n)j ≈ x (n)l . TV denoising encourages neighbor-
ing pixels to be identical to one another so this is a significant
concern. Even if x (n)j �= x (n)l in practice [21], the exploding
surrogate curvature may cause numerical problems.

A way to avoid this problem is to modify the curva-
tures to prevent the ω

(n)
j l from exploding. One approach

is to replace ψabs with the hyperbola potential function,
ψ(t) = √

ε + t2 − √
ε, with ε > 0 small, or similar

“corner-rounded” absolute-value-like function. While this
makes the techniques in the previous section directly applica-
ble, it changes the global cost function J , which may be
suboptimal.

Another corner rounding approach is to “cap” the curvatures
at ε−1 for small ε > 0:

ω
(n)
j l,ε = 1

max
{

ε,
∣

∣

∣x
(n)
j − x (n)l

∣

∣

∣

} . (16)

Unfortunately, the quadratic function with curvature ω(n)j l,ε does
not satisfy the “lies above” surrogate requirement (10) when
∣

∣

∣x
(n)
j − x (n)l

∣

∣

∣ < ε. Because 	(n)j would not then be a “proper”

surrogate for �(n)j , a GCD algorithm based on (16) may not
monotonically decrease the cost function J . Empirically, we
found that using ω(n)j l,ε appears to cause x(n) to enter a subop-
timal limit cycle around the optimum. Thus we developed the
following duality approach.

1) Duality Approach: One way to handle the absolute value
function is to use its dual formulation [3], [4], [16], [27].
We write the absolute value function implicitly in terms of
a maximization over a dual variable γ (n)j l :

∣

∣

∣x j − x (n)l

∣

∣

∣ = max
γ
(n)
jl ∈[−1,1]

γ
(n)
j l

(

x j − x (n)l

)

. (17)

Thus, by choosing any closed interval �(n) ⊇ [−1, 1], the
following is a surrogate for

∣

∣

∣x j − x (n)l

∣

∣

∣ that satisfies both the
“equality” (9) and “lies above” (10) majorizer properties:

φ
(n)
j l,�(n)

(

x j
) = max

γ
(n)
jl ∈�(n)

γ
(n)
j l

(

x j − x (n)l

)

κ j l

− δ
(n)
j l

2

(

(

γ
(n)
j l

)2 − 1

)

, (18)

where δ
(n)
j l =

∣

∣

∣x (n)j − x (n)l

∣

∣

∣κ j l . When �(n) = [−1, 1],
φ
(n)
j l,�(n)

= ψ
(n)
j l . Selecting �(n) larger than [−1, 1] increases

the domain of maximization in (18) and loosens the majoriza-
tion, and satisfies the “equality” (9) and “lies above” (10)
majorization conditions. Figure 4 illustrates φ(n)

j l,�(n)
for several

choices of �(n).
Let D = ∣

∣N j
∣

∣ be the number of neighbors of the j th pixel.

Denote the vector of dual variables γ j =
[

γ
(n)
j1 , . . . , γ

(n)
j D

]

MCGAFFIN AND FESSLER: EDGE-PRESERVING IMAGE DENOISING VIA GCD ON THE GPU 1277

Fig. 4. The absolute value potential function and the majorizer φ(n)�
(

x j
)

described in Section III-B1 with x(n)j = −0.5. Enlarging the domain �
“loosens” the majorizer.

and their domain �(n) = �(n) × · · · × �(n). We plug φ(n)
j l,�(n)

into (12) to construct the surrogate function 	(n)j :

	
(n)
j

(

x j
) = argmax

γ j ∈�(n)
L(n)j

(

x j , γ j

)

, where (19)

L(n)j

(

x j , γ j

) = w j

2

(

x j − y j
)2 + 2β

∑

l∈N j

κ j lγ
(n)
j l

(

x j − x (n)l

)

− δ
(n)
j l

2

(

(

γ
(n)
j l

)2 − 1

)

(20)

Figure 3 illustrates �(n)j and 	
(n)
j for two values of x (n)j .

Note that, unlike the “corner-rounding” approximations, 	(n)j

faithfully preserves the nondifferentiable “corner” of �(n)j at

the minimizer, x (n)j = 0.1.
To implement the majorize-minimize procedure (11)

by minimizing (20), we pass into the dual domain.

Observe that L(n)j is convex and continuous in x j and concave

and continuous in the γ
(n)
j l , and the set �(n) is compact.

We invoke Sion’s minimax theorem [24] to transpose the order
of minimization and maximization:

argmin
x j

argmax
γ j ∈�(n)

L(n)j

(

x j , γ j

)

= argmax
γ j ∈�(n)

argmin
x j

L(n)j

(

x j , γ j

)

. (21)

The inner minimization over x j can now be solved trivially in
terms of γ

(n)
j :

x j
(

γ j

) = y j − β

w

∑

l∈N j

γ
(n)
j l κ j l . (22)

Plugging (22) into (20) and maximizing over γ j ∈ �(n), we
arrive at the following quadratic dual problem:

γ ∗
j ∈ argmax

γ j ∈�(n)
D(n)(γ j

)

, where (23)

D(n)(γ j

) = −1

2
γ j

′
(

D + 1

w
ββ ′

)

γ j + γ j
′�β, (24)

where D = diagl

{

2βδ(n)j l

}

, � = diagl

{

y j − x (n)l

}

, and

β = vecl
{

2βκ j l
}

. Because expanding �(n) only “loosens”
the majorization φ(n)

j l,�(n)
we simply define �(n) to include the

pseudoinverse

γ +
j =

(

D + 1

w
ββ ′

)+
�β, (25)

and then solve (23) by finding the pseudoinverse. In practice,
this means we can solve the dual problem (23) as if it were
unconstrained.

2) Solving the Dual Problem: The dual problem (23) has
a diagonal-plus-rank-1 Hessian that can be trivially inverted
when the diagonal matrix D is full rank. However, when
at least one entry of D is small (i.e., when x (n)j ≈ x (n)l
for some l), the problem becomes ill-conditioned and
requires an iterative method or an expensive “direct method”
(e.g., computing the eigenvalue decomposition of D + 1

wββ ′
or the “matrix pseudoinverse lemma” [14]). We propose
an iterative minorize-maximize procedure that exploits the
diagonal-plus-rank-1 Hessian.

This inner minorize-maximize procedure is iterative, so we
denote the subiteration number with a superscripted m. The
following function, S(m)j

(

γ j

)

is a minorizer for D(n)
j

(

γ j

)

at

γ
(m)
j in the sense that it satisfies the “equality” property (9) at

γ
(m)
j and a “lies-below” property analogous to the “lies above”

majorization property (10):

S(m)j

(

γ j

) = D(n)
j

(

γ
(m)
j

)

+
(

γ j − γ
(m)
j

)′∇D(n)
j

(

γ
(m)
j

)

−1

2

(

γ j − γ
(m)
j

)′
(

Dε + 1

w
ββ ′

)

(

γ j − γ
(m)
j

)

,

(26)

where Dε = diagl {max {ε,Dll }}. Let Hε = Dε + 1
wββ ′.

Substituting the “min” for a “max” in the MM procedure (11)
leads to the following iterative procedure for solving (23):

γ
(m+1)
j = argmax

γ j

S(m)j

(

γ j

)

(27)

= H−1
ε

(

�β − Mεγ
(m)
j

)

, (28)

where Mε = diagl

{

max
{

0, ε − δ
(n)
j l

}}

. We multiply by H−1
ε

efficiently using the matrix inversion lemma.
The recursion (28) reveals an interesting quality of the

minorize-maximize procedure. When all the neighbors x (n)l
are sufficiently different from x (n)j , Mε is the zero-matrix
and the MM recursion (28) is stationary. In other words,
γ
(m)
j converges in a single iteration. This corresponds to

the case where the heuristic “capped-curvature” majorize-
minimize algorithm produces a valid surrogate. On the other

hand, when some δ(n)j l ≈ 0, the “capped-curvature” algorithm
may produce an invalid majorizer, but the recursion (28)
will eventually produce (by finding appropriate values for the
corresponding γ

(n)
j l) and minimize a valid majorizer for �(n)j .

A practical alternative to running an arbitrarily large number of
inner minorize-majorize iterations is to track the cost function

1278 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

Fig. 5. Initial noisy and converged reference images from the TV denoising experiment in Section IV-A. The original image is an approximately 75-megapixel
composite of pictures taken by NASA’s Mars Opportunity Rover; the insets are 512 × 512-pixel subimages. (a) Noisy image, y. (b) Converged reference
image, x∗.

value �(n)j

(

x j

(

γ
(m)
j

))

and terminate the minorize-maximize
algorithm when

�
(n)
j

(

x j

(

γ
(m)
j

))

≤ �
(n)
j

(

x (n)j

)

. (29)

This check was inexpensive to integrate into the minorize-
maximize iteration, so we used it in the experiments
below. Nonetheless, it is possible that in late iterations, as
x (n)j ≈ x (n)l , the domain �(n) grows and the majorizer 	(n)j
becomes increasingly loose. This would slow the convergence
of x(n) → x̂.

IV. EXPERIMENTS

This section presents two experiments using the TV reg-
ularizer (Section IV-A) and a differentiable edge-preserving
regularizer used in CT reconstruction (Section IV-B). All
the algorithms in the following experiments were run on
an NVIDIA Tesla C2050 GPU with 3 GB of memory and
implemented in OpenCL.

In addition to the algorithms described above, we applied
Nesterov’s first-order acceleration [18] to the GCD algorithm
after each loop through all the groups. Future research may
establish the theoretical convergence properties of these accel-
erated algorithms, and they appear to be stable.

A. Anisotropic TV Denoising

In 2004, the Mars Opportunity rover transmitted
photographs of its landing site in the “Eagle Crater”
back to Earth. Scientists at NASA/JPL combined these
photographs into a 22,780 × 3,301-pixel (approximately
75 megapixel) grayscale image [2]. Pixels were represented by
floating-point numbers between 0 and 255; storing each copy
of the image required approximately 300 MB of memory.

We corrupted the composite image with additive white
Gaussian noise with standard deviation σ = 20 gray levels
(see Figure 5a). Then we denoised the corrupted image by
solving the iterative denoising problem (2) with anisotropic

total variation (ψ = ψabs) using all eight adjacent pixels
(
∣

∣N j
∣

∣ = 8), empirically selected regularizer weight β = 7,
uniform weights (W = I, κ j l = 1), and the constraint
x j ∈ [0, 255]. Figure 5b shows an effectively converged
reference image, x∗. All the algorithms in this section are
initialized from the noisy data, x(0) = y.

We ran the Chambolle-Pock primal-dual algorithm
(CP-PDA) ([3, Algorithm 2], adapted to anisotropic TV), the
separable quadratic surrogates [1] (SQS-ε) algorithm with
the “capped-curvature” corner-rounding approximation and
the proposed GCD algorithm with the same corner-rounding
approximation (GCD-ε). We also applied Nesterov’s first-
order acceleration to SQS (SQS-ε-N) and corner-rounded
GCD (GCD-ε-N). Finally, we ran GCD with two inner
iterations of the proposed duality-based majorizer and
Nesterov’s first-order acceleration (GCD(2)-N). In all cases,
we chose ε = 2. Figure 6 plots cost function and root
mean-square difference (RMSD) to the reference image
against algorithm iteration and time.

The Chambolle-Pock primal-dual algorithm converged
rapidly in terms of iteration, but considerably more slowly as a
function of time. This behavior, which is hidden when exper-
iments are performed with small images, is a consequence of
PDA’s high memory requirements. Even on the NVIDIA Tesla
with 3GB of memory, we could not store all the algorithm’s
variables (including the regularizer and data-fit weights) on
the GPU at once. Consequently we needed to occasionally
transfer memory between RAM and the GPU, which slowed
down PDA’s convergence speed with respect to time. Because
the PDA uses

∣

∣N j
∣

∣ image-sized dual variables, this memory
burden would be even greater for a 3D denoising problem.
At least with modern GPU hardware, algorithms with lower
memory requirements like SQS-ε and the GCD algorithms
seem more appropriate than PDA for large problems.

The SQS algorithm can be viewed as a one-group
GCD algorithm, where surrogate functions are used to decou-
ple the image update into a set of 1D updates. In that light,

MCGAFFIN AND FESSLER: EDGE-PRESERVING IMAGE DENOISING VIA GCD ON THE GPU 1279

Fig. 6. Root-mean-squared-difference to the converged reference image x∗ by iteration and time for the total variation denoising experiment in Section IV-A.
(a) RMSD to x∗ by iteration. (b) RMSD to x∗ by time. (c) RMSD to x∗ by time (x(0) near x∗).

the major differences between the SQS and GCD algorithms
are pixel update order and majorizer looseness, and both of
these differences appear to be advantages for GCD.

Although both the SQS-ε and GCD-ε algorithms in
this experiment perform a corner-rounding approximation,
GCD-ε’s pixel update order appears to make it more robust
to the error introduced by that approximation. This can be
seen in the more accurate limit cycles reached by the
GCD-ε algorithms compared to the respective
SQS-ε algorithms. The GCD algorithms also do not
need to majorize to produce 1D subproblems; this makes
GCD-ε’s 1D surrogate 	(n)j “tighter” than the corresponding
1D surrogate produced by SQS. This increases the step sizes
that the GCDs algorithm take, as seen by GCD-ε reaching its
limit cycle more rapidly than SQS-ε.

Unlike the SQS algorithms, the proposed GCD algorithm
can achieve more accurate solutions by performing more
iterations of the inner MM algorithm. This allows GCD(2)-N
to rapidly achieve a more accurate solution than the corner-
rounding algorithms.

1) Late-Iteration Behavior and Multiple MM Steps: To
further explore the effect of the number of inner MM iterations
on algorithm convergence, we also initialized GCD with

x(0) = x∗ + w, w ∼ N(0, I), (30)

a point near the reference image. We ran GCD with
up to 1, 2, 4 and 8 inner MM iterations. Each algorithm was
terminated early if possible using the monotone-cost stopping
criteria (29). Figure 6c plots RMSD to x∗ against time for
each configuration.

This experiment reveals two important things. First,
unsurprisingly, increasing the maximum number of inner
MM iterations allows the GCD algorithms to converge to a
solution closer to x∗. In all cases, the GCD algorithms pro-
duced a more accurate solution than SQS-ε, including GCD-ε,
which “corner-rounds” in a similar way. Second, while more
inner iterations requires more time per outer iteration, algo-
rithms with more inner iterations may converge more quickly
in time than those with fewer. The markers in Figure 6c were
all placed at the 12th iteration. Although GCD(4) took nearly
half as long per iteration as GCD (8), the eight-inner-iterations

algorithm converged roughly as quickly in time and to a more
accurate limit cycle.

B. X-Ray CT Denoising

In diagnostic X-ray CT reconstruction, differentiable convex
potential functions are often preferred to the absolute value
potential function [26]. One choice of potential function is the
q-generalized Gaussian (qGG),

ψ(t) =
1
2 |t|p

1 + |t/δ|p−q . (31)

The qGG potential function is both convex and differentiable
for appropriate choice of p, q and δ > 0.

While CT reconstruction involves solving a more general
regularized least-squares problem, variable splitting and alter-
nating minimization methods can produce algorithms that
handle the system physics and edge-preserving regularizer in
separate subproblems. In some memory-conservative variable
splitting approaches [17] or majorize-minimize algorithms
using separable quadratic surrogates [1], [13], the regularizer
appears in a denoising problem like (2).

In this experiment we solved a denoising problem that
could arise from a variable splitting X-ray CT reconstruction
algorithm. The data came from a 512 ×512 ×65-pixel helical
shoulder image provided by GE Healthcare. Pixels were repre-
sented between 0 and 2,600 modified Hounsfield units (HU).
We used the qGG potential function (with q = 2, p = 1.2
and δ = 10 HU) and nonuniform regularizer weights typical
of helical CT reconstruction [25]. The regularizer penalized all
adjacent 3D neigbhors, i.e.,

∣

∣N j
∣

∣ = 26. We set the diagonal
weight matrix W to

W = diag
j

{[

A′SA
]

j j

2

}

, (32)

where A is the so-called CT system matrix and S contains the
statistical weights of the measurements [26].

We initialized each algorithm with x(0) = xFBP, the out-
put of the classical analytical filtered backprojection (FBP)
algorithm. To include second-order methods like precondi-
tioned conjugate gradients in our comparison, we dropped

1280 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

Fig. 7. Results from the X-ray CT denoising problem. Figure 7a displays the center slices of the initial noisy filtered backprojection image and the converged
reference. Both are displayed on a 800 - 1200 modified Hounsfield unit (HU) scale. (a) Center slice of intial and converged images. (b) RMSD to x∗ by
iteration. (c) RMSD to x∗ by time.

the conventional nonnegativity constraint used in X-ray CT.
Figure 7a illustrates the center slice of xFBP and an effectively
converged reference image, x∗.

We solved the denoising problem with the proposed GCD
algorithm, the separable quadratic surrogate algorithm (SQS),
and preconditioned conjugate gradients (PCG) using a
diagonal preconditioner. We also ran GCD and SQS with
Nesterov’s first-order acceleration (GCD-N and SQS-N).
Figures 7b and 7c plot the progress of each algorithm towards
x∗ as a function of iteration and time, respectively.

Preconditioned conjugate gradients converged quickly per
iteration but comparably to SQS by time. The high computa-
tional cost of PCG on the GPU is caused by the algorithm’s
inner products and multiple inner steps; the diagonal precondi-
tioner added negligible computational cost. Inner products are
classically considered to be computationally cheap operations,
but on the GPU and for this family of denoising problems, they
are a considerable computational burden. The algorithms that
perform only local memory accesses (SQS and GCD) and their
accelerated variants converged significantly more quickly by
wall time. Of these, GCD and GCD-N converged the fastest.

V. CONCLUSIONS

The trend in modern computing hardware is towards
increased parallelism instead of better serial performance.
This paper presented image denoising algorithms for edge-
preserving regularization that play to the strengths of GPUs,
the exemplar of this parallelism trend. By avoiding operations
like inner products or complex preconditioners and minimizing
memory usage, the proposed GCD algorithms provide impres-
sive convergence rates. The additional increase in performance
provided by Nesterov’s first-order acceleration is exciting, and
further work is needed to characterize the theoretical behavior
of the accelerated algorithms. This paper focuses on gray scale
images, but the general approach is extensible to color images
and video.

REFERENCES

[1] H. Erdogan and J. A. Fessler, “Ordered subsets algorithms for trans-
mission tomography,” Phys. Med. Biol., vol. 44, no. 11, pp. 2835–2851,
Nov. 1999.

[2] NASA Jet Propulsion Laboratory/Caltech. (2004). PIA05600:
Eyeing ‘Eagle Crater’. [Online]. Available: http://photojournal.jpl.nasa.
gov/catalog/PIA05600

[3] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imag. Vis.,
vol. 40, no. 1, pp. 120–145, 2011.

[4] T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-dual method
for total variation-based image restoration,” SIAM J. Sci. Comput.,
vol. 20, no. 6, pp. 1964–1977, 1999.

[5] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, “Deter-
ministic edge-preserving regularization in computed imaging,” IEEE
Trans. Image Process., vol. 6, no. 2, pp. 298–311, Feb. 1997.

[6] P. Chatterjee and P. Milanfar, “Is denoising dead?” IEEE Trans. Image
Process., vol. 19, no. 4, pp. 895–911, Apr. 2010.

[7] J. A. Fessler and W. L. Rogers, “Spatial resolution properties
of penalized-likelihood image reconstruction: Space-invariant tomo-
graphs,” IEEE Trans. Image Process., vol. 5, no. 9, pp. 1346–1358,
Sep. 1996.

[8] D. Geman and G. Reynolds, “Constrained restoration and the recovery
of discontinuities,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14,
no. 3, pp. 367–383, Mar. 1992.

[9] P. J. Huber, Robust Statistics. New York, NY, USA: Wiley, 1981.
[10] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” Amer.

Statist., vol. 58, no. 1, pp. 30–37, Feb. 2004.
[11] M. W. Jacobson and J. A. Fessler, “An expanded theoretical treatment of

iteration-dependent majorize-minimize algorithms,” IEEE Trans. Image
Process., vol. 16, no. 10, pp. 2411–2422, Oct. 2007.

[12] S. T. Jensen, S. Johansen, and S. L. Lauritzen, “Globally con-
vergent algorithms for maximizing likelihood function,” Biometrika,
vol. 78, no. 4, pp. 867–877, Dec. 1991. [Online]. Available:
http://www.jstor.org/stable/info/2336939?seq=1

[13] D. Kim, D. Pal, J.-B. Thibault, and J. A. Fessler, “Accelerating ordered
subsets image reconstruction for X-ray CT using spatially nonuni-
form optimization transfer,” IEEE Trans. Med. Imag., vol. 32, no. 11,
pp. 1965–1978, Nov. 2013.

[14] K. Kohno, M. Kawamoto, and Y. Inouye, “A matrix pseudo-inversion
lemma and its application to block-based adaptive blind deconvolution
for MIMO systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57,
no. 7, pp. 1449–1462, Jul. 2010.

[15] K. Lange, “Convergence of EM image reconstruction algorithms with
Gibbs smoothing,” IEEE Trans. Med. Imag., vol. 9, no. 4, pp. 439–446,
Dec. 1990.

[16] M. G. McGaffin and J. A. Fessler, “Fast edge-preserving image denois-
ing via group coordinate descent on the GPU,” Proc. SPIE, vol. 9020,
p. 90200P, Mar. 2014.

[17] M. G. McGaffin, S. Ramani, and J. A. Fessler, “Reduced
memory augmented Lagrangian algorithm for 3D iterative X-ray
CT image reconstruction,” Proc. SPIE, vol. 8313, p. 831327,
Feb. 2012.

[18] Y. Nesterov, “A method of solving a convex programming
problem with convergence rate O(1/k2),” Soviet Math. Doklady,
vol. 27, no. 2, pp. 372–376, 1983. [Online]. Available:
http://www.core.ucl.ac.be/~nesterov/Research/Papers/DAN83.pdf

MCGAFFIN AND FESSLER: EDGE-PRESERVING IMAGE DENOISING VIA GCD ON THE GPU 1281

[19] M. Nikolova, M. K. Ng, and C.-P. Tam, “Fast nonconvex nonsmooth
minimization methods for image restoration and reconstruction,” IEEE
Trans. Image Process., vol. 19, no. 12, pp. 3073–3088, Dec. 2010.

[20] J. Nocedal and S. J. Wright, Numerical Optimization.
New York, NY, USA: Springer-Verlag, 1999. [Online]. Available:
http://site.ebrary.com/lib/umich/docDetail.action?docID=10003036

[21] J. P. Oliveira, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Adap-
tive total variation image deblurring: A majorization–minimization
approach,” Signal Process., vol. 89, no. 9, pp. 1683–1693, Sep. 2009.

[22] S. Ramani and J. A. Fessler, “A splitting-based iterative algorithm
for accelerated statistical X-ray CT reconstruction,” IEEE Trans. Med.
Imag., vol. 31, no. 3, pp. 677–688, Mar. 2012.

[23] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, Nonlinear Phenomena, vol. 60,
nos. 1–4, pp. 259–268, Nov. 1992.

[24] M. Sion, “On general minimax theorems,” Pacific J. Math., vol. 8, no. 1,
pp. 171–176, 1958.

[25] J. W. Stayman and J. A. Fessler, “Regularization for uniform spatial res-
olution properties in penalized-likelihood image reconstruction,” IEEE
Trans. Med. Imag., vol. 19, no. 6, pp. 601–615, Jun. 2000.

[26] J.-B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh, “A three-
dimensional statistical approach to improved image quality for multislice
helical CT,” Med. Phys., vol. 34, no. 11, pp. 4526–4544, Nov. 2007.

[27] M. Zhu, S. J. Wright, and T. F. Chan, “Duality-based algorithms for
total-variation-regularized image restoration,” Comput. Optim. Appl.,
vol. 47, no. 3, pp. 377–400, 2010.

Madison Gray McGaffin received the B.S.E.E.
degree from Tufts University, Medford, MA, USA,
in 2010, and the M.S.E.E. degree from the University
of Michigan, Ann Arbor, MI, USA, in 2012, where
he is currently pursuing the Ph.D. degree in electrical
engineering.

His research interests include statistical image
reconstruction and parallel computing.

Jeffrey A. Fessler (F’06) received the B.S.E.E.
degree from Purdue University in 1985, the M.S.E.E.
degree from Stanford University in 1986, and the
M.S. degree in statistics from Stanford University in
1989. From 1985 to 1988, he was a National Science
Foundation Graduate Fellow at Stanford, where he
earned a Ph.D. in electrical engineering in 1990. He
has worked at the University of Michigan since then.
From 1991 to 1992, he was a Department of Energy
Alexander Hollaender Post-Doctoral Fellow in the
Division of Nuclear Medicine. From 1993 to 1995,

he was an Assistant Professor in Nuclear Medicine and the Bioengineering
Program. He is now a Professor in the Departments of Electrical Engineering
and Computer Science, Radiology, and Biomedical Engineering. He is a
Fellow of the IEEE, for contributions to the theory and practice of image
reconstruction. He received the Francois Erbsmann award for his IPMI93
presentation, and received the Edward Hoffman Medical Imaging Scientist
Award in 2013. He has been an Associate Editor for the IEEE SIGNAL

PROCESSING LETTERS, the IEEE TRANSACTIONS ON MEDICAL IMAGING,
and the IEEE TRANSACTIONS ON IMAGE PROCESSING. He is currently
an Associate Editor for the IEEE TRANSACTIONS ON COMPUTATIONAL
IMAGING. He was the Co-Chair of the 1997 SPIE conference on Image Recon-
struction and Restoration, Technical Program Co-Chair of the 2002 IEEE
International Symposium on Biomedical Imaging (ISBI), and was the General
Chair of ISBI 2007. He served as the Chair of the Steering Committee of the
IEEE Transactions on Medical Imaging, and as Chair of the ISBI Steering
Committee. He served as Associate Chair of his Department from 2006-2008.
His research interests are in statistical aspects of imaging problems, and he has
supervised doctoral research in positron emission tomography, single photon
emission tomography, X-ray CT, magnetic resonance imaging, and optical
imaging problems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

