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Alternating Dual Updates Algorithm for X-ray CT
Reconstruction on the GPU
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Abstract—Model-based image reconstruction (MBIR) for X-ray
computed tomography (CT) offers improved image quality and
potential low-dose operation, but has yet to reach ubiquity in the
clinic. MBIR methods form an image by solving a large statisti-
cally motivated optimization problem, and the long time it takes to
numerically solve this problem has hampered MBIR’s adoption.
We present a new optimization algorithm for X-ray CT MBIR
based on duality and group coordinate ascent that may converge
even with approximate updates and can handle a wide range of
regularizers, including total variation (TV). The algorithm itera-
tively updates groups of dual variables corresponding to terms in
the cost function; these updates are highly parallel and map well
onto the GPU. Although the algorithm stores a large number of
variables, the “working size” for each of the algorithm’s steps is
small and can be efficiently streamed to the GPU while other cal-
culations are being performed. The proposed algorithm converges
rapidly on both real and simulated data and shows promising
parallelization over multiple devices.

Index Terms—Graphics processing units, stochastic dual coor-
dinate ascent, X-ray CT image reconstruction.

I. INTRODUCTION

X -RAY COMPUTED tomography (CT) model-based
image reconstruction (MBIR) combines information

about system physics, measurement statistics, and prior knowl-
edge about images into a high-dimensional cost function [1].
The variate of this function is an image; the image that min-
imizes this cost function can contain less noise and fewer
artifacts than those produced with conventional analytical tech-
niques, especially at reduced doses [1]–[3].

The primary drawback of MBIR methods is how long it
takes to find this minimizer. In addition to general optimization
algorithms like conjugate gradients with specialized precon-
ditioners [4], [5], a wide range of CT-specialized algorithms
have been proposed to accelerate the optimization. One popular
approach uses iterated coordinate descent (ICD) to sequentially
update pixels (or groups of pixels) of the image [6], [7]. Since
it is a sequential algorithm, ICD faces challenges from stagnat-
ing processor clock speeds and cannot exploit the increasing
parallelization in modern computing hardware.
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Another family of algorithms uses variable splitting and
alternating minimization techniques to separate challenging
parts of the cost function into more easily solved subproblems
[8]–[11]. When used with the ordered subsets (OS) approxi-
mation [10], [12], these algorithms can converge very rapidly.
Unfortunately, without relaxation, OS-based algorithms have
uncertain convergence properties. Nonetheless, combining OS
with accelerated first-order methods [13], [14] has produced
simple algorithms with state of the art convergence speeds.

This paper proposes an algorithm that shares some proper-
ties with prior works. Like some variable splitting methods,
our proposed algorithm consists of steps that consider parts
of the cost function in isolation. Separating jointly challeng-
ing parts of the cost function from one another allows us to use
specialized and fast solvers for each part. Our algorithm also
uses a group coordinate optimization scheme, somewhat like
ICD, but the variables it updates are in a dual domain; updat-
ing a small group of dual variables can simultaneously update
many image pixels. Like OS algorithms, our algorithm need not
visit all the measured data to update the image, but unlike OS
algorithms without relaxation, the proposed algorithm has some
convergence guarantees.

The next section sets up our MBIR CT reconstruction prob-
lem. Section II introduces the mathematics of the proposed
algorithm, and Section III describes our single- and multiple-
device implementations. Section IV provides some experimen-
tal results and Section V gives some conclusions and directions
for future work.

A. Model-based image reconstruction

Consider the following X-ray CT reconstruction problem [1]:

x̂ ∈ argmin
x≥0

L (Ax) + R (Cx) . (1)

There are M measurements and N pixels, and we constrain
all the pixels of the image x ∈ R

N to be nonnegative. The
CT projection matrix A ∈ R

M×N models system physics and
geometry, and the finite differencing matrix C ∈ R

K×N com-
putes the differences between each pixel and its neighbors. The
number of differences penalized in the image, K, is a multiple
ofN . For example, penalizing differences along the three cardi-
nal 3D axes would set K = 3N . The matrices A and C are too
large to store in memory, so multiplication with these matrices
and their adjoints is implemented “on the fly”.

Both L and R are separable sums of convex functions:

L (p) =
M∑
i=1

li (pi) , R (d) =

K∑
k=1

rk (dk) . (2)
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We call L the data-fit term because it penalizes discrepancies
between the measured data y ∈ R

M and the CT projection of
x. A common choice for L is a weighted sum of quadratic
functions; i.e.,

li (pi) =
wi

2

(
pi − yi2

)
, (3)

with the weight wi > 0. Traditionally, the weight is the inverse
of the variance of the ith measurement, wi = 1/σ2

i .
Similarly, R encourages regularity of the reconstructed image

x̂ by penalizing the differences between neighboring pixels. R
is a weighted sum of penalized differences,

rk (dk) = βkψ (dk) . (4)

The potential function ψ is convex, even, usually non-
quadratic, and coercive. The quadratic penalty function, ψ(t) =
1
2 t

2, while analytically tractable, tends to favor reconstructed
images x̂ with blurry edges because it penalizes large dif-
ferences between neighboring pixels (i.e., edges) aggres-
sively. Potential functions ψ(t) that have a smaller rate of
growth as |t| → ∞ are called edge-preserving because they
penalize these large differences less aggressively. Examples
include the absolute value function ψ(t) = |t| from total
variation (TV) regularization, the Fair potential, and the q-
generalized Gaussian. The positive weights {βk} are fixed and
encourage certain resolution or noise properties in the image
[15], [16].

The functions L and R have opposing effects on the recon-
structed image x̂: L encourages data fidelity and can lift
the noise from the data y into the reconstructed image,
whereas R encourages smoothness at the cost of produc-
ing an image x that does not fit the measurements as well.
Combining L and R complicates the task of finding a mini-
mizer x̂. Without the regularizer R, the reconstruction problem
(1) could possibly be solved using a fast quadratic solver.
Conversely, without the data-fit term L (without CT sys-
tem matrix A), (1) becomes a denoising problem for which
many fast algorithms exist, including methods suitable for the
GPU [17].

Variable splitting and alternating minimization provide a
framework for separating L and R into different sub-problems
[18]. The ADMM algorithm in [8] used a circulant approx-
imation to the Gram matrix AᵀA to provide rapid conver-
gence rates for 2D CT problems. Unfortunately, the circulant
approximation is less useful in 3D CT. We partially overcame
these difficulties in [19] by using a duality-based approach
to solving problems involving the CT system matrix, but the
resulting algorithm still used ADMM, which has difficult-
to-tune penalty parameters and relatively high memory use.
Gradient-based algorithms like OS [12] with acceleration [13]
and the linearized augmented Lagrangian method with ordered
subsets [10] (OS-LALM), can produce rapid convergence
rates but use an approximation to the gradient of the data-
fit term and have uncertain convergence properties. Some of
these algorithms require generalizations to handle non-smooth
regularizers.

This paper describes an extension of the algorithms in [19],
[20]. The proposed algorithm uses duality, group coordinate
ascent with carefully chosen groups, and the majorize-minimize
framework to rapidly solve the reconstruction problem (1).
We extend [20] by also considering the nonnegativity con-
straint x ≥ 0 in (1). Our algorithm is designed for the GPU:
while it uses many variables, the “working set” for each of
the algorithm’s steps is small and easily fits in GPU mem-
ory. We stream these groups of variables to the GPU and
hide the latency of these transfers by performing other, less
memory-intensive computations. We show that the proposed
algorithm can be implemented with multiple GPUs for addi-
tional acceleration.

II. RECONSTRUCTION ALGORITHM

At a high level, the proposed algorithm approximately per-
forms the following iteration:

x(n+1) = argmin
x

J(n) (x) , where (5)

J(n) (x) = L (Ax) + R (Cx) + N (x) +
μ

2

∥∥∥x− x(n)2
∥∥∥ ,

(6)

with μ > 0. We have expressed the nonnegativity constraint
x ≥ 0 as the characteristic function N:

N (x) =

N∑
j=1

ιj (xj) , where (7)

ιk (x) =

{
0, x ≥ 0;

∞, else.
(8)

Although ιk is discontinuous, it is convex. Iteratively solving
(5) exactly would produce a sequence

{
x(n)

}
that converges to

a minimizer x̂ regardless of the choice of μ.
The function J(n) (x) appears to be as difficult to mini-

mize as the original cost function (1). Even if J(n) (x) could
be minimized exactly, x(n+1) is likely not a solution to the
original reconstruction problem (1). However, the additional
proximal term provides structure that allows us to approxi-
mately solve J(n) efficiently using the following duality-based
technique. The parameter μ controls the tradeoff between how
efficiently we can approximately minimize J(n) and how close
the minimizer of J(n) is to a minimizer of the original cost
function (1).

Let l∗i , r∗k and ι∗j denote the convex conjugates of li, rk and
ιj , respectively, e.g., :

l∗i (ui) = sup
pi

piui − li (pi) . (9)

Because li, rk and ιj are convex, they are equal to the con-
vex conjugates of l∗i , r∗k and ι∗j , respectively. We use this
biconjugacy property to write

li (pi) = sup
ui

piui − l∗i (ui) . (10)
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By summing over the indices i, j and k, we write L, R and
N implicitly as the suprema of sums of one-dimensional dual
functions:

L (p) = sup
u

M∑
i=1

piui − l∗i (ui) = sup
u

uᵀp− L∗ (u) , (11)

R (d) = sup
v

K∑
k=1

vkdk − r∗k (dk) = sup
v

vᵀd− R∗ (v) , (12)

N (x) = sup
z

N∑
j=1

zjxj − ι∗j (zj) = sup
z

zᵀx− N∗ (z) . (13)

With (11)-(13), we rewrite the update problem (5) as

x(n+1) = argmin
x

sup
u,v,z

S(n) (x,u,v, z) , (14)

S(n) (x,u,v, z)
�
=
μ

2

∥∥∥x− x(n)
∥∥∥2 + (Aᵀu+Cᵀv + z)

ᵀ
x

− L∗ (u)− R∗ (v)− N∗ (z) . (15)

Reversing the order of minimization and maximization1 yields:

min
x

sup
u,v,z

S(n) (x,u,v, z) = sup
u,v,z

min
x

S(n) (x,u,v, z) . (16)

The now inner minimization over x is trivial to perform. We
solve for the minimizer x and write it in terms of the dual
variables u, v and z:

x̃(n+1) (u,v, z) = x(n) − 1

μ
(Aᵀu+Cᵀv + z) . (17)

The image induced by the dual variables, x̃(n+1) (u,v, z), min-
imizes the update cost function (5) when u, v, and z maximize
the following dual function2:

D(n) (u,v, z)
�
= S(n)

(
x̃(n+1) (u,v, z) ,u,v, z

)
(18)

= − 1

2μ
‖Aᵀu+Cᵀv + z‖2

+ (Aᵀu+Cᵀv + z)
ᵀ
x(n)

− L∗ (u)− R∗ (v)− N∗ (z) . (19)

Maximizing (19), i.e., solving the dual problem (16), induces
an image (17) that minimizes the update problem (5). We max-
imize (19) approximately using a stochastic group coordinate
ascent algorithm described in the next section. Under condi-
tions similar to other alternating minimization algorithms like
ADMM [21], the proposed algorithm may converge even with
these approximate updates; see Appendix C.

At a high level, our proposed algorithm iteratively performs
the following steps:

1) form the dual function D(n) in (19) using x(n),
2) find u(n+1), v(n+1) and z(n+1) by running iterations of

the SGCA algorithm detailed in the following sections:

u(n+1),v(n+1), z(n+1) ≈ argmax
u,v,z

D(n) (u,v, z) , (20)

3) and update x(n+1):

x(n+1) = x̃(n+1)
(
u(n+1),v(n+1), z(n+1)

)
. (21)

1See Appendix A.
2See Appendix B.

A. Stochastic group coordinate ascent

We propose an SGCA algorithm to perform the dual max-
imization (20). The algorithm iteratively selects a group of
variables (in our case, a set of the elements of the dual variables
u, v and z) via a random process and updates them to increase
the value of the dual function D(n). Because SGCA is con-
vergent [22], enough iterations of the algorithm in this section
will produce dual solutions u(n+1), v(n+1) and z(n+1) that are
arbitrarily close to true maximizers û(n+1), v̂(n+1) and ẑ(n+1).
However, the solution accuracy of more interest is how well
the induced image x(n+1) = x̃(n+1)

(
u(n+1),v(n+1), z(n+1)

)
approximates the exact minimizer of (5). The data-fit and regu-
larizer dual variables u and v affect the induced image x̃(n+1),
per (17), through the linear operators Aᵀ and Cᵀ respectively.
These linear operators propagate the influence of a possibly
small group of dual variables to many pixels: e.g., the ele-
ments of u corresponding to a single projection view are
backprojected over a large portion of the image. Consequently,
performing a just a few dual group updates can significantly
improve the image x̃(n+1) (u,v, z).

An SGCA algorithm updates one group of variables at a
time. We can form these groups arbitrarily, and as long as each
group is visited “often enough” the algorithm converges to a
solution [22]. To exploit the structure of D(n), we choose each
group so that it contains elements from only u, v or z; i.e., no
group contains elements from different variables. Sections II-
B, II-C, and II-D describe the updates for each of these
groups.

Because the SGCA algorithm updates elements of the
dual variables in random order, conventional iteration nota-
tion becomes cumbersome. Instead, mirroring the algorithm’s
implementation, we describe the updates as occurring “in-
place.” The “new” value of a variable is written with a super-
scripted plus, e.g., u+. To refer to the “current” value of a
dual variable in an update problem, we use a superscripted
minus; e.g., u−. For example to update u to maximize D(n)

while holding the other variables constant, we write u+ =
argmaxu D(n) (u,v−, z−) . That is, we replace the contents of
u in memory with the maximizing value u+.

We rewrite the quadratic and linear terms in D(n) using this
notation and (17) by rewriting the quadratic and linear terms
in (19):

D(n) (u,v, z) = c− 1

2μ

∣∣∣∣Aᵀ (u− u−)
+ Cᵀ (v − v−)+ z− z−

∣∣∣∣2
+ (Aᵀu+Cᵀv + z)

ᵀ
x̃

− L∗ (u)− R∗ (v)− N∗ (z) , (22)

where the buffer x̃ = x̃(n+1) (u−,v−, z−) and the constant
c = D(n) (u−,v−, z−)− (Aᵀu− +Cᵀv− + z−)ᵀ x̃ is inde-
pendent of u, v and z. After any group of elements of the dual
variables is updated, we update x̃ to reflect the changed dual
variables (17). The following sections detail these dual variable
updates.
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B. Tomography (u) updates

Consider maximizing (22) with respect to some subset of the
elements of u,

u+
g = argmax

ug

D(n)
(
u,v−, z−

)
(23)

= argmax
ug

− 1

2μ

∥∥ug − u−
g

∥∥2
AgA

ᵀ
g
− L∗g (ug) + uᵀ

gAgx̃,

(24)

where ug is a subset of the elements of u. The elements of ug

are coupled in (24) by the matrix AgA
ᵀ
g , where Ag contains

the rows of A corresponding to the group ug .
If AgA

ᵀ
g were diagonal, i.e., if the rays corresponding to ele-

ments of ug were nonoverlapping, then solving (24) would be
trivial. (Of course this is also the case when ug is a single ele-
ment of u). However, updating ug using only nonoverlapping
rays would limit the algorithm’s parallelizability. Existing CT
projector software may also not be able to efficiently compute
the projection and backprojection of individual rays instead of
e.g., a projection view at a time. If we allow ug to contain
overlapping rays, then the coupling induced by AgA

ᵀ
g makes

(24) expensive to solve exactly. Instead of pursuing the exact
solution to (24) or using a line search with GPU-unfriendly
inner products, we use a minorize-maximize technique [23],
[24] to find an approximate solution that still increases the dual
function D(n).

Let the diagonal matrix Mg majorize AgA
ᵀ
g , i.e., the matrix

Mg −AgA
ᵀ
g has no negative eigenvalues. Solving the follow-

ing separable problem produces an updated u+
g that increases

the dual function D(n):

u+
g = argmax

ug

− 1

2μ

∥∥ug − u−
g

∥∥2
Mg
− L∗g (ug) + uᵀ

gAgx̃.

(25)
In the common case that L (Ax) = 1

2 ‖Ax− y‖2W, i.e.,

li (pi) =
wi

2 (pi − yi)2, the conjugate L∗g is

L∗g (ug) =
1

2
‖ug‖2W−1

g
+ uᵀ

gyg, (26)

and the solution to (25) is

u+
g = (WgMg + μI)

−1
Wg

(
μ (Agx̃− yg) +Mgu

−
g

)
.

(27)
It is computationally challenging to find an “optimal” diago-
nal majorizing matrix Mg � AgA

ᵀ
g , but the following matrix

majorizes AgA
ᵀ
g and is easy to compute [12]:

Mg = diag
i

{[
AgA

ᵀ
g1

]
i

}
. (28)

This choice of Mg depends only on the system geometry
through Ag and not on any patient-specific data. Provided the
groups and geometry are determined beforehand, these majoriz-
ers can be precomputed. This was the case for our experiments,
and we used one group per view. Storing the diagonals of all
the majorizers {Mg} took the same amount of memory as the
noisy projections y.

After updating the group ug (27), we “backproject” the
update into the buffer x̃ (17):

x̃← x̃− − 1

μ
Aᵀ

g

(
u+
g − u−

g

)
. (29)

Altogether, updating ug and x̃ requires a forward projection
and backprojection for the rays in group g and a few vector
operations (27).

Running one iteration of the minorize-maximize (MM) oper-
ation (27) will not exactly maximize D(n) with respect to ug .
One could run more MM iterations to further increase D(n), but
we have not found this necessary in our experiments. In con-
trast, the updates for the denoising and nonnegativity variables
below are exact.

C. Denoising (v) updates

The regularizer R penalizes the differences between each
pixel and its neighbors along a predetermined set of Nr direc-
tions, e.g., the three cardinal 3D directions or all thirteen 3D
directions around a pixel. The finite differencing matrix C ∈
R

K×N computes these differences, and each of the K = N ·
Nr elements of the dual variable v is associated with one of
these differences. We update a subset vg of the elements of v:

v+
g = argmax

vg

− 1

2μ

∥∥vg − v−
g

∥∥2
CgC

ᵀ
g
− R∗

g (vg) + vᵀ
gCgx̃.

(30)
The dual vector v is enormous: in our experiments, v is as
large as thirteen images. Storing a significant fraction of v
on the GPU is impractical, so we update only a fraction of
v at a time. To make that update efficient, we would like the
group update problem (30) to decouple into set of independent
one-dimensional update problems.

1) Group design: The elements of vg are coupled in (30)
only by the matrix CgC

ᵀ
g . This matrix is banded and sparse:

it couples differences together that involve shared pixels. This
coupling is very local; Figure 1 illustrates groups that contain
only uncoupled elements of v. Updating each of these groups
of differences has a “denoising” effect on almost all the pixels
(up to edge conditions) in the image and involves solving a set
of independent one-dimensional subproblems.

There are many ways to form these “covering but not over-
lapping” groups of differences: our implementation uses the
following simple “half-direction” groups. Every element of v
corresponds to a pixel location i = (ix, iy, iz) and an offset
o = (ox, oy, oz) ∈ {±1}3. The difference that vk represents
is between the pixels located at (ix, iy, iz) and (ix + ox, iy +
oy, iz + oz). The elements of v corresponding to a single direc-
tion all share the same offset and differ only in their pixel
locations.

For each difference direction r = 1, . . . , Nr, we form two
groups, vr,e and vr,o. We assign every other difference “along
the direction r” to each group. For example, if r indicates
vertical differences along the y axis then we assign to vr,e dif-
ferences with even iy and those with odd iy to vr,o. In Figure 1,
the cyan group {v9, v10, v11, v15, v16, v17} and the green group
{v12, v13, v14} partition the vertical differences in this way.
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Fig. 1. Illustration of groups of elements of the dual variable v for a two-
dimensional denoising case. Elements of v are updated in groups such that none
of the groups affect overlapping pixels. For examples, the horizontal differences
{v1, v3, v5, v7} are one group and {v2, v4, v6, v8} are another.

More generally, let or = (ox, oy, oz) be the offset corre-
sponding to direction r. Let cr ∈ {0, 1}3 contain a single “1”
in the coordinate corresponding to the first nonzero element of
or. For example,

or = (0, 1,−1)→ cr = (0, 1, 0), (31)

or = (0, 0, 1)→ cr = (0, 0, 1). (32)

Recall that ik is the location associated with the difference vk.
We assign to vr,e those differences vk along the direction r such
that iᵀkcd is even.

2) One-dimensional subproblems: Having chosen vg so
that its elements are uncoupled by CgC

ᵀ
g , the group update

problem (30) decomposes into a set of one-dimensional differ-
ence update problems for each k in the group:

v+k = argmax
vk

− 1

μ
(vk − γ)2 − βkψ∗

(
vk
βk

)
(33)

γ
�
= v−k +

μ

2
[Cx̃]k , (34)

where ψ∗ is the convex conjugate of the potential function ψ.
Some potential functions ψ have convenient convex conjugates
that make (33) easy to directly solve:
• Absolute value: If ψ (d) = |d|, then ψ∗ is the characteris-

tic function of [−1, 1]. The solution to (33) is

v+k = [γ][−βk,βk]
. (35)

i.e., the projection of γ onto the closed interval [−βk, βk] .

• Huber function: If ψ (d) is the Huber function,

ψ (d) =

{
1
2d

2, |d| ≤ δ
δ
(|d| − 1

2δ
)
, else,

(36)

then its conjugate is

ψ∗ (v) =
1

2
v2 + ι[−δ,δ] (v) . (37)

The solution to (33) is

v+k =

[
2βkγ

2βk + μ

]
[−βkδ,βkδ]

. (38)

In other cases, the convex conjugate ψ∗ (33) more difficult to
work with analytically. For example, the Fair potential,

ψ (d) = δ2
(∣∣∣∣dδ

∣∣∣∣− log

(
1 +

∣∣∣∣dδ
∣∣∣∣)), (39)

is easier to work with in the primal domain, where it has a
closed-form “shrinkage” operator, than the dual domain. To
exploit potential functions with convenient shrinkage operators
but inconvenient convex conjugates, we exploit the convexity
of ψ∗ and invoke biconjugacy:

βkψ
∗
(
vk
βk

)
= sup

qk

qkvk − βkψ (qk) . (40)

Combining (40) and (33),

v+k = argmax
vk

inf
qk
− 1

μ
(vk − γ)2 − vkqk + βkψ (qk) . (41)

By a similar Fenchel duality argument to (16), we reverse the
“max” and “inf” in (41). The resulting expression involves ψ
only through its “shrinkage” operator:

v+k = γ − μ

2
q+k , where (42)

q+k = argmin
qk

μ

4

(
qk − 2

μ
γ

)2

+ βkψ (qk) . (43)

After updating a group of differences vg , we update the
buffer x̃ (17):

x̃← x̃− − 1

μ
Cᵀ

g

(
v+
g − v−

g

)
. (44)

Because vg contains variables corresponding to nonoverlap-
ping differences, each element of vg updates two pixels in x̃,
and each pixel in x̃ is updated by at most one difference in vg .

D. Nonnegativity (z) updates

Updating each element of the image-sized dual variable z
helps enforce the nonnegativity constraint on the corresponding
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pixel of x̃. The dual function D(n) is separable in the elements
of z, and the z update is

z+ = argmax
z

− 1

2μ

∥∥z− z−
∥∥2 + zᵀx̃− N∗ (z) (45)

=
∑
k

− 1

2μ
(zk − ηk)2 − ι∗k (zk) , where (46)

ηk
�
= z−k + μ [x̃]k . (47)

The dual characteristic function ι∗k is also a characteristic
function, but on the nonpositive numbers:

ι∗k (zk) =

{
∞, zk > 0

0, else.
(48)

We solve (46) by clamping ηk to the nonpositive numbers:

z+k = [ηk](−∞,0]. (49)

After updating z (46) we update the buffer x̃:

x̃← x̃− − 1

μ

(
z+ − z−

)
. (50)

E. Warm starting

The dual variable updates in Sections II-B, II-C and II-
D find values for the dual variables, u(n+1), v(n+1) and
z(n+1) that approximately maximize the dual update problem
(19). We use these dual variables and the induced solution
x̃(n+1)

(
u(n+1),v(n+1), z(n+1)

)
, stored in the buffer x̃, to

determine x(n+1):

x(n+1) = x̃(n+1)
(
u(n+1),v(n+1), z(n+1)

)
= x̃, (51)

then re-form the outer update problem (5) and repeat.
We initialize our algorithm with all the dual variables set to

zero. We could also reset the dual variables to zero every outer
iteration, but this empirically led to slow convergence. Instead,
mirroring a practice in other alternating directions algorithms,
we warm-start each outer iteration with the previous iteration’s
dual variable values. This has an extrapolation-like effect on the
buffer x̃:

x̃← x̃(n+2)
(
u(n+1),v(n+1), z(n+1)

)
(52)

= x(n+1) − 1

μ

(
Aᵀu(n+1) +Cᵀv(n+1) + z(n+1)

)
(53)

= x(n) − 2

μ

(
Aᵀu(n+1) +Cᵀv(n+1) + z(n+1)

)
(54)

= x̃− +
(
x(n+1) − x(n)

)
. (55)

After initializing x̃ with this “extrapolated” value, subsequent
iterated dual updates refine the update. This extrapolation is
just an initial condition for the iterative algorithm solving the
dual problem (19). If the dual function D(n+1) were maximized
exactly then this extrapolation would have no effect on x(n+2).

This section outlined the mathematical framework of our
proposed CT reconstruction algorithm. Using duality and group
coordinate ascent, we decomposed the process of solving the
original reconstruction problem (1) into an iterated series of
optimization steps, each considering only a portion of the
original cost function. The next section describes how we
implemented these operations on the GPU.

III. IMPLEMENTATION

For implementing the algorithm described in Section II,
GPUs have two important properties:
• GPUs can provide impressive speedups for highly parallel

workloads, and;
• GPUs often have much less memory than their host

computers.
The first property means that algorithm designers should favor
independent operations with regular memory accesses. Our pro-
posed algorithm consists of five operations, each of which has
an efficient GPU implementation:
• Tomography update (27): Updating the tomography dual

variables corresponding to a group of projection views,
ug , consists of projecting those views, a few vector opera-
tions, and then backprojecting those views. Our algorithm
relies on projections and backprojections of subsets of the
data, and it should be usable with any system model that
is suitable for OS methods. Implementing an efficient CT
system model on the GPU is nontrivial, and we rely on
previous work [25]–[27]. In our experiments, we use the
separable footprints CT system model [28]. Our imple-
mentation uses thousands of threads for both projection
and backprojection to exploit the GPU’s parallelism: we
use one thread per detector cell in projection and one
thread per voxel in backprojection.
• Denoising update (30): Updating a “half-difference” of

elements of v is also highly parallel. We assign one thread
to each element dual variable being updated; each thread
updates two neighboring pixels of the image x̃. The work-
load for each thread is independent, and memory accesses
are both local and regular.
• The nonnegativity update (49) and warm starting opera-

tion (55) both consist entirely of separable, parallelizable
vector operations.

The GPU’s memory constraints are very relevant for large
imaging problems. We performed the experiments in Section IV
on a machine with four NVIDIA Tesla C2050s having 3 GB of
memory apiece. The wide-cone axial experiment in Section IV-
D requires about 894 MB each for the noisy data y and
the statistical weights W when stored in single-precision 32-
bit floating point. Storing the regularizer parameters {βk}
and a single image x would take an additional 907 MB
apiece. Altogether, storing one image and the parameters of
the reconstruction problem would take about 2.7 GB, leaving
no room for the algorithm to store any additional state on a
single GPU!

Because the X-ray CT reconstruction problem (1) is so
memory-intensive, many algorithms will need to periodically
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Fig. 2. Pseudocode for the proposed algorithm. The buffer x̃GPU is updated on the GPU using (17) in every step as the dual variables are updated, and the buffer
bGPU stores other variables as they are needed for computation on the GPU. Updating each view of u involves a one-view projection and backprojection and
transferring a small amount of memory. The view weights wg , data yg , dual variables ug , and majorizer weights mg are transferred to the GPU prior to updating
ug . Only the updated ug needs to be transferred back to the host afterwards.

transfer some data between the GPU and the host computer. If
performed naïvely, these transfers can have a significant effect
on algorithm speed. Fortunately, modern GPUs can perform
calculations and memory transfers simultaneously, so we can
“hide” the latency of these transfers to some degree.

A. Streaming

Our algorithm has many variables: the dual variable v alone
is often as large as 13 image volumes. This is far too much to
fit simultaneously on the GPU for many realistic problem sizes.
Fortunately, each of proposed algorithm’s operations requires a
comparatively small subset of the data. For example, perform-
ing a tomography update requires only x̃, and the data, weights
and dual variables corresponding to the view being updated.
The algorithm in Figure 2 allocates on the GPU only
• a buffer containing x̃,
• an image-sized buffer for storing z or a subset of v,
• the regularizer parameters {βk},

and several negligibly small view-sized buffers on the GPU.
The dual variables are stored primarily on the host computer
and transferred to and from the GPU as needed.

The tomography update requires a relatively small amount of
data: several view-sized buffers. Even for the wide-cone recon-
struction in Section IV-D, each tomography update requires
less than 4 MB of projection-domain data. The projection and
backprojection involved in the tomography update take much
longer to perform than it takes to transfer the dual variables
and weights to and from the GPU. Therefore, the tomography
update is computation-bound. On the other hand, the non-
negativity, denoising, and warm-start operations require whole
images to be transferred to and from the GPU with relatively
small amounts of computation. The speed of these operations
is bounded by the latency of data transfers between the host
computer and the GPU.

Modern GPUs can perform computations and transfer mem-
ory concurrently. This allows us to “hide” some of the cost
of latency-bound operations by performing computation-bound
operations and vice versa. The pseudocode in Figure 2 inter-
leaves computation-bound and transfer-bound operations. After
each large memory transfer is begun, the algorithm performs
Ntomo tomography updates. These tomography updates serve to
“hide” the latency of the large memory transfer by performing
useful work instead of waiting for the relatively slow memory
transfer to finish. Section III-C discusses selecting Ntomo and
other algorithm parameters.

B. Multiple-device implementation

Besides providing more computational resources, imple-
menting a CT reconstruction algorithm on multiple GPUs can
reduce the memory burden on each device. Many “distributed”
algorithms either store additional variables on each node and/or
perform redundant calculations to avoid very expensive inter-
node communications [29]–[32]. These designs assume that
communication between devices is extremely expensive. It may
be tempting to view multiple-GPU programming as a “dis-
tributed” setting, but at least in CT reconstruction, frequent
communication between the host computer and the GPU(s)
seems necessary due to GPU memory constraints. Adding addi-
tional GPUs that regularly communicate to the host need not
significantly increase the total amount of communication the
algorithm performs. Instead of using a more sophisticated “dis-
tributed” algorithm framework [30], we distribute the memory
and computation of the single-GPU algorithm over multiple
devices in a straightforward way.

Let x and y be the transaxial axes of the image volume
and z be the axial direction; i.e., z is parallel to the CT scan-
ner’s axis of rotation. Similar to [33, Appendix E], we divide
all image-sized buffers into Ndevice chunks transaxially, e.g.,
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Fig. 3. Top row: initial FBP and reference images for the helical shoulder case in Section IV-C. Bottom row: images from the proposed algorithm and the state of
the art OS-OGM algorithm on 4 GPUs after about 5 minutes; yellow ovals indicate regions with significant differences. Images were trimmed and displayed in a
[800, 1200] modified Hounsfield unit window. Each panel shows transaxial, coronal, and sagittal slices through the 3D volume.

along the y direction. This approach differs from [30], [31],
where the image is divided axially along z. Each device also
stores two NxNz-pixel padding buffers. Because the image-
sized buffers are the largest buffers our proposed algorithm
stores on the GPU, this decomposition effectively reduces the
memory burden on each device by a factor of almost Ndevice.

1) Tomography update: The buffer x̃ is distributed across
multiple GPUs. Fortunately, the tomography update (27) is
linear in x̃. When updating the group of dual variables ug ,
each device projects its chunk of x̃ and sends the projec-
tion to the host computer. The host accumulates these pro-
jections, performs the update (27), and transmits the dual
update u+

g − u−
g back to each device. Each device backpro-

jects the update into its chunk of the volume, updating the
distributed x̃.

2) Denoising update: Every element of the dual variable v
couples two pixels together. Most of these pairs of pixels lie
on only one device; in these cases, the denoising update is sep-
arable and requires no additional communication between the
GPUs. However, some of the elements of v couple pixels that
are stored on different GPUs. Prior to performing the update for
these elements, the algorithm must communicate the pixels on
the GPU boundaries between devices.

Fortunately, such communication is needed for only roughly
a quarter of the denoising updates. Most of the “half-difference”

groups in which v is updated require no communication. For
example, in Figure 1 suppose that {x1, . . . , x6} were stored on
one device and {x7, . . . , x12} are stored on another. Updating
the green group of differences {v12, v13, v14} would require
communication between the devices, but updating the cyan
group {v9, v10, v11, v15, v16, v17} would not.

3) Nonnegativity update and warm-starting: The nonnega-
tivity update and warm-stating operation are both separable in
the elements of the dual variables and x̃, so implementing these
operations on multiple devices is straightforward.

C. Parameter selection

There are three parameters in the algorithm listed in Figure 2:
Ndenoise, Ntomo and μ. This section gives the heuristics we used
to set the values of these parameters.

Similar to how OS algorithms compute an approximate gra-
dient using only a subset of the projection views, the proposed
algorithm performs an outer update (i.e., increments the itera-
tion n) after updating about Nview/Nsubset views of u, chosen
randomly with replacement. In an outer iteration, the algorithm
also performs Ndenoise half-difference denoising updates. We
heuristically set Ndenoise to be large enough that the expected
number of outer iterations between updating an element of v is
about one. Because each denoising update modifies half of the
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Fig. 4. Convergence plots for the helical shoulder case in Section IV-C. Markers are placed every five equits. The stars in Figure 4c correspond to the images
shown in Figures 3c and 3d. The proposed algorithm on one device converges about as quickly as the state of the art OS-OGM algorithm does on four devices.
Additional devices provide further acceleration.

elements of v corresponding to a single direction, this means
Ndenoise ≈ 2Nr, where Nr is the number of directions along
which the regularizer penalizes differences. For the common
case of penalizing differences in 13 directions around each pixel
(as in our experiments), we set Ndenoise ≈ 26.

This yields the following relationship:

Ntomo =
Nview

2NdenoiseNsubset
. (56)

In the shoulder case below, Nview = 6852. We set Nsubset = 18
and Ndenoise = 23, yielding Ntomo = 8. The wide cone case
had Nview = 984; we used Ndenoise = 27 and Nsubset = 6, thus,
Ntomo = 3. A more principled method to select these parame-
ters is future work.

We chose μ using the mean of the entries of the diagonal
matrix MW, where W contains the weights in the data-fit term
and M contains the entries of all the diagonal majorizers for the
tomography update (28):

μ =

∑M
i=1 [MW]ii

4M
. (57)

This heuristic is intended to yield a well-conditioned tomog-
raphy update (27). Smaller μ would make the outer proximal
majorization tighter (5) at the cost of making the dual problem
(19) possibly more ill-conditioned.

IV. EXPERIMENTS

This section compares the proposed algorithm to several state
of the art accelerated versions of the popular OS algorithm
[12]–[14]. All algorithms were implemented with the OpenCL
GPU programming interface and the Rust programming lan-
guage. Experiments were run on a machine with 48 GB of
RAM and four aging NVIDIA Tesla C2050s with 3 GB of
memory apiece. To measure how well the algorithms performed
on multiple devices we ran each algorithm using 1, 2 and 4
GPUs. Preliminary experiments on an NVIDIA Kepler K5200
(see the supplementary material) indicate that all the algorithms
run faster on newer hardware, but their relative speeds are
unchanged.

TABLE I
TIMINGS FOR THE HELICAL CASE IN SECTION IV-C

A. Ordered subsets

OS algorithms are first-order methods that approximate
the computationally expensive gradient of the data-fit term
∇L (Ax) using a subset of the data [12]–[14]. Without relax-
ation, this approximation can lead to divergence, but in our
experiments we chose parameters that empirically led to limit
cycles near the solution.

Our implementation of the OS algorithms stored the follow-
ing variables on each GPU:
• the current image x,
• the coefficients of the diagonal majorizer D � AᵀWA:

D = diag
j

{
[AᵀWA1]j

}
, (58)

• an accumulator for the current search direction,
• the regularizer parameters {βk}, and
• an additional image-sized variable to store the momentum

state, if applicable [13].
The OS methods require more image-sized buffers than our pro-
posed algorithm. We divided these image-sized volumes across
multiple GPUs transaxially, so the memory burden for each
device decreases almost linearly with the number of devices.
The devices must communicate pixels that lie on an edge
between devices before computing a regularizer gradient; this
happens Nsubset times per iteration.

The OS methods also must compute the majorizer D in
(58) from the patient-dependent statistical weights W before
beginning to iterate. This requires a CT projection and a back-
projection that takes about as much time as an iteration. We
do not count this time in our experiments. On the other hand,
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Fig. 5. Top row: initial FBP and reference images for the wide-cone axial case in Section IV-D. Bottom row: images from the proposed algorithm and the state of
the art OS-OGM algorithm on 4 GPUs after about 5 minutes; yellow ovals indicate regions with significant differences. Images were trimmed and are displayed
in a [800, 1200] modified Hounsfield unit window. Each panel shows transaxial, coronal, and sagittal slices through the 3D volume.

the majorizers used by the proposed algorithm are nominally
independent of patient data and depend only on the scanner
geometry through AgA

ᵀ
g . Because the majorizers {Mg} in

(28) can be precomputed before the scan, but the OS algo-
rithms must compute D (58) after the scan but before beginning
to iterate, the proposed algorithm could be considered be an
additional iteration faster than the OS-based methods.

B. Figures of merit

We ran experiments using two datasets: a helical shoulder
scan using real patient data (Section IV-C) and a wide-cone
axial scan using simulated data in (Section IV-D). For both
cases we measured the progress of all algorithms tested towards
a converged reference x̂ using the root mean squared difference
(RMSD) over an NROI-pixel region of interest (ROI):

RMSD
(
x(n)

)
=

√∥∥x(n) − x̂
∥∥2
MROI

NROI
. (59)

The diagonal binary masking matrix MROI discards “end
slices” that are needed due to the “long object problem” in
cone-beam CT reconstruction but not used clinically [34].

We compared the proposed algorithm and the OS algorithms
using wall-clock time and “equivalent iterations,” or equits
[7]. Because the most computationally intensive part of these
algorithms is projection and backprojection, one equit corre-
sponds to computing roughly the same number of forward and
backprojections:
• For OS, one equit corresponds to a loop through all the

data.
• For the proposed algorithm, one equit corresponds to
Nsubset iterations; e.g., x(Nsubset) and x(2Nsubset) are the out-
puts of successive equits. Over this time, our algorithm
computes about Nview forward and backprojections.

The proposed algorithm performs more denoising updates than
OS and transfers more memory between the host and GPU in an
equit, so each equit of the proposed algorithm takes longer to
perform. Nonetheless, as the following experiments show, the
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Fig. 6. Convergence plots for the wide-cone axial case in Section IV-D. Markers are placed every five equits. The stars in Figure 6c correspond to the images shown
in Figures 5c and 5d. The proposed algorithm converges about as quickly on two devices as OS-OGM does on four. Additional devices accelerate convergence.

proposed algorithm converges considerably more quickly than
the OS algorithms in terms of runtime.

C. Helical shoulder scan

Our first reconstruction experiment uses data from a heli-
cal scan provided by GE Healthcare. The data were 6852
views with 888 channels and 32 rows. We reconstructed the
image on a 512× 512× 109-pixel grid. We used a weighted
squared 	2-norm data-fit term with weights proportional to
estimates of the inverses of the measurements’ variances [1].
The regularizer penalized differences along all 13 directions
(i.e., 26 3D neighbors) with the Fair potential function (39)
with δ = 10 Hounsfield units (HU), and the {βk} were pro-
vided by GE Healthcare. All iterative algorithms were ini-
tialized using the filtered backprojection image in Figure 3a.
Figure 3b shows an essentially converged reference, generated
by running thousands of iterations of momentum-accelerated
separable quadratic surrogates [13] (i.e., OS with one
subset).

We ran the proposed algorithm with Ndenoise = 23 and
Ntomo = 8. We also ran ordered subsets with 12 subsets (OS)
[12], OS with Nesterov’s momentum [13] (FGM), and OS with
a faster acceleration [14] (OGM) on one, two and four GPUs.
Figure 4 shows RMSD in Hounsfield units against time and
equivalent iteration.

Figure 4a shows the proposed algorithm converging consid-
erably faster than the OS-type algorithms in terms of equits,
and unlike the OS-type algorithms will converge to a solu-
tion x̂ if the conditions in Appendix C are satisfied. Figure 4c
shows that the proposed algorithm on one GPUs achieves early-
iteration speed comparable to the fastest OS algorithm with four
GPUs.

Table I lists several timings for the algorithms in this exper-
iment. Although the OS algorithms achieved more dramatic
speedups using multiple devices than the proposed algorithm,
additional devices did help accelerate convergence. Figures 3c
and 3d show images from both algorithms on four devices
after about five minutes of computation. The proposed algo-
rithm produced an image that much more closely matches the
converged reference.

TABLE II
TIMINGS FOR THE AXIAL CASE IN SECTION IV-D

D. Wide-cone axial simulation

Our second experiment is a wide-cone axial reconstruction
with a simulated phantom. We simulated a noisy scan of the
XCAT phantom [35] taken by a scanner with 888 channels
and 256 rows over a single rotation of 984 views. Images
were reconstructed onto a 718× 718× 440-pixel grid. As in
Section IV-C, we used a quadratic data-fit term, the regular-
izer used the Fair potential and penalized differences along all
13 neighboring directions, and the regularizer weights {βk}
were computed using [16]. All iterative algorithms were ini-
tialized with the filtered backprojection image in Figure 5a. An
essentially converged reference image is shown in Figure 5b.

This problem was too large to fit on one 3 GB GPU, so we
present results for two and four GPUs. We ran the same set of
OS algorithms as the previous experiment with 12 subsets. The
proposed algorithm used Ndenoise = 27 and Ntomo = 3.

Figures 6a and 6c show the progress of the tested algorithms
towards the converged reference. The proposed algorithm run-
ning on two devices is about as fast as OS-OGM running on
four devices, and additional devices accelerate convergence
even more. Figures 5c and 5d show outputs from OS-OGM and
the proposed algorithm after about five minutes. After five min-
utes, the OS algorithm still contains noticeable streaks that the
dual algorithm has already removed. At this point, both algo-
rithms have significant distance to the reference at the end slices
of the image.

Table II lists timings for OS-OGM and the proposed algo-
rithm. The trends are similar to the smaller helical case in
Table I. The OS algorithms scale better (1.7× faster) than the
proposed algorithm (1.2× faster) from two to four GPUs, but
the acceleration provided by the proposed algorithm is enough
to compensate for lower multi-device parallelizability.
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V. CONCLUSIONS AND FUTURE WORK

We presented a novel CT reconstruction algorithm that uses
alternating updates in the dual domain. The proposed algorithm
is fast in terms of per-iteration speed and “wall clock” run-
time, and it converges more quickly than state of the art OS
algorithms. If the inner updates are performed with sufficient
accuracy the algorithm converges to the true solution of the sta-
tistical reconstruction problem, and it can handle a wide range
of regularizers including the nondifferentiable total variation
regularizer.

The algorithm also maps well onto the GPU. Many of its
steps are highly parallelizable and perform regular memory
accesses. Although the algorithm stores many variables in the
host computer’s memory, the amount of memory required for
each update is relatively small, and we hide the latency of
transferring variables to and from the GPU by performing
computation-bounded operations. Finally, the proposed algo-
rithm is easily adapted for multiple GPUs, providing further
acceleration and decreasing the memory burden on each GPU.

Due to communication overhead, the acceleration provided
by adding additional GPUs showed diminishing returns. To
achieve further acceleration, multiple computers (or groups of
GPUs on a single node) may need to be combined using a “dis-
tributed” algorithm framework [29], [30]. How to best adapt the
proposed algorithm to these frameworks is future work.

The proposed algorithm introduces a dual variable for each
difference penalized by the edge-preserving regularizer R.
While this memory cost is not too great for a modern com-
puter when regularizing the 13 neighbors around each pixel,
increasing the number of differences computed may make the
proposed approach infeasible. Consequently, adapting the pro-
posed algorithm for patch-based or nonlocal regularizers may
be challenging.

The random process we use for choosing which groups
of the tomography dual variable u and denoising dual vari-
able v to update is basic and almost certainly suboptimal. A
more sophisticated strategy may provide additional accelera-
tion. Different majorizers Mg for the tomography update (27)
and more sophisticated methods to select the algorithm param-
eters Ntomo and Ndenoise are other interesting areas for future
work.

APPENDIX A
FENCHEL DUALITY FOR GPU-BASED RECONSTRUCTION

ALGORITHM

Proving (16) involves a straightforward application of
Fenchel’s duality theorem, see e.g., [36, Theorem 4.4.3]. Define

f (x) =
μ

2

∥∥∥x− x(n)
∥∥∥2
2
, (60)

K =

⎡⎣A
C
I

⎤⎦ . (61)

We write the blocks of elements of Kx as [Kx|u, [Kx]v and
[Kx]z. Define

g (Kx) = L ([Kx]u) + R ([Kx]v) + N ([Kx]z) . (62)

The value attained by the primal update problem (5), can be
written in this terminology as

p = min
x
f (x) + g (Kx) = min

x
J(n) (x) . (63)

The convex conjugates of f and g are [37, pg. 95]

f∗ (x∗) =
1

2μ
‖x∗‖22 + (x∗)ᵀ x(n), (64)

g∗ (q∗) = L∗ (q∗
u) + R∗ (q∗

v) + N∗ (q∗
z) . (65)

The value attained by maximizing the dual function (19) is

d = sup
q∗
−f∗ (−Kᵀq∗)− g∗ (q∗) = sup

q∗
D(n) (q∗

u,q
∗
v,q

∗
z) .

(66)

Note that although (66) apparently differs from the statement in
[36, Theorem 4.4.2] by a sign, the expressions are equivalent.

The domain of f is dom f = R
N , and the image of domf

under K is K dom f = range K. The set over which g is
continuous is cont g = {θ : θz > 0} .

Finally, by the Fenchel duality theorem, because

K dom f
⋂

cont g �= ∅, (67)

and f and g are both convex functions, p = d.

APPENDIX B
EQUIVALENCE OF PRIMAL- AND DUAL-BASED SOLUTIONS

Let the value of x(n+1) produced by solving the primal
update problem (5) be

xp = argmin
x

sup
u,v,z

S(n) (x,u,v, z) . (68)

The value of x(n+1) induced by solving the dual problem (19) is

xd = x̃(n+1)
(
û(n+1), v̂(n+1), ẑ(n+1)

)
, (69)

x̃(n+1) (u,v, z) = argmin
x

S(n) (x,u,v, z) , (70)

where

û(n+1), v̂(n+1), ẑ(n+1) = argmax
u,v,z

D(n) (u,v, z)

= S(n)
(
x̃(n+1) (u,v, z) ,u,v, z

)
.

(71)

Our goal is to show xp = xd.
We proceed by contradiction. Suppose xp �= xd. Because

S(n) is strongly convex and xd minimizes S(n) when the dual
variables are fixed at

(
û(n+1), v̂(n+1), ẑ(n+1)

)
(70),

d = S(n)
(
xd, û

(n+1), v̂(n+1), ẑ(n+1)
)

< S(n)
(
xp, û

(n+1), v̂(n+1), ẑ(n+1)
)

≤ sup
u,v,z

S(n) (xp,u,v, z) = p, (72)

contradicting p = d (see Appendix A). Thus, xp = xd.
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APPENDIX C
CONVERGENCE FOR GPU-BASED RECONSTRUCTION

ALGORITHM WITH APPROXIMATE UPDATES

If the maximizing dual variables are found exactly (i.e., if
(20) holds with equality), then the proposed algorithm is a
simple majorize-minimize procedure (5) and

{
x(n)

}
converges

to a minimizer of the cost function [24]. Finding the exact
maximizers of D(n) is too computationally expensive, so we
settle for approximate optimization. Fortunately, under condi-
tions similar to those for other approximate-update algorithms
like ADMM [21], the proposed algorithm can converge even
with inexact maximization of D(n).

Let ε(n+1)
u , ε(n+1)

v and ε(n+1)
z be the weighted error between

the approximate maximizers u(n+1), v(n+1) and z(n+1) of D(n)

and the true maximizers û(n+1), v̂(n+1), ẑ(n+1):

ε(n)u =
∥∥∥û(n) − u(n)

∥∥∥
AAᵀ

, ε(n)v =
∥∥∥v̂(n) − v(n)

∥∥∥
CCᵀ

,

ε(n)z =
∥∥∥ẑ(n) − z(n)

∥∥∥ . (73)

Assume that we solve the dual maximization subproblem (20)
well enough that these errors are summable:

∞∑
n=1

ε(n)v <∞,
∞∑

n=1

ε(n)u <∞,
∞∑

n=1

ε(n)z <∞. (74)

Let x̂(n+1) be the exact solution to the primal update problem
(5). The error between the approximate update x(n+1) and the
exact update, x̂(n+1), is

ε(n)x =
∥∥∥x(n+1) − x̂(n+1)

∥∥∥
=

∣∣∣∣∣∣x̃(n+1)
(
u(n+1),v(n+1), z(n+1)

)
−x̃(n+1)

(
û(n+1), v̂(n+1), ẑ(n+1)

)∣∣∣∣∣∣
≤ 1

μ

(
ε(n)v + ε(n)u + ε(n)z

)
, (75)

using the form of the dual-induced primal solution (17) and
the triangle inequality. Because the dual update errors are

summable (74), the primal update errors
{
ε
(n)
x

}
are also

summable. Then, by [21, Theorem 3], the proposed algorithm
is a convergent “generalized proximal point algorithm” and
produces a sequence of iterates

{
x(n)

}
that converge to a

minimizer x̂.
In practice, it may be difficult to verify numerically that the

conditions (74) hold, but at least this analysis provides some
sufficient conditions for convergence. In contrast, OS algo-
rithms [12] have no convergence theory (and can diverge even
for well-conditioned problems).
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