
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 1

Undersampled Phase Retrieval with Outliers
Daniel S. Weller, Member, IEEE, Ayelet Pnueli, Gilad Divon, Ori Radzyner,

Yonina C. Eldar, Fellow, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

Abstract—This paper proposes a general framework for recon-
structing sparse images from undersampled (squared)-magnitude
data corrupted with outliers and noise. This phase retrieval
method uses a layered approach, combining repeated minimiza-
tion of a convex majorizer (surrogate for a nonconvex objective
function), and iterative optimization of that majorizer using a
preconditioned variant of the alternating direction method of
multipliers (ADMM). Since phase retrieval is nonconvex, this
implementation uses multiple initial majorization vectors. The
introduction of a robust 1-norm data fit term that is better
adapted to outliers exploits the generality of this framework. The
derivation also describes a normalization scheme for the regular-
ization parameter and a known adaptive heuristic for the ADMM
penalty parameter. Both 1D Monte Carlo tests and 2D image
reconstruction simulations suggest the proposed framework, with
the robust data fit term, reduces the reconstruction error for
data corrupted with both outliers and additive noise, relative to
competing algorithms having the same total computation.

Index Terms—phase retrieval, sparsity, majorize-minimize,
alternating direction method of multipliers.

I. INTRODUCTION

PHASE retrieval [1]–[3] refers to the problem of recov-
ering a signal or image from magnitude-only measure-

ments of a transform of that signal. This problem appears in
crystallography [4]–[7], optics [8], astronomy [9], and other
areas [10]–[14].

Phase retrieval is inherently ill-posed, as many signals may
share the same magnitude spectrum [15]. To address this
issue, existing phase retrieval algorithms incorporate different
sources of prior information. The Gerchberg-Saxton error re-
duction method [16] of alternating projections uses magnitude
information about both an image and its Fourier spectrum.
Fienup’s hybrid input-output algorithm [17], [18] generalizes
the image domain projection of error reduction to other con-
straints such as image boundary and support information [19]–
[24]. More recently, the alternating projections framework [25]
has been extended to sparse reconstruction [26]–[28]; exam-
ples include compressive phase retrieval [29], the message-
passing method PR-GAMP [30], and the sparse Fienup
method [31]. Other formulations approach phase retrieval
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differently. One method uses rough phase estimates [32] to
dramatically improve reconstruction quality. Another uses a
matrix lifting scheme [33], [34] to construct a semidefinite
relaxation of the phase retrieval problem [35] that may be
combined with sparsity-promoting regularization [33], [36]–
[41]. Graph-based and convex optimization methods in [42]
and greedy algorithms like GESPAR [43] also employ sparsity
for phase retrieval.

Measurements can be very noisy at the resolution desired
in many phase retrieval imaging applications. Many existing
methods either ignore measurement noise or use quadratic
data fit terms. The proposed method, based on [44], employs
a robust 1-norm data fit term, corresponding to the negative
log-likelihood of a Laplace distribution, to improve robustness
to outliers. This data fit term can also be found in some
matrix lifting phase retrieval methods [40], [41], at the expense
of much larger memory and computational resources. Fast
convergence of the proposed reconstruction can be achieved
through a new optimization framework nesting two itera-
tive components: alternating direction method of multipliers
(ADMM) iterations inside each step of an outer majorize-
minimize (MM) algorithm. This framework accommodates
both the desired 1-norm data fit term and sparsity-promoting
regularization. More specifically, majorization yields a tight
convex surrogate for the original nonconvex objective. Intro-
ducing an auxiliary variable enables efficient minimization
of this majorizer via a more easily separable preconditioned
variant of ADMM (ordinary ADMM was used in [44]).

This paper is organized as follows. Section II presents a
robust cost function for the phase retrieval problem. Section III
introduces a convex majorizer for this optimization problem,
and Section IV describes the use of ADMM to solve this
convex subproblem. This section also introduces an optional
regularization parameter normalization factor for Monte Carlo
simulations and an existing adaptive heuristic for the ADMM
penalty parameter [45] to greatly reduce manual tuning of
these parameters. Experiments in Section V validate the pa-
rameter selection approach, compare convergence against a
conventional algorithm applied to the robust phase retrieval
problem, and evaluate the proposed method against existing
sparsity-promoting phase retrieval methods, including a 1-
norm variant of sparse Fienup [31], the message-passing
method PR-GAMP [30], and GESPAR [43]. Supplementary
material includes a comparison with CPRL matrix lifting [37];
however, extreme memory requirements prevented CPRL from
inclusion in the experiments with larger signals. Both 1D
Monte Carlo and 2D simulations demonstrate that the pro-
posed approach improves reconstruction quality versus all
four competing methods when measurements contain both
outliers and additive noise. Section VI discusses the proposed
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framework and algorithm and future extensions.
Code is online at http://people.virginia.edu/∼dsw8c/sw.html.

A supplement with additional experiments and derivations is
available from IEEE Xplore.

II. PROBLEM STATEMENT

The following forward model describes the acquisition of
M squared-magnitude measurements y = [y1, . . . , yM ]T from
a general M×N linear transform A of a length-N (complex-
valued) signal x:

ym = |[Ax]m|2 + νm, m = 1, . . . ,M, (1)

where [Ax]m =
∑N
n=1Amnxn, and [ν1, . . . , νM ]T is a vector

of white Gaussian noise added to the squared-magnitude data.
In contrast to adding noise to the complex Ax before taking
the magnitude, as in [17], [30], this paper uses the post-
magnitude noise model found in [25], [33], [35], [37], [43].
The vector x may represent either a 1D signal or a higher
dimensional image, columnized.

Expanding beyond the conventional model in (1), the pro-
posed framework aims to minimize the sum of negative log-
likelihood functions

∑M
m=1−`(ym; |[Ax]m|q), for q ≥ 1. The

system may measure the magnitude |[Ax]m| (q = 1), its
square (q = 2), or a more general power (q ≥ 1). More
importantly, the data fit term extends more broadly to negative
log-likelihood functions of the form f(h([Ax]m; ym)), where
f(·) is convex and nondecreasing (on R+), and the function

h(t; y)
∆
= |y − |t|q| (2)

of t ∈ C is the data fit error for fixed y ∈ R. For this class of
log-likelihood functions, the majorizer derived in Section III
is convex in x. To account for outliers in squared-magnitude
measurements, this paper explores using the negative log-
likelihood of a Laplace distribution:

−`(ym; |[Ax]m|2) ∝ |ym − |[Ax]m|2|. (3)

This data fit term takes the form of a 1-norm and has a
long history of providing robustness to outliers, even if the
measurement noise does not follow a Laplace distribution [46].

In this work, the 1-norm ‖x‖1 regularizes the ill-posed
phase retrieval problem, promoting image sparsity. Including
a synthesis transform in the sensing matrix A directly extends
this prior to synthesis-form sparsity. The proposed phase
retrieval approach seeks a minimizer x̂ ∈ CN of

arg min
x∈CN

Ψ(x)
∆
=

M∑

m=1

f(h([Ax]m; ym)) + β‖x‖1, (4)

where β > 0 is the regularization penalty parameter, and
h(·; ym) is given by (2). The reconstructed signal x̂ should
be approximately sparse and roughly consistent with the data.

The proposed formulation in (4) shares a 1-norm data fit
term with recent matrix lifting phase retrieval methods [40],
[41], but with greatly reduced memory requirements. Many
other existing approaches implicitly (via projections) or ex-
plicitly minimize the quadratic negative log-likelihood repre-
senting a Gaussian distribution and are not designed to accom-
modate this data fit term, limiting their robustness to outliers.
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Fig. 1. The data fit error h(t; y) (blue solid line) and the convex majorizer
φ(t; s, y) (red dashed line) are plotted for real t, y = 1, and q = 2. Circles
highlight the majorization points s for both examples. In the left figure, s
is in the concave region of h(·; y), so the tangent plane at s is used in this
region. In the right figure, s is located in the convex region of h(·; y), and
the tangent plane at y1/qeı∠s is used instead.

The competing GESPAR method [43] also is restricted to 0-
“norm” sparsity (counts the number of nonzeros).

III. MAJORIZATION OF THE MEASUREMENT OBJECTIVE

The inverse problem formulation of phase retrieval is par-
ticularly difficult to solve because having only magnitude
information makes the data fit term in the objective function
Ψ(x) in (4) nonconvex. Although conventional methods like
nonlinear conjugate gradients (NLCG) [47] can approximately
minimize Ψ(x), the more sophisticated approach proposed
in this section facilitates much more rapid convergence. This
approach begins by constructing a convex majorizer for Ψ(x).
Section IV describes an iterative method for minimizing this
majorizer effectively.

A. Derivation of the Majorizer

A majorizer φ(t; s, y) of the function h(t; y) of t in (2)
satisfies two properties: φ(s; s, y) = h(s; y), and φ(t; s, y) ≥
h(t; y), for all t. Decreasing the majorizer value also reduces
the value of the original function [48], so h(t; y) < h(s; y)
if t satisfies φ(t; s, y) < φ(s; s, y). Assuming f(·) is convex
and nondecreasing, and the majorizer φ(t; s, y) is convex in
its argument t, f(φ(t; s, y)) is also convex in t and majorizes
f(h(t; y)) [49]. The approach below for finding φ(t; s, y) is
related to the concave-convex procedure [50], [51].

Let h+(t; y) = |t|q − y, and h−(t; y) = y − |t|q be
functions of t. Then, h(t; y) = max{h+(t; y), h−(t; y)}. As
q ≥ 1, h+(t; y) is already convex in t, but h−(t; y) is
concave in t. When y ≤ 0, h(t; y) = h+(t; y). Otherwise,
a majorizer φ−(t; s, y), convex in t, replaces h−(t; y). In this
case, φ(t; s, y)

∆
= max{h+(t; y), φ−(t; s, y)} is convex in t

and majorizes h(t; y).
Since h−(t; y) is concave in t, its tangent plane about some

point s ∈ C is a suitable convex majorizer:

φ−(t; s, y) = (y − |s|q) + (−q|s|q−1)Re{e−ı∠s(t− s)}
= y + (q − 1)|s|q − q|s|q−1Re{te−ı∠s}. (5)

When |s|q < y, φ−(t; s, y) is tight among convex majorizers.
However, when |s|q > y, s is in the convex region of h(·; y),
and the tangent plane for s̄ ∆

= y1/qeı∠s majorizes h−(t; y)
more tightly in the range of |t|q ≤ y.
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Algorithm 1 Majorize-minimize scheme for solving (4).
Require: Imm, εmm, random s0 ∈ CM .

for i = 1 : Imm do
xi ← arg min

x
Φ(x; si−1). (8)

si ← Axi. (9)

if ‖si − si−1‖ < εmm then break
end if

end for

In summary, the majorizer for the function h(t; y) of t is

φ(t; s, y) =





h+(t; y), y ≤ 0,

max{h+(t; y), φ−(t; s, y)}, |s|q < y,

max{h+(t; y), φ−(t; s̄, y)}, 0<y ≤ |s|q.
(6)

In the first case, h(t; y) is already convex in t. The second and
third cases correspond to s being in the concave and convex
regions of h(·; y), respectively. Figure 1 portrays examples
of the function h(t; y) and its surrogate φ(t; s, y) in both the
second (s in concave region) and third (s in convex region)
cases. Substituting φ(t; s, y) for h(t; y) in the objective Ψ(x)
in (4) yields its majorizer Φ(x; s), convex in x:

Φ(x; s) =
M∑

m=1

f(φ([Ax]m; sm, ym)) + β‖x‖1. (7)

Having constructed Φ(x; s), the sequel describes how to
minimize Ψ(x) using this function.

B. Majorize-Minimize (MM) Algorithm

The proposed approach to solving (4) uses the majorize-
minimize (MM) scheme [48], [52] outlined in Algorithm 1.
Each iteration of this MM method decreases Ψ(x) by mini-
mizing Φ(x; s) over x, converging to a critical point of Ψ(x)
when Ψ(·) and Φ(·; s) are differentiable at every non-critical
majorization point x = s. Running the algorithm for multiple
different initial choices of s0 increases the chance of finding
a global optimum of the original nonconvex problem. Many
phase retrieval methods also employ multiple initializations,
as do nonconvex solvers more generally.

IV. SOLVING THE MAJORIZED OBJECTIVE WITH ADMM

Jointly minimizing M pairwise maximum functions to
minimize (7) directly would be combinatorially hard. Instead,
introducing an auxiliary vector u = Ax, each function in the
summation in (7) depends only on a single um = [u]m. The
constrained problem using this auxiliary variable is

{xi+1,u} ← arg min
x,u

M∑

m=1

f(φ(um; sm, ym)) + β‖x‖1,

s.t. um = [Ax]m, m = 1, . . . ,M. (10)

The alternating direction method of multipliers (ADMM)
framework [45], [53]–[55] uses the augmented Lagrangian of

Algorithm 2 ADMM method for solving (11).

Require: IADMM, εADMM, x0, u0, b0, y, β, µ.
for i = 1 : IADMM do

xi ← arg min
x

β‖x‖1+ µ
2 ‖Ax−(ui−1−bi−1)‖22. (12)

for m = 1 : M do
dm ← [Axi + bi−1]m.

uim ← arg min
u

f(φ(u; sm, ym))+ µ
2 |u−dm|2. (13)

end for
bi ← bi−1 + Axi − ui. (14)

if ‖xi − xi−1‖ < εADMM then break
end if

end for

this constrained problem:

LA(x,u; b)
∆
=

M∑

m=1

f(φ(um; sm, ym)) + β‖x‖1

+ µ
2 ‖Ax− u + b‖22, (11)

where b ∈ CM and µ > 0 are the scaled dual vector (Lagrange
multipliers) and augmented Lagrangian penalty parameter,
respectively. The implementation of ADMM in Algorithm 2
minimizes (11), subject to u = Ax. To simplify notation here
and in subsequent sections, define dm = [Ax+ b]m. Initially,
x0, u0, and b0 are set to 0. In later iterations, the last x, u,
and b from the previous run of ADMM “warm-start” the next
run. Methods for updating x and u depend on the specific A
and f(·) used. This paper provides details for general A with
the 1-norm data fit term.

A. Updating x

The update for x in the preceding ADMM framework has
the extensively studied synthesis form of compressed sensing
(CS) [56]–[59]. Various CS algorithms may be appropriate,
depending on the structure of A.

If A is left-unitary, so that A′A = I , then the least-squares
term in (12) simplifies to ‖x−A′(ui−bi)‖22, plus a constant
term. In this case, updating x becomes soft thresholding:
xi+1
n ← soft([A′(ui − bi)]n; βµ ), where

soft(x; τ) = x
|x| max{|x| − τ, 0}. (15)

Otherwise, an iterative algorithm like FISTA [60] could be
embedded within the ADMM method [44]. Instead, we use
“preconditioned” ADMM (PADMM) [61], [62] accelerated1

using Nesterov momentum [64], essentially using a single
FISTA step as the x-update in (12):

xi ← soft(zi−1 − 1
cA
′(Azi−1 − ui−1 + bi−1); β

µc ). (16)

ti ← (1 +
√

1 + 4(ti−1)2)/2. (17)

zi ← xi + ti−1−1
ti (xi − xi−1). (18)

1This method differs from accelerated ADMM [63] that applies momen-
tum without introducing the separable majorizer simplifying the quadratic
augmented Lagrangian penalty in (11) we depend on here.
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The scalar c must satisfy cI � A′A; it can be precomputed
using power iterations, or found directly in many cases.
For example, c = 1 for the undersampled unitary discrete
Fourier transform (DFT) used in the experiments in this paper.
“Gradient”-based adaptive restarting [65] can help avoid diver-
gence: when the momentum term xi−xi−1 points away from
xi − zi−1, the momentum is reset (ti−1 = 0, ti = 1). While
PADMM does not possess the same convergence guarantees
as regular ADMM, faster convergence may be possible by
adjusting the dual update in (14); see [66].

B. Updating u

Because of the proposed variable-splitting, updating the
auxiliary vector u can be performed element-by-element.
Since f(·) is monotone nondecreasing, and φ(um; sm, ym)
is the pointwise maximum of two functions (for ym > 0),
f(φ(um; sm, ym)) = max{f+(um), f−(um)}, where

f+(um)
∆
= µ

2 |um − dm|2 + f(h+(um; ym)), (19)

f−(um)
∆
= µ

2 |um − dm|2

+





0, ym ≤ 0,

f(φ−(um; sm, ym)), |sm|q < ym,

f(φ−(um; s̄m, ym)), 0<ym ≤ |sm|q,
(20)

and dm = [Ax + b]m. Updating um is equivalent to solving

arg min
u,T

T, s.t. f+(u) ≤ T, f−(u) ≤ T. (21)

The minimizing T corresponds to the value of
f(φ(u; sm, ym)) at its minimum (with respect to u). The
Lagrangian of (21) is T + γ+(f+(u)− T ) + γ−(f−(u)− T ),
with Lagrange multipliers γ+, γ− ≥ 0. Differentiating yields
γ+ + γ− = 1. Three possibilities exist:

1) γ+ = 1, γ− = 0: The optimal u = u+ minimizes f+(u)
and satisfies f+(u+) > f−(u+).

2) γ+ = 0, γ− = 1: The optimal u = u− minimizes f−(u)
and satisfies f−(u−) > f+(u−).

3) γ+, γ− > 0: Both f+(u) and f−(u) equal T . The
optimal u = u± minimizes both of these functions along
the curve f+(u) = f−(u).

For f(·) corresponding to the 1-norm data fit term in (3) on
squared-magnitude measurements (q = 2), the optimal values
of u for each case for the mth measurement are

u+ = µ
2+µdm, (22)

u− = 2sm
µ + dm, and (23)

u± =
√

2(ym + |sm|2)eı∠((2+µ)sm+µdm) − sm. (24)

When |sm|q ≥ y, we replace sm above with s̄m. The functions
f+(u) and f−(u) are evaluated for each case to determine
which of the three cases applies. These expressions, and
corresponding expressions for quadratic f(·), are derived in
the supplement.

C. Computational Complexity

The proposed algorithm consists of nested layers of iterative
methods, adding complexity compared to simpler methods
like nonlinear conjugate gradients (NLCG). Multiple initial
values of s0 are tested to increase the likelihood of finding a
global minimum. For each initial value, several iterations of
the MM algorithm in Algorithm 1 are run. Finally, for each
outer iteration of the MM method, several inner iterations of
ADMM (or PADMM) are performed.

Each iteration of ADMM/PADMM involves updating x,
u, and b. Updating x involves two matrix-vector products
with A or A′. Reusing the calculated value of Ax avoids
recomputing it through the remainder of the iteration. When
A is a DFT matrix, the cost is roughly O(N logN) for each.
At least for the 1-norm data fit term with squared-magnitude
measurements, each candidate um is a simple function of dm,
sm, and ym, so that the cost of updating u is roughly O(M).
Updating b is a simple addition, again scaling as O(M). The
overall cost of an ADMM iteration is O(N logN +M).

Without acceleration, the error in x converges roughly
as O(1/IADMM) for preconditioned ADMM (IADMM is the
number of iterations) [61]. Empirical convergence behavior
of our ADMM implementation is established in the auto-
matic ADMM parameter tuning experiment in Section V-B.
Computational costs are reported along with the simulations
in Section V. When transitioning from relatively small 1D
experiments to a much larger 2D experiment, the number of
MM iterations (Imm) only increases modestly, and the number
of PADMM iterations and initializations remains constant.

D. Parameter Selection

The regularization parameter β controls the level of spar-
sity in the reconstructed signal. Additionally, the ADMM
penalty parameter µ impacts the convergence rate of the inner
ADMM/PADMM algorithm. Introducing an adaptive heuristic
for µ and a normalization factor for β avoids manual tuning
of these parameters for every experiment.

For ADMM penalty parameter µ, the automatic heuristic
in [45] and quadratic-optimal strategy in [67] provide alterna-
tives to adjusting µ manually. The chosen adaptive method,
described in [45], starts at some initial value and adapts µ ev-
ery 10 ADMM iterations by comparing the residual ui−Axi

and dual residual µA′(ui − ui−1). This method is compared
against using fixed (manually tuned) µ in Section V-B.

The choice of regularization parameter β, which reflects
prior knowledge about the sparsity of the desired signal,
also greatly influences the reconstruction. All the competing
methods investigated in this paper use this type of parameter,
or the related sparsity factor K. While K may be more-or-
less known, learning β from K is not straightforward [59]. In
the Monte Carlo simulations that follow, the optimum value
of β varies based on the true 1-norm of x and the actual data
discrepancy. Not knowing these a priori, this algorithm uses
a simple normalization framework for β that requires only
the measurements y and the approximate noise level/number
of outliers. Differentiating

∑
m f(h([Ax]m; ym)) with respect
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TABLE I
COMPARISON OF RECONSTRUCTION METHODS

Method Implementation Sparsity Data Fit Term
L1-Fienup [31] alternating 1-norm quadratic

projections (projection)
GESPAR [43] greedy 0-“norm” quadratic
PR-GAMP [30] message-passing 0-“norm” quadratic2

Proposed MM, (P)ADMM 1-norm 1-norm (`1)

to x, obtains (for a 1-norm data fit term with q = 2)

2A′DnoiseAx, (25)

where Dnoise is a diagonal matrix with entries [Dnoise]m,m =
sign(|[Ax]m|2 − ym). To make this expression as consistent
as possible as the noise level or number of measurements
changes, the data fit term is normalized according to the 2-
norm of (25). When A is an undersampled (unitary) DFT, the
2-norm becomes


 ∑

m:|[Ax]m|2 6=ym
|[Ax]m|2




1/2

.

Assuming zero-mean noise, the expected value of |[Ax]m|2 is
ym. When ym is an outlier, this is not the case, and |[Ax]m|2
is approximated by the average value of the measurements not
likely to be outliers. Assuming the Mout largest measurements
are the most likely outliers, and ȳ represents the arithmetic
mean of the remaining measurements, the normalizer becomes

(
Moutȳ +

∑
m:ym not outlier ym

)1/2

= (Moutȳ + (M −Mout)ȳ)1/2 = (Mȳ)1/2. (26)

With this normalization, the proposed algorithm can be applied
to a whole set of signals without manually tuning β for each
one. Although outliers are unknown a priori, the estimation
error of ȳ should be small when Mout �M .

V. EXPERIMENTAL SETUP AND RESULTS

Simulations throughout this paper consist of generating a
length-N sparse signal with K nonzero coefficients, acquiring
M samples of the squared-magnitude DFT of that signal,
reconstructing the signal using the proposed and/or competing
algorithms listed in Table I, and comparing the reconstructed
signals against the true signal.

A. Experimental Setup

This section describes the general setup common to all
experiments. These experiments are simulations, generating
the sparse support of each true signal at random, and randomly
sampling the amplitude and phase of each nonzero coefficient
uniformly between 0 and 1 (amplitude) and 0 and 2π (phase).

For each simulated signal, M noise-free measurements are
randomly selected from the squared-magnitude of the signal’s

2The PR-GAMP method is implemented for noise applied before taking
the (squared)-magnitude, unlike the others here that assume noise is added to
the (squared)-magnitude measurements.

TABLE II
RECONSTRUCTION METHOD PARAMETERS

All methods q = 2, 50 Monte Carlo trials, ≥ 50 inits each
L1-Fienup 50 iters/init, 5 conjugate gradient iterations for data

projection (2D recon only), 10−4 stop tol
GESPAR 100 Gauss-Newton iters per GESPAR step, 10−5 stop

tol, random measurement weights on
PR-GAMP 20 expectation-maximization iters, 200 inner iters each,

10−4 stop tol
Proposed µ = 1 start, IADMM = 100 (PADMM for M < N ),

adapt µ every 10 iters, Imm = 10, 10−10 stop tol

DFT coefficients. Randomly selected outliers are set to have an
amplitude between one and two times the maximum measure-
ment. Additionally, Gaussian or Laplace noise (40 dB SNR
unless stated otherwise) are added to all the measurements.

The reconstructions are performed using multiple initial-
izations, and the “best” reconstructed signal for each method
is retained. For the proposed method, 50 initializations are
performed per trial, 100 for the fully-sampled (M = N )
case, and the lowest value of Ψ(x) determines the best
reconstruction. The regularization parameter β is held fixed for
the Monte Carlo experiments; the ADMM penalty parameter
µ is automatically adapted [45], not manually tuned. Other
reconstruction parameters are provided in Table II. Competing
methods include the GESPAR greedy method [43], the L1-
Fienup method (sparse Fienup [31] with the image-domain
projection modified to project the signal onto the `1-ball with
radius βsf, like [29]), and the message passing algorithm PR-
GAMP [30]. These other methods are run for at least 50
initializations, but often more to allow for the same total
amount of computation (measured via tracking the number
of multiplies by A or A′). The best reconstructions are
chosen for L1-Fienup, GESPAR, and PR-GAMP according to
the smallest 2-norm data discrepancy. In the supplement, the
proposed method is compared with compressive matrix lifting
(CPRL) [37]. As CPRL requires significantly more memory
to run, with a length-128 complex signal requiring upwards
of 17 GB of memory, the experiment featuring CPRL uses a
much smaller signal (N = 64).

Sparsity and Fourier coefficient magnitudes are invariant
to spatial shifts, reversal, and global phase. Thus, the error
computation is relative to the best alignment/reversal and
global phase for each reconstructed signal. The best alignment
is identified for both the reconstructed signal and its reversed
version by cross-correlation with the true signal. A global
phase term is then estimated from the version with the best
alignment. Reconstruction errors are reported relative to the
true signal using the median of the squared errors (normalized
by N ) over the set of trials. This peak-signal-to-error ratio
(PSER) is converted to dB scale:

PSER = −10 log10(median squared error), (27)

where the maximum true signal amplitude is one.

B. Validating Parameter Selection Methods

The first experiment compares convergence of the majorizer
objective value in (7) for automatically adapted µ and fixed,
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Fig. 2. The objective function Φ(xi; s), relative to converged value Φ∗, is
plotted versus ADMM/PADMM iteration i for ADMM/PADMM using fixed
(thin, color lines) and adaptive (thick, black lines) penalty parameters (µ).

manually tuned µ. Simulations of a 1D signal are repeated
for both K = 6 and K = 8 sparse coefficients, and
both M = 64 (undersampled case, using PADMM) and
M = N = 128 (fully-sampled case, using ADMM) squared-
magnitude measurements, corrupted by both additive Gaussian
noise (40 dB SNR) and 5 outliers. For each experiment, we run
one set of ADMM/PADMM iterations with the 1-norm data
fit distribution, some with a fixed penalty parameter µ (only
the best are shown), and others with the adaptive method,
starting from different initial values. For these experiments,
the regularization parameter β is chosen to portray a range of
convergence behaviors, not to optimize the reconstruction.

For sparsity K = 6 and both M = 64 and M = N = 128
noisy measurements, Figure 2 portrays the objective function
convergence rates over IADMM = 100 ADMM/PADMM itera-
tions for the three best fixed choices of µ, relative to the best
overall objective function value observed after 400 iterations.
These are compared against the adaptive method starting at
the best (µ = 1) and a suboptimal (µ = 0.1) initial value.
This experiment verifies that the adaptive method achieves
nearly as good convergence as the best fixed method in both
the undersampled (using PADMM) and fully-sampled (using
ADMM) cases, even when not initialized to the best choice
of µ. The same experiment for different sparsity K = 8
yields similar results to the example shown. Since the adaptive
method appears to ensure rapid convergence across varying
degrees of measurements and sparsities, this adaptive heuristic
scheme with initial µ = 1 is employed throughout the
experiments that follow, without any additional tuning.

To observe how sensitive the regularization parameter β
with the proposed normalization factor is as the sparsity
level K or number of measurements M varies, the proposed
algorithm is evaluated on sets of 50 simulated signals, each
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Fig. 3. The median (lines) and quartiles (boxes) of 50 trials reconstructed
using the proposed method with a 1-norm data fit term are plotted versus
regularization parameter β for varying (a) signal sparsity levels K, and
(b) measurements M . The signal length N = 128.

of whose squared-magnitude measurements are corrupted with
additive Gaussian noise (40 dB SNR) and 5 outliers. In [44], β
scales roughly linearly with the number of measurements for
the proposed method without normalization. With normaliza-
tion, the optimal β appears to remain fairly constant between
0.1 and 10−0.9. Figure 3 plots the median squared error (lines)
and error quartiles (boxes) versus the regularization parameter
β for (a) different sparsity levels K = 3, 5, 6, 8, holding
M = N = 128 fixed, and for (b) different measurements
M = 32, 64, 96, 128, holding K = 3 fixed. The β values
found in this experiment are fixed and reused in all the Monte
Carlo experiments, regardless of noise level or type, with no
further tuning.

To ensure competing methods are not at a disadvantage,
both GESPAR and PR-GAMP are provided the true sparsity
(K) for each signal. For the L1-Fienup method, the radius βsf
of the `1-ball constraint is set to the 1-norm of the true signal.



WELLER et al.: UNDERSAMPLED PHASE RETRIEVAL WITH OUTLIERS 7

0 500 1000 1500 2000 2500

0.4

0.6

0.8

NLCG iteration (i)

O
b

je
c
ti
v
e
 Ψ

(x
i )

 

 

NLCG

Adaptive PADMM

(a) Convergence for K = 6, M = 64, N = 128.

0 500 1000 1500 2000 2500

0.8

1

1.2

1.4

NLCG iteration (i)

O
b
je

c
ti
v
e
 Ψ

(x
i )

 

 

NLCG

Adaptive
PADMM

(b) Convergence for K = 8, M = N = 128.

Fig. 4. The objective function Ψ(xi) in (4) is plotted versus NLCG iteration
i and the equivalent MM iteration for both NLCG (solid line) and MM with
adaptive preconditioned ADMM (circles), for K-sparse length-N signals from
length-M noisy data (40 dB SNR AWGN noise, 5 outliers).

C. Rapid Convergence with Preconditioned ADMM

The robust phase retrieval problem described in (4) can be
solved via conventional methods including nonlinear conju-
gate gradients (NLCG), if the 1-norm is approximated by a
differentiable function. However, close approximations to the
1-norm have a high curvature that slow convergence of NLCG.
We compared empirically the convergence rates of NLCG and
the proposed algorithm. Representative length-128 signals, one
with sparsity K = 6 and M = 64 noisy measurements,
and the other with sparsity K = 8 and M = 128 noisy
data (both 40 dB SNR Gaussian noise and 5 outliers), are
reconstructed using both methods. First, the MM method with
adaptive preconditioned ADMM is run for 50 initializations,
and the best result (minimum objective value) is kept. Then,
the NLCG method is run for that same best initializer, for
a number of iterations equivalent to the total number of
inner iterations of the preconditioned ADMM method. The
objective function in (4) is plotted for each NLCG iteration
(solid line) and every MM iteration (circles) in Fig. 4. The
plotted objective functions converge at very different rates,
with a distinct advantage to the proposed MM algorithm with
adaptive preconditioned ADMM.

D. Monte Carlo Comparisons (1D)

This section compares the proposed phase retrieval method
against the competing methods listed in Table I via 50-trial
Monte Carlo simulations with different values of sparsity
K, number of measurements M , and noise/outlier levels and
types. All the comparisons in this section involve length-128
1D signals and measurements corrupted with both outliers and
either Gaussian or Laplace noise. The same β values identified
in Section V-B are reused here for all types of noise.

The first test evaluates the proposed algorithm on mea-
surements corrupted by Gaussian noise (40 dB SNR) and
5 outliers. Figure 5 depicts PSER values corresponding to
median squared errors for the proposed and competing meth-
ods. Equivalent comparisons for measurements corrupted by
Laplace noise (also 40 dB SNR) and 5 outliers are shown in
Figure 6. The median squared errors for the proposed method
show significant improvement over competing methods in both
cases. The supplement depicts the PSER values for the mean
squared errors in both experiments. Regarding runtimes, as
measured by the multiplications by A or A′ (the dominant
computations), the proposed method runs for the same number
of iterations for all sparsities K and measurements M , except
the number of initializations is doubled for M = N for
robustness (this is responsible for the upper limit on the range
of multiplies for all the methods). Otherwise, the amount of
computation remains nearly constant.

To see how the noise level or number of outliers affects
reconstruction quality, Monte Carlo simulations are conducted
for the Gaussian noise + outliers case, varying the number
and variance of outliers and SNR of the additive noise.
Figure 7 shows median PSER values for K = 3 sparse
signals (N = 128), whose measurements are corrupted by
2, 4, 8, 16 outliers, with a range [1, 2] times the maximum
measurement value, holding the Gaussian noise SNR fixed
at 40 dB. Supplementary material contains a similar figure
for a smaller outlier range [1,

√
2] and for K = 5 sparse

signals. Figure 8 depicts improvements for K = 5 sparse
signals (N = 128) with measurements with 20, 30, 40, 50, 60
dB SNR Gaussian noise, holding the number and range of
outliers fixed at 5 and [1, 2], respectively. The supplement
contains the corresponding plot for K = 3. The improvement
in squared error appears significant over a wide range of noise
levels and numbers of outliers.

E. Image Comparisons (2D)

This experiment examines image reconstruction with un-
dersampled measurements corrupted by outliers and additive
Gaussian noise. The N = 512 × 512-pixel star of David
phantom used in [44] is inspired by the real example image
shown in [68]. The pattern in the image is constructed using
30 discs, each 21-pixels wide. A dictionary of these discs (at
all 512× 512 positions) is used as the synthesis transform for
all the reconstructions. Since the dictionary is shift-invariant,
implementing the dictionary via multiplication in frequency
saves computation and storage for all the methods. The
squared-magnitudes of the 2D DFT of this image are randomly
undersampled by a factor of two (M = N/2 = 131, 072). One
percent of the measurements are changed to outliers, and 60
dB SNR additive Gaussian noise is added to all measurements.
The phantom is reconstructed using both the proposed and
competing algorithms, resulting in the images in Figure 9.

To conserve space, the blank image produced by the PR-
GAMP method is not shown here. Reconstructions of the same
image with fewer outliers are provided in the supplementary
material. In terms of scalability, the proposed method works
well without much adjustment; only the number of MM
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Fig. 9. The best reconstruction (with regularization parameter β) for the
proposed method is compared against competing methods with the optimal
(true) values of βsf or K. These images are shown for the 512×512-pixel star
of David phantom, from M = N/2 measurements, with 60 dB AWGN noise
and 1% (1311) outliers. The PR-GAMP method (not shown) converged to a
blank (all zero) image. Computations (1000’s of multiplies): 584 (GESPAR),
218 (proposed), 218 (PR-GAMP), 218 (L1-Fienup).

iterations Imm changes (from 10 to 20), doubling the number
of multiplies versus the proposed method in the 1D case. The
ADMM penalty parameter remains the same (adaptive) as
in the 1D experiments, but we reexamine the regularization
parameters for all the methods. The true K and βsf are
fixed, while several values for β between 0.1 and 0.4 are
tested to account for the smaller K/N of the 2D image.
The advantage of the proposed method is clear, as none of
the competing methods recovered the true image, even when
running GESPAR, PR-GAMP, and L1-Fienup for at least as
many initializations and at least as much (often, much more)
computation as the proposed method. In the supplement, this
improvement in quality is apparent even with extremely few
outliers.

VI. DISCUSSION

Undersampled phase retrieval relies heavily on side infor-
mation to reproduce a quality image. Employing sparsity in the
image domain, or dictionary-based sparsity, helps identify the
best image among all those that share the same magnitude
Fourier spectrum. Resolving this ambiguity becomes even
more challenging in the face of measurement noise, espe-
cially outliers. The proposed method using a 1-norm data fit
term excels at reconstructing images despite these conditions,
greatly improving upon other techniques for such data, even
after giving faster methods equivalent computation (via more
initializations).

The proposed method differs from existing work in two
ways: a robust data fit model and a nested MM+ADMM
algorithm for reconstruction with this model. Although this
algorithm can be generalized, including to the conventional
quadratic data fit term, preliminary experiments (not shown)
do not portray the same level of robustness with the `2
approach as the proposed method with the `1 data fit term.
Thus, the benefit likely derives from the data fit term. This
hypothesis is consistent with the fact that competing methods
perform well in settings without outliers. However, experimen-
tal results comparing the proposed algorithm to a conventional
gradient method also suggest that the algorithm is important,
as the gradient method converges very slowly and would not
yield a quality result with the same amount of computation.
Although existing methods may possess theoretic convergence
guarantees, the faster empirical convergence of the objective
function in (4) using the proposed method means that the
model and algorithmic contributions are intertwined, and both
are needed to achieve robustness with outliers. In SNR-
limited applications like point spread function estimation in
super-resolution optical microscopy, the additional robustness
provided by the 1-norm model versus the Gaussian model will
greatly simplify the acquisition and reduce noise-related errors
in the phase retrieval reconstruction.

Some existing methods automatically tune parameters, like
PR-GAMP [30]. With the normalization and adaptive meth-
ods for parameter selection we describe, the Monte Carlo
simulations reveal significantly reduced errors versus other
methods, even without extensive manual parameter tuning. A
complete solution to parameter selection would rely on more
sophisticated automatic methods [69]. Further experiments on
larger, real datasets are necessary to fully describe parameter
selection and assess real performance of the proposed method.

Paired with parameter selection, multiple initializations are
also important to overcome the nonconvexity of the inverse
problem and find a reasonable global solution. Although
recently proposed techniques like Wirtinger flow [70] show
promise for the oversampled case, randomly selecting multiple
initial majorization vectors s0 appears to be more robust
for the proposed method. As using multiple initial choices
for s0 proportionally increases computation time, the overall
reconstruction time may be an issue in higher dimensions.
However, a suitable 2D image reconstruction is obtained with
the same number of initializations (50) as in the 1D case.
Still, the 2D reconstructions all took over two hours on
a modern workstation using MATLAB. Compared to much
faster, simpler methods like alternating projections, that can
recover an image in seconds or minutes (in the absence of
outliers), the proposed method is suitable when obtaining
a quality reconstruction is paramount, or when those faster
methods fail to recover the true image (like in Figure 9).

In both the 1D and 2D cases, the proposed method clearly
outperforms the L1-modified sparse Fienup method, GES-
PAR, and even PR-GAMP, when outliers are present in the
data, even when controlling for computation time. As the
reduced squared error is prominent for the extremely sparse
signals evaluated here, the 1-norm sparsity term should allow
for similar improvements for signals that are less sparse or
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compressible. This quality gain is not without cost, as the
mean squared error (in supplementary material) shows greater
variability than the median numbers, suggesting noticeable
errors are generally larger versus other methods. In the future,
this framework will be extended to image domain constraints
like nonnegativity and other forms of regularization, including
analysis-form sparsity. These additions should facilitate recon-
struction of real images.

VII. CONCLUSION

The key contributions of this paper are two-fold and inter-
twined. A general framework is proposed that extends phase
retrieval reconstruction to measurements corrupted by outliers.
A new implementation of this general framework is described
featuring multiple initializations, majorization-minimization,
and (preconditioned) ADMM. In addition, using normalization
and existing adaptive heuristics, the proposed method is made
robust without manual tuning as noise levels/types or numbers
of outliers change. A direct comparison against competing
methods establishes quantitative and visible advantages over
existing methods, over a wide range of simulations.
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Here we provide additional mathematical details for the u update step with different data fit terms and additional

experimental support related to the paper [1].

I. UPDATING u : SQUARED-MAGNITUDE MEASUREMENTS, LAPLACE DATA FIT TERM

In this case, f(·) = (·), and q = 2. When ym < 0, f+(u) is always greater than f−(u), so the solution is always

the minimizer of f+(u). Otherwise, we must consider all three cases.

Let d = [Axi+1 + bi]m, s represent the appropriate choice of sm or s̄m, η
∆

= µ/2, and drop the subscripts.

Writing out f+(u) and f−(u),

f+(u) = η|u− d|2 + |u|2 − y,

f−(u) = η|u− d|2 + y + |s|2 − 2|s|Re{ue−ı∠s}.
The function f+(u) is quadratic in u; differentiating yields

df+(u)

du
= 2η(u− d) + 2u.

Thus, f+(u) is minimized by u+ = η
1+ηd.

The function f−(u) is also a quadratic, so

df−(u)
du

= 2η(u− d)− 2s,

which set to zero yields the minimizer u− = s
η + d.

The minimization of f+(u) or f−(u) along the curve on which both functions are equal-valued, involves

parameterizing this curve and minimizing f+(u) as a function of this parameter. These functions are equal when

|u|2− y = y+ |s|2− 2|s|Re{ue−ı∠s}, which corresponds to the circle |u+ s|2 = 2(y+ |s|2). The parameterization

then corresponds to the angle along the circle; call it θ. The curve of interest is (u + s) =
√

2(y + |s|2)eıθ.

Incorporating this parameterization into f+(u) yields

f+(u(θ)) = −2
√

2(y + |s|2)Re{((1 + η)s+ ηd)e−ıθ}
+ constants,

which is minimized when θ = ∠((1 + η)s + ηd). So, u± =
√

2(y + |s|2)eı∠((1+η)s+ηd) − s.
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II. UPDATING u : SQUARED-MAGNITUDE MEASUREMENTS, GAUSSIAN DATA FIT TERM

In this case, f(·) = (·)2, and q = 2. Again, as with the Laplace data fit term, when ym < 0, f+(u) > f−(u), so

we always minimize f+(u). Otherwise, we consider all three cases.

Again, let d = [Axi+1+bi]m, s represent the appropriate choice of sm or s̄m, η
∆

= µ/2, and drop the subscripts.

Writing out f+(u) and f−(u),

f+(u) = η|u− d|2 + (|u|2 − y)2,

f−(u) = η|u− d|2 + (y + |s|2 − 2|s|Re{ue−ı∠s})2.
Writing f+(u) in terms of the magnitude |u| and phase ∠u of u,

f+(u) = η|u|2 + η|d|2 − 2η|u||d| cos(∠u− ∠d)
+ |u|4 − 2y|u|2 + y2,

which is clearly minimized when ∠u = ∠d, when cos(∠u−∠d) = 1. Then, f+(u) becomes a quartic equation in

|u|, which has the derivative
df+(u)

d|u| = 4|u|3 + (2η − 4y)|u| − 2η|d|.

The function f+(u) is minimized either when the derivative is zero or when |u| = 0. The depressed cubic equation

will have between zero and three nonnegative real roots, which can be found analytically. Note that if there are

three positive real roots, since the cubic must be increasing below the least positive root, the derivative at |u| = 0 is

negative, and the fourth candidate point |u| = 0 cannot be the global minimum. The minimizer u+ is the candidate

point with minimum function value f+(|u|), multiplied by eı∠d.

Finding a minimum of f−(u) is straightforward. Define ū = ue−ı∠s, and d̄ = de−ı∠s. Then,

f−(ū) = η|ū− d̄|2 + (y + |s|2 − 2|s|Re{ū})2.
Separating the real and imaginary parts, we observe

f−(ū) = η(Re{ū} − Re{d̄})2 + η(Im{ū} − Im{d̄})2

+ (y + |s|2 − 2|s|Re{ū})2,
which is clearly minimized when Im{ū} = Im{d̄}. The real component is quadratic in Re{ū}, so differentiating

with respect to Re{ū} yields

df+(ū)

dRe{ū} = 2η(Re{ū} − Re{d̄})

+ 4|s|(2|s|Re{ū} − (y + |s|2)),
which is minimized at

Re{ū} =
ηRe{d̄}+ 2|s|(y + |s|2)

η + 4|s|2 .

This closed form solution yields

u− = (Re{ū}+ ıIm{ū})eı∠s.

Minimizing f+(u) along the curve f+(u) = f−(u) requires parameterizing the curve. Again, define ū = ue−ı∠s,

d̄ = de−ı∠s, and s̄ = |s|. Note that φ−(ū; s̄, y) = |s̄− ū|2+(y−|ū|2), where the latter term equals B
∆
= −h+(ū; y).

Along the curve f+(ū) = f−(ū), B2 = (B + |s̄ − ū|2)2, which is true when s = ū, or when |s̄ − ū|2 = −2B =
2(|ū|2 − y). For this second case to yield a nontrivial solution requires B < 0, which corresponds to |ū|2 > y.

Rearranging terms yields our familiar circle |ū + s̄|2 = 2(y + s̄2) from the Laplace distribution case. Plugging

our angular parameterization ū = c0e
ıθ − s, where c0 =

√
2(y + s̄2), into f+(ū) yields

f+(ū(θ)) = (|c0eıθ − s̄|2 − y)2 + η|c0eıθ − s̄− d̄|2

= (c20 − 2c0Re{eıθ s̄∗}+ s̄2 − y)2

+ η(c20 + |s̄+ d̄|2 − 2c0Re{eiθ(s̄+ d̄)∗}).
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Let c1 = c20 + s̄2 − y, and c2 = c20 + |s̄+ d̄|2, so

f+(ū(θ)) = (c1 − 2c0Re{eıθ s̄∗})2

+ η(c2 − 2c0Re{eıθ(s̄+ d̄)∗})
= (2c0)

2Re{eıθ s̄∗}2

− 2c0Re{eıθ(2c1s̄+ η(s̄+ d̄))∗}+ c21 + ηc2.

For convenience, let r1 = 2c0s̄, and r2 and α be the magnitude and phase of 2c0(2c1s̄+ η(s̄+ d̄)). Differentiating

with respect to θ,
df+(ū(θ))

dθ
= r2 sin(θ − α)− 2r21 sin θ cos θ.

Setting the derivative equal to zero,
r2
r21

sin(θ − α) = sin(2θ).

Defining ξ such that θ = 2arctan ξ, we have sin θ = sin(2 arctan ξ) = 2ξ
1+ξ2 , and cos θ = cos(2 arctan ξ) = 1−ξ2

1+ξ2 .

Thus,

sin(2θ) = 22ξ(1−ξ2)
(1+ξ2)2 ,

sin(θ − α) = 2ξ cosα−(1−ξ2) sinα
1+ξ2 .

Substituting,

0 = r2
r21
(2ξ cosα− (1− ξ2) sinα)(1 + ξ2)− 4ξ(1− ξ2)

= r2
r21
(2ξ cosα+ 2ξ3 cosα− sinα+ ξ4 sinα)

− 4ξ(1 − ξ2)

= ( r2r21
sinα)ξ4 + (2 r2

r21
cosα+ 4)ξ3

+ (2 r2
r21

cosα− 4)ξ − r2
r21

sinα.

This quartic equation can be solved analytically; the real root that corresponds to θ with the minimum f+(ū(θ))
is used to generate u± = (c0e

ıθ − s̄)eı∠s, which is valid as long as |u±|2 > y. Also, one must consider θ = ±π,

which correspond to ξ = ±∞, in case either extreme point minimizes f+(ū(θ)).

III. ADDITIONAL MONTE CARLO (1D) SIMULATIONS

In [1], we ran 50-trial Monte Carlo simulations to characterize the reconstruction quality of the proposed and

competing methods. Those simulations employed 128-element signal vectors with sparsities K ranging from 3 to

8, and sampled noisy squared-magnitude measurements of these signals with 5 outliers and either Gaussian or

Laplace noise (both 40 dB SNR). In addition to the median squared error values reported in the paper, we provide

mean squared error values (still via PSER, in dB) in Figures 1–2 for the four methods. Note the proposed method

still outperforms the competing methods, but the trend as K/N or M/N varies appears much less stable. This

instability versus the median value is due to outliers in reconstruction quality where the best minimum identified

did not correlate with the true signal.

The paper also explores trends in reconstruction quality as a function of the number of outliers and additive

noise SNR, demonstrating that the proposed method achieves significantly greater median PSER than competing

methods over a wide range of outliers and noise levels. Here, we include similar results for alternate sparsity levels

K demonstrating similar advantages as outliers increase (Figure 3) and as noise levels change (Figure 4). The

trends in mean PSER values (not shown) are similar, with the same variability depicted in the trends in mean

squared error shown for measurements and sparsity in Figures 1 and 2.

In addition to all these experiments comparing against GESPAR, PR-GAMP, and L1-Fienup, the proposed

method is compared against the compressive phase retrieval (CPRL) method in [2], for a length-64 one-dimensional

signal. The CPRL implementation from http://users.isy.liu.se/en/rt/ohlsson/code.html uses the standard CVX toolbox

from http://cvxr.com/cvx/ with included semidefinite program solver SDPT3. This solver uses > 17 GB of memory



IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING: SUPPLEMENTARY MATERIAL 4

GESPAR
S

p
a
rs

it
y
 f
ra

c
ti
o
n
 (

K
/N

)

0.125 0.25 0.5 1

3/128

4/128

5/128

6/128

7/128

8/128

Proposed

0.125 0.25 0.5 1

PR−GAMP

Measurement fraction (M/N)

0.125 0.25 0.5 1

L1−Fienup

 

 

0.125 0.25 0.5 1

20

40

60 dB

Fig. 1. The mean PSERs for 50 trials reconstructed using GESPAR, the proposed method, PR-GAMP, and L1-Fienup, for a range of

measurement (M/N ) and sparsity fractions (K/N ), for measurements with 40 dB SNR Gaussian noise and 5 outliers.
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Fig. 2. The mean PSERs for 50 trials reconstructed using GESPAR, the proposed method, PR-GAMP, and L1-Fienup, for a range of

measurement (M/N ) and sparsity fractions (K/N ), for measurements with 40 dB SNR Laplace noise and 5 outliers.
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Fig. 3. The PSER of 50 trials reconstructed using GESPAR, the proposed method, PR-GAMP, and L1-Fienup, for a range of measurement

(M/N ) and outliers, for K = 5 and measurements with 40 dB SNR Gaussian noise. The top and bottom rows display results for outliers

with ranges [1,
√
2] and [1, 2], respectively.
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Fig. 4. The PSER of 50 trials reconstructed using GESPAR, the proposed method, PR-GAMP, and L1-Fienup, for a range of measurement

(M/N ) and Gaussian noise SNRs, for K = 3 and measurements with 5 outliers (range [1, 2]).

for a length-128 signal, necessitating a smaller problem for this experiment. This simulation also uses a different

sensing matrix A, with a random Gaussian matrix multiplying the DFT. Tailoring the error bound ǫ to the true

error in the measurements, and hand-tuning the best regularization parameter λ for CPRL’s 1-norm sparsity term,

the CPRL method is run for a range of sparsities K and measurements M corrupted with 40 dB SNR Gaussian

noise and 0− 2 outliers. The median squared error is compared against the proposed method for the same signals,

and the results are shown in Figure 5. The proposed method remains robust in the presence of outliers, while the

compressive matrix lifting method does not.

IV. ADDITIONAL IMAGE COMPARISONS (2D)

The image comparisons in [1] demonstrate the superior reconstruction quality of the proposed method when

the number of outliers is a sizable fraction (1%) of the measurements. The reconstructions in Figure 6 portray the

degradation in image quality of the competing methods, as opposed to the consistent quality of the proposed method,

as the number of outliers rises from negligible (0.001% = 2) to more significant (0.1% = 132). Although each set

of results corresponds to one trial, the proposed method consistently outputs the star of David phantom, with only

nominal gain differences in a few discs. The GESPAR method actually succeeds the best of any competing method,

reproducing the star of David shape with only mild attenuation errors when few outliers are present. However,

when outliers are more significant, GESPAR’s performance degrades noticeably. The PR-GAMP method tends to

fail to reconstruct the phantom, although the image for 0.001% outliers appears to bear a faint resemblance to the

phantom. The L1-Fienup method performs reasonably well when outliers are negligible, but it appears less stable

than GESPAR or the proposed method as the number of outliers increases. As in the paper, these reconstructions

of the N = 512 × 512 star of David image (inspired by related work [3]) are all from M = N/2 = 131, 072
measurements with outliers and 60 dB SNR additive white Gaussian noise, and the reconstructions all use the

same 512 × 512 atom dictionary of discs 21 pixels wide as the synthesis transform. The same parameter value

β = 0.3 used for the proposed method with 1% outliers in the paper is used here as well, suggesting that additional

parameter tuning is unnecessary over a wide range of outliers. Again, the competing methods are run for at least

as many (often many more) initializations and computations as the proposed method for fairness.
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Fig. 5. The median PSERs for 50 trials reconstructed using compressive matrix lifting phase retrieval (CPRL) and the proposed method for

a range of measurement (M/N ) and sparsity fractions (K/N ), for measurements with 40 dB SNR Gaussian noise and 0− 2 outliers. Note:

signal length is N = 64 to avoid CPRL memory issues.
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Fig. 6. The reconstruction (with regularization parameter β from the experiment in the paper – no additional tuning) for the proposed method

is compared against competing methods with the optimal (true) values of βsf or K. These images are shown for the 512× 512-pixel star of

David phantom, from M = N/2 measurements, with 60 dB AWGN noise and outliers ranging from 0.001% to 0.1% of the measurements.


