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Regularization Designs for Uniform Spatial
Resolution and Noise Properties in Statistical
Image Reconstruction for 3-D X-ray CT

Jang Hwan Cho* , Member, IEEE, and Jeffrey A. Fessler , Fellow, IEEE

Abstract—Statistical image reconstruction methods for X-ray
computed tomography (CT) provide improved spatial resolution
and noise properties over conventional filtered back-projection
(FBP) reconstruction, along with other potential advantages such
as reduced patient dose and artifacts. Conventional regularized
image reconstruction leads to spatially variant spatial resolution
and noise characteristics because of interactions between the
system models and the regularization. Previous regularization
design methods aiming to solve such issues mostly rely on circulant
approximations of the Fisher information matrix that are very in-
accurate for undersampled geometries like short-scan cone-beam
CT. This paper extends the regularization method proposed in [1]
to 3-D cone-beam CT by introducing a hypothetical scanning ge-
ometry that helps address the sampling properties. The proposed
regularization designs were compared with the original method in
[1] with both phantom simulation and clinical reconstruction in
3-D axial X-ray CT. The proposed regularization methods yield
improved spatial resolution or noise uniformity in statistical image
reconstruction for short-scan axial cone-beam CT.

Index Terms—Cone-beam tomography, iterative reconstruction,
model-based image reconstruction, regularization.

I. INTRODUCTION

S TATISTICAL image reconstruction methods for X-ray
computed tomography (CT) use realistic models that in-

corporate the statistical properties of the noise and the physics
of the data acquisition system [2]. Compared to conven-
tional filtered back-projection (FBP) reconstruction, statistical
methods are more accurate and are more flexible for modeling
different kinds of physical constraints. Potential advantages of
statistical image reconstruction methods over FBP reconstruc-
tion have been demonstrated in terms of noise, resolution, and
artifacts [3]–[5]. Such improvements in image quality become
more apparent in low-dose scans where FBP reconstruction
suffers from increased streak artifacts [6]. However, many
factors need to be addressed to ensure the success of statistical
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methods in clinical applications. Diagnostic readability of
the reconstructed images depends on various characteristics
such as texture, resolution, noise, and artifacts. In particular,
uniformity of the resolution or noise characteristics throughout
the reconstructed image is desirable. This paper proposes new
space-variant regularization designs that yield reconstructed
images with improved uniformity of resolution or noise.
Regularization is necessary to control noise since unregular-

ized image reconstruction leads to excessively noisy images.
By integrating a penalty term into the objective function, regu-
larized image reconstruction methods, such as penalized-likeli-
hood (PL) methods or penalized weighted least squares (PWLS)
methods, provide controlled noise and resolution properties in
the reconstructed image. However, interactions between the reg-
ularization, system models, and statistical weighting cause the
reconstructed images to have object-dependent nonuniform and
anisotropic spatial resolution and noise properties, even for ide-
alized shift-invariant imaging systems [1]. Nonuniformity be-
comes severe for short-scans in cone-beam CT (CBCT), having
angular spans of where is the fan angle of the detector,
compared to full scans, and also for undersampled voxels1 in
3-D axial or helical scanning geometries. In [1], a regularizer
based on the aggregated certainty was developed for 2-D PET
to yield images with approximately uniform spatial resolution,
and that regularizer has been used for other geometries and
modalities [9]–[13]. However, the aggregated certainty regular-
izer does not provide uniform resolution when applied to modal-
ities such as 2-D short-scan fan-beam CT or 3-D cone beam CT
because of asymmetric scan geometries caused by short-scan
orbits or cone-angle effects or both. In [10] and [12], the orig-
inal aggregated certainty regularizer was modified with a di-
agonal scaling factor for 3-D PET. Recently, it was also ex-
tended to both static and multi-frame reconstruction in 3-D PET
by considering spatially variant and frame-dependent sensitivity
[14]. Since the term “aggregated certainty” is less apt for some
imaging modalities such as CT, instead, we use the more gen-
eral term “pre-tuned spatial strength,” which represents that the
purpose of the function is to control the regularization strength
at each voxel, before the reconstruction process, so that the re-
constructed image is guided to have desired characteristics, i.e.,
uniform resolution.

1In this study, “full” sampling does not refer to the complete sampling con-
ditions derived in [7], [8], but rather that the voxel is seen in every projection
view. Thus, “undersampling” indicates the voxel is seen in only some of the
projection views.
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Many previous regularization design methods focussed on
choosing directional coefficients in the regularizer by matching
local characteristics, such as impulse response or correlation
function, of the estimator to target characteristics to achieve
uniform and isotropic resolution [15]–[17] or noise character-
istics [18], [19]. Since both the global regularization param-
eter(s) and the pre-tuned spatial strengths can be incorporated
into directional regularizer coefficients, those regularization de-
sign methods are more general and flexible than simply ad-
justing the regularization strength at each voxel. However, such
design methods require additional computations to design the
coefficients for every voxel, and it is challenging to obtain both
uniformity and isotropy at the same time for either spatial res-
olution or noise characteristics. Especially for the undersam-
pled voxels in cone-beam CT, locally circulant approximations
of the Fisher information matrix are very inaccurate, leading
to imperfect coefficient designs at such locations. Furthermore,
the memory requirement to store all directional coefficients for
every voxel can be burdensome.
This paper extends [1] by proposing a modified pre-tuned

spatial strength function for 3-D CT that yields improved reso-
lution uniformity throughout the reconstructed image including
undersampled voxel locations. We also propose a shift-variant
regularizer that provides approximately uniform noise char-
acteristics in the reconstructed image. Section II reviews the
system models for statistical image reconstruction and some
fundamental concepts such as estimator local impulse response
(LIR) and covariance. Section III proposes new regularizers
by generalizing the system matrix using a hypothetical ge-
ometry concept. Two different regularizers are presented that
yield improved uniform resolution or noise characteristics
in the reconstructed image, respectively. Section IV presents
results using both simulated and real clinical X-ray CT data.
Section V concludes by summarizing the contributions of this
study and suggesting potential future work.

II. SPATIAL RESOLUTION AND NOISE PROPERTIES OF
STATISTICAL IMAGE RECONSTRUCTION

This section first reviews statistical image reconstruction
in terms of the system models for a penalized weighted least
squares (PWLS) formulation. The concept of local impulse
response and estimator covariance is also reviewed, and metrics
for analyzing spatial resolution and noise properties in the
reconstructed image are discussed.

A. Statistical Image Reconstruction

Noisy CT sinogram measurements can be expressed as a dis-
crete vector, , where represents the th line
integral through the object for a given scanning geometry. These
sinogram measurements are related to recorded detector mea-
surements, , by the Beer-Lambert law [20].
For simplicity, we use the following statistical model for the
detector measurements under the mono-energetic assumption

where is the system matrix, is the discrete
vector of the imaged object, , is the

X-ray source intensity for th ray, and denotes the background
contributions from factors such as scatter and crosstalk.
The measurement noise statistics can be modeled using a

probability density function by relating the measurements to
their mean values , and are mainly affected by physical
processes in the data acquisition system. For integrating de-
tectors, the statistics of X-ray measurements is a complicated
mixture of compound Poisson photon distribution and Gaussian
electronic noise [21], [22]. In practice, the following simple
models have been used successfully. A Poisson model for
pre-log data can be written as [23]

(1)

A quadratic approximation of the negative log-likelihood of (1)
implies that the post-log data is a approximately Gaussian
random variable [24], [25]

(2)

CT image reconstruction often is formulated as a minimiza-
tion problem with a PWLS cost function of the form

(3)

(4)

where is a regularizer that controls the spatial resolution
and noise characteristics in the reconstructed image typically by
penalizing local differences between voxels, and

is a statistical weighting matrix. (We assume the mea-
surements are independent so the data covariance is diagonal.)
The coefficients of the statistical weighting matrix should
be the reciprocal of the variances of the measurements by the
Gauss-Markov theorem [26]

In practice, the means of the measurements are unknown so
typically the weights are estimated by a plug-in approach, i.e.,

for transmission tomography. The ideas in this
paper generalize readily to other penalized-likelihood formula-
tions [27].
We consider regularizers having the following form:

(5)

where is the size of the neighborhood, denotes the offset of
the th neighbor in lexicographical order, is a regularization
parameter that balances between the data-fitting term and the
regularizer [28], is a user-defined value that controls local
spatial resolution and noise in the reconstructed image [1, eq.
(35)], is a potential function, denotes 3-D convolution.
We define a first-order differencing function that penalizes th
neighbor as

fessler
Sticky Note
This sqrt term actually belongs as part of the definition of \beta_l in (5) rather than being part of c_l[n,m,z] here.  c_l is just plain finite differences with 1 and -1 only.
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where is the Kronecker impulse at location [0,0,0],
and denote the offset of the th neighbor. The regu-
larization parameter is usually determined based on data-in-
dependent factors like voxel sizes, and a typical choice is

. The parameter also can be selected more systematically
as in [28].
The goal of this paper is to refine the regularizer by de-

signing so that the reconstructed image has more uniform
resolution or noise properties. We want to improve upon the de-
sign proposed in [1] which was

(6)

B. CRC and Ensemble Variance

The local impulse response describes the local spatial reso-
lution properties. We used the following definition of local im-
pulse response at the th voxel [16]:

(7)

(8)

where is a Kronecker impulse at the th voxel, and the gra-
dient operations are matrices with the following elements:

For simplicity we focus on quadratic regularization, for which,
from (8), the local impulse response of the PWLS estimator (4)
is expressed as

(9)

where is the Hessian of the regularizer [1].
One common metric for measuring the local resolution is the

width of the local impulse response at the th voxel, such as the
full-width half-maximum (FWHM) [1]. Alternatively, the peak
amplitude of the local impulse response, called the contrast re-
covery coefficient (CRC) [9], can be used to quantify resolution

(10)

To measure isotropy of an impulse response, the width measure
is more effective. On the other hand, uniformity of the impulse
responses is easier to assess with the CRC. In this paper, we
use the CRC of the local impulse response to quantify spatial
resolution.
With a quadratic regularizer, the closed-form solution of (4)

is given by

(11)

The covariance of the reconstructed image [26] is

(12)
If the weighting is chosen such that , then the
reconstructed image covariance simplifies to

(13)

However, in some cases, additional factors are applied to . For
instance, Parker weighting [29] is applied to sinogram measure-
ments for short-scan FBP reconstruction. It may also be used in
iterative reconstructions so that the temporal resolution of such
reconstructions matches that of FBP reconstruction. Such mod-
ifications change the statistical characteristics of and it no
longer satisfies . We can express the statistical
weighting more generally as

(14)

where the weighting is the conventional choice that satis-
fies , and denotes additional weighting
elements. The reconstructed image covariance (12) with such
statistical weighting can be expressed as follows:

(15)

where .
The noise property of the estimator can be quantified with the

ensemble variance at each voxel

(16)
The entire th column of the covariance matrix (15) represents
the noise correlation of the th voxel in the reconstructed image
with all other voxels

(17)

Our goal is to design regularizers for which or are
approximately uniform over the 3-D object.

III. NEW REGULARIZATION DESIGNS

This section reviews the aggregated certainty regularizer de-
veloped in [1], and then develops new regularization designs
that provide approximately uniform resolution or noise proper-
ties by using an “ideal” system matrix factorization.

A. System Matrix Augmentation Using a Hypothetical
Geometry

The aggregated certainty regularizer in [1] was developed for
shift-invariant systems like 2-D PET. For shift-variant systems
like CBCT, the formulation in [1] must be modified.
The Fisher informationmatrix is shift-variant for both

emission and transmission tomography, causing nonuniform
properties of the reconstructed image. Statistical weighting is
only partially responsible for the nonuniformity; even in the
unweighted case, the Fisher information matrix is also
shift-variant for 3-D PET and CT. In [1], the system matrix
was factored into three elements as follows:

(18)

where denote ray-dependent factors, denote voxel-de-
pendent factors, and represents the object-indepen-
dent geometric portion of the tomographic system response. Ide-
ally we would like to choose and and such that

is shift-invariant. So it can be accurately approximated
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with a circulant matrix (implemented via a fast Fourier trans-
form (FFT)), leading to improved regularizer designs. The ma-
trix representation of (18) is

(19)

Since this representation is not unique, we can try to design each
of the factors to make “very shift-invariant.” The original
design presented in [1] for PET assumed uniform voxel-depen-
dent factors, i.e., , and the ray-dependent part in-
cluded only nongeometric aspects such as detector efficiency
and dead time. In 2-D PET, this leads to geometric factors
for which is nearly shift-invariant. However, this conven-
tional choice of leads to that is highly shift-variant for
3-D cone beamCT and even for 2-D fan-beamCT for short-scan
geometries.
Here, we present a new generalization of (18) that works

in various geometries including 3-D cone beam CT. First, we
consider the geometric sampling properties of and consider
what rays are “missing” that cause to be shift-variant. For
example, in a short-scan fan-beam geometry we are missing
some of the views that would have been acquired with a full
360 scan. As another example, for a CBCT axial scan, we are
missing the data that would have been acquired with a “step
and shoot” set of axial scans. For axial CBCT with a full 360
scan, is approximately shift-invariant over the fully-sam-
pled, so-called “football region,” so it is natural to define to
be a hypothetical systemmatrix having extra detector rows such
that the entire reconstruction volume is contained in its corre-
sponding football region.2 In general, we define to be some

system matrix corresponding to an “ideal,” fully sam-
pled geometry, for which is approximately shift-invariant.
The matrix has the same number of columns as but has
more rows ; the rows of are a subset of the rows
of .
Second, we replace the usual diagonal matrix in (19)

with where is a matrix that selects the rows
of the hypothetical geometry corresponding to those of the
actual geometry . Each row of is entirely zero except for a
single element that is unity. By ordering the rows of appropri-
ately, we can use . An important prop-
erty of the row selection matrix is that is a
diagonal matrix where each diagonal element corresponds to a
value for actual rays and is zero for the hypothetical rays.
With this generalization, we can rewrite the Fisher informa-

tion matrix of the data fitting term as follows:

(20)

Since the Fisher information matrix is fairly concentrated near
its diagonal elements [1, Fig. 2], we approximate (20) as

(21)

2A hypothetical parallel-beam geometry is another option for that may lead
to that is even more shift-invariant; that choice would require an additional
cone-to-parallel rebinning process [30].

where the following factors match the diagonals of (21):

(22)

(23)

(24)

Different choices of and will lead to various designs for
. As an example, for axial cone-beam CT, assuming
, and , will lead to that corresponds to

another axial cone-beam CT geometry with extended detector
rows and full 360 orbit. For some other choices, we may not
have a physical interpretation for the system represented by .
Both the ray- and voxel-dependent factors need to be de-

signed based on the modality, i.e., for SPECT, should be de-
signed to properly model the nonuniform spatial sensitivity and,
for PET, should represent detector characteristics.

B. Regularization With Uniform Resolution Property

Substituting (21) into (9) yields the following approximation
for the local impulse response at the th voxel:

(25)

Typically, the local impulse response is concentrated about
voxel and clearly . Following [1, eq. (34)], we
approximate (25) as the following final expression for the local
impulse response:

(26)

Having analyzed the local impulse response, we focus on de-
signing the coefficients in the regularizer (5); these coef-
ficients affect the Hessian in (26) and thus control the spatial
resolution. Our goal here is to choose to provide approxi-
mately uniform spatial resolution by matching the local impulse
response at the th voxel, , to a target local impulse response,
, i.e., . Using (26), we write the target local impulse

response at a reference point, such as the isocenter, as follows:

(27)

where is the Hessian of a regularizer that provides de-
sirable spatial resolution properties at the reference point.
has the same form as (5) but possibly with a different set of
values, e.g., .
Our design for leads to being approximately locally

shift invariant, and we assume is also approximately lo-
cally shift-invariant [10, eq. (15)]. Taking the Fourier transform
of (26) yields the following expression for the local frequency
response:

(28)
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where denotes 3-D DFT centered at voxel . We want to
match the local frequency response of th voxel to the target
frequency response, i.e.,

(29)

Cross multiplying and simplifying yields

(30)

We design by minimizing the least squares difference be-
tween both sides of (30)

(31)

where denotes nonnegative reals. For the quadratic potential
function, the local frequency response of the regularizer Hessian
is [16, eq. (16)]

(32)

(33)

using the usual approximation for within the neigh-
borhood of , where denotes the discrete-space Fourier trans-
form of and denotes the digital frequency. Without
loss of generality, we choose such that

(34)

Substituting (32) and (34) into (31) yields the following simpli-
fied expression:

(35)
Solving (35), we obtain

(36)

where denotes the inner product for 3-D DFT space, and
denotes the nonnegative real part.

When is approximately shift-invariant, we have

(37)

and the ratio in (36) becomes unity and (36) simplifies to
.

The presented design process can address more general pur-
poses besides obtaining resolution uniformity. For instance, one
may want to match a spatially varying target response that de-
pends on certain characteristics, such as the sampling at each
voxel, so that each voxel would have different resolution prop-
erties for specific purposes.

Our new regularizer for uniform resolution properties in the
reconstructed image (hereafter R-REG) is given by (5) with

(38)

This new pre-tuned spatial strength function (38) has a very sim-
ilar form to that of the original certainty (6) proposed in [1],
but with a different denominator. This new denominator takes
effect when voxel is at an undersampled location. When it
is fully-sampled, the new pre-tuned spatial strength is exactly
the same as the original certainty since
for such locations. For undersampled region, this new denom-
inator decreases the regularization strength, leading to sharper
and possibly noisier reconstructed images compared to using the
original aggregated certainty (6).
To simplify implementation, we approximate (38) as follows:

(39)

Unlike the back-projection of the statistical weighting,
, calculating the sum of rows of the Hessian

, , is sometimes not available or easily
implementable. Empirical results in the supplement verify that
(39) closely approximates (38).
Even though the new regularizer design was derived for

quadratic regularization, it can be also applied to regularizers
with non-quadratic potential functions, following the spirit of
[31]. Of course edge-preserving regularization always leads
to nonuniform spatial resolution near image edges, and this
important characteristic will be retained.
The proposed regularizer (38) attempts to address non-uni-

formities caused by both shift-variant scanning geometries and
by interactions between the regularization and the statistical
weights. The derivation assumed that changes very slowly
within its neighborhood. However, this assumption may fail for
certain regions such as near the edges of a structure. Further-
more, since we are only adjusting the “overall strength” of the
regularization at each voxel and not its “directional strength”
for each neighboring voxel, the proposed regularization cannot
correct for asymmetry in local impulse responses. The proposed
regularization is designed to generate uniform spatial resolution
in terms of CRC. To obtain isotropic local impulse response, one
would need to design the directional coefficients, , at each lo-
cation [17].

C. Regularization With Uniform Noise Property

Using the Fisher information matrix approximation (21), we
approximate the local noise correlation as follows:

(40)
where, using and from (14)

(41)
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(42)

We further approximate (40) as

(43)

using the usual assumption that the local noise correlation
is concentrated about voxel . From (43), the local

noise power spectrum (NPS) of voxel is approximately

(44)

To obtain uniform noise properties, we want to match the
local NPS at the th voxel to a target NPS, i.e., . For
the target, we use the local NPS at a reference point and assume
that the regularizer was chosen to provide a suitable NPS
at that location. Our design goal becomes

(45)

Cross multiplying leads to

(46)

Using (32) and (34), we simplify (46) to

(47)

By defining and , (47) can
be rewritten as follows:

(48)

We design by solving the following least squares problem:

TABLE I
ACRONYMS FOR REGULARIZERS

(49)

The solution to (49) is given by

(50)

Using (37), we simplify (50) as follows:

(51)

where .
Regularizer (51) with (51) (hereafter N-REG) provides

approximately uniform noise properties in the reconstructed
image. The new factors (51) consist of two terms within a
square root. If we ignore the second term, then (51) is approxi-
mately the square root of the modified pre-tuned spatial strength
(38) of R-REG. This suggests that N-REG has decreased
regularization strength at undersampled region compared to
A-REG, but with less spatial variation than R-REG. The second
term of (51) is an “adjustment” that is usually smaller than the
first term.

IV. RESULTS

This section investigates the effect of the proposed regular-
izers (see Table I for acronyms) for PWLS image reconstruc-
tion of 3-D short-scan axial CT using both phantom and clinical
data. For the hypothetical geometry , we assumed ,
and , in (20) and used a full 360 scan with increased
number of detector rows, (see the supplement for a dif-
ferent choice of ).

A. Resolution Uniformity

1) Phantom Simulation: An anthropomorphic phantom sim-
ulation was used to demonstrate the improved spatial resolu-
tion uniformity induced by the regularizer with the modified
pre-tuned spatial strength (38). We used XCAT
phantom [32] with voxel size and

as our true image, (Fig. 1).
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Fig. 1. XCAT phantom used in the simulation.Middle 3 planes ( , , and
planes through the isocenter) are shown. Red and blue dots indicate locations of
the added impulses and the isocenter, respectively. Red lines indicate our axial
ROI, which is from 5th to 60th slices (out of 64). Blue line displays the location
of the center slice. Finally, green lines show the detector coverage.

We used the separable footprint projector [33] to simulate a
monoenergetic, noiseless sinogram for a third-generation axial
cone-beam CT system having channels and
detector rows with spacings and

. We assumed a short-scan protocol that covers an
angular range of 227.6 with evenly spaced views.
We selected the hypothetical geometry to have both extended
views, over 360 , and detector rows, .
The statistical weights were where the
X-ray intensity was .
To obtain local impulse responses at various locations, we

added impulses with amplitude , cor-
responding to approximately 14 HU, to 6 different locations in
each of the selected nine slices (see Fig. 1 for impulse loca-
tions in xy plane). Selected slices were evenly spaced through
z-dimension including isoplane, end slices of region-of-interest
(ROI), and slices outside ROI. Axial ROI was selected as 5th to
60th slices (out of 64) to focus on slices with less short-scan arti-
facts due to insufficient sampling [34]. We used (8) to evaluate
the local impulse response at each location for regularizer de-
signs with both the original aggregated certainty (6) (hereafter
A-REG) and the modified pre-tuned spatial strength function
(38) (R-REG). Both quadratic and edge-preserving regulariza-
tions were investigated to show that the proposed regularizer
design R-REG is applicable to both cases. Image reconstruction
was done on the same grid as the true image. For this exper-
iment, we set the regularization parameter as ,
where was selected based on the full-width at half-maximum
(FWHM) of the local impulse response at the isocenter. To vi-
sualize the shape of the local impulse response more clearly,
we selected a somewhat large value for which the FWHM
was approximately three times the voxel size. Image reconstruc-
tion used the ordered-subsets with double surrogates (OSDS)
method [35]. The number of iterations was 20 with 41 subsets.

First, we present the results for regularization with a quadratic
potential function. Fig. 2 illustrates that the proposed regular-
izer (6) leads to local impulse response functions having more
uniform CRC values than the “conventional” aggregated cer-
tainty design (6), particularly for off-center slices. CRC values
of local impulse responses at different locations become nonuni-
form when using A-REG (6). This nonuniformity becomes se-
vere as we move away from center slices. Using the proposed
regularizer R-REG (38), the CRC values become much more
uniform regardless of the location or the amount of sampling.
R-REG (38) corrects only the nonuniformity of peak values
of local impulse responses. Anisotropy in the shape of the im-
pulse response could be improved by designing directional co-
efficients [17].
Fig. 3 shows profiles through the center of all local impulse

responses to compare CRC values more closely. Using A-REG
(6) leads to resolution nonuniformity even in the center slice,
primarily due to short-scan geometry. Nonuniformity in reso-
lution becomes most severe for locations 2–4 that have much
worse sampling compared to the isocenter due to the axial cone-
beam geometry and the short-scan orbit.
Table II compares the average “mismatch” of the CRC values

for the given six locations across slices and within each slice.
We used the following definition of CRC mismatch

(52)

The proposed regularizer R-REG improved the uniformity of
CRC values throughout the reconstruction volume. The average
CRC mismatch was significantly improved for all locations and
slices, and undersampled voxels were most improved by the
proposed regularizer, as designed. The overall improvement of
CRC mismatch was from 34.5% to 9.9%.
We obtained similar results for edge-preserving regulariza-

tion with a hyperbola potential function [36] given by

(53)

Shape of the local impulse responses does not change much
compared to the quadratic regularization, but CRC values be-
come slightly higher. As in the quadratic case, the original cer-
tainty function (6) yields nonuniform CRC values across mul-
tiple voxel locations, and proposed regularization (38) leads
to more uniform CRC values. Due to their similarity to the
quadratic case, results for edge-preserving regularization are
presented in the supplementary material.
Even though proposed designs were based on approxima-

tions, such as (26), the local impulse response calculated by
(8) yields CRC values that closely match the target CRC. For
both quadratic and edge-preserving regularizers, the proposed
designs provide improved CRC uniformity (see also Table II).
2) Real Clinical Data: We reconstructed a clinical cardiac

CT scan as a image with 70 cm field-of-view
(FOV). Measurements were obtained from a 64 row axial CT
scanner with a short-scan protocol and 480 mAs tube current.
The sinogram dimension was .
We selected the hypothetical geometry to have both extended
views, , and detector rows, . For this
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Fig. 2. Comparison of xy plane through the center of each local impulse response at selected location (see Fig. 1 for the index of locations). Quadratic potential
function was used. Top row is from a center slice (blue line in Fig. 1), middle row is from 1st slice of ROI (red line in Fig. 1), and bottom row is from outside ROI
(green line in Fig. 1). (a) Regularization with original aggregated certainty (6) (A-REG). (b) Regularization with proposed pre-tuned spatial strength (38) (R-REG).

Fig. 3. Comparison of x profiles through the center of each impulse response in Fig. 2. Left column is from a center slice, middle column is from first slice of
ROI, and right column is from outside of ROI. Top and bottom rows represent the regularizers A-REG (6) and the proposed R-REG (38), respectively. (a) A-REG,
center slice. (b) A-REG, first slice of ROI. (c) A-REG, outside ROI. (d) R-REG, center slice. (e) R-REG, first slice of ROI. (f) R-REG, outside ROI.

TABLE II
AVERAGE CRC MISMATCH (52) FOR SELECTED SIX LOCATIONS ACROSS SLICES AND WITHIN EACH SLICE, RESPECTIVELY (UNITS: %).

SEE FIG. 1 FOR THE INDEX OF IMPULSE LOCATIONS

experiment, we set in (5) using [28]. We used ICD with
spatially nonhomogeneous updates [37] for reconstruction. We
show results from both quadratic and edge-preserving regular-
ization using the q-generalized Gaussian potential function with

, , and , [3]

(54)

Fig. 4. compares the reconstructed images with a quadratic
potential function and the following different regularizers:

Uniform, A-REG, and R-REG. When uniform regularization
is used, i.e., , the reconstructed image becomes
over-smoothed even for some locations in the center slice,
illustrating the importance of the pre-tuned spatial strength
function in the regularization. Reconstructed image using
A-REG (6) shows less blurring and sharper spatial resolution
compared to that of the uniform regularizer. However, even in
the center slice, both left and right sides of the reconstructed
image have different resolution. This is consistent with the
result in Fig. 3(a) where the CRC values were nonuniform
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Fig. 4. Reconstructed images using uniform regularizer (first column), A-REG (second column), R-REG (third column), and N-REG (last column). Quadratic
potential function was used. Top row: center slice; bottom row: the last slice of ROI. Display range is [800 1200] (HU).

Fig. 5. Comparison of reconstructed images in Fig. 4 at the last slice of ROI.
From left to right, the images are from full scanmeasurements with A-REG, uni-
form regularizer, A-REG, R-REG, and N-REG, respectively. Top row is from
a region on the left side where sampling is lower than a region on the right side
(bottom row). Display range is [800 1200] (HU).

even in the center slice due to short-scan orbit. The proposed
regularizer R-REG (38) improved resolution uniformity in the
center slice. In the end slices of the ROI, the resolution nonuni-
formity becomes more apparent. A-REG (6) fails to provide
resolution uniformity at under-sampled locations, leading to
visible differences in smoothness between left and right side of
the reconstructed images. On the other hand, the reconstucted
image using R-REG (38) has more uniform resolution proper-
ties even in these undersampled region, causing the structures
in the region to have sharper boundaries.
Figs. 6 and 7 show reconstructed images for edge-preserving

regularization. Clearly, the edge-preserving regularization pre-
serves fine structures, leading to better image quality in terms
of spatial resolution compared to the quadratic regularization.
However, the choice of still affects the resolution uni-
formity in the reconstructed image. The results show similar
tendencies as in the quadratic case: nonuniform resolution and
over-regularization in the undersampled region for uniform reg-
ularizer and A-REG. On the other hand, the proposed R-REG
achieves sharper and more uniform spatial resolution. This sug-
gests that even though the proposed regularizer was derived for

a quadratic regularization, it is also suitable for nonquadratic
regularization.

B. Noise Uniformity

Reconstructed images using R-REG (38) have better reso-
lution uniformity throughout the entire volume, however, this
improvement comes at the expense of the noise properties. As
shown in Fig. 7, the proposed R-REG slightly increases the
noise level in the reconstructed image when edge-preserving
regularization is used. This trade-off is inevitable; thus we
also investigated a regularizer that focuses on noise uniformity
[N-REG, (51)].
1) Phantom Experiment: To compare the regularizers quan-

titativly, we used the GE performance phantom (GEPP) [20].
The phantom consists of a Plexiglas insert with resolution bars,
and tungsten wires in water. The phantom was scanned with
a 64 row axial CT scanner in short-scan mode and 70 mAs
tube current, corresponding to a very low dose scan, and re-
constructed to a grid of with the following
voxel size: and . We se-
lected the hypothetical geometryG to have both extended views,

, and detector rows, . Edge-preserving
regularization with q-generalized Gaussian potential function
(54) was used.
Fig. 8 shows the reconstructed image of the GEPP with

A-REG. Due to small , the end slices of the
ROI did not suffer much from under-sampling. However, the
choice of regularization still leads to different image qualities
in the reconstructed images even in the center slice. To compare
different regularizations fairly, we chose the regularization
parameter such that the noise standard deviation near the
isocenter is similar for all reconstructed images ( 13.7 HU).
We selected seven different homogeneous regions in the center
slice to compare the noise standard deviation (see Fig. 8 for
their locations). Table III illustrates that the proposed N-REG
shows the best noise uniformity, i.e., the average standard
deviation of the noise is reasonably close to that of the region
near the isocenter. Since the FOV is small, the noise standard
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Fig. 6. Reconstructed images using uniform regularizer (first column), A-REG (second column), R-REG (third column), and N-REG (last column). Edge-pre-
serving potential function (54) was used. Top row: center slice; bottom row: the last slice of ROI. Display range is [800 1200] (HU).

Fig. 7. Comparison of reconstructed images in Fig. 6 at the last slice of ROI.
From left to right, the images are from full scanmeasurements with A-REG, uni-
form regularizer, A-REG, R-REG, and N-REG, respectively. Top row is from
a region on the left side where sampling is lower than a region on the right side
(bottom row). Display range is [800 1200] (HU).

Fig. 8. The GEPP used for quantitative comparison of regularizations. Red
boxes indicate the regions selected for noise variance comparison.

deviation does not vary much within the Plexiglas insert. How-
ever, the standard deviation in the wall depends significantly on
the regularization method. Due to the symmetrical shape of the
GEPP and thickness of its wall, the statistical weighting varies
mostly only in the channel dimension (except for the views
affected by an additional weighting such as Parker weighting)
and is “U” shaped. As a result, the uniform regularizer gen-
erally increased noise in the reconstructed image, and both
A-REG and R-REG over-regularized the region far away from
the isocenter, i.e., the walls in this case. Both A-REG and
R-REG showed similar performance as expected, and N-REG
improved noise uniformity in the reconstructed image.
2) Real Clinical Data: Figs. 4–7 compare the reconstructed

images obtained using various regularizers. For both quadratic
and edge-preserving regularizers, the proposed N-REG pro-
vides improved noise uniformity in the reconstructed image.
The uniform regularizer tends to over-smooth the reconstructed
image, and A-REG shows nonuniform noise properties even
in the center slice. Both proposed R-REG and N-REG show
improved image qualities in terms of resolution and noise,
respectively. R-REG shows somewhat sharper reconstructed
image compared to N-REG on end slices for both regularizers,
but has slightly higher and nonuniform noise variance.
Figs. 5 and 7 zoom into the reconstructed images at the last

slice of ROI, which has nonuniform sampling over the slice. A
reconstructed image from full scan measurements with A-REG
was used as a reference with desirable image quality. Since the
imagequality of the reference image is also affectedby the choice
of regularization, it may not be the optimal image for clinical di-
agnosis.However, the under-sampling from short-scanmeasure-
ments is a more dominant factor for the image quality in the dis-
played region, so the chosen reference image shows better image
characteristics compared to the other reconstructed images from
short-scan measurements. For each case, the region on the right
side of the reconstructed image (bottom row) was compared
to the left side of the image that has less sampling (top row).
Uniform regularization clearly leads to over-regularization in
the undersampled region, causing severe noise nonuniformity
within the slice. Even though less severe, A-REG also suffers
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TABLE III
COMPARISON OF THE NOISE STANDARD DEVIATION FOR DIFFERENT REGULARIZERS METHOD.

ALL VALUES ARE IN HOUNSFIELD UNITS (HU)

from the same issue. Proposed regularization N-REG generated
a reconstructed image with better noise uniformity, improving
visibility of structures in the undersampled region.
For both examples, the proposed N-REG (51) provides more

uniform noise characteristics in the reconstructed image com-
pared to other regularization methods.

V. DISCUSSION

We proposed new regularization methods by modifying the
aggregated certainty presented in [1] using the hypothetical ge-
ometry concept. Proposed regularizer R-REG in (38) improved
the spatial resolution uniformity in the reconstructed images,
and N-REG in (51) provided more uniform noise characteristics
compared to the uniform and aggregated certainty regularizers.
The proposed methods, R-REG and N-REG, showed im-

proved spatial resolution or noise uniformity compared to the
conventional uniform regularizer and A-REG in both quadratic
and edge-preserving regularizations and for both simulated
and clinical scans. Even though the proposed regularizers were
targeted to improve the uniformity of either the spatial resolution
or noise, they yielded reconstructed images with qualitatively
improved image quality in terms of resolution or noise compared
to that from the uniform and the aggregated certainty regular-
izers. For quadratic regularization, the noise characteristics have
less effect on the visual image quality than the spatial resolution,
suggesting the use of R-REG to improve spatial resolution
uniformity. On the other hand, since edge-preserving regu-
larization provides improved resolution near edges, the noise
uniformity primarily affects the readability of the reconstructed
image. Thus, N-REG may be preferable for edge-preserving
regularization. However, there are trade-offs between spatial
resolution and noise characteristics. Using either regularizer
may not provide an optimal reconstructed image in terms of
both resolution and noise. Furthermore, it is unknown which
feature is more desirable for diagnosis. Diagnostic readability
for the reconstructed images obtained from both methods needs
to be investigated to determine the best regularizer, and possibly
some combination of methods may be desirable. A compromise
approach that balances spatial resolution and noise characteris-
tics is explored in the supplement as a starting point for further
research.
For experiments in this paper, we used the hypothetical scan-

ning geometry obtained intuitively by extending both rows and
views from given axial cone-beam CT geometry. Another op-
tion would be to use a step-and-shoot set of axial scans. For
some other geometries, determining the appropriate hypothet-
ical geometry may be harder. For example, in helical CT, simply

extending views would not suffice, and since the actual scan-
ning geometry must be a subset of the hypothetical geometry,
we cannot use a very small pitch for . Multiple intertwined
helical geometries is a possible choice. Careful consideration is
required to properly extend the proposed regularization designs
to other scanning geometries.
One minor drawback of using the generalized geometry is

the increased computation for (23). For a geometry having ex-
tended views or rows, since (23) is calculated only once prior to
iterating, the increased computation is insignificant compared
to the computation required for the actual reconstruction. How-
ever, using a step-and-shoot set of axial scans or intertwined
multiple helical scans may require considerable computations.
Fortunately, since calculating (23) only requires the hypothet-
ical geometry, one could tabulate the denominator of (23).
The proposed regularizers improve the uniformity of spatial

resolution or noise by controlling a scaling factor at each voxel.
Even though the design process attempts tomatch the entire local
impulse responses orNPS functions, they are primarilymatching
CRC values and variances at each location due to approxima-
tions (26) and (43). Thus, the proposed regularizers do not cor-
rect anisotropyof these characteristics.Designingdirectional co-
efficients in the regularizer may correct for such anisotropy, and
has shown promising results for the well-sampled regions [16],
[18]. However, the anisotropy of the image characteristics in
the under-sampled region is hard to correct, especially since
thesemethods use locally circulant approximations of the Fisher
information matrix. One possible future work is to extend the
methods in this paper to directional coefficient design.
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