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Combining Ordered Subsets and Momentum for
Accelerated X-Ray CT Image Reconstruction
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Abstract—Statistical X-ray computed tomography (CT) recon-
struction can improve image quality from reduced dose scans,
but requires very long computation time. Ordered subsets (OS)
methods have been widely used for research in X-ray CT statistical
image reconstruction (and are used in clinical PET and SPECT
reconstruction). In particular, OS methods based on separable
quadratic surrogates (OS-SQS) are massively parallelizable and
are well suited tomodern computing architectures, but the number
of iterations required for convergence should be reduced for better
practical use. This paper introduces OS-SQS-momentum algo-
rithms that combine Nesterov’s momentum techniques with
OS-SQS methods, greatly improving convergence speed in early
iterations. If the number of subsets is too large, the OS-SQS-mo-
mentum methods can be unstable, so we propose diminishing step
sizes that stabilize the method while preserving the very fast con-
vergence behavior. Experiments with simulated and real 3D CT
scan data illustrate the performance of the proposed algorithms.

Index Terms—Computed tomography (CT), momentum, or-
dered subsets, parallelizable iterative algorithms, relaxation,
separable quadratic surrogates, statistical image reconstruction,
stochastic gradient.

I. INTRODUCTION

S TATISTICALX-ray computed tomography (CT) image re-
construction methods can provide images with improved

resolution, reduced noise and reduced artifacts from lower dose
scans, by minimizing regularized cost-functions [1]–[4]. How-
ever, current iterative methods require too much computation
time to be used for every clinical scan. Many general iterative
algorithms have been applied to statistical CT reconstruction
including coordinate descent [5], [6], preconditioned conjugate
gradient [7], and ordered subsets [8], [9], but these algorithms
all converge slower to the minimizer than is desired for clinical
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CT. This paper describes new image reconstruction algorithms
that require less computation time.
Recent advances on iterative algorithms in X-ray CT mini-

mize the cost function by using splitting techniques [10]–[12]
accompanied with the method-of-multipliers framework [13].
The Chambolle-Pock primal-dual algorithm [14] has been
applied to tomography [15], [16]. Momentum techniques
[17]–[19] that use previous update directions have been ap-
plied to X-ray CT [20]–[22], accelerating a gradient descent
update using the Lipschitz constant of the gradient of the cost
function.
This paper focuses on momentum techniques that have re-

ceived wide attention in the optimization community. Nes-
terov [17], [18] developed two momentum techniques that
use previous descent directions to decrease the cost function
at the fast convergence rate , where counts the
number of iterations. The rate is known to be op-
timal1 for first-order2 optimization methods [23], while ordi-
nary gradient descent has the rate . Nesterov’s mo-
mentum algorithms have been extended to handle nonsmooth
convex functions [19], [24], and have been applied to image
restoration problems [25], [19].
Momentum techniques in X-ray CT [20]–[22] have been used

to accelerate gradient descent methods. However, these “tradi-
tional” momentum algorithms do not show significant improve-
ment in convergence speed compared with other existing algo-
rithms, due to the large Lipschitz constant of the gradient of
the cost function [11]. Here, we propose to combine momentum
techniques with ordered subsets (OS) methods [8], [9] that pro-
vide fast initial acceleration. (Preliminary results based on this
idea were discussed in [26] and [27].) OS methods, an instance
of incremental gradient methods [28], approximate a gradient of
a cost function using only a subset of the data to reduce compu-
tational cost per image-update. Even though the approximation
in the method may prevent the algorithm from converging to the
optimum, OSmethods are widely used in tomography problems
for their -times initial acceleration in run time, where is
the number of subsets, leading to rate in early it-
erations. Remarkably, our proposed OS-momentum algorithms
should have the rate in early iterations providing a
promising acceleration compared to the standard Nesterov
method.

1Nesterov [23] showed that there exists at least one convex function that
cannot be minimized faster than the rate by any first-order op-
timization methods. Therefore, the rate is optimal for first-order
methods in convex problems.
2First-order optimization methods refer to a class of iterative algorithms

that use only first-order information of a cost function such as its value and
its gradient.
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Conventional momentum methods use either the (smallest)
Lipschitz constant or a backtracking scheme to ensure mono-
tonic descent in the gradient step [19]. Here, to reduce compu-
tation, we instead use diagonal preconditioning (or majorizing)
based on the separable quadratic surrogate (SQS) [9] that is used
widely for designing monotonic descent algorithms for X-ray
CT. Another advantage of using SQS is that we can further ac-
celerate the algorithm using the nonuniform approach in SQS
methods that provides larger updates for the voxels that are far
from their respective optima [29].
Combining OS methods with Nesterov’s momentum tech-

niques directly is a practical approach for acceleration but lacks
convergence theory.3 Indeed, we observed unstable behavior
in some cases. To stabilize the algorithm, we adapt the dimin-
ishing step size rule developed for stochastic gradient method
with Nesterov’s momentum in [33]. We view the OS-SQS
methods in a stochastic sense and study the relaxation scheme
of momentum approach [33]. We investigate various relaxation
schemes to achieve both fast initial acceleration and stability
(or convergence) in a stochastic sense. [Note that this relaxation
(or diminishing step size) is not necessary if OS is not used in
the proposed algorithms.]
This paper is organized as follows. Section II explains the

problem of X-ray CT image reconstruction and Section III sum-
marizes the OS-SQS algorithms. Section IV reviewsmomentum
techniques and combines them with OS-SQS. Section V sug-
gests a step size relaxation scheme that stabilizes the proposed
algorithms. Section VI shows experimental results on simulated
and real CT scans. Section VII offers conclusion and discussion.

II. PROBLEM

We consider a (simplified) linear model for X-ray CT trans-
mission tomography

(1)

where is (post-log) measurement data,
is a forward projection operator [34], [35] ( for

all ), is an unknown (nonnegative)
image (of attenuation coefficients) to be reconstructed and

is noise.
A penalized weighted least squares (PWLS) [3], [4] criterion

is widely used for reconstructing an image with a roughness
penalty and a nonnegativity constraint:4

(2)

3Some previous works combine incremental gradient methods [28] and rela-
tively small momentum with convergence analysis [30]–[32], but our focus is to
use larger momentum like Nesterov’s methods with OS methods in tomography
problem for fast initial convergence rate.
4For two vectors and of the same size, the expression (or
) means that is element-wise nonnegative (or element-wise positive).
For two symmetric matrices and of the same size, the notation
(or ) means that is positive semidefinite (or positive definite).

A weighted Euclidean seminorm is defined as for a

vector and a positive semidefinite diagonal matrix .

where the diagonal matrix provides statistical weighting
that accounts for the ray-dependent variance of the noise . Here,
we focus on smooth5 convex regularization functions:

(3)

where , the function is an edge-preserving
potential function such as a Fair potential function in [36], the
parameter provides spatial weighting [37], and

is a finite-differencing matrix considering 26 neigh-
boring voxels in 3D image space. The regularizer (3) makes
the PWLS cost function in (2) to be smooth and strictly
convex with a unique global minimizer [38]. Throughout this
manuscript, we assume that the objective is smooth and
(strictly) convex.
This nonquadratic PWLS cost function cannot be optimized

analytically and requires an iterative algorithm. We propose al-
gorithms combining OS and (relaxed) momentum approaches
that minimize a smooth convex objective function for CT
rapidly and efficiently. Although we focus on PWLS for sim-
plicity, the methods may also apply to penalized-likelihood for-
mulations and to cost functions with nonsmooth regularizers,
which we leave as future extensions.

III. OS-SQS ALGORITHMS

A. Optimization Transfer Method

When a cost function is difficult to minimize, we can
replace it by a (simple) surrogate at the th iteration,
and generate a sequence by minimizing the surrogate as

(4)

This optimization transfer method [39] is also known as a ma-
jorization-minimization approach [40, Sec. 8.3].
To monotonically decrease using an optimization

transfer method, a surrogate function at th iteration
should satisfy the following majorization conditions:

(5)

Surrogates satisfying the conditions in (5) can be constructed
using a Lipschitz constant [19], quadratic surrogates [41], and
SQS methods [9], [29].

B. SQS Algorithms

An optimization transfer method used widely in tomography
problems is a SQS method [9] yielding the following surro-
gate function with a diagonal Hessian (second-order
derivatives) matrix , at th iteration:

(6)

5A smooth function refers to a function that is differentiable with a Lipschitz
continuous gradient [19].
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TABLE I
SQS METHODS

for all , which satisfies (5). The standard SQS algo-
rithm [9] uses the following diagonal majorizing matrix:

(7)

using the maximum curvature [41], where
, and the vector consists of

ones. (This is positive definite because its diagonal entries
are all positive.)
Table I gives the outline of the computationally efficient (and

massively parallelizable) SQS algorithm, where the operation
projects onto a constraint set by a (simple) el-

ement-wise clipping that replaces negative element values to
zero. The sequence generated from the SQS algorithm
in Table I has the following convergence rate [29]:

(8)

for any diagonal majorizing matrix satisfying (5) and (6), in-
cluding (7), by a simple generalization of [19, Th. 3.1]. Based
on (8), the nonuniform approach [29] (see Section V-E) accel-
erates SQS methods by providing larger updates for the voxels
that are far from their respective optima, which we use in our
experiments (in Section VI).
SQS algorithms require many iterations to converge, both due

to the rate in (8) and large values in needed for satis-
fying the conditions (5) and (6) in 3D X-ray CT problem. Thus
we usually combine SQS algorithms with OS algorithms for
faster convergence in early iterations [9], [29].

C. OS Algorithms

Iterative reconstruction requires both forward and back
projection operations and on the fly [34], [35] due to
their large-scale in 3D, and thus computation of the gradient

is very expensive. OS
methods [8] accelerate gradient-based algorithms such as in
Table I by grouping the projection views into subsets evenly
and using only the subset of measured data to approximate the
exact gradient of the cost function.
OS methods define the subset-based cost function

(9)

for , where and
the matrices are submatrices of for the
th subset, and rely on the following “subset balance” approx-

imation [8], [9]:

(10)

TABLE II
OS-SQS METHODS

Using (10), OS methods provide initial acceleration of about
the factor of the number of subsets in run time, by replacing

in Table I with the approximation that
requires about -times less computation, as described in
Table II.
We count one iteration after all subiterations are per-

formed, considering the use of projection operators and
per iteration, and in practice the initial convergence rate is

. (Using large can slow down the algorithm
in run time due to the regularizer computation [42].) OS al-
gorithms approach a limit-cycle because (10) breaks near the
optimum [43]. OS algorithms can be modified to converge to
the optimum with some loss of acceleration in early iterations
[28], [44].

IV. OS-SQS METHODS WITH NESTEROV’S MOMENTUM

To further accelerate OS-SQS methods, we propose to
adapt two of Nesterov’s momentum techniques [17], [18] that
reuse previous descent directions as momentum towards the
minimizer for acceleration. (One could also consider another
Nesterov momentum approach [45] achieving same rate as
other two [17], [18].) This section reviews both momentum
approaches and combines them with OS methods.
The first momentum method [17] uses two previous iterates,

while the second [18] accumulates all gradients. Without using
OS methods, both Nesterov methods provide conver-
gence rate. We heuristically expect that combining momentum
with OS methods will provide roughly rates in
early iterations, by replacing by . The main benefit of
combining OS and Nesterov’s momentum is that we have ap-
proximately times acceleration in early iterations with
subsets, yet the extra computation and memory needed (in using
Nesterov’s momentum approaches) are almost negligible. We
discuss both proposed algorithms in more detail.

A. Proposed OS-SQS Methods With Momentum 1 (OS-mom1)

Table III illustrates the proposed combination of an OS-SQS
algorithm with the momentum technique that is described in
[17], where the algorithm generates two sequences
and , and line 7 of the algorithm corresponds to a mo-
mentum step with Nesterov’s optimal parameter sequence .
Table III reduces to the ordinary OS-SQS algorithm in Table II
when for all .
The non-OS version of Table III satisfies the following con-

vergence rate:
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TABLE III
PROPOSED OS-SQS METHODS WITH MOMENTUM IN [17] (OS-MOM1)

TABLE IV
PROPOSED OS-SQS METHODS WITH MOMENTUM IN [18] (OS-MOM2),

THE NOTATION DENOTES

Lemma 1: For , the sequence generated by the
non-OS version of Table III satisfies

(11)

where is a diagonal majorizing matrix satisfying (5) and (6),
such as (7).
Inequality (11) is a simple generalization of [19, Th. 4.4]. In

practice, we expect the initial rate of OS-mom1 for to
be with the approximation (10), which is the main
benefit of this approach, while the computation cost remains al-
most the same as that of OS-SQS algorithm in Table II. The only
slight drawback of Table III over Table II is the extra memory
needed to store the image .

B. Proposed OS-SQS Methods With Momentum 2 (OS-mom2)

Table IV summarizes the second proposed OS-SQS al-
gorithm with momentum. This second method, OS-mom2,
is based on [18] and uses accumulation of the past (subset)
gradients in line 7. Rather than using the original choice of
coefficient from [18], Table IV uses the
from [46] and [47] that gives faster convergence. Both
and in Table IV lie in the set (e.g., are nonnegative)
because of the projection operation . Furthermore,
is a convex combination of and and thus also
lies in . This may improve the stability of OS-mom2 over
OS-mom1 that lacks this property.
The sequence generated by Table IV with can

be proven to satisfy (11), by generalizing [18, Th. 2]. While the
one-subset version of Table IV provides ,

we heuristically expect from (10) for the OS version to have the
rate in early iterations. (The convergence analysis
of this algorithm in Table IV is discussed stochastically in the
next section.) Compared to Table III, one additional oper-
ation per iteration and extra arithmetic operations are required
in Table IV, but those are negligible.
Overall, the two proposed algorithms in Tables III and IV are

expected to provide fast convergence rate in early
iterations, which we confirm empirically in Section VI. How-
ever, the type of momentum affects the overall convergence
when combinedwith OS. Also, the convergence behavior of two
algorithms is affected by the number and ordering of subsets, as
discussed in Section VI.
The proposed OS-momentum algorithms in Tables III and IV

become unstable in some caseswhen is too large, as predicted
by the convergence analysis in [33]. To stabilize the algorithms,
the next section proposes to adapt a recent relaxation scheme [33]
developedforstochasticgradientmethodswithmomentum.

V. RELAXATION OF MOMENTUM

This section relates the OS-SQS algorithm to diagonally pre-
conditioned stochastic gradient methods and adapts a relaxation
scheme designed for stochastic gradient algorithms with mo-
mentum. Then we investigate various choices of relaxation6 to
achieve overall fast convergence.

A. Stochastic Gradient Method

If one uses random subset orders, then one can view OS
methods as stochastic gradientmethods by defining
as a stochastic estimate of ,where a randomvariable at
th iteration is uniformly chosen from . In this
stochastic setting,OS-SQSmethods satisfy

(12)

for all , for some finite constants , where is the
expectation operator over the random selection of

, and is a bounded feasible set that includes . The fea-
sible set can be derived based on the measurement data [44,
Sec. A.2], and we assume that the sequences generated by the
algorithms are within the set . The last inequality in (12) is
a generalized version of [33, eq. (2.5)] for (diagonally precon-
ditioned) OS-SQS-type algorithms. The vector has
smaller values if we use smaller or the subsets are balanced
as (10). However, estimating the value of :

(13)

where

(14)

6The relaxation scheme involves couple of parameters and we provide a table
of notations in the supplementary material to improve readability.
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TABLE V
PROPOSED STOCHASTIC OS-SQS ALGORITHMS WITH MOMENTUM
(OS-MOM3). IS A REALIZATION OF A RANDOM VARIABLE

appears to be impractical, so Section V-F provides a practical
approach for approximating .

B. Proposed OS-SQS Methods With Relaxed Momentum
(OS-mom3)

Inspired by [33], Table V describes a generalized version of
OS-SQS-momentum methods that reduces to OS-mom2 if one
uses a deterministic subset ordering and a
fixed majorizing diagonal matrix

(15)

For , the algorithm with these choices satisfies (11)
with . However, for , the analysis in [33] illustrates
that using the choice (15) leads to the following:

(16)

for , where ∊ measures
the diameter of the feasible set . This expression reveals that
OS methods with momentum may suffer from error
accumulation due to the last term in (16) that depends on the
error bounds in (12). To improve stability for the case
, we would like to find a way to decrease this last term. Using
a larger constant denominator, i.e., for , would
slow the accumulation of error but would not prevent eventual
accumulation of error [33].
To stabilize the algorithm for , we adapt the relaxed

momentum approach in [33] as described in Table Vwith appro-
priately selected and satisfying the conditions in lines 5
and 6 in Table V. Then, the algorithm in Table V satisfies the
following convergence rate.
Lemma 2: For , the sequence

generated by Table V satisfies

(17)

Proof: See Appendix A.

Lemma 2 shows that increasing can help prevent accu-
mulation of error . Next we discuss the selection of parameters

and .

C. The Choice of and

For any given , we use and the
following rule:

(18)

for all , where and .
The choice (18) increases the fastest among all possible choices
satisfying the condition in line 6 of Table V (see the proof in
Appendix B).7

In this paper, we focus on the choice

(19)

for a nondecreasing and a fixed diagonal matrix
. The choice (19) generalizes [33], enabling more

flexibility in the choice of . We leave other formulations of
that may provide better convergence as future work.

For in (19), computing in (18) becomes

(20)

Overall, the computational cost of Table V with the choices (18)
and (19) remains similar to that of Table IV. Using (18) and
(19), the proposed algorithm in Table V achieves the following
inequality:
Corollary 1: For , the sequence

generated by Table V with the coefficients (18)
and (19) satisfies

(21)

Proof: Use Lemma 2 and the inequality conditions of the
sequence in (18)

for , which can be easily proven by induction.
There are two parameters and to be tuned in (19). Based

on Corollary 1, the next two subsections explore how these pa-
rameters affect convergence rate. (We made a preliminary in-
vestigation of these two parameters in [48].)

D. The Choice of

In Corollary 1, the choice of controls the overall conver-
gence rate. We first consider a constant .

7The coefficient (18) increases faster than the choice for
a constant used in [33], so we use the choice (18) that leads to
faster convergence based on Lemma 2.
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Corollary 2: For and a fixed constant
, the sequence generated by Table V

with the coefficients (18) and (19) satisfies

(22)

Proof: Use the derivation in [33, Sec. 6.3] using

In Corollary 2, the choice provides the rate

(23)

achieving, on average, the optimal rate in the pres-
ence of stochastic noise8. Corollary 2 shows that using
will suffer from error accumulation, using might
provide faster initial convergence than but does not
achieve the optimal rate, and will cause slower overall
convergence rate than . So, we prefer ,
for which we expect to eventually reach smaller cost function
values than the choice (or ) in (15), since
we prevent the accumulation of error from OS methods by in-
creasing the denominator as (19). In other words, the al-
gorithm with and (19) is slower than the choice of (15)
initially, but eventually becomes faster and reaches the optimum
on average.
In light of these trade-offs, we further consider using an in-

creasing sequence that is upper-bounded by 1.5, hoping to
provide fast overall convergence rate. We investigated the fol-
lowing choice:

(24)

for with a parameter . This choice of balances
between fast initial acceleration and prevention of error accu-
mulation. In other words, this increasing can provide faster
initial convergence than a constant (or ), yet
guarantees the optimal (asymptotic) rate as the case

, based on Corollary 1. We leave further optimization
of as future work.

E. The Choice of and

To optimize the choice of in (19), we would like to mini-
mize the upper bound on the right-hand side (RHS) of (22) with
respect to both and , where we consider a fixed for
simplicity. In nonuniform SQS [29], to accelerate algorithms in

8Stochastic gradient algorithms (using only first-order information) cannot
decrease the stochastic noise faster than the rate [49], and the pro-
posed relaxation scheme achieves this optimal rate [33].

Tables I and II, we suggested to use that minimizes the RHS
of (8) among all possible choices of generated by a (general)
SQS technique [9], [29] (details are omitted) and thus satisfies
(5) and (6). Similarly in our proposed methods, we use the fol-
lowing diagonal majorizing matrix that minimizes the RHS
of (22):

(25)

instead of (7), where the vector is defined as

(26)

To choose , we also minimize the upper bound on the RHS
of (22) with respect to . For simplicity in designing , we
ignore the term, and we ignore the “ ” and
“ ” factors added to . The optimal for (sub)iterations is

(27)

It is usually undesirable to have to select the (sub)iteration
before iterating. The choice cancels out the parameter
in (27) leading to the -independent choice

(28)

Since we prefer the choice of that eventually becomes 1.5 for
the optimal rate, we focus on the choice in (28).

F. The Choice of and

The optimized (25) and (28) rely on unavailable pa-
rameters (13) and (26), so we provide a practical
approach to estimate them, which we used in Section VI. In
practice, the sequences in Table V visit only a part of the fea-
sible set , so it would be preferable to compute in (14)
within such part of for estimating , but even that is imprac-
tical. Instead, we use as a practical approximation of
, which is computationally efficient. This quantity measures

the variance of the stochastic estimate of the gradient at the ini-
tial image , and depends on the grouping and number of
subsets. This estimate of may be sensitive to the choice of

, and we leave further investigation as future work.
To save computation, we evaluate simultaneously

with the computation of in (7) or (25) using modified projec-
tors and (see [29, Sec. III-F]) that handle two inputs.
We further approximate (26) by

(29)

for in (28), where is an (unknown) constant, and
a vector is a (normalized) approximation of ,
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which is computed by applying an edge-detector to the filtered
back-projection (FBP) image that is used for the initial as
described in [29, Sec. III-E].9 In low-dose clinical CT, the root
mean squared difference (RMSD10) within the region-of-in-
terest (ROI) between the initial FBP image and the optimal
image is about 30 [HU], i.e., [HU],
so we let [HU] in (29) as a reasonable choice in prac-
tice11 where . Then, our final practical
choice of becomes

(30)

VI. RESULTS

We investigate the convergence rate of the three proposed
OS-momentum algorithms in Tables III, IV, and V, namely
OS-mom1, OS-mom2 and OS-mom3 in this section, for PWLS
reconstruction of simulated and real 3D CT scans. We imple-
mented12 the proposed algorithm in C and ran on a machine
with two 2.27 GHz 10-core Intel Xeon E7-8860 processors
using 40 threads.13

We use an edge-preserving potential function in [29,
eq. (45)] with , and

For simulation data, the spatial weighting was chosen empir-
ically to be

(31)

for uniform resolution properties [37], where

and . We
emulated of the GE product “Veo” for the patient 3D CT
scans. We use a diagonal majorizing matrix in (25) using
the nonuniform approach [29] with (29) for SQS methods. We
investigated 12, 24, and 48 subsets for OS algorithms.
We first use simulated data to analyze the factors that affect

the stability of the proposed OS-momentum algorithms, and fur-
ther study the relaxation scheme for the algorithms. Then we
verify the convergence speed of the proposed algorithm using
real 3D CT scans. We computed the RMSD between the current

9We provide convergence results from using the oracle , compared to its
approximate , in the supplementary material.
10 [HU], where

is the number of voxels within the ROI.
11This choice worked well in our experiments, but may depend on the initial

image, the cost function and the measurements, so improving the choice of is
future work.
12The matlab code of the proposed OS-momentum methods will be available

through the last author’s toolbox [50].
13Our implementation and choice of platform are likely to be suboptimal, and

further exploiting the massively parallelizable nature of the proposed algorithms
will provide additional speedup in run time, which we leave as future work.

and converged14 image within the ROI versus computation time
for 30 iterations to measure the convergence rate.15

A. Simulation Data

We simulated a 888 64 2934 sinogram (number of
detector columns detector rows projection views) from
a 1024 1024 154 XCAT phantom [51] scanned in a he-
lical geometry with pitch 1.0 (see Fig. 1). We reconstructed
512 512 154 images with an initial FBP image in
Fig. 1(a) using a (simple) single-slice rebinning method [52].
Fig. 2 shows that SQS-Nesterov’s momentum methods without
OS algorithms do not accelerate SQS much. OS algorithm
itself can accelerate the SQS algorithm better than Nesterov’s
momentum. Our proposed OS-momentum algorithms rapidly
decrease RMSD in early iterations (disregarding the diverging
curves that we address shortly). However, the convergence
behavior of OS-momentum algorithm depends on several
factors such as the number of subsets, the order of subsets, and
the type of momentum techniques. Thus, we discuss these in
more detail based on the results in Fig. 2, and suggest ways to
improve the stability of the algorithm while preserving the fast
convergence rate.
1) The Number of Subsets: Intuitively, using more subsets

will provide faster initial convergence but will increase insta-
bility due to errors between the full gradient and subset gradient.
Also, performing many subiterations can increase error ac-
cumulation per outer iteration . Fig. 2 confirms this behavior.
2) The Ordering of Subsets: Interestingly, the results of the

proposed algorithms depend greatly on the subset ordering.
Fig. 2 focuses on two deterministic orders: a sequential (OSs)
order, and a bit-reversal (OSb) order [53] that selects each
order-adjacent subsets to have their projection views to be far
apart as described in Table VI. The ordering greatly affects the
build-up of momentum in OS-momentum algorithms, whereas
ordering is less important for ordinary OS methods as seen in
Fig. 2. The bit-reversal order provided much better stability in
Fig. 2(b) compared to the results in Fig. 2(a). Apparently, the
bit-reversal order can cancel out some gradient errors, because
successive updates are likely to have opposite directions due to
its subset ordering rule. In contrast, the sequential ordering has
high correlation between the updates from two adjacent subsets,
increasing error accumulation through momentum. Therefore,
we recommend using the bit-reversal order. [Fig. 3(d) shows
that random ordering (OSr) performed worse than the bit-re-
versal order.]
3) Type of Momentum: Fig. 2 shows that combining OS

with two of Nesterov’s momentum techniques in Tables III and
IV (OS-mom1 and OS-mom2) resulted in different behaviors,
whereas the one-subset versions of them behaved almost the
same. Fig. 2 shows that the OS-mom2 algorithm is more stable
than the OS-mom1 algorithm perhaps due to the different for-
mulation of momentum or the fact that the momentum term

14We ran thousands of iterations of (convergent) SQS algorithm to generate
(almost) converged images .
15Even though the convergence analysis in Section V is based on the cost

function, we plot RMSD rather than the cost function because RMSD is more
informative (see [29, Supplementary material]).
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Fig. 1. Simulation data: a transaxial plane of (a) an initial FBP image , (b) a converged image , and two reconstructed images after 15 iterations (about
680 s) of (c) OSb(24) and (d) OSb(24)-mom2. (Images are cropped for better visualization.)

Fig. 2. Simulation data: convergence rate of OS algorithms (1, 12, 24, and 48 subsets) for 30 iterations with and without momentum for (a) sequential order and
(b) bit-reversal order in Table VI. (The first iteration counts the precomputation of the denominator in (7), and thus there are no changes during the first iteration.)

in Table III is not guaranteed to stay within the set
unlike that in Table IV. Therefore, we recommend using the

OS-mom2 algorithm in Table IV for better stability.
Fig. 1 shows the initial image, the converged image and re-

constructed images after 15 iterations (about 680 s) of conven-
tional OS and our proposed OS-momentum algorithm with 24
subsets and the bit-reversal ordering. The OSb(24)-mom2 re-
constructed image is very similar to the converged image after
15 iterations while that of conventional OS is still noticeably
different. However, even the more stable OS-mom2 algorithm
becomes unstable eventually for many subsets as
seen in Fig. 2; the next subsection shows how relaxation im-
proves stability.
4) The Choice of : Section V-E gives an optimized in (19)

that minimizes the right term of (22), i.e., the gradient error term,

on average. However, since the right term in (22) is a worst-
case loose upper-bound, we can afford to use smaller than

in (28) [or (30)]. In addition, we may use even smaller
depending on the order of subsets. Specifically, the bit-reversal
ordering (OSb) appears to accumulate less gradient error than
other orderings, including random subset orders (OSr), so the
choice (28) [or (30)] may be too conservative. Therefore, we
investigated decreasing the matrix (28) [or (30)] by a factor

as

(32)

Fig. 3 shows the effect of the parameter for various choices
of the number and ordering of subsets. In all cases,
is too conservative and yields very slow convergence. Smaller
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Fig. 3. Simulation data: convergence rate for various choices of the parameter in relaxation scheme of OS-momentum algorithms for (a) 12, (b) 24,
(c) 48 subsets with both sequential (OSs) and bit-reversal (OSb) subset orderings in Table VI for 30 iterations. [The plot (b) and (c) share the legend of (a).] The
averaged plot of five realizations of random subset ordering (OSr) is illustrated in (d) for 24 subsets.

TABLE VI
EXAMPLES OF SUBSET ORDERINGS: TWO DETERMINISTIC SUBSET ORDERING
(OSs, OSb) AND ONE INSTANCE OF RANDOM ORDERING (OSr) FOR OS
METHODS WITH SUBSETS IN A SIMPLE GEOMETRY WITH 24
PROJECTION VIEWS DENOTED AS , WHERE THOSE
ARE REASONABLY GROUPED INTO THE FOLLOWING EIGHT SUBSETS:

values lead to faster convergence, but it failed to sta-
bilize the case of sequential ordering for . However,

worked well for the bit-reversal orderings in the sim-
ulation data, while the choice was too small to sup-
press the accumulation of error within 30 iterations for 48 sub-
sets. Any value of here will eventually lead to stability
as increases with , based on the convergence

analysis (22). Particularly, OSs-mom3 algorithm with
in Fig. 3(b) and (c) illustrates this stability property, where the
RMSD curve recovers from the initial diverging behavior as the
algorithm proceeds.
For Fig. 3(d), we executed five realizations of the random

ordering and show the average of them for each curve. Here, we
found that was too small to suppress the error within
30 iterations, and worked the best. Based on Fig. 3, we
recommend using the bit-reversal order with rather
than random ordering.
Figs. 2 and 3 are plotted with respect to the run time of each

algorithm. Using larger subsets slightly increased the run time
due to extra regularizer computation, but those increases were
minor compared to the acceleration given by OS methods. The
additional computation required for momentum methods was
almost negligible, confirming that introducing momentum ap-
proach accelerates OS algorithm significantly in run time.
Overall, the simulation study demonstrated dramatic acceler-

ation from combining OS algorithm and momentum approach.
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Fig. 4. Patient CT scan data: a sagittal plane of (a) an initial FBP image , (b) a converged image , and two reconstructed images after 15 iterations
(about 865 s) from (c) OSb(24) and (d) OSb(24)-mom3 where .

Fig. 5. Patient CT scan data: convergence rate of OSb methods (24, 48 subsets) for 30 iterations with and without momentum for (a) several choices of ( )
with a fixed and (b) the choices of ( ) for an increasing in (24) with 24 subsets and [HU].

Next, we study the proposed OS-momentum algorithms on pa-
tient data, and verify that the parameters tuned with the simula-
tion data work well for real CT scans.16

B. Patient CT Scan Data

From a 888 32 7146 sinogram measured in a helical
geometry with pitch 0.5, we reconstructed a 512 512 109
shoulder region image in Fig. 4. Fig. 5 shows the RMSD con-
vergence curves for the bit-reversal subset ordering, where the
results are similar to those for the simulation in Fig. 3 in terms
of parameter selection. In Fig. 5(a), the parameter
for both 24 and 48 subsets worked well providing overall fast
convergence. Particularly for , the choice
greatly reduced the gradient approximation error and converged
faster than the unrelaxed OS-momentum algorithm.
In Fig. 5(b), we further investigate the increasing (24)

in (19) that starts from 1 and eventually becomes 1.5 with a
tuning parameter in (24). Larger in (24) leads to a slowly in-
creasing , i.e., smaller values in early subiterations , and
thus, the results in Fig. 5(b) show better initial acceleration from
using large . Particularly, using large for the choice
showed a big acceleration, while that was less effective in the
case due to small values of (32) in (19).

16We provide results from one patient data here, and present additional results
from another real CT scan in the supplementary material.

Fig. 4 shows the initial FBP image, converged, and re-
constructed images from conventional OS and the proposed
OS-momentum with relaxation. Visually, the reconstructed
image from the proposed algorithm is almost identical to the
converged image after 15 iterations.

VII. CONCLUSION AND DISCUSSION

We introduced the combination of OS-SQS and Nesterov’s
momentum techniques in tomography problems. We quantified
the accelerated convergence of the proposed algorithms using
simulated and patient 3D CT scans. The initial combination
could lack stability for large numbers of subsets, depending on
the subset ordering and type of momentum. So, we adapted a
diminishing step size approach to stabilize the proposed algo-
rithm while preserving fast convergence.
We have focused on PWLS cost function in this paper, but the

proposed algorithms can be applied to any convex cost func-
tion for tomography problems, including penalized-likelihood
methods based on Poisson models for pre-log sinogram data.
The ideas also generalize to parallel MRI problems [54], [55].
We are further interested in studying the proof of convergence
of the OS-momentum algorithm for a (bit-reversal) “determin-
istic” order.
The accumulating error of the proposed algorithms in

SectionVishard tomeasuredue to thecomputationalcomplexity,
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and thus optimizing the relaxation parameters for an increasing
in (19) remains an open issue. In our experiments, we

observed that simply averaging all of the subiterations at the
final iteration [29] greatly reduces RMSD, particularly when the
proposed algorithm becomes unstable (depending on the relax-
ation parameters). One could consider this averaging technique
to improve stability, or alternatively one could discard the current
momentum and restart the build-up of the momentum as in [30],
[56]. Such refinements could make OS-momentum a practical
approach for low-doseCT.

APPENDIX A
PROOF OF LEMMA 2

We extend the proof of [33, Th. 7] for diagonally precon-
ditioned stochastic OS-SQS-type algorithms for the proof of
Lemma 2. We first use the following lemma.
Lemma 3: For , the sequence

generated by Table V satisfies

where

that satisfies

and

Proof: Simply generalize the proof of [33, Lemma 2] using
the proof of [18, Lemma 1].

Using Lemma 3 with the fact
leads to the following:

Finally, the expectation on the above equation provides Lemma
2, as in [33, Th. 7].

APPENDIX B
CHOICE OF COEFFICIENTS

Lemma 4: For any given satisfying its constraint in
line 5 of Table V, the generated by and

where and tightly satisfies
the following conditions:

which are equivalent to the conditions in line 6 of Table V.
Proof: Let have the largest possible value 1.

For

(33)

For , we get

(34)

This rule for (34) reduces to those used in Tables III and
IV when for all and .
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