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Comparison of SIRT and SQS for Regularized
Weighted Least Squares Image Reconstruction

Jens Gregor and Jeffrey A. Fessler, Fellow, IEEE

Abstract—Tomographic image reconstruction is often formu-
lated as a regularized weighted least squares (RWLS) problem
optimized by iterative algorithms that are either inherently alge-
braic or derived from a statistical point of view. This paper
compares a modified version of simultaneous iterative reconstruc-
tion technique (SIRT), which is of the former type, with a version
of separable quadratic surrogates (SQS), which is of the latter
type. We show that the two algorithms minimize the same criterion
function using similar forms of preconditioned gradient descent.
We present near-optimal relaxation for both based on eigenvalue
bounds and include a heuristic extension for use with ordered sub-
sets. We provide empirical evidence that SIRT and SQS converge
at the same rate for all intents and purposes. For context, we com-
pare their performance with an implementation of preconditioned
conjugate gradient. The illustrative application is X-ray CT of
luggage for aviation security.

Index Terms—Algebraic reconstruction, preconditioned
gradient descent, regularization, relaxation, weighted least
squares, X-ray CT.

I. INTRODUCTION

I TERATIVE X-ray CT image reconstruction algorithms
are often categorized as being either algebraic or statisti-

cal, with the former typically based on solving a system of
equations centered around a forward model of the imaging
process, and the latter based on maximizing a likelihood of
the measurements. We are interested in the case where the
two are related. For example, Sauer and Bouman [1] showed
that a second-order Taylor-series expansion of a Poisson log-
likelihood leads to a weighted least-squares (WLS) problem.
Separable quadratic surrogate (SQS) methods for optimizing
Poisson log-likelihoods also lead to WLS inner minimization
problems [2], [3]. In these formulations the WLS weights have
statistical meaning related to the modeled variance of the pro-
jection data. We show that statistical weighting is easily incor-
porated into algebraic algorithms such as SIRT (Simultaneous
Iterative Reconstruction Technique) and SART (Simultaneous
Algebraic Reconstruction Technique) [4].

The paper makes two main contributions. First, we estab-
lish similarity of a version of SIRT modified for WLS use
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with a version of the statistically based SQS algorithm. SIRT
and SQS were shown previously to be similar in their basic
unregularized forms [5], [6]. Here we show that they can solve
the same Tikhonov regularized WLS problem using the same
gradient descent approach, only with different diagonal pre-
conditioners. Second, while SIRT is often relaxed by means of
a user-defined step size [7], [8], SQS was not developed with
relaxation in mind. We present a practical approach for select-
ing near-optimal step sizes for both algorithms. We extend the
relaxation to apply also for ordered subsets (OS) which have
become the de facto method for reducing the computational
cost of iterative reconstruction in practice [9]. As part of this
work, a scaling factor is introduced that accounts for potential
imbalance among the subsets.

The SIRT and SQS algorithms considered are those com-
monly encountered in the current literature. For other versions
of SIRT including the original algorithm and generalizations
thereof, see [10]–[13]. A broad class of more contemporary
SIRT-like algorithms can be found in [14]. Generalized ver-
sions of SQS are discussed in [2], [3]. We make no claims
that the results presented in this paper apply to these alterna-
tive algorithms due to differences in their matrix set-up relative
to ours. Comparison with the recently introduced acceleration
of SQS based on Nesterov’s momentum [15], which likely pro-
duces faster convergence than what is shown here, is likewise
considered out-of-scope as a comparable version does not exist
for SIRT. For context, we provide an empirical comparison
with preconditioned conjugate gradient (PCG) which often con-
verges quickly on well-behaved, unconstrained WLS problems.

The illustrative application is X-ray CT of luggage for
aviation security for which imaging challenges include beam
hardening and metal artifacts. Neither is explicitly addressed
by the weighting and the regularization considered here
although the effects of both are likely alleviated somewhat.
We use the luggage data because the presence of dense objects
and the noisy character of the data exacerbates any differences
with respect to data-dependent convergence behavior for the
algorithms compared.

II. NOTATION AND PROBLEM DEFINITION

Let A = [aij ] denote a non-negative m× n system matrix.
Let W = diag{wi} denote an m×m diagonal statistical
weighting matrix with positive diagonal entries wi. That is, we
assume that rows for which wi = 0 have been removed from
A and W with corresponding columns removed from W as
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well. Defined in greater detail below, let Q denote an η × n
regularization matrix where typically η ≥ n.

The general form of the regularized WLS (RWLS) image
reconstruction problem addressed in this paper is

x∗ = argmin
x

Ψ(x) (1a)

Ψ(x) � 1

2
‖Ax− y‖2W + β 1

2‖Qx‖22, (1b)

where ‖u‖2W is shorthand for u′Wu, and x = [xj ] and y =
[yi] denote n× 1 and m× 1 vectors representing the unknown
image and the log-normalized projection data, respectively.
User-defined hyperparameter β establishes a trade-off between
the data term (left norm) and the regularizer term (right norm).

Matrix Q is usually chosen to stress structural character-
istics of x that are undesirable. We focus on two common
regularizers, namely, minimum norm for which ‖Qx‖22 =∑

j x
2
j , and first-order finite differences for which ‖Qx‖22 =∑

j

∑
k∈Nj

(xj − xk)
2, where Nj denotes the set of lexi-

cographical predecessor neighbors. The former compensates
for the linear system solved being ill-conditioned. The lat-
ter penalizes image roughness thereby implicitly encouraging
smoothness. Adoption of other quadratic regularizers is triv-
ial. We assume that Q and A have disjoint null spaces so that
the cost function in (1) is strictly convex and has a unique
minimizer [16].

Preconditioned gradient descent (PGD) solves RWLS prob-
lem (1) by means of the iterative update

x(k+1) = x(k) − αD∇Ψ(x(k)) (2)

where relaxation parameter α defines the step size, D is
a preconditioning matrix, and k denotes iteration. Algebraic
expansion reveals that PGD-RWLS is a Richardson Iteration
for solving a linear system of equations; cf. [17] for definition
and mathematical properties. That is,

x(k+1) = x(k) + αD (A′Wy − (A′WA+ βQ′Q) x(k)).
(3)

Convergence is guaranteed for an arbitrary choice of initial
estimate x(0) if

0 < α <
2

λmax
, (4)

with the fastest convergence rate obtained for

α∗ =
2

λmax + λmin
, (5)

where λmax and λmin denote the largest and smallest eigenval-
ues of matrix DA′WA+ βDQ′Q whose eigenvalues are all
assumed to be strictly positive.

The remainder of the paper is devoted to derivation, anal-
ysis, and comparison of Richardson Iterations for SIRT and
SQS that solve RWLS problem (1) using near-optimal α values.
Well-established properties for eigenvalues are used extensively
without reference, cf. [18], [19]. The shorthand notation M =
M1 + βM2 where M1 = DA′WA and M2 = DQ′Q will
be used for convenience. The smallest and largest eigenvalues
of matrix M corresponding to the particular algorithm studied
will be expressed as λmin(M) and λmax(M), with the explicit
reference to M dropped when the matrix in question is obvious.

III. METHOD: SIRT-RWLS

A. Algorithm Derivation

Define the diagonal m×m and n× n matrices represent-
ing the inverse row and column sums of A, respectively, by
R = diag {1/ri} and C = diag {1/cj}, where ri =

∑
j aij ,

and cj =
∑

i aij . We assume that the column sums cj of A
are positive, so by design C is positive definite. In other words,
every pixel being reconstructed is intersected by one or more
rays1.

The classical SIRT iteration for “solving” Ax = y is

x(k+1) = x(k) + αCA′R (y −Ax(k)). (6)

This iteration is equivalent to gradient descent with diago-
nal preconditioner C of the “geometrically weighted” LS cost
function 1

2‖Ax− y‖2R. Weighting by R means that minimiza-
tion of the residual errors is per unit length, allowing rays that
intersect larger portions of the field of view to tolerate larger
errors than rays that intersect smaller portions. However, statis-
tical weighting is preferable to geometric weighting for noisy
data.

Adding the gradient of the regularizer to (6) leads to a version
of SIRT that solves the following minimization problem [8]:

x∗ = arg min
x

1
2‖Ax− y‖2R + β 1

2‖Qx‖22. (7)

Note use of an R-norm here. Next we modify SIRT using
a simple variable transformation so that it solves RWLS prob-
lem (1) which is based on a W -norm. Let u � Ax− y and
ũ � Mu. Choosing M � WR−1 implies that |u|2W = |ũ|2

R̃

where R̃ = M−1R. More specifically, let Ã = [ãij ] and ỹ =

[ỹi], where ãij � wiriaij and ỹi � wiriyi. Let the diagonal
matrices corresponding to the row and column sums of Ã be
R̃ � diag {1/r̃i} and C̃ � diag {1/c̃j} where r̃i �

∑
j ãij =

wir
2
i and c̃j �

∑
i ãij . The SIRT-like iteration for “solving”

Ãx = ỹ with quadratic regularization is then obtained by left-
multiplying the normal equations associated with the variable
transformed version of (7) by C̃, followed by matrix splitting
of the form C̃Ã′R̃Ã = I − (I − C̃Ã′R̃Ã). The resulting
modified SIRT iteration is given by

x(k+1) = (I − αβC̃Q′Q) x(k) + α C̃Ã′R̃ (ỹ − Ãx(k)).
(8)

The choice of α is discussed in the next two subsections,
first for the unregularized case and then when regularization is
applied.

Using the identities Ã′R̃Ã = A′WA and Ã′R̃ỹ =
A′Wy, SIRT is expressed in terms of the original problem
variables as follows:

x(k+1) = (I − αβC̃Q′Q) x(k) + αC̃A′W (y −Ax(k))

= x(k) − αC̃∇Ψ(x(k)). (9)

1This assumption may not hold for certain helical CT geometries with
padded end slices. Generalizing SIRT to such geometries could be interesting
future work.
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Fig. 1. Value for optimal step size α∗ quickly approaches 2 as eigenvalue λmin

of C̃A′WA drops below 1.

In other words, this modified SIRT algorithm is a Richardson
Iteration that solves RWLS problem (1) using relaxed gradient
descent with C̃ as a diagonal preconditioner. Note that

c̃j =
∑
i

ãij =
∑
i

aijwiri = [A′WA1]j , (10)

where 1 denotes a vector of n ones corresponding to the number
of columns of A. Because C̃ merely serves as a preconditioner,
it is amenable to substitution. Indeed, Section IV presents a
SIRT-like derivation of the SQS algorithm for a different choice
of C̃.

B. Step size for unregularized case

Assuming that A has full column rank and wi > 0, then
Ã′R̃Ã = A′WA is symmetric positive definite. It there-
fore follows that C̃Ã′R̃Ã has strictly positive eigenvalues
because it is similar to the symmetric positive definite matrix
SA′WAS where S = C̃1/2. Optimal step size α∗ given by
(5) thus applies for unregularized SIRT. Obtaining values for
λmax and λmin with respect to C̃A′WA is addressed next.
(See [20]–[22] for convergence analyses.)

The spectral radius of a non-negative matrix is bounded
by its smallest and largest row sums. Since C̃Ã′ and R̃Ã
are both non-negative and stochastic, so is their product
C̃Ã′R̃Ã = C̃A′WA. The row sums of a stochastic matrix
all equal 1. Therefore, λmax = 1, which implies 1 ≤ α∗ �
2/(1 + λmin) < 2. Fig. 1 illustrates this relationship. Empirical
comparisons of residual norms for typical 2D and 3D tomog-
raphy problems have consistently shown that using α = 1.99
requires half as many iterations to achieve the same residual
error as α = 1.00 [7]. This behavior indicates λmin � 1. While
the value of λmin is difficult to establish, we can find a conser-
vative bound to use in its place. The trace of an n× n matrix
equals the sum of its eigenvalues. The smallest eigenvalue can
be no more than the average of all eigenvalues. Hence,

λmin ≤ tr(C̃A′WA)

n
. (11)

C. Step size for regularized case

We now examine selection of optimal step size α∗ for the
regularized case. We use the fact that C̃(A′WA+ βQ′Q) is
similar to S(A′WA + βQ′Q)S where S remains defined as
before. To simplify the notation, let M = M1 + βM2 where
M1 = SA′WAS and M2 = SQ′QS. Note that M1 and
M2 are both Hermitian matrices.

The sum of two positive semi-definite matrices is nonetheless
positive definite, if they have different null spaces. This is the
case for M1 and M2. Optimal step size α∗ thus remains given
by (5) when regularization is applied. We must therefore deter-
mine the values of λmax(M) and λmin(M). As previously
shown [8], this is easily done for minimum norm regulariza-
tion where Q = I . However, for finite difference regularization
where Q �= I , this is challenging. Instead, we derive bounds
that lead to guaranteed convergence while keeping optimality
in mind.

Applying Weyl’s inequalities for the sum of Hermitian
matrices:

λmax(M1) + βλmin(M2) ≤ λmax(M) (12a)

≤ λmax(M1) + βλmax(M2)
(12b)

and

λmin(M1) + βλmin(M2) ≤ λmin(M) (13a)

≤ λmin(M1) + βλmax(M2).
(13b)

SIRT converges to the RWLS minimizer x∗ if (4) holds.
Using the upper bound on λmax(M) given by (12a) as well
as the upper bound on λmin(M) given by (13a) would be valid
but might be overly conservative. As an alternative, we com-
bine the upper bound on the former with the lower bound on
the latter to obtain a step size estimate that satisfies (4) and thus
ensures convergence. That is,

α̃∗ � 2

λmax(M1) + λmin(M1) + β(λmax(M2) + λmin(M2))
.

(14)
We analyze the similarity of α̃∗ to α∗ next by considering

two extreme cases.
Case 1: Suppose λmax(M) and λmin(M) both take on their

lower bounds. Then α̃∗ underestimates α∗ by the factor

α̃∗

α∗ =
λmax(M1) + λmin(M1) + 2βλmin(M2)

λmax(M1) + λmin(M1) + β(λmax(M2) + λmin(M2))
.

We see that near-optimality is achieved when either of
two conditions are met, namely, λmin(M2) ≈ λmax(M2) or
βλmax(M2) � λmax(M1). Sub-optimality results to a greater
or lesser degree when neither of these conditions hold.

Case 2: Conversely, suppose λmax(M) and λmin(M) both
take on their upper bounds. Then α̃∗ overestimates α∗ by the
factor

α̃∗

α∗ =
λmax(M1) + λmin(M1) + 2βλmax(M2)

λmax(M1) + λmin(M1) + β(λmax(M2) + λmin(M2))
.

Note that although α̃∗ may exceed α∗, it is still a valid step
size for SIRT. Near-optimality is again achieved when either
of two conditions are met, this time λmin(M2) ≈ λmax(M2)
or 2βλmax(M2) � λmax(M1). Sub-optimality results to a
greater or lesser degree when neither of these conditions hold.

Restating (14) in terms of the original problem variables
we get

α̃∗ =
2

Λ(C̃A′WA) + βΛ(C̃Q′Q)
(15)
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where

Λ(C̃A′WA) � 1 + λmin(C̃A′WA)

Λ(C̃Q′Q) � λmax(C̃Q′Q) + λmin(C̃Q′Q).

Whether applied to 2D or 3D reconstruction, minimum norm
regularization yields

λmax(C̃Q′Q) = λmax(C̃) = 1/minj c̃j (16a)

λmin(C̃Q′Q) = λmin(C̃) = 1/maxj c̃j . (16b)

For finite difference regularization, we first note that a mul-
tiplicative equivalent to Weyl’s inequalities follows from the
relation between (maximum) eigenvalues and matrix norms,
namely,

λmax(C̃Q′Q) ≤ λmax(C̃)λmax(Q
′Q) ≤ λmax(C̃) ‖Q′Q‖1,

where ‖Q′Q‖1 denotes the maximum absolute column sum.
In 2D, for a first-order neighborhood a typical row of Q′Q
has one entry valued 4 and four entries valued −1, leading to
‖Q′Q‖1 = 8, In 3D, one entry is valued 6 and six entries are
valued −1, leading to ‖Q′Q‖1 = 12. Extending to other neigh-
borhoods is trivial. Combined with singularity of Q′Q carrying
through to C̃Q′Q, we thus have that

λmax(C̃Q′Q) ≤ 4N

minj c̃j
(17a)

λmin(C̃Q′Q) = 0 (17b)

where N is 2 or 3 corresponding to the problem dimensionality.
To summarize, RWLS image reconstruction by means of

SIRT as given by (9) is carried out by applying weighting to
the system matrix and the log-normalized data. Near-optimal
step size α∗ is obtained by substituting (16a) or (17a) into (15)
and using (11). That is,

α̃∗ =
2

1 + tr(C̃A′WA)
n + β

(
v1

minj c̃j
+ v2

maxj c̃j

) , (18)

where v1 = v2 = 1 for minimum-norm regularization and v1 =
4N and v2 = 0 for N-dimensional finite difference regulariza-
tion. Computing the trace term requires the equivalent effort of
one combined forward and back-projection.

IV. METHOD: SQS-RWLS

A. Algorithm Derivation

Although SQS was presented originally for non-quadratic
log-likelihoods like the Poisson model [2], it is equally appli-
cable to RWLS problems like (1) [15], [23], where W is the
reciprocal of the (modeled) variance of yi. The SQS approach
to solving such problems traditionally has been derived using
surrogate functions [2], [23], based on the work of De Pierro
[24], [25]. Here we present a different “SIRT-like” derivation
for the RWLS case that leads to near-optimal relaxation.

The idea is to first specify an appropriate system of equa-
tions of the form Bx = d such that applying the classical SIRT

algorithm (6) to that system solves RWLS problem (1) and then
add relaxation. As noted earlier, classical SIRT solves a geo-
metrically weighted LS problem rather than the statistical WLS
problem, so it requires a judicious choice of B and d to coerce
SIRT into working as desired here.

We first use variable transforms akin to those used in (8) to
rewrite RWLS cost function (1) in a stacked form, namely,

Ψ(x) = 1
2 ‖Bx− d‖2R̂ , (19)

where

B �
[

Ã

βQ̂

]
, d �

[
ỹ
0

]
, R̂ �

[
R̃ 0
0 (1/β)P 2

]

and Q̂ � P−1Q, P � diag {1/pk}, pk �
∑

j |qkj |, and 0
denotes, as appropriate, a vector of zeros whose length is the
number of rows of Q or matrices of zeros whose dimensions
correspond to the number of rows and columns of R̃ and P .

The generalization of SIRT to extend beyond non-negative
matrices by using such absolute sums has been published previ-
ously [20], [26]. That generalization is needed here because Q
has negative elements for finite difference regularizers. It is eas-
ily shown that R̂ = diag {1/r̂i} where the absolute row sums
of B are r̂i =

∑
j |bij |. Denoting the absolute column sums

via Ĉ = diag {1/ĉj} where ĉj =
∑

i |bij |, the classic SIRT
method for “solving” Bx = d is given by

x(k+1) = x(k) + ĈB′R̂ (d−Bx(k)).

Using the identities B′R̂B = A′WA+ βQ′Q and
B′R̂d = A′Wy, we can express this iteration using the
original problem variables while also introducing relaxation:

x(k+1) = (I − αβĈQ′Q) x(k) + αĈA′W (y −Ax(k))

= x(k) − αĈ∇Ψ(x(k)).
(20)

Remarkably, iteration (20) with α = 1 is exactly the usual
SQS iteration (cf. [23 eqn. (17)]) for minimizing RWLS prob-
lem (1). The convergence proof for SQS is normally based
on the fact it decreases Ψ(x(k)) monotonically [27]. One
can also see that convergence follows from the fact that
λmax(ĈB′R̂B) = λmax(ĈA′WA+ βQ′Q)) ≤ 1 by argu-
ments similar to those in [7, eqn. (6)].

We see that the SQS version of SIRT in (20) is also pre-
conditioned gradient descent. The “denominator” elements of
preconditioner Ĉ are given by

ĉj =
∑
i

|bij | = [A′WA1]j + β
∑
k

|qkj | pk. (21)

For 2D and 3D minimum norm regularization, use of Q = I
implies that pk = 1 and

∑
k |qkj | pk = 1 leading to ĉj = c̃j +

β. For first-order finite difference regularization, each row of Q
has at most one entry valued 1 and one entry valued −1 such
that pk ≤ 2. In 2D, each column of Q has at most two entries
valued 1 and two entries valued −1 while in 3D there are at
most three of each. Thus,

∑
k |qkj | pk ≤ 4N leading to ĉj ≤

c̃j + 4Nβ where N again refers to the problem dimensionality.
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For the experimental results presented in Section VI, we used
a simple implementation based on ĉj = c̃j + 4Nβ. This choice
is exact for periodic boundary conditions and is a value upper
bound otherwise.

To summarize, SIRT-RWLS iteration (9) and SQS-RWLS
iteration (20) are identical for solving RWLS problem (1),
except that SIRT uses C̃ and SQS uses Ĉ to precondition the
relaxed gradient descent.

B. Step size for unregularized case

Without regularization, SIRT-WLS and SQS-WLS are iden-
tical. The latter can thus be relaxed using the same method
developed for the former in Section III which typically results
in α∗ = 1.99.

C. Step size for regularized case

When regularization is applied, the optimal step size is
given by

α̂∗ =
2

Λ(ĈA′WA) + βΛ(ĈQ′Q)
(22)

where

Λ(ĈA′WA) � λmax(ĈA′WA) + λmin(ĈA′WA)

Λ(ĈQ′Q) � λmax(ĈQ′Q) + λmin(ĈQ′Q).

We develop the needed eigenvalue bounds next.
With respect to Λ(ĈA′WA), we apply the transforma-

tion Ĉ = ŜC̃ where Ŝ � diag {ŝj} and ŝj � c̃j/ĉj to write
λmax(ĈA′WA) = λmax(ŜC̃A′WA) ≤ λmax(Ŝ). We thus
have that,

Λ(ĈA′WA) ≤ ŝmax + λmin(ĈA′WA)

where ŝmax � maxj ŝj and

λmin(ĈA′WA) ≤ tr(ĈA′WA)

n
.

The bounds for Λ(ĈQ′Q) are established using derivations
from the previous section. For minimum norm regularization,

λmax(ĈQ′Q) = λmax(Ĉ) = 1/minj ĉj (23a)

λmin(ĈQ′Q) = λmin(Ĉ) = 1/maxj ĉj (23b)

while for finite difference regularization,

λmax(ĈQ′Q) ≤ 4N

minj ĉj
(24a)

λmin(ĈQ′Q) = 0. (24b)

Combining the above, we obtain the following near-optimal
step size α∗ expression:

α̂∗ =
2

ŝmax +
tr(ĈA′WA)

n + β
(

w1

minj ĉj
+ w2

maxj ĉj

) , (25)

where w1 = w2 = 1 for minimum-norm regularization and
w1 = 4N and w2 = 0 for N-dimensional finite difference reg-
ularization.

The similarity of step size expressions (18) for SIRT-RWLS
and (25) for SQS-RWLS is striking. Which of the two algo-
rithms has the fastest convergence rate depends on the relation
between α̃∗C̃ and α̂∗Ĉ since these terms constitute the only
difference between them. Note that α̃∗C̃ ≈ α̂∗Ĉ when c̃j 	
w1β since ĉj = c̃j + w1β. We expect this mild condition to be
met for most applications.

V. ORDERED SUBSETS

Typically SIRT and SQS establish the low-frequency compo-
nents of an image faster than the high-frequency components.
Ordered subsets (OS) is a well-known, albeit heuristic tech-
nique for accelerating convergence in early iterations [9]. The
idea is to partition the projection data and the corresponding
system matrix rows and successively perform updates using
these subsets. To simplify the development of OS-SIRT below,
we assume partitioning is done in such a way that each subset
includes a view of all pixels2.

Although quite distinct from one another when originally
presented, the terms SIRT [10] and SART [28] are now used
interchangeably in the literature. SIRT updates the image using
all projections whereas SART uses one projection at a time.
In that sense, SART can be viewed as an OS version of SIRT
where each subset consists of a single projection. Variants
thereof where multiple projections are grouped to form subsets
have been studied for both algorithms, e.g., [29], [30].

In this paper, we use the ordered subsets approach taken for
SQS [23]. Each full iteration uses the gradients of M partial
cost functions of the form

Ψm(x) � 1
2‖Amx− ym‖2Wm

+ β 1
2M ‖Qx‖22

where the m-subscripts indicate that only data for the mth
subset is used. Letting k = nM +m denote the mth sub-
iteration of the nth full-iteration, the relaxed, preconditioned
(incremental) gradient descent algorithms considered can be
written as

x( k+1
M ) = x( k

M ) − αDM∇Ψm(x( k
M )) (26)

where OS-SIRT and OS-SQS correspond to αD = α̃∗C̃ and
αD = α̂∗Ĉ, respectively. The preconditioners are not altered
as a result of the subsets.

In practice, the subset balance condition ∇Ψ(x) ≈
M∇Ψm(x) will hold only approximately and the iterates
approach a limit cycle rather than converging to a mini-
mizer. When the subset imbalance is mild but non-negligible,
OS-SIRT and OS-SQS may exhibit sub-optimal convergence
rates due to step size estimates α̃∗ and α̂∗ being too aggres-
sive. To compensate, we introduce a scaling factor that
reduces the step size based on a measure of the imbalance.
Specifically, we quantify and use the degree to which the
term MΛ(DA′

mWmAm) associated with (26) deviates from

2This assumption may not always hold for OS with helical CT.
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Λ(DA′WA) which plays a central role in the step size
computations.

Consider (temporarily) computing subset specific step size
estimates based on matrices for the individual subsets. That is,

α∗
m =

2

MΛ(DA′
mWmAm) + βΛ(DQ′Q)

(27)

where Λ(DA′
mWmAm) is the only unknown entity.

In a manner similar to when developing relaxation for
SQS-RWLS, let D = SmCm where Sm � diag

{
smj

}
and smj � cmj /dj . Furthermore, let Cm � diag

{
1/cmj

}
where cmj denotes column sums of Am akin to (10). Then
λmax(DA′

mWmAm) = λmax(SmCmA′
mWmAm) ≤ smmax

where smmax � maxj s
m
j . Also, λmin(DA′

mWmAm) ≤
smmaxλmin(CmA′

mWmAm). Rather than introducing a trace
based bound for the right hand side eigenvalue, we use the
approximation λmin(CmA′

mWmAm) ≈ λmin(CA′WA).
These considerations, along with the definition of
SM � maxm smmaxM to eliminate the subset dependency,
lead us to define the following generic OS-PGD step size
estimate

α∗
os =

2

SMΛ(DA′WA) + βΛ(DQ′Q)
. (28)

For OS-SIRT, replacing D by C̃ results in the step size
estimate

α̃∗
os =

2

S̃MΛ(C̃A′WA) + βΛ(C̃Q′Q)
. (29)

where S̃M � maxm maxj(c̃
m
j /c̃j)M .

For OS-SQS, replacing D by Ĉ results in the step size
estimate

α̂∗
os =

2

ŜMΛ(ĈA′WA) + βΛ(ĈQ′Q)
. (30)

where ŜM � maxm maxj(ĉ
m
j /ĉj)M .

When the subsets are well-balanced, SM ≈ 1 and the step
size is comparable to the one developed before considering
ordered subsets. When the subsets are mildly imbalanced, the
use of SM results in a smaller value for the step size. For large
enough M , the subsets will be imbalanced to the point where
neither OS-SIRT nor OS-SQS will come sufficiently close to
x∗. The only viable remedy for this case is to use fewer subsets.

We close this section by reminding the reader that ordered
subsets do not guarantee convergence, unless one gradually
decreases the relaxation parameter [31]. The proposed rescaling
of the step sizes for OS-SIRT and OS-SQS is equally heuris-
tic. We neither claim that the rescaling results in convergent
algorithms nor do we claim that convergence will not occur
in practice without it. The most important contribution of the
above developments is perhaps scaling factor SM and its use
for indicating subset imbalance.

VI. EXPERIMENTAL RESULTS

A. Comparing SIRT and SQS

We implemented SIRT-RWLS and SQS-RWLS as described
above and empirically compared their convergence rates. The

data consisted of luggage scans obtained as part of a U.S.
Department of Homeland Security sponsored project man-
aged by ALERT at Northeastern University (Boston, MA)
[32]. Several suitcase-like containers were scanned using an
Imatron C300 fifth-generation electron-beam X-ray CT scan-
ner. We used two of these data sets denoted DS1 and DS2.
After data rebinning, the system was modeled as a third-
generation equiangular fan-beam geometry having a circu-
lar source trajectory covering 216 degrees over 864 view
angles that were 0.25 degrees apart and 864 detectors span-
ning a range of 41.3 degrees corresponding to a pitch of
approximately 0.048 degrees. The source-to-isocenter distance
was 675 mm while the isocenter-to-detector distance was
900 mm yielding 2.33× magnification. Polynomial beam hard-
ening correction was applied. We reconstructed 512× 512
images using isotropic 0.928 mm wide pixels. Pixels out-
side a circular support region having radius 475 mm were
excluded from consideration. Modeled on area intersection
the resulting 746, 496× 204, 836 system matrix A contained
approximately one billion non-zero elements. Weight matrix
W was formed by partly reversing the log-normalization of
the projection data, i.e., wi = exp(−yi). The beam inten-
sity was unknown and assumed constant which may be
inaccurate.

SIRT and SQS were both initialized using filtered back-
projection for x(0). We ran 256 iterations of each algorithm
for each experiment. Comparisons were based on values of
Ψ(x(k)). We performed OS reconstructions for M = 1, 2, 4,
8, 16, and 32. Non-negativity was imposed on the image after
each subiteration using gradient projection. Reconstructions
were computed for a wide range of β values. We report results
for β = 1.0 as that value produced images that were clearly
regularized but not overly so.

Figures 2 and 3 show β = 1.0 and β = 5.0 reconstruc-
tions respectively for DS1 using SIRT and minimum norm
regularization and DS2 using SQS and finite difference regu-
larization. The intensity values represent modified Hounsfield
units (MHU) for which air has a value of 0 while water has a
value of 1000. The images were cropped to 350× 430 to save
space. DS1 is corrupted by a metal streak artifact that cuts into
the water container. DS2 suffers even more from both metal
streak and metal shading artifacts. These types of corruptions
are not uncommon for luggage data although the particular
data used here was purposely chosen to be challenging. More
importantly, the images produced by SIRT and SQS are indistin-
guishable from one another. For the minimum norm regularized
images of DS1, the numerical difference is within ±0.01 MHU.
For the finite difference regularized images of DS2, the numer-
ical difference is within ±0.10 MHU. Similar results were
obtained for DS1 using finite difference regularization and DS2
using minimum norm regularization.

Table I lists minimum and maximum column sum values
for C̃ as used by SIRT to compute LS and WLS solutions.
Data weighting is seen to lower especially the minimum values.
With the maximum values remaining large, α̃∗ ≈ α̂∗. Due to
the minimum values being lowered quite substantially, Ĉ ≤ C̃
meaning some pixels will be updated more slowly by SQS
than by SIRT. The degree to which that creates a difference in
convergence rates is studied below.
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Fig. 2. DS1 reconstructions using minimum norm regularization: (a) SIRT-RWLS using β = 1.0 and (b) SIRT-RWLS using β = 5.0. Image intensity levels
truncated to 0-1800 MHU.

Fig. 3. DS2 reconstructions using finite difference regularization: (a) SQS-RWLS using β = 1.0 and (b) SQS-RWLS using β = 5.0. Image intensity levels
truncated to 0-1800 MHU.

TABLE I
SIRT COLUMN SUM STATISTICS

Table II provides eigenvalue bounds for the data and reg-
ularizer terms associated with SIRT reconstruction based on
minimum norm (MN) and finite difference (FD) regulariza-
tion for SIRT. Table III provides the similar numbers for SQS.
The largest eigenvalue of the data term equals 1 for SIRT by
design and approximately does so for SQS because ŝmax =
max c̃j/ĉj ≈ 1. We can therefore infer that the conservative
upper bound used for the smallest eigenvalue of the data term
in both cases is at least three orders of magnitude smaller than
the largest eigenvalue indicating SIRT and SQS are tasked with
solving very poorly conditioned problems. We also see that the

TABLE II
SIRT EIGENVALUE BOUNDS

eigenvalue bounds for the regularizer terms are substantially
smaller than those for the data terms.

The above observations indicate that near-optimal step size
values, i.e., α ≈ 2/(1 + ε), should be achievable. Tables IV and
V list the actual step sizes computed for OS-SIRT and OS-SQS
along with the S̃M and ŜM scaling factors. For M = 1, near-
optimal step sizes were indeed produced for both SIRT and
SQS. Increasingly smaller step sizes resulted for larger values
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TABLE III
SQS EIGENVALUE BOUNDS

TABLE IV
OS-SIRT STEP SIZE α̃∗ AS FUNCTION OF M

TABLE V
OS-SQS STEP SIZE α̃∗ AS FUNCTION OF M

of M due to data dependent subset imbalances becoming more
significant. SIRT and SQS behaved the same in this regard.

We computed step size estimates for non-regularized WLS
reconstructions and found them to be comparable to those listed
in Tables IV and V. Regularization thus had negligible impact
on α̃∗ and α̂∗. We also computed step size estimates for pure
LS reconstructions. These were all closer to 2 than the RWLS
estimates but did decrease for larger value of M . This does not
indicate a problem with the system model. Rather, it is related to
physical characteristics of the system geometry, such as the rays
being much wider at one end than at the other, causing pixel
coverage to be both location and view dependent. Combined
with a shortscan source trajectory, the larger angular strides
associated with larger values of M invariably induce subset
column sum differences. This in turn results in a larger value
of the SM scaling factor which causes the step size estimate to
decrease.

While all OS-SIRT and OS-SQS configurations were found
to be convergent, Ψ(x(k)) values for M = 16 and 32 were
larger than those for M = 8 indicating convergence to a limit
cycle. We suspect the reason for this behavior is related to the

Fig. 4. Cost function Ψ(x(k)) plots for application of OS-SIRT to data set DS1
using minimum norm regularization.

Fig. 5. Cost function Ψ(x(k)) plots for application of OS-SQS to data set DS2
using finite difference regularization.

aforementioned data variations. The statistical weighting con-
sidered in this paper is not intended to handle such systematic
data inconsistencies.

Figures 4 and 5 show Ψ(x(k)) for OS-SIRT applied to DS1
and OS-SQS applied to DS2, respectively, using M = 1 and
M = 8 as well α = 1.00 and α = α∗. The axes are scaled to
best show configuration differences. This includes the x-axes
being linear and the y-axes logarithmic. The plots for M ≤ 8
show similar convergence behavior, while the plots for M ≥ 16
confirm the previously mentioned fast convergence to a sub-
optimal Ψ value. Data set DS1 is noisy but cleaner and thus
likely more internally consistent than DS2. This is reflected in
the final Ψ value for DS1 being substantially lower than that
of DS2.

Figures 6 and 7 provide scatter plots of OS-SIRT versus
OS-SQS for the combinations of M and α mentioned above.
A correlation coefficient of 1.00 was computed for all plots
indicating that applying OS-SQS to DS1 and OS-SIRT to DS2
would produce identical plots to those shown in Figs. 4 and 5.
There is in other words, no difference between the convergence
rates of SIRT and SQS for the data tested.



52 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 1, NO. 1, MARCH 2015

Fig. 6. Scatter plots of OS-SIRT versus OS-SQS for DS1 reconstructions using
minimum norm regularization.

Fig. 7. Scatter plots of OS-SIRT versus OS-SQS for DS2 reconstructions using
finite difference regularization.

To more clearly illustrate the speed-up produced by relax-
ation, Figs. 8 and 9 plot the ratio of the interpolated number of
iterations of the slower curve relative to the number of iterations
needed to reach the same value of the faster curve. The two top
plots show that the relaxed versions of OS-SIRT and OS-SQS
decrease Ψ close to α̃∗ and α̂∗ times faster than when using
α = 1.00 for the first 32 iterations for which speed-up factors
were computed. This speed-up clearly indicates that the pro-
posed step size estimates for SIRT, namely, (18) and (29), and

Fig. 8. OS-SIRT speed-up factors for data set DS1 using minimum norm
regularization. Top: α = 1 versus α = α∗. Bottom: M = 1 versus M = 8.

Fig. 9. OS-SQS speed-up factors for data set DS2 using finite difference
regularization. Top: α = 1 versus α = α∗. Bottom: M = 1 versus M = 8.

SQS, namely, (25) and (30), are very effective. The two bottom
plots reconfirm that subset imbalances cause both OS-SIRT and
OS-SQS to quickly approach a near-final value of Ψ whereafter
only slow progress is made in reducing it. Ideally, the speed-up
would be constant at 8 corresponding to the number of subsets
used.

B. Comparison with Conjugate Gradient

SIRT-RWLS and SQS-RWLS are stationary iterative meth-
ods that repeatedly apply a gradient based “correction” to the
current estimate of the solution. As shown above, convergence
is governed by the largest and smallest eigenvalues of the under-
lying iteration matrix. Conjugate gradient (CG), on the other
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Fig. 10. PCG-RWLS reconstructions: (a) DS1 using minimum norm regularization, (b) DS2 using finite difference regularization, (c) DS1 difference between
PCG-RWLS and SIRT-RWLS and (d) DS2 difference between PCG-RWLS and SQS-RWLS. Image intensity levels truncated to 0-1800 MHU for (a) and (b).
Difference image intensity levels truncated to ±1000 MHU for (c) and (d).

hand, is a Krylov subspace method [17] that iteratively forms
an increasingly larger basis for which an approximation to the
solution is found that minimizes the cost function in that sub-
space. Convergence depends on the full eigenvalue spectrum
and is proportional to the square root of the number of iterations
needed by SIRT [14]. Preconditioning (PCG) may accelerate
the convergence rate further.

To compare the behavior of the proposed relaxed versions of
SIRT and SQS with PCG when applied to RWLS problem (1),
we implemented the Polak-Ribiére CG algorithm along with a
Jacobi preconditioner [33], [34]. Enforcing non-negativity on
the solution was not considered as such a constraint is difficult
to efficiently incorporate into a CG algorithm due to the need
for conjugacy preservation among the basis vectors, cf. [35].
All algorithms were regularized using β = 1.0. OS-SIRT and
OS-SQS were executed for M = 8.

Figure 10 shows PCG-RWLS reconstructions for DS1 using
minimum norm regularization and DS2 using finite differ-
ence regularization. The corresponding SIRT-RWLS and SQS-
RWLS reconstructions look similar to those in Figs. 2 and 3.

The difference images reveal that high density objects and
edges exhibit the greatest degree of disparity. As indicated by
Figs. 11 and 12, cost function Ψ(x(k)) has converged to a lower
value for PCG-RWLS than for SIRT-RWLS and SQS-RWLS.
While the images of the former kind thus are “more optimal”
than those of the latter, one could argue that they are quali-
tatively less desirable due to their noisier appearance and the
Gibbs-like ringing which can be seen to accentuate object edges
as well as the metal streak artifacts.

Figures 11 and 12 show that OS-SIRT and OS-SQS converge
faster than both CG and PCG during the early iterations, only
to be overtaken when limit cycle behavior sets in. CG is seen
to converge more slowly than PCG, but eventually reaches the
same limit value due to data inconsistencies causing PCG to
stall out. The cost function limit values are lower than those in
Figs. 4 and 5 due to non-negativity not being enforced.

For reconstructions based on 256 iterations, a speed-up fac-
tor of 16 should be expected. After the first 32 iterations when
limit cycle behavior has not yet become an issue, OS-SIRT and
OS-SQS are seen to have converged to about the same value of
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Fig. 11. Cost function Ψ(x(k)) plots for application of OS-SIRT, CG, and
PCG to data set DS1 using minimum norm regularization.

Fig. 12. Cost function Ψ(x(k)) plots for application of OS-SQS, CG, and PCG
to data set DS2 using finite difference regularization.

Ψ(x(k)) as the CG algorithm. This correlates with the speed-
up factors of 2 and 8 shown to be achieved for the proposed
near-optimal relaxation and the use of eight ordered subsets.
For cleaner data, OS-SIRT and OS-SQS could be run for more
subsets in which case they would converge faster than shown
here, possibly to the point where they converge as fast as the
PCG algorithm. While the convergence rate for PCG could be
improved using a more sophisticated preconditioner, the design
and implementation thereof is by no means easy. Combined
with their ability to effortlessly incorporate non-negativity, OS-
SIRT and OS-SQS thus appear to form viable alternatives to
PCG for solving RWLS problems.

VII. CONCLUSION

We have shown that SIRT can be modified to solve a true
WLS problem, i.e., without the otherwise inherent geometric
weighting. We have also shown that such a version of SIRT
and a commonly used version of SQS solve the same Tikhonov
regularized WLS problem using the same gradient descent
approach except for their (diagonal) preconditioning and step
size. We developed practical methods for selecting the step

sizes for both algorithms. Empirical results suggest these step
sizes to achieve near-optimal relaxation across a wide range of
data. We proposed a heuristic adjustment to the step size esti-
mates that accounts for imbalances when using ordered subsets.
The convergence rates for SIRT and SQS were found to be
indistinguishable.

We compared the proposed relaxed OS-SIRT and OS-SQS
algorithms with an implementation of PCG. Non-negativity was
not applied due to associated implementation complications for
PCG. We found OS-SIRT and OS-SQS to converge faster than
PCG during the early iterations. However, OS-SIRT and OS-
SQS eventually succumbed to limit cycle behavior due to data
inconsistencies, resulting in PCG achieving a lower final value
of the cost function. A qualitative comparison of the associated
images did not support a lower cost function value correspond-
ing to a more desirable image. OS-SIRT and OS-SQS thus
appear to form viable alternatives to PCG for solving RWLS
problems.

While SIRT cannot be extended to handle non-quadratic reg-
ularizers, SQS was designed with these in mind. Compelling
future work includes the possibility of introducing relaxation
of such an extension. Comparison with acceleration based on
Nesterov’s momentum [15] would be interesting in that context.
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