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Abstract—Augmented Lagrangian (AL) methods for solving
convex optimization problems with linear constraints are attrac-
tive for imaging applications with composite cost functions due
to the empirical fast convergence rate under weak conditions.
However, for problems such as X-ray computed tomography (CT)
image reconstruction, where the inner least-squares problem is
challenging and requires iterations, AL methods can be slow.
This paper focuses on solving regularized (weighted) least-squares
problems using a linearized variant of AL methods that replaces
the quadratic AL penalty term in the scaled augmented La-
grangian with its separable quadratic surrogate (SQS) function,
leading to a simpler ordered-subsets (OS) accelerable splitting-
based algorithm, OS-LALM. To further accelerate the proposed
algorithm, we use a second-order recursive system analysis to de-
sign a deterministic downward continuation approach that avoids
tedious parameter tuning and provides fast convergence. Exper-
imental results show that the proposed algorithm significantly
accelerates the convergence of X-ray CT image reconstruction
with negligible overhead and can reduce OS artifacts when using
many subsets.

Index Terms—Statistical image reconstruction, computed to-
mography, ordered subsets, augmented Lagrangian.

I. INTRODUCTION

STATISTICAL methods for image reconstruction have been
explored extensively for computed tomography (CT) due

to the potential of acquiring CT scans with lower X-ray dose
while maintaining image quality. However, the much longer
computation time of statistical methods still restrains their ap-
plicability in practice. To accelerate statistical methods, many
optimization techniques have been investigated. Augmented
Lagrangian (AL) methods (including the alternating direction
variants) [1–4] are powerful techniques for solving regularized
inverse problems using variable splitting. For example, in total-
variation (TV) denoising and compressed sensing (CS) prob-
lems, AL methods can separate non-smooth `1 regularization
terms by introducing auxiliary variables, yielding simple pe-
nalized least-squares inner problems that are solved efficiently
using the fast Fourier transform (FFT) algorithm and proximal
mappings such as the soft-thresholding for the `1-norm [5, 6].
However, in applications like X-ray CT image reconstruction,
the inner least-squares problem is challenging due to the highly
shift-variant Hessian caused by the huge dynamic range of
the statistical weighting. To solve this problem, Ramani et
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al. [7] introduced an additional variable that separates the
shift-variant and approximately shift-invariant components of
the statistically weighted quadratic data-fitting term, leading
to a better-conditioned inner least-squares problem that was
solved efficiently using the preconditioned conjugate gradient
(PCG) method with an appropriate circulant preconditioner.
Experimental results showed significant acceleration in 2D CT
[7]; however, in 3D CT with cone-beam geometry, it is more
difficult to construct a good preconditioner for the inner least-
squares problem, and the method in [7] has yet to achieve
the same acceleration as in 2D CT. Furthermore, even when
a good preconditioner can be found, the iterative PCG solver
requires several forward/back-projection operations per outer
iteration, which is very time-consuming in 3D CT, significantly
reducing the number of outer-loop image updates one can
perform within a given reconstruction time.

The ordered-subsets (OS) algorithm [8] is a first-order
method with a diagonal preconditioner that uses somewhat
conservative step sizes but is easily applicable to 3D CT.
By grouping the projections into M ordered subsets that
satisfy the “subset balance condition” and updating the image
incrementally using the M subset gradients, OS algorithms
effectively perform M times as many image updates per outer
iteration as the standard gradient descent method, leading to
M times acceleration in early iterations. We can interpret the
OS algorithm and its variants as incremental gradient methods
[9]; when the subset is chosen randomly with some constraints
so that the subset gradient is unbiased and with finite variance,
they can also be called stochastic gradient methods [10].
Recently, OS variants [11, 12] of the fast gradient method [13–
15] demonstrated dramatic acceleration (about M2 times in
early iterations) over their one-subset counterparts. However,
when M increases, fast OS algorithms seem to have “larger”
limit cycles and exhibit artifacts in the reconstructed images.
This problem is also studied in the machine learning literature.
Devolder showed that the error accumulation in fast gradient
methods is inevitable when an inexact oracle is used, but it
can be reduced by using relaxed momentum, i.e., a growing
diagonal majorizer (or equivalently, a diminishing step size),
at the cost of slower convergence rate [16]. Schmidt et al.
also showed that an accelerated proximal gradient method is
more sensitive to errors in the gradient and proximal mapping
calculations [17].

OS-based algorithms, including the standard one and its fast
variants, are not convergent in general (unless relaxation [18]
or incremental majorization [19] is used, unsurprisingly, at
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the cost of slower convergence rate) and possibly introduce
noise-like artifacts. Nevertheless, the effective M -times image
updates using OS is still very promising for AL methods. As
an example of combining OS (or stochastic gradients) with AL
methods, Ouyang et al. [20] proposed a stochastic setting for
the alternating direction method of multipliers (ADMM) [4, 6]
that introduces an auxiliary variable for the regularization term
and majorizes the smooth data-fitting term such as the logistic
loss in the scaled augmented Lagrangian using a diagonal ma-
jorizer with stochastic gradients. For every stochastic ADMM
iteration, only part of the data is visited (for evaluating the
gradient of a subset of the data). This substantially reduces the
cost per stochastic ADMM iteration, and one can run more
stochastic ADMM iterations in a given reconstruction time.
However, stochastic ADMM simply combines the stochastic
gradient method and ADMM, and it reverts to the stochastic
gradient method when no variable splitting is considered.
Therefore, the AL framework in stochastic ADMM extends the
original stochastic gradient method so that it can use variable
splitting for more complicated regularizations such as the non-
smooth `1 regularization, but it does not greatly accelerate
convergence for problems with smooth regularizers (in which
variable splitting is less compelling than in the non-smooth
case) like those considered here for low-dose X-ray CT.

In this paper, we focus on solving regularized (weighted)
least-squares problems using a linearized AL method (LALM)
[21]. We majorize the quadratic AL penalty term, instead
of the smooth data-fitting term, in the scaled augmented
Lagrangian using a fixed diagonal majorizer, leading to a much
simpler OS-accelerable splitting-based algorithm, OS-LALM.
For further acceleration, we use a second-order recursive sys-
tem analysis to design a deterministic downward continuation
approach that avoids tedious parameter tuning and provides
fast convergence. Experimental results show that the proposed
algorithm significantly accelerates the convergence of X-ray
CT image reconstruction in early iterations with negligible
overhead and greatly reduces OS artifacts in the reconstructed
image when using many subsets.

The paper is organized as follows. Section II reviews the
linearized AL method in a general setting and shows new
convergence properties of the linearized AL method with in-
exact updates. Section III derives the proposed OS-accelerable
splitting-based algorithm for solving regularized least-squares
problems using the linearized AL method and develops a deter-
ministic downward continuation approach for fast convergence
without parameter tuning. Section IV considers solving X-
ray CT image reconstruction problem with penalized weighted
least-squares (PWLS) criterion using the proposed algorithm.
Section V reports the experimental results of applying our
proposed algorithm to X-ray CT image reconstruction. Further
results are shown in the supplementary material. Finally, we
draw conclusions in Section VI.

II. BACKGROUND

A. Linearized AL method (LALM)

Consider a general composite convex optimization problem:

x̂ ∈ arg min
x

{
g(Ax) + h(x)

}
(1)

and its equivalent constrained minimization problem:

(x̂, û) ∈ arg min
x,u

{
g(u) + h(x)

}
s.t. u = Ax , (2)

where both g and h are closed and proper convex functions.
In CT, A denotes the system (projection) matrix, x denotes
the image being reconstructed, g is a weighted quadratic data-
fitting term, and h is an edge-preserving regularization term.
One way to solve the constrained minimization problem (2) is
to use an (alternating direction) AL method that alternatingly
minimizes the scaled augmented Lagrangian:

LA(x,u,d; ρ) , g(u) + h(x) + ρ
2 ‖Ax− u− d‖22 (3)

with respect to x and u, followed by a gradient ascent of d,
yielding the following AL iterates [4, 6]:




x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2

}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) ,
(4)

where d is the scaled Lagrange multiplier of the split variable
u, and ρ > 0 is the corresponding AL penalty parameter.

In the linearized AL method (LALM) [21] (also known as
the split inexact Uzawa method [22–24]), one replaces the
quadratic AL penalty term in the x-update of (4):

θk(x) , ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
(5)

by its separable quadratic surrogate (SQS) function:

θ̆k
(
x; x(k)

)

, θk
(
x(k)

)
+
〈
∇θk

(
x(k)

)
,x− x(k)

〉
+ ρL

2

∥∥x− x(k)
∥∥2

2

= ρ
2t

∥∥x−
(
x(k) − tA′

(
Ax(k) − u(k) − d(k)

))∥∥2

2

+ (constant independent of x) , (6)

where L > ‖A‖22 = λmax(A′A) ensures LI−A′A � 0, and
t , 1/L. This function satisfies the “majorization” condition:

{
θ̆k
(
x; x̄

)
≥ θk

(
x
)
, ∀x, x̄ ∈ Dom θk

θ̆k
(
x̄; x̄

)
= θk

(
x̄
)
, ∀x̄ ∈ Dom θk .

(7)

It is trivial to generalize L to a symmetric positive semi-
definite matrix S+, e.g., the diagonal matrix DL used in
OS-based algorithms [8, 25], and still ensure (7). When
S+ = A′A, LALM just reverts to the standard AL method.
Majorizing with a diagonal matrix leads to a simpler x-update.
The corresponding LALM iterates are as follows [21]:




x(k+1) ∈ arg min
x

{
φk(x) , h(x) + θ̆k

(
x; x(k)

)}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) .
(8)

The x-update can be written as the proximal mapping of h:

x(k+1) ∈ prox(ρ−1t)h

(
x(k) − tA′

(
Ax(k) − u(k) − d(k)

))

= prox(ρ−1t)h

(
x(k) − (ρ−1t) s(k+1)

)
, (9)
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where proxf denotes the proximal mapping of f defined as:

proxf (z) , arg min
x

{
f(x) + 1

2 ‖x− z‖22
}
, (10)

and
s(k+1) , ρA′

(
Ax(k) − u(k) − d(k)

)
(11)

denotes the “search direction” of the proximal gradient-like
x-update that consists of a descent step and a proximal
mapping step using the same step size, for instance, ρ−1t in
(9). Furthermore, θ̆k can be written as:

θ̆k
(
x; x(k)

)
= θk(x) + ρ

2

∥∥x− x(k)
∥∥2

G
, (12)

where G , LI − A′A � 0 by the definition of L. Hence,
the LALM iterates (8) can be represented as a proximal-point
variant [24] of the standard AL iterates (4) (also known as
the preconditioned ADMM iterates [26] discussed later) by
plugging (12) into (8):




x(k+1) ∈ arg min
x

{
h(x) + θk(x) + ρ

2

∥∥x− x(k)
∥∥2

G

}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) .
(13)

B. Convergence properties with inexact updates

The LALM iteration (8) is convergent for any fixed AL
penalty parameter ρ > 0 and any A [21], while the standard
AL method is convergent (in the primal) if A has full column
rank [4, Theorem 8]. Furthermore, even if the AL penalty
parameter varies every iteration, (8) is convergent when ρ is
non-decreasing and bounded above [21]. However, existing
convergence analyses of LALM assume that all updates are
exact. In this paper, since some updates might not be solved
exactly, we must consider the LALM iteration with inexact
updates. Specifically, instead of the exact LALM in (8), we
focus on two closely related inexact LALM variants:




∥∥∥x(k+1) − arg min
x
φk(x)

∥∥∥ ≤ δk
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) ,
(14)

where φk was defined in (8), and




∣∣∣φk
(
x(k+1)

)
−min

x
φk(x)

∣∣∣ ≤ εk
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) .
(15)

These inexact variants of LALM revert to the standard LALM
when δk = 0 and εk = 0. The u-update could also be
inexact; however, for simplicity, we focus on exact updates
of u. Considering inexact updates of u is a trivial extension.

Our convergence analysis of the inexact LALM is twofold.
First, we show that the equivalent proximal-point variant
of the standard AL iterates (13) can be interpreted as a
convergent ADMM that solves another equivalent constrained
minimization problem of the form (1) with a redundant split

(the proof is in the supplementary material):

(x̂, û, v̂) ∈ arg min
x,u,v

{
g(u) + h(x)

}

s.t. u = Ax and v = G1/2x . (16)

Therefore, the LALM iteration (8) is a convergent ADMM,
and it inherits the nice properties of ADMM, including the
tolerance of inexact updates [4, Theorem 8]. More formally,
we have the following theorem:

Theorem 1. Consider a constrained composite convex op-
timization problem (2) where both g and h are closed and
proper convex functions. Let ρ > 0 and {δk}∞k=0 denote a
non-negative sequence such that

∞∑

k=0

δk <∞ . (17)

If (2) has a solution (x̂, û), then the sequence of updates{(
x(k),u(k)

)}∞
k=0

generated by the inexact LALM in (14)
converges to (x̂, û); otherwise, at least one of the sequences{(

x(k),u(k)
)}∞
k=0

or
{
d(k)

}∞
k=0

diverges.

Theorem 1 shows that the inexact LALM in (14) converges
if the error δk is absolutely summable. However, it does not
describe how fast the iterates converge and more importantly,
how inexact updates affect the convergence rate. This leads to
the second part of our convergence analysis.

In this part, we rely on the equivalence between LALM and
the Chambolle-Pock first-order primal-dual algorithm (CP)
[26]. Consider a minimax problem:

(ẑ, x̂) ∈ arg min
z

max
x

Ω(z,x) , (18)

where
Ω(z,x) , 〈−A′z,x〉+ g∗(z)− h(x) , (19)

and f∗ denotes the convex conjugate of a function f [27,
p. 104]. Note that since both g and h are closed, proper, and
convex, it follows g∗∗ = g and h∗∗ = h. The sequence of
updates

{(
z(k),x(k)

)}∞
k=0

generated by the CP iterates:




x(k+1) ∈ proxσh
(
x(k) − σA′z̄(k)

)

z(k+1) ∈ proxτg∗
(
z(k) + τAx(k+1)

)

z̄(k+1) = z(k+1) +
(
z(k+1) − z(k)

) (20)

converges to a saddle-point (ẑ, x̂) of (18), and the non-negative
primal-dual gap Ω

(
zk, x̂

)
− Ω

(
ẑ,xk

)
converges to zero with

rate O(1/k) [26, Theorem 1] provided that στ ‖A‖22 < 1,
where zk , 1

k

∑k
j=1 z(j) and xk , 1

k

∑k
j=1 x(j) denote the

arithemetic means of all previous z- and x-iterates. Since the
CP iterates (20) solve the minimax problem (18), they also
solve the primal problem:

ẑ ∈ arg min
z
{h∗(−A′z) + g∗(z)} (21)

and the dual problem:

x̂ ∈ arg max
x
{−g(Ax)− h(x)} (22)

of (18), namely the composite convex optimization prob-
lem (1). Therefore, the CP iterates (20) solve (1) with rate
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O(1/k) in an ergodic sense, i.e., with respect to zk and
xk instead of z(k) and x(k). Furthermore, Chambolle et al.
showed that their primal-dual algorithm is equivalent to a
preconditioned ADMM. For example, the CP iteration (20)
for solving (1) is a proximal-point variant of ADMM with a
proximal term weighted by M , σ−1I− τA′A provided that
0 < στ ‖A‖22 < 1 [26, Section 4.3]. Letting z(k) = −τd(k)

and z̄(0) = z(0) and choosing σ = ρ−1t and τ = ρ, the CP
iteration (20) is just the proixmal-point AL method (13) and
hence LALM (8) if we initialize u as u(0) = Ax(0). This
suggests that we can measure the convergence rate of LALM
using the primal-dual gap that vanishes ergodically with rate
O(1/k). Finally, to consider inexact updates, we apply the
error analysis technique developed in [17] to the convergence
rate analysis of CP, leading to the following theorem (the proof
is in the supplementary material):

Theorem 2. Consider a minimax problem (18) where both
g and h are closed and proper convex functions. Suppose it
has a saddle-point (ẑ, x̂), where ẑ and x̂ are the solutions of
the primal problem (21) and the dual problem (22) of (18),
respectively. Let ρ > 0 and {εk}∞k=0 denote a non-negative
sequence such that

∞∑

k=0

√
εk <∞ . (23)

Then, the sequence of updates
{(
−ρd(k),x(k)

)}∞
k=0

generated
by the inexact LALM in (15) is a bounded sequence that
converges to (ẑ, x̂), and the primal-dual gap of (zk,xk) has
the following bound:

Ω
(
zk, x̂

)
− Ω

(
ẑ,xk

)
≤
(
C + 2Ak +

√
Bk
)2

k
, (24)

where zk , 1
k

∑k
j=1

(
−ρd(j)

)
, xk , 1

k

∑k
j=1 x(j),

C ,
∥∥x(0) − x̂

∥∥
2√

2ρ−1t
+

∥∥(−ρd(0)
)
− ẑ
∥∥

2√
2ρ

, (25)

Ak ,
k∑

j=1

√
εj−1(

1− t ‖A‖22
)
ρ−1t

, (26)

and

Bk ,
k∑

j=1

εj−1 . (27)

Theorem 2 shows that the inexact LALM in (15) converges
with rate O(1/k) if the square root of the error εk is abso-
lutely summable. In fact, even if

{√
εk
}∞
k=0

is not absolutely
summable, say,

√
εk decreases as O(1/k), Ak grows as

O(log k) (note that Bk always grows slower than Ak), and the
primal-dual gap converges to zero in O

(
log2 k/k

)
. To obtain

convergence of the primal-dual gap, a necessary condition is
that the partial sum of

{√
εk
}∞
k=0

grows no faster than o
(√
k
)
.

The primal-dual gap convergence bound above is measured
at the average point (−ρdk,xk) of the update trajectory.
In practice, the primal-dual gap of

(
−ρd(k),x(k)

)
converges

much faster. Minimizing the constant in (24) need not provide
the fastest convergence rate. However, the ρ-, t-, and εk-

dependence in (24) suggests how these factors affect the
convergence rate of LALM. Note that although we consider
only one variable split in our derivation, it is easy to extend our
proofs to support multiple variable splits by using the variable
splitting scheme in [6]. Conventional LALM in (8) is not OS-
accelerable because it needs one full forward projection for
the u- and d-updates. We used LALM for analysis and to
motivate the proposed algorithm in Section III, but it is not rec-
ommended for practical implementation in CT reconstruction.
By restricting g to be a quadratic loss function, we show next
that LALM becomes OS-accelerable and can further accelerate
the conventional OS algorithms by decreasing or choosing a
small AL penalty paremeter.

III. PROPOSED ALGORITHM

A. OS-LALM: an OS-accelerable splitting-based algorithm

In this section, we restrict g to be a quadratic loss function,
i.e., g(u) , 1

2 ‖y − u‖22, and then the minimization problem
(1) becomes a regularized least-squares problem:

x̂ ∈ arg min
x

{
Ψ(x) , 1

2 ‖y −Ax‖22 + h(x)
}
. (28)

Let L(x) , g(Ax) denote the quadratic data-fitting term in
(28). We assume that L is suitable for OS acceleration; i.e.,
L can be decomposed into M smaller quadratic functions
L1, . . . , LM satisfying the “subset balance condition” [8]:

∇L(x) ≈M∇L1(x) ≈ · · · ≈M∇LM (x) , (29)

so that the subset gradients approximate the gradient of L.
Since g is quadratic, its proximal mapping is linear. The

u-update in LALM (8) has the following simple closed-form
solution:

u(k+1) = ρ
ρ+1

(
Ax(k+1) − d(k)

)
+ 1

ρ+1y . (30)

Combining (30) with the d-update of (8) yields the identity

u(k+1) + ρd(k+1) = y (31)

if we initialize d as d(0) = ρ−1
(
y − u(0)

)
. Letting ũ , u−y

denote the split residual and substituting (31) into (8) lead to
the following simplified LALM iterates:





s(k+1) = A′
(
ρ
(
Ax(k) − y

)
+ (1− ρ) ũ(k)

)

x(k+1) ∈ prox(ρ−1t)h

(
x(k) − (ρ−1t) s(k+1)

)

ũ(k+1) = ρ
ρ+1

(
Ax(k+1) − y

)
+ 1

ρ+1 ũ(k) .

(32)

The net computational complexity of (32) per iteration reduces
to one multiplication by A, one multiplication by A′, and one
proximal mapping of h that often can be solved non-iteratively
or solved iteratively without using A or A′. Since the gradient
of L is A′ (Ax− y), letting g , A′ũ (a back-projection of
the split residual) denote the split gradient, we rewrite (32) as:





s(k+1) = ρ∇L
(
x(k)

)
+ (1− ρ) g(k)

x(k+1) ∈ prox(ρ−1t)h

(
x(k) − (ρ−1t) s(k+1)

)

g(k+1) = ρ
ρ+1∇L

(
x(k+1)

)
+ 1

ρ+1g(k) .

(33)

We call (33) the gradient-based LALM because only the
gradients of L are used to perform the updates, and the net
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computational complexity of (33) per iteration becomes one
gradient evaluation of L and one proximal mapping of h.

We interpret the gradient-based LALM (33) as a generalized
proximal gradient descent of a regularized least-squares cost
function Ψ with step size ρ−1t and search direction s(k+1)

that is a weighted average of the gradient and split gradient of
L. A smaller ρ can lead to a larger step size. When ρ = 1, (33)
happens to be the proximal gradient method or the iterative
shrinkage/thresholding algorithm (ISTA) [28]. In other words,
by using LALM, we can arbitrarily increase the step size of
the proximal gradient method by decreasing ρ, thanks to the
simple ρ-dependent correction of the search direction in (33).
To have a concrete example, suppose all updates are exact,
i.e., εk = 0 for all k. From (31) and Theorem 2, we have
−ρd(k) = u(k) − y→ Ax̂− y = ẑ as k →∞. Furthermore,(
−ρd(0)

)
− ẑ = u(0) −Ax̂. With a reasonable initialization,

e.g., u(0) = Ax(0) and consequently, g(0) = ∇L
(
x(0)

)
, the

constant C in (25) can be rewritten as a function of ρ:

C(ρ) =

∥∥x(0) − x̂
∥∥

2√
2ρ−1t

+

∥∥A
(
x(0) − x̂

)∥∥
2√

2ρ
. (34)

This constant achieves its minimum at

ρopt =

∥∥A
(
x(0) − x̂

)∥∥
2√

L
∥∥x(0) − x̂

∥∥
2

≤ 1 , (35)

suggesting that unity might be a reasonable upper bound on ρ
for fast convergence. Note that the ratio of the first term to the
second term in (34) is ρ/ρopt. When the majorization is loose,
i.e., L� ‖A‖22, ρopt � 1 and the first term in (34) dominates
C for ρopt < ρ ≤ 1 since ρ/ρopt � 1. The upper bound of the
primal-dual gap becomes

Ω
(
zk, x̂

)
− Ω

(
ẑ,xk

)
≤ C2

k
≈

L
2

∥∥x(0) − x̂
∥∥2

2

ρ−1k
. (36)

That is, comparing to the proximal gradient method (ρ = 1),
the convergence rate (bound) of (33) is accelerated by a factor
of ρ−1 for ρopt < ρ ≤ 1.

Finally, since (33) requires only the gradients of L to
perform updates, it is OS-accelerable. For OS acceleration,
we simply replace ∇L in (33) with M∇Lm using the approx-
imation (29) and incrementally perform (33) for M times as
a complete iteration, thus leading to the final proposed OS-
accelerable LALM (OS-LALM):




s(k,m+1) = ρM∇Lm
(
x(k,m)

)
+ (1− ρ) g(k,m)

x(k,m+1) ∈ prox(ρ−1t)h

(
x(k,m) − (ρ−1t) s(k,m+1)

)

g(k,m+1) = ρ
ρ+1M∇Lm+1

(
x(k,m+1)

)
+ 1

ρ+1g(k,m)

(37)
with c(k,M+1) = c(k+1) = c(k+1,1) for c ∈ {s,x,g} and
LM+1 = L1. Like typical OS-based algorithms, this algorithm
is convergent when M = 1, i.e., (33), but is not guaranteed to
converge for M > 1. When M > 1, updates generated by OS-
based algorithms approach a “limit cycle” in which updates
stop nearing the optimum, and visible OS artifacts might be
observed in the reconstructed image, depending on M .

B. Deterministic downward continuation

One drawback of conventional LALM is the difficulty of
finding a fixed value for the penalty parameter ρ that provides
the fastest convergence. The optimal penalty parameter ρopt in
(35) minimizes the multiplicative constant but depends on the
unknown solution x̂ of the problem. Intuitively, a smaller ρ is
better because it leads to a larger step size. However, when
the step size is too large, one can encounter overshoots and
oscillations that slow down the convergence rate at first and
when nearing the optimum. In fact, ρopt in (35) also suggests
that ρ should not be arbitrarily small. Rather than estimating
ρopt heuristically, we focus on using an iteration-dependent ρ,
i.e., a continuation approach, for acceleration.

Classic continuation approaches increase ρ as iterations
progress so that previous iterates can serve as a warm start
for subsequent worse-conditioned but more penalized inner
minimization problems [29, Proposition 4.2.1]. To implement
this kind of approaches, one must specify an initial value of the
penalty parameter ρ0 and a rule for increasing ρ which are usu-
ally problem-dependent. For example, a small ρ0 provides fast
initial convergence but can cause overshoot (e.g., increasing
the cost function) in early iterations. Choosing a good ρ0 that
balances convergence rate and overshoot for a given problem
is difficult. Furthermore, most classic continuation approaches
adapt the penalty parameter dynamically by checking some
conditions such as the primal and dual feasibilities and the
decrease of cost function [30]. This can increase computational
complexity per iteration, especially when involving expensive
operations (e.g., A and A′ in our case).

In this paper, unlike classic continuation approaches, we
consider a downward continuation approach. It is inspired
by Nesterov’s second method [31] that starts as a proximal
gradient method and gradually increases the step size (of the
auxiliary sequence) deterministically. The intuition is that, for
a fixed ρ, the step length

∥∥x(k+1) − x(k)
∥∥ is typically a

decreasing sequence because the gradient norm vanishes as
we approach the optimum, and an increasing sequence ρk
(i.e., a diminishing step size) would aggravate the shrinkage
of step length, slowing convergence. In contrast, a decreasing
sequence ρk can compensate for step length shrinkage and
accelerate convergence. Of course, ρk cannot decrease too fast;
otherwise, the soaring step size might make the algorithm
unstable or even divergent. To design a “good” decreasing
sequence ρk for “effective” acceleration, we first analyze how
LALM (the one-subset version (33) for simplicity) behaves for
different values of ρ.

Consider a simple quadratic problem:

x̂ = arg min
x

1
2 ‖Ax‖22 , (38)

corresponding to (28) with h = 0 and y = 0. A trivial solution
of (38) is x̂ = 0. To ensure a unique solution, we assume
that A′A is positive definite (for this analysis only). Let A′A
have eigenvalue decomposition VΛV′, where Λ , diag{λi}
and 0 < λ1 ≤ · · · ≤ λn = L. The updates generated by (33)
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that solve (38) can be written as
{

x(k+1) = x(k) − (1/L)
(
VΛV′x(k) + (ρ−1 − 1) g(k)

)

g(k+1) = ρ
ρ+1VΛV′x(k+1) + 1

ρ+1g(k) .
(39)

Furthermore, letting x̄ = V′x and ḡ = V′g, the linear system
can be further diagonalized, and we can represent the ith
components of x̄ and ḡ as
{
x̄

(k+1)
i = x̄

(k)
i − (1/L)

(
λix̄

(k)
i + (ρ−1 − 1) ḡ

(k)
i

)

ḡ
(k+1)
i = ρ

ρ+1λix̄
(k+1)
i + 1

ρ+1 ḡ
(k)
i .

(40)

Solving this system of recurrence relations of x̄i and ḡi, one
can show that both x̄i and ḡi satisfy a second-order recursive
system determined by the characteristic polynomial:

(1 + ρ) r2
i − 2 (1− λi/L+ ρ/2) ri + (1− λi/L) . (41)

The roots ri of this polynomial determine the convergence rate
of x̄i and ḡi in (40).

When ρ = ρc
i , where

ρc
i , 2

√
λi
L

(
1− λi

L

)
∈ (0, 1] , (42)

the characteristic polynomial (41) has repeated roots. Hence,
the system is critically damped, and x̄i and ḡi converge
geometrically to zero with convergence rate

rc
i =

1− λi/L+ ρc
i/2

1 + ρc
i

=

√
1− λi/L

1 + ρc
i

. (43)

When ρ > ρc
i , the characteristic polynomial (41) has distinct

real roots. Hence, the system is over-damped, and x̄i and ḡi
converge geometrically to zero with convergence rate that is
governed by the dominant root

ro
i (ρ) =

1− λi/L+ ρ/2 +
√
ρ2/4− λi/L (1− λi/L)

1 + ρ
.

(44)
It is easy to check that ro

i (ρ
c
i) = rc

i , and ro
i is increasing. This

suggests that the critically damped system always converges
faster than the over-damped system. Finally, when ρ < ρc

i ,
the characteristic polynomial (41) has complex roots. In this
case, the system is under-damped, and x̄i and ḡi converge
geometrically to zero with convergence rate

ru
i (ρ) =

1− λi/L+ ρ/2

1 + ρ
, (45)

and oscillate at the damped frequency ψi/(2π), where

cosψi =
1− λi/L+ ρ/2√
(1 + ρ)(1− λi/L)

≈
√

1− λi/L (46)

when ρ ≈ 0. Furthermore, by the small angle approximation:
cos
√
θ ≈ 1−θ/2 ≈

√
1− θ, if λi � L, ψi ≈

√
λi/L. Again,

ru
i (ρ

c
i) = rc

i , but ru
i behaves differently from ro

i . Specifically,
ru
i is decreasing if λi/L < 1/2, and it is increasing otherwise.

This suggests that the critically damped system converges
faster than the under-damped system if λi/L < 1/2, but it
can be slower otherwise. In sum, the critically damped system
is optimal for eigencomponents having smaller eigenvalues
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Fig. 1: The dominant roots ri(ρ) of (41) and the optimal
asymptotic convergence rate r? , minρ {maxiri(ρ)} for a
system with six distinct eigenvalues: 0.05L, 0.1L, 0.3L, 0.7L,
0.9L, and L.

(i.e., λi < L/2), while for eigencomponents having larger
eigenvalues (i.e., λi > L/2), the under-damped system is
optimal.

The asymptotic convergence rate of the system is dominated
by the smallest eigenvalue λ1. Eventually, only the component
oscillating at frequency ψ1/(2π) persists. Therefore, for the
fastest asymptotic convergence rate, we would like to choose
the AL penalty parameter ρ to be

ρ? = ρc
1 = 2

√
λ1

L

(
1− λ1

L

)
∈ (0, 1] . (47)

Figure 1 illustrates the dominant roots of (41) and the optimal
asymptotic convergence rate that is the minimum of the
largest dominant root, i.e., maxiri(ρ), of all possible ρ for a
system with six distinct eigenvalues: 0.05L, 0.1L, 0.3L, 0.7L,
0.9L, and L. For eigencomponents having smaller eigenvalues
(0.05L, 0.1L, and 0.3L), the critically damped system has the
fastest asymptotic convergence rate, while eigencomponents
having larger eigenvalues (0.7L, 0.9L, and L) attain the fastest
asymptotic convergence rate in the under-damping regime.
Moreover, when the smallest eigenvalue is less than L/2
(i.e., an ill-conditioned system), the eigencomponent with
the smallest eigenvalue determines the optimal asymptotic
convergence rate, i.e., minρ {maxiri(ρ)}, with ρ? in (47).
Unlike ρopt in (35), this choice of ρ does not depend on the
initialization. It depends only on the geometry of the Hessian
A′A. Furthermore, both ρopt and ρ? fall in the interval (0, 1].
Hence, although LALM converges for any ρ > 0, we consider
only 0 < ρ ≤ 1 in our downward continuation approach.

We can now interpret classic (upward) continuation ap-
proaches based on the second-order recursive system analysis.
Classic continuation approaches usually start from a small ρ
for better-conditioned inner minimization problem. Therefore,
initially, the system is under-damped. Although the under-
damped system has a slower asymptotic convergence rate, the
oscillation can provide dramatic acceleration before the first
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zero-crossing of the oscillating components. We can think of
the classic continuation approach as a greedy strategy that
exploits the initial fast convergence rate of the under-damped
system and carefully increases ρ to avoid oscillation and move
toward the critical damping regime. However, this greedy
strategy requires a “clever” update rule for increasing ρ. If
ρ increases too fast, the acceleration ends prematurally; if ρ
increases too slow, the system starts oscillating.

In contrast, we consider a more conservative strategy that
starts from the over-damped regime, say, ρ = 1 as suggested
in (47), and gradually reduces ρ to the optimal AL penalty
parameter ρ?. It sounds impractical at first because we do not
know λ1 beforehand. To solve this problem, we adopt the
adaptive restart proposed in [32] and generate a decreasing
sequence ρk that starts from ρ = 1 and reaches ρ? every
time the algorithm restarts. As mentioned before, the system
oscillates at frequency ψ1/(2π) when it is under-damped. This
oscillating behavior can also be observed from the trajectory
of updates. For example,

ξ(k) ,
(
g(k) −∇L

(
x(k+1)

))′(∇L
(
x(k+1)

)
−∇L

(
x(k)

))

(48)
oscillates at the frequency ψ1/π [32]. Hence, we restart the
algorithm (i.e., reset the decreasing penalty parameter ρ to
be one and g to be the current gradient of L) every time
ξ(k) > 0, which should occur about every (π/2)

√
L/λ1

iterations. Suppose we restart at the rth iteration, we have the
approximation

√
λ1/L ≈ π/ (2r), and the ideal AL penalty

parameter at the rth iteration should be

2
√(

π
2r

)2(
1−

(
π
2r

)2)
= π

r

√
1−

(
π
2r

)2
. (49)

The proposed downward continuation approach has the form
(33), where we replace every ρ in (33) with

ρl =

{
1, if l = 0

max
{

π
l+1

√
1−

(
π

2l+2

)2
, ρmin

}
, otherwise ,

(50)

where l is a counter that starts from zero, increases by
one everytime g is updated, and is reset to zero whenever
ξ(k) > 0. The lower bound ρmin is a small positive number
for guaranteeing convergence. Note that ADMM is convergent
if ρ is non-increasing and bounded below away from zero [33,
Corollary 4.2]. As shown in Section II-B (Theorem 1), LALM
is a convergent ADMM. Therefore, we can ensure convergence
(of the one-subset version) of the proposed downward con-
tinuation approach if we set a non-zero lower bound for ρl,
e.g., ρmin = 10−3 in our experiments. Note that ρl in (50) is
the same for any A. The adaptive restart condition takes care
of the dependence on A. That is why we call this approach
the deterministic downward continuation approach. When h
is non-zero and/or A′A is not positive definite, our analysis
above does not hold. However, the deterministic downward
continuation approach works well in practice for CT. One
possible explanation is that the cost function can usually be
well approximated by a quadratic near the optimum when the
minimization problem is well-posed and h is locally quadratic.

Finally, in practice we do not restart our algorithm for X-
ray CT image reconstruction (with ordered subsets, i.e., (37))

for two reasons. First, according to our analysis, the restart
period is proportional to the square root of the local condition
number, i.e.,

√
L/λ1. Since X-ray CT image reconstruction

problems are usually very ill-conditioned, the algorithm usu-
ally terminates before a restart is needed. Second, since OS
is used for acceleration, gradients used to compute ξ(k) are
not accurate and might lead to premature restart. In our
experimental results, we did not observe any problems without
restart. However, restart may be useful in other applications.

IV. IMPLEMENTATION DETAILS

In this section, we consider solving the X-ray CT image
reconstruction problem:

x̂ ∈ arg min
x∈Ω

{
1
2 ‖y −Ax‖2W + R(x)

}
(51)

using the proposed OS-LALM algorithm (37), where A is
the system matrix of a CT scan, y is the noisy sinogram,
W is the statistical weighting matrix, R is an edge-preserving
regularizer, and Ω denotes the convex set for a box constraint
(usually the non-negativity constraint) on x. We focus on the
edge-preserving regularizer R defined as:

R(x) ,
∑

i

βi
∑

n

κnκn+siφi([Cix]n) , (52)

where βi, si, φi, and Ci denote the regularization parameter,
corresponding offset, potential function, and finite difference
matrix in the ith direction, respectively, and κn is a voxel-
dependent weight for improving resolution uniformity [34]. In
our experiments, we use 13 directions to include all neighbors
in 3D CT.

A. OS-LALM for X-ray CT image reconstruction

The X-ray CT image reconstruction problem (51) is a
constrained regularized weighted least-squares problem. To
solve it using the proposed algorithm (33) and its OS variant
(37), we use the following substitution:





A←W1/2A

y←W1/2y

h← R + ιΩ ,

(53)

where ιC denotes the characteristic function of a convex
set C. Thus, the inner minimization problem in (33) and
its OS variant (37) becomes a constrained denoising prob-
lem. In our implementation, we solve this inner constrained
denoising problem using n iterations of the fast iterative
shrinkage/thresholding algorithm (FISTA) [15] starting from
the previous update as a warm start. As discussed in Sec-
tion II-B, inexact updates can slow down the convergence
rate of the proposed algorithm. In general, the more FISTA
iterations, the faster convergence rate of the proposed algo-
rithm. However, the overhead of iterative inner updates is non-
negligible for large n, especially when the number of subsets
is large. Fortunately, in typical X-ray CT image reconstruction
problems, the majorization is usually very loose (probably
due to the huge dynamic range of the statistical weighting
W). Therefore, t� 1 in most cases, greatly diminishing the
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regularization force in the constrained denoising problem. In
practice, the constrained denoising problem can be solved
up to some acceptable tolerance within just one or two
iterations. For a fair comparison with the OS-based algorithms
[8, 12] used in Section V that majorize the weighted quadratic
data-fitting term L using the SQS function with a diagonal
Hessian DL , diag{A′WA1} [8], in our experiments, we
also majorize the quadratic penalty in the scaled augmented
Lagrangian using the SQS function with Hessian DL (in this
case, the inner minimization problem in (33) and its OS variant
(37) becomes a constrained weighted denoising problem that
can also be solved by FISTA) and incrementally update the
image using the subset gradients with the bit-reversal order
[35] that heuristically minimizes the subset gradient variance
as in other OS-based algorithms. See the supplementary ma-
terial for the outline of the proposed OS-LALM algorithm for
solving (51).

The SQS function with Hessian DL is a very loose ma-
jorizer. For fastest convergence, one might wish to use the
tightest majorizer with Hessian A′WA. However, this would
revert to the standard AL method (4) with expensive x-
updates. An alternative is the Barzilai-Borwein (spectral)
method [36] that mimics the Hessian A′WA by Hk , αkDL,
where the scaling factor αk is solved by fitting the secant
equation in the (weighted) least-squares sense. Detailed deriva-
tion and additional experimental results can be found in the
supplementary material.

B. Number of subsets

As mentioned in Section III-A, the number of subsets M
can affect the stability of OS-based algorithms. When M is
too large, OS algorithms typically become unstable, causing
artifacts in the reconstructed image. Therefore, finding an
appropriate number of subsets is very important. Since errors
of OS-based algorithms come from the gradient approximation
using subset gradients, artifacts might be supressed using a
better gradient approximation. Intuitively, to have a reasonable
gradient approximation, each voxel in a subset should be
sampled by a minimum number of views s. For simplicity,
we consider the central voxel in the transaxial plane. In axial
CT, the views are uniformly distributed in each subset, so we
want

1
Maxial

· (number of views) ≥ saxial . (54)

This leads to our maximum number of subsets for axial CT:

Maxial ≤ (number of views) · 1
saxial

. (55)

Helical CT is more complicated. Since the X-ray source
moves in the z direction, a central voxel is only covered
by dso/ (p · dsd) turns, where p is the pitch, dso denotes the
distance from the X-ray source to the isocenter, and dsd denotes
the distance from the X-ray source to the detector. Therefore,
we want

1
Mhelical

· (number of views per turn) · dso
p·dsd
≥ shelical . (56)

This leads to our maximum number of subsets for helical CT:

Mhelical ≤ (number of views per turn) · dso
p·shelical·dsd

. (57)

Note that the maximum number of subsets for helical CT
Mhelical is inversely proportional to the pitch p. We set
saxial ≈ 40 and shelical ≈ 24 for the proposed algorithm in
our experiments.

V. EXPERIMENTAL RESULTS

This section reports numerical results for 3D X-ray CT
image reconstruction from real CT scans with different ge-
ometries using various OS-based algorithms, including
• OS-SQS-M : the standard OS algorithm [8] with M

subsets,
• OS-Nes05-M : the OS+momentum algorithm [12] based

on Nesterov’s fast gradient method [14] with M subsets,
• OS-LALM-M -ρ-n : the proposed algorithm using a

fixed AL penalty parameter ρ with M subsets and n
FISTA iterations for solving the inner constrained denois-
ing problem, and

• OS-LALM-M -c-n : the proposed algorithm using the
deterministic downward continuation approach described
in Section III-B with M subsets and n FISTA iterations
for solving the inner constrained denoising problem.

OS-SQS is a standard iterative method for tomographic recon-
struction, and OS-Nes05 is a state-of-the-art method for fast
X-ray CT image reconstruction using Nesterov’s momentum
technique. Unlike other OS-based algorithms, our proposed
algorithm has additional overhead due to the iterative inner
updates. However, when n = 1, i.e., with a single gradient
descent for the constrained denoising problem, all algorithms
listed above have the same computational complexity (one
forward/back-projection pair and M regularizer gradient eval-
uations per iteration). When majorizing the regularizer, we
use Huber’s curvature [37, p. 185] for faster convergence
in all algorithms. Therefore, comparing the convergence rate
as a function of iteration is fair. We measured the con-
vergence rate using the RMS difference (in the region of
interest) between the reconstructed image x(k) and the almost
converged reference reconstruction x? that we generated by
running several iterations of the OS+momentum algorithm
with a small M , followed by 2000 iterations of a convergent
(i.e., one-subset) FISTA with adaptive restart [32]. We used
a q-generalized Gaussian [38] potential function φi in (52),
and βi and κn were tuned to emulate GE’s Veo method [39].
For reproducible results using an XCAT phantom, see the
supplementary material.

A. Shoulder scan

In this experiment, we reconstructed a 512×512×109 image
from a shoulder region helical CT scan, where the sinogram
has size 888×32×7146 and pitch 0.5. The maximum number
of subsets suggested by (57) is about 40. Figure 2 shows the
cropped images from the central transaxial plane of the initial
FBP image, the reference reconstruction, and the reconstructed
image using the proposed algorithm (OS-LALM-40-c-1) at the
30th iteration (i.e., after 30 forward/back-projection pairs). In
Figure 2, the reconstructed image using the proposed algorithm
looks almost the same as the reference reconstruction in
the display window from 800 to 1200 Hounsfield unit (HU,
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modified so that air is 0). The reconstructed image using the
OS+momentum algorithm (not shown here) also looks quite
similar to the reference reconstruction.

Figure 3 shows the difference images, i.e., x(30) − x?,
for different OS-based algorithms. The standard OS algo-
rithm (with both 20 and 40 subsets) exhibits visible streak
artifacts and structured high frequency noise in the differ-
ence image. When M = 20, the difference images look
similar for the OS+momentum algorithm and our proposed
algorithm, although that of the OS+momentum algorithm is
slightly more structured and non-uniform. When M = 40,
the difference image for our proposed algorithm remains
uniform, whereas some noise-like OS artifacts appear in the
OS+momentum algorithm’s difference image. The OS artifacts
for the OS+momentum algorithm worsen when M increases,
e.g., M = 80 (not shown). Apparently OS-LALM has better
gradient error tolerance than previous OS methods, probably
due to the way we compute the search direction and the
less aggressive acceleration to the regularization term. Ad-
ditional experimental results (an XCAT phantom axial scan
and a truncated abdomen scan) in the supplementary material
demonstrate how different OS-based algorithms behave when
M exceeds the suggested maximum number of subsets.

Figure 4 shows the convergence rate curves (RMS differ-
ences between the reconstructed image x(k) and the reference
reconstruction x? as a function of iteration) using OS-based
algorithms with 20 and 40 subsets. By exploiting the linearized
AL method, the proposed algorithm accelerates the standard
OS algorithm remarkably. As mentioned in Section III-A, a
smaller ρ can provide greater acceleration due to the increased
step size. Both plots show the acceleration of convergence as ρ
decreases. Note that too large step sizes can cause overshoots
in early iterations. For example, the proposed algorithm with
ρ = 0.05 shows slower convergence rate in first few iterations
but decreases more rapidly later. Our proposed deterministic
downward continuation approach (50) overcomes this trade-
off. In Figure 4, the proposed algorithm using deterministic
downward continuation reaches the lowest RMSD (lower than
1 HU) within only 30 iterations. The slightly higher RMSD
of the OS+momentum algorithm with 40 subsets is due to the
OS artifacts seen in Figure 3.

Figure 5 illustrates the effectiveness of solving the inner
constrained denoising problem using FISTA (for X-ray CT
image reconstruction) mentioned in Section IV-A. In Figure 5,
the convergence rate improves only slightly when using more
than one FISTA iteration for solving the inner constrained
denoising problem. In practice, one FISTA iteration, i.e.,
n = 1, per subset update suffices for fast and accurate X-ray
CT image reconstruction.

B. GE performance phantom
In this experiment, we reconstructed a 1024 × 1024 × 90

image from the GE performance phantom (GEPP) axial CT
scan, where the sinogram has size 888 × 64 × 984. The
maximum number of subsets suggested by (55) is about
24. Figure 6 shows the cropped images from the central
transaxial plane of the initial FBP image, the reference re-
construction, and the reconstructed image using the proposed
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Fig. 5: Shoulder scan: RMS differences between the recon-
structed image x(k) and the reference reconstruction x? as
a function of iteration using the proposed algorithm with
different number of FISTA iterations n (1, 2, and 5) for solving
the inner constrained denoising problem.
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Fig. 8: GE performance phantom: RMS differences between
the reconstructed image x(k) and the reference reconstruction
x? as a function of iteration using OS-based algorithms with
24 subsets. The dotted line shows the RMS differences using
the standard OS algorithm with one subset.

algorithm (OS-LALM-24-c-1) at the 30th iteration. Again, the
OS-LALM image at the 30th iteration is very similar to the
reference reconstruction.

Figure 7 and Figure 8 show the difference images and con-
vergence rate curves, respectively. Because of the lower view-
redundancy in axial CT scans, the OS+momentum algorithm
shows even more OS artifacts than the standard OS algorithm
in the difference images, leading to a larger limit cycle in
Figure 8. A relaxed OS+momentum algorithm [40] that uses
a diminishing step size can address this problem but require
careful tuning of the step sizes. In contrast, the proposed
OS-LALM algorithm avoids the need for such parameter
tuning; one only needs to choose the number of subsets M .
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Fig. 2: Shoulder scan: cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial
FBP image x(0) (left), the reference reconstruction x? (center), and the reconstructed image using the proposed algorithm
(OS-LALM-40-c-1) at the 30th iteration x(30) (right).
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Fig. 3: Shoulder scan: cropped difference images (displayed from −30 to 30 HU) from the central transaxial plane of x(30)−x?

using OS-based algorithms.
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Fig. 4: Shoulder scan: RMS differences between the reconstructed image x(k) and the reference reconstruction x? as a function
of iteration using OS-based algorithms with (a) 20 subsets and (b) 40 subsets, respectively. The dotted lines show the RMS
differences using the standard OS algorithm with one subset.
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Fig. 6: GE performance phantom: cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the
initial FBP image x(0) (left), the reference reconstruction x? (center), and the reconstructed image using the proposed algorithm
(OS-LALM-24-c-1) at the 30th iteration x(30) (right).
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Fig. 7: GE performance phantom: cropped difference images (displayed from −30 to 30 HU) from the central transaxial plane
of x(30) − x? using OS-based algorithms.

VI. CONCLUSION

Augmented Lagrangian (AL) methods and ordered subsets
(OS) are two powerful techniques for accelerating optimization
algorithms using decomposition and approximation, respec-
tively. This paper combined these two techniques by consid-
ering a linearized variant of the AL method and proposed a
fast OS-accelerable splitting-based algorithm, OS-LALM, for
solving regularized (weighted) least-squares problems. We also
proposed a novel deterministic downward continuation ap-
proach based on a second-order damping system that simplifies
parameter selection; only the number of subsets M needs to be
selected, and we provided heuristics for that based on sampling
considerations in (55) and (57). We applied OS-LALM to X-
ray computed tomography (CT) image reconstruction prob-
lems and compared with some state-of-the-art OS methods
using real CT scans with different geometries. Experimental
results showed that OS-LALM exhibits fast convergence rate
and excellent gradient error tolerance.

In (33), the search direction s is a weighted average of the

current gradient and the split gradient of L corresponding to
a low-pass infinite-impulse-response filter (across iterations).
The gradient error might be suppressed by this low-pass filter,
improving stability. A similar averaging technique (with a low-
pass finite-impulse-response filter) is used in the stochastic
average gradient (SAG) method [41, 42]. In contrast, the
OS+momentum algorithm computes the search direction using
only the current gradient (of the auxiliary image), so the
gradient error can accumulate when OS is used, providing
a less stable reconstruction. When the inner constrained de-
noising problem is more difficult to solve, one could run more
FISTA iterations or introduce an additional split variable for
the regularizer as in [7] at the cost of higher memory burden,
thus leading to a “high-memory” version of OS-LALM [43].
A recent alternative without variable splitting would be to use
a grouped coordinate descent (GCD) denoising with a GPU
implementation [44, 45].

As future work, we are interested in the convergence rate
analysis of the proposed algorithm with the deterministic
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downward continuation approach and a more rigorous con-
vergence analysis of OS-LALM for M that is greater than
one.
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In this supplementary material, we provide the detailed convergence analysis of a linearized augmented Lagrangian (AL)
method with inexact updates proposed in [1] together with additional experimental results.

I. CONVERGENCE ANALYSIS OF THE INEXACT LINEARIZED AL METHOD

Consider a general composite convex optimization problem:

x̂ ∈ arg min
x

{
g(Ax) + h(x)

}
(1)

and its equivalent constrained minimization problem:

(x̂, û) ∈ arg min
x,u

{
g(u) + h(x)

}
s.t. u = Ax , (2)

where both g and h are closed and proper convex functions. The two inexact linearized AL method (LALM) variants that
solve (2) are as follows: 




∥∥∥x(k+1) − arg min
x
φk(x)

∥∥∥ ≤ δk
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) ,

(3)

and 



∣∣∣φk
(
x(k+1)

)
−min

x
φk(x)

∣∣∣ ≤ εk
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) ,

(4)

where
φk(x) , h(x) + θ̆k

(
x;x(k)

)
, (5)

and
θ̆k
(
x;x(k)

)
, θk

(
x(k)

)
+
〈
∇θk

(
x(k)

)
,x− x(k)

〉
+ ρL

2

∥∥x− x(k)
∥∥2

2
(6)

is the separable quadratic surrogate (SQS) function of

θk(x) , ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
(7)

with L > ‖A‖22 = λmax(A′A), {δk}∞k=0 and {εk}∞k=0 are two non-negative sequences, d is the scaled Lagrange multiplier of
the split variable u, and ρ > 0 is the corresponding AL penalty parameter. Furthermore, in [1], we also showed that the inexact
LALM (with u(0) = Ax(0)) is equivalent to the invexact version of the Chambolle-Pock first-order primal-dual algorithm (CP)
[2]: 




x(k+1) ∈ proxσh
(
x(k) − σA′z̄(k)

)

z(k+1) ∈ proxτg∗
(
z(k) + τAx(k+1)

)

z̄(k+1) = z(k+1) +
(
z(k+1) − z(k)

) (8)

that solves the minimax problem:

(ẑ, x̂) ∈ arg min
z

max
x

{
Ω(z,x) , 〈−A′z,x〉+ g∗(z)− h(x)

}
(9)

This work is supported in part by National Institutes of Health (NIH) grants R01-HL-098686 and U01-EB-18753 and by an equipment donation from Intel
Corporation. Hung Nien and Jeffrey A. Fessler are with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,
MI 48105, USA (e-mail: {hungnien,fessler}@umich.edu).
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with z = −τd, z̄(0) = z(0), σ = ρ−1t, τ = ρ, and t , 1/L, where proxf denotes the proximal mapping of f defined as:

proxf (z) , arg min
x

{
f(x) + 1

2 ‖x− z‖22
}
, (10)

and f∗ denotes the convex conjugate of a function f . Note that g∗∗ = g and h∗∗ = h since both g and h are closed, proper,
and convex.

A. Proof of Theorem 1

Theorem 1. Consider a constrained composite convex optimization problem (2) where both g and h are closed and proper
convex functions. Let ρ > 0 and {δk}∞k=0 denote a non-negative sequence such that

∞∑

k=0

δk <∞ . (11)

If (2) has a solution (x̂, û), then the sequence of updates
{(

x(k),u(k)
)}∞
k=0

generated by the inexact LALM in (3) converges
to (x̂, û); otherwise, at least one of the sequences

{(
x(k),u(k)

)}∞
k=0

or
{
d(k)

}∞
k=0

diverges.

Proof. To prove this theorem, we first consider the exact LALM:




x(k+1) ∈ arg min
x

{
h(x) + θ̆k

(
x;x(k)

)}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(12)

Note that

θ̆k
(
x;x(k)

)
= θk

(
x(k)

)
+
〈
∇θk

(
x(k)

)
,x− x(k)

〉
+ ρL

2

∥∥x− x(k)
∥∥2

2

= θk
(
x(k)

)
+
〈
∇θk

(
x(k)

)
,x− x(k)

〉
+ ρ

2

∥∥x− x(k)
∥∥2

A′A
+ ρ

2

∥∥x− x(k)
∥∥2

LI−A′A

= θk(x) + ρ
2

∥∥x− x(k)
∥∥2

G
, (13)

where G , LI−A′A � 0. Therefore, the exact LALM can also be written as




x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ ρ

2

∥∥x− x(k)
∥∥2

G

}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(14)

Now, consider another constrained minimization problem that is also equivalent to (1) but uses two split variables:

(x̂, û, v̂) ∈ arg min
x,u,v

{
g(u) + h(x)

}
s.t.

[
u
v

]
=

[
A

G1/2

]

︸ ︷︷ ︸
S

x . (15)

The corresponding augmented Lagrangian and ADMM iterates [3] are

LA(x,u,d,v, e; ρ, η) , g(u) + h(x) + ρ
2 ‖Ax− u− d‖22 + η

2

∥∥G1/2x− v − e
∥∥2

2
(16)

and 



x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ η

2

∥∥G1/2x− v(k) − e(k)
∥∥2

2

}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1)

v(k+1) = G1/2x(k+1) − e(k)

e(k+1) = e(k) −G1/2x(k+1) + v(k+1) ,

(17)

where e is the scaled Lagrange multiplier of the split variable v, and η > 0 is the corresponding AL penalty parameter.
Note that since G is positive definite, S defined in (15) has full column rank. Hence, the ADMM iterates (17) are convergent
[4, Theorem 8]. Solving the last two iterates in (17) yields identities

{
v(k+1) = G1/2x(k+1)

e(k+1) = 0
(18)
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if we initialize e as e(0) = 0. Substituting (18) into (17), we have the equivalent ADMM iterates:




x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ η

2

∥∥G1/2x−G1/2x(k)
∥∥2

2

}

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}

d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(19)

When η = ρ, the equivalent ADMM iterates (19) reduce to (14). Therefore, LALM is a convergent ADMM. Finally, by using
[4, Theorem 8], LALM is convergent if the error of x-update is summable. That is, the inexact LALM in (3) is convergent if
the non-negative sequence {δk}∞k=0 satisfies

∑∞
k=0 δk <∞.

B. Proof of Theorem 2

Theorem 2. Consider a minimax problem (9) where both g and h are closed and proper convex functions. Suppose it has a
saddle-point (ẑ, x̂). Note that since the minimization problem (1) happens to be the dual problem of (9), x̂ is also a solution
of (1). Let ρ > 0 and {εk}∞k=0 denote a non-negative sequence such that

∞∑

k=0

√
εk <∞ . (20)

Then, the sequence of updates
{(
−ρd(k),x(k)

)}∞
k=0

generated by the inexact LALM in (4) is a bounded sequence that converges
to (ẑ, x̂), and the primal-dual gap of (zk,xk) has the following bound:

Ω
(
zk, x̂

)
− Ω

(
ẑ,xk

)
≤
(
C + 2Ak +

√
Bk
)2

k
, (21)

where zk , 1
k

∑k
j=1

(
−ρd(j)

)
, xk , 1

k

∑k
j=1 x

(j),

C ,
∥∥x(0) − x̂

∥∥
2√

2ρ−1t
+

∥∥(−ρd(0)
)
− ẑ
∥∥

2√
2ρ

, (22)

Ak ,
k∑

j=1

√
εj−1(

1− t ‖A‖22
)
ρ−1t

, (23)

and

Bk ,
k∑

j=1

εj−1 . (24)

Proof. As mentioned before, the inexact LALM is the inexact version of CP with a specific choice of σ and τ and a substitution
z = −τd (if we initialize both algorithms appropriately). Here, we just prove the convergence of the inexact CP by extending
the analysis in [2], and the inexact LALM is simply a special case of the inexact CP. However, since the proximal mapping
in the x-update of the inexact CP is solved inexactly, the existing analysis is not applicable. To solve this problem, we adopt
the error analysis technique developed in [5]. We first define the inexact proximal mapping

u
ε≈ proxφ(v) (25)

to be the mapping that satisfies

φ(u) + 1
2 ‖u− v‖22 ≤ ε+ min

ū

{
φ(ū) + 1

2 ‖ū− v‖22
}
. (26)

Therefore, the inexact CP is defined as




x(k+1) εk≈ proxσh
(
x(k) − σA′z̄(k)

)

z(k+1) ∈ proxτg∗
(
z(k) + τAx(k+1)

)

z̄(k+1) = z(k+1) +
(
z(k+1) − z(k)

) (27)

with στ ‖A‖22 < 1. One can verify that with z = −τd, σ = ρ−1t, and τ = ρ, the inexact CP in (27) is equivalent to the
inexact LALM in (4). Schmidt et al. showed that

u
ε≈ proxφ(v)⇔ v − u− f ∈ ∂εφ(u) (28)

with ‖f‖2 ≤
√

2ε, and for any s ∈ ∂εφ(u),

φ(w) ≥ φ(u) + s′ (w − u)− ε (29)
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for all w, where ∂εφ(u) denotes the ε-subdifferential of φ at u [5, Lemma 2]. When ε = 0, (28) and (29) reduce to the standard
optimality condition of a proximal mapping and the definition of subgradient, respectively. At the jth iteration, j = 0, . . . , k−1,
the updates generated by the inexact CP in (27) satisfy

{(
x(j) − σA′z̄(j)

)
− x(j+1) − f (j) ∈ ∂εj (σh)

(
x(j+1)

)
(
z(j) + τAx(j+1)

)
− z(j+1) ∈ ∂ (τg∗)

(
z(j+1)

)
.

(30)

In other words,
x(j) − x(j+1)

σ
−A′z̄(j) − f (j)

σ
∈ ∂εjh

(
x(j+1)

)
(31)

and
z(j) − z(j+1)

τ
+ Ax(j+1) ∈ ∂g∗

(
z(j+1)

)
, (32)

where
∥∥f (j)

∥∥
2
≤
√

2εj . From (31), we have

h(x) ≥ h
(
x(j+1)

)
+
〈
∂εjh

(
x(j+1)

)
,x− x(j+1)

〉
− εj

= h
(
x(j+1)

)
+
〈
x(j)−x(j+1)

σ ,x− x(j+1)
〉
−
〈
A′z̄(j),x− x(j+1)

〉
−
〈
f (j)

σ ,x− x(j+1)
〉
− εj

= h
(
x(j+1)

)
+ 1

2σ

( ∥∥x(j+1) − x
∥∥2

2
+
∥∥x(j+1) − x(j)

∥∥2

2
−
∥∥x(j) − x

∥∥2

2

)

+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
+
〈
−A′z(j+1),x− x(j+1)

〉
−
〈
f (j)

σ ,x− x(j+1)
〉
− εj

≥ h
(
x(j+1)

)
+ 1

2σ

( ∥∥x(j+1) − x
∥∥2

2
+
∥∥x(j+1) − x(j)

∥∥2

2
−
∥∥x(j) − x

∥∥2

2

)

+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
+
〈
−A′z(j+1),x− x(j+1)

〉
− 1

σ

∥∥f (j)
∥∥

2

∥∥x− x(j+1)
∥∥

2
− εj

≥ h
(
x(j+1)

)
+ 1

2σ

( ∥∥x(j+1) − x
∥∥2

2
+
∥∥x(j+1) − x(j)

∥∥2

2
−
∥∥x(j) − x

∥∥2

2

)

+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
+
〈
−A′z(j+1),x− x(j+1)

〉
−
√

2εj

σ

∥∥x− x(j+1)
∥∥

2
− εj (33)

for any x ∈ Domh. From (32), we have

g∗(z) ≥ g∗
(
z(j+1)

)
+
〈
∂g∗
(
z(j+1)

)
, z− z(j+1)

〉

= g∗
(
z(j+1)

)
+
〈
z(j)−z(j+1)

τ , z− z(j+1)
〉

+
〈
Ax(j+1), z− z(j+1)

〉

= g∗
(
z(j+1)

)
+ 1

2τ

( ∥∥z(j+1) − z
∥∥2

2
+
∥∥z(j+1) − z(j)

∥∥2

2
−
∥∥z(j) − z

∥∥2

2

)
−
〈
−A′

(
z− z(j+1)

)
,x(j+1)

〉
(34)

for any z ∈ Dom g∗. Summing (33) and (34), it follows:
∥∥x(j) − x

∥∥2

2

2σ
+

∥∥z(j) − z
∥∥2

2

2τ
≥
(

Ω
(
z(j+1),x

)
− Ω

(
z,x(j+1)

))

+

∥∥x(j+1) − x
∥∥2

2

2σ
+

∥∥z(j+1) − z
∥∥2

2

2τ
+

∥∥x(j+1) − x(j)
∥∥2

2

2σ
+

∥∥z(j+1) − z(j)
∥∥2

2

2τ

+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
−
√

2εj

σ

∥∥x− x(j+1)
∥∥

2
− εj . (35)

Furthermore,
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉

=
〈
−A′

(
z(j+1) − 2z(j) + z(j−1)

)
,x(j+1) − x

〉

=
〈
−A′

(
z(j+1) − z(j)

)
,x(j+1) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j+1) − x(j)

〉

≥
〈
−A′

(
z(j+1) − z(j)

)
,x(j+1) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j) − x

〉
− ‖A‖2

∥∥z(j) − z(j−1)
∥∥

2

∥∥x(j+1) − x(j)
∥∥

2

≥
〈
−A′

(
z(j+1) − z(j)

)
,x(j+1) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j) − x

〉

− ‖A‖2
(√σ/τ

2

∥∥z(j) − z(j−1)
∥∥2

2
+ 1

2
√
σ/τ

∥∥x(j+1) − x(j)
∥∥2

2

)
(36)

≥
〈
−A′

(
z(j+1) − z(j)

)
,x(j+1) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j) − x

〉

−√στ ‖A‖2

(∥∥z(j) − z(j−1)
∥∥2

2

2τ
+

∥∥x(j+1) − x(j)
∥∥2

2

2σ

)
, (37)
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where (36) is due to Young’s inequality. Plugging (37) into (35), it follows that for any (z,x),
∥∥x(j) − x

∥∥2

2

2σ
+

∥∥z(j) − z
∥∥2

2

2τ
≥
(

Ω
(
z(j+1),x

)
− Ω

(
z,x(j+1)

))
+

∥∥x(j+1) − x
∥∥2

2

2σ
+

∥∥z(j+1) − z
∥∥2

2

2τ

+
(
1−√στ ‖A‖2

)
∥∥x(j+1) − x(j)

∥∥2

2

2σ
+

∥∥z(j+1) − z(j)
∥∥2

2

2τ
−√στ ‖A‖2

∥∥z(j) − z(j−1)
∥∥2

2

2τ

+
〈
−A′

(
z(j+1) − z(j)

)
,x(j+1) − x

〉
−
〈
−A′

(
z(j) − z(j−1)

)
,x(j) − x

〉
−
√

2εj

σ

∥∥x− x(j+1)
∥∥

2
− εj . (38)

Suppose z(−1) = z(0), i.e., z̄(0) = z(0). Summing up (38) from j = 0, . . . , k − 1 and using

〈
−A′

(
z(k) − z(k−1)

)
,x(k) − x

〉
≤
∥∥z(k) − z(k−1)

∥∥2

2

2τ
+ στ ‖A‖22

∥∥x(k) − x
∥∥2

2

2σ
(39)

as before, we have
k∑

j=1

(
Ω
(
z(j),x

)
− Ω

(
z,x(j)

))
+
(

1− στ ‖A‖22
) ∥∥x(k) − x

∥∥2

2

2σ
+

∥∥z(k) − z
∥∥2

2

2τ

+
(
1−√στ ‖A‖2

) k∑

j=1

∥∥x(j) − x(j−1)
∥∥2

2

2σ
+
(
1−√στ ‖A‖2

) k−1∑

j=1

∥∥z(j) − z(j−1)
∥∥2

2

2τ

≤
∥∥x(0) − x

∥∥2

2

2σ
+

∥∥z(0) − z
∥∥2

2

2τ
+

k∑

j=1

εj−1 +

k∑

j=1

2
√

εj−1

σ

∥∥x(j) − x
∥∥

2√
2σ

. (40)

Since στ ‖A‖22 < 1, we have 1 − στ ‖A‖22 > 0 and 1 −√στ ‖A‖2 > 0. If we choose (z,x) = (ẑ, x̂), the first term on the
left-hand side of (40) is the sum of k non-negative primal-dual gaps, and all terms in (40) are greater than or equal to zero.
Let D , 1− στ ‖A‖22 > 0. We have three inequalities:

D ·
∥∥x(k) − x̂

∥∥2

2

2σ
≤
∥∥x(0) − x̂

∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1 +
k∑

j=1

2
√

εj−1

σ

∥∥x(j) − x̂
∥∥

2√
2σ

, (41)

D ·
(∥∥x(k) − x̂

∥∥2

2

2σ
+

∥∥z(k) − ẑ
∥∥2

2

2τ

)
≤
∥∥x(0) − x̂

∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1 +
k∑

j=1

2
√

εj−1

σ

∥∥x(j) − x̂
∥∥

2√
2σ

, (42)

and
k∑

j=1

(
Ω
(
z(j), x̂

)
− Ω

(
ẑ,x(j)

))
≤
∥∥x(0) − x̂

∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1 +
k∑

j=1

2
√

εj−1

σ

∥∥x(j) − x̂
∥∥

2√
2σ

. (43)

All these inequality has a common right-hand-side. To continue the proof, we have to bound
∥∥x(j) − x̂

∥∥
2
/
√

2σ first. Dividing
D from both sides of (41), we have

(∥∥x(k) − x̂
∥∥

2√
2σ

)2

≤


 1

D

∥∥x(0) − x̂
∥∥2

2

2σ
+

1

D

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1

D


+

k∑

j=1

2

(
1

D

√
εj−1

σ

) ∥∥x(j) − x̂
∥∥

2√
2σ

. (44)

Let

Sk , 1

D

∥∥x(0) − x̂
∥∥2

2

2σ
+

1

D

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1

D
, (45)

λj , 2

(
1

D

√
εj−1

σ

)
, (46)

and

uj ,
∥∥x(j) − x̂

∥∥
2√

2σ
. (47)

We have u2
k ≤ Sk +

∑k
j=1 λjuj from (44) with {Sk}∞k=0 an increasing sequence, S0 ≥ u2

0 (note that 0 < D < 1 because
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0 < στ ‖A‖22 < 1), and λj ≥ 0 for all j. According to [5, Lemma 1], it follows that
∥∥x(k) − x̂

∥∥
2√

2σ
≤ Ãk +

(
1

D

∥∥x(0) − x̂
∥∥2

2

2σ
+

1

D

∥∥z(0) − ẑ
∥∥2

2

2τ
+ B̃k + Ã2

k

)1/2

, (48)

where

Ãk ,
k∑

j=1

1

D

√
εj−1

σ , (49)

and

B̃k ,
k∑

j=1

εj−1

D
. (50)

Since Ãj and B̃j are increasing sequences of j, for j ≤ k, we have
∥∥x(j) − x̂

∥∥
2√

2σ
≤ Ãj +

(
1

D

∥∥x(0) − x̂
∥∥2

2

2σ
+

1

D

∥∥z(0) − ẑ
∥∥2

2

2τ
+ B̃j + Ã2

j

)1/2

≤ Ãk +

(
1

D

∥∥x(0) − x̂
∥∥2

2

2σ
+

1

D

∥∥z(0) − ẑ
∥∥2

2

2τ
+ B̃k + Ã2

k

)1/2

≤ Ãk +

(
1√
D

∥∥x(0) − x̂
∥∥

2√
2σ

+
1√
D

∥∥z(0) − ẑ
∥∥

2√
2τ

+

√
B̃k + Ãk

)
. (51)

Now, we can bound the right-hand-side of (41), (42), and (43) as
∥∥x(0) − x̂

∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1 +

k∑

j=1

2
√

εj−1

σ

∥∥x(j) − x̂
∥∥

2√
2σ

≤
∥∥x(0) − x̂

∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+

k∑

j=1

εj−1 +

k∑

j=1

2
√

εj−1

σ

(
2Ãk +

1√
D

∥∥x(0) − x̂
∥∥

2√
2σ

+
1√
D

∥∥z(0) − ẑ
∥∥

2√
2τ

+

√
B̃k

)

=

∥∥x(0) − x̂
∥∥2

2

2σ
+

∥∥z(0) − ẑ
∥∥2

2

2τ
+ B̃kD + 2ÃkD

(
2Ãk +

1√
D

∥∥x(0) − x̂
∥∥

2√
2σ

+
1√
D

∥∥z(0) − ẑ
∥∥

2√
2τ

+

√
B̃k

)

≤
(∥∥x(0) − x̂

∥∥
2√

2σ
+

∥∥z(0) − ẑ
∥∥

2√
2τ

+ 2Ãk
√
D +

√
B̃kD

)2

=

(∥∥x(0) − x̂
∥∥

2√
2σ

+

∥∥z(0) − ẑ
∥∥

2√
2τ

+ 2Ak +
√
Bk

)2

(52)

≤
(∥∥x(0) − x̂

∥∥
2√

2σ
+

∥∥z(0) − ẑ
∥∥

2√
2τ

+ 2A∞ +
√
B∞

)2

(53)

if
{√

εk
}∞
k=0

is absolutely summable (and therefore, {εk}∞k=0 is also absolutely summable), where

Ak , Ãk
√
D =

k∑

j=1

√
εj−1

(1−στ‖A‖22)σ
, (54)

and

Bk , B̃kD =
k∑

j=1

εj−1 . (55)

Hence, from (42), we have
∥∥x(k) − x̂

∥∥2

2

2σ
+

∥∥z(k) − ẑ
∥∥2

2

2τ
≤ 1

D

(∥∥x(0) − x̂
∥∥

2√
2σ

+

∥∥z(0) − ẑ
∥∥

2√
2τ

+ 2A∞ +
√
B∞

)2

<∞ . (56)
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Fig. 1: XCAT phantom: cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial
FBP image x(0) (left), the reference reconstruction x? (center), and the reconstructed image using the proposed algorithm
(OS-LALM-24-c-1) at the 30th iteration x(30) (right).

This implies that the sequence of updates
{(

z(k),x(k)
)}∞
k=0

generated by the inexact CP in (27) is a bounded sequence. Let

C ,
∥∥x(0) − x̂

∥∥
2√

2σ
+

∥∥z(0) − ẑ
∥∥

2√
2τ

. (57)

From (43) and the convexity of h and g∗, we have

Ω
(
zk, x̂

)
− Ω

(
ẑ,xk

)
≤ 1

k

k∑

j=1

(
Ω
(
z(j), x̂

)
− Ω

(
ẑ,x(j)

))

≤
(
C + 2Ak +

√
Bk
)2

k
(58)

≤
(
C + 2A∞ +

√
B∞

)2

k
, (59)

where zk , 1
k

∑k
j=1 z

(j), and xk , 1
k

∑k
j=1 x

(j). That is, the primal-dual gap of (zk,xk) converges to zero with rate O(1/k).
Following the procedure in [2, Section 3.1], we can further show that the sequence of updates

{(
z(k),x(k)

)}∞
k=0

generated by
the inexact CP in (27) converges to a saddle-point of (9) if the dimension of x and z is finite.

II. ADDITIONAL EXPERIMENTAL RESULTS

A. XCAT phantom

We simulated an axial CT scan by using a 1024 × 1024 × 154 XCAT phantom [6] for 500 mm transaxial field-of-view
(FOV), where ∆x = ∆y = 0.4883 mm and ∆z = 0.6250 mm. An 888 × 64 × 984 noisy (with Poisson noise) sinogram is
numerically generated with GE LightSpeed fan-beam geometry [7] corresponding to a monoenergetic source at 70 keV with
105 incident photons per ray and no background event. When reconstructing images, we used a 512× 512× 90 image volume
with a coarser grid, where ∆x = ∆y = 0.9766 mm and ∆z = 0.6250 mm, and an edge-preserving regularizer defined in [1]
with a scaled Fair potential function φ(x) , δ2 (|t| /δ − log(1 + |t| /δ)) for δ = 10 HU, a directional regularization parameter
βi that is inversely proportional to the squared distance to the nearest neighbor in each direction, and a voxel-dependent weight
κn ,

√
[A′W1]n/[A′1]n [8], where the jth diagonal entry of the diagonal weighting matrix W is defined as wj , exp(−yj).

Figure 1 shows the cropped images from the central transaxial plane of the initial FBP image (with Hanning filtering), the
reference reconstruction, and the reconstructed image using the proposed algorithm (OS-LALM-24-c-1) at the 30th iteration.
Figure 2 and Figure 3 show the reconstructed images and the difference images using the OS+momentum algorithm and the
proposed algorithm with different numbers of subsets (M = 12, 24, and 36), respectively. As the number of subsets increases,
the OS+momentum algorithm becomes less stable and generates noise-like artifacts inside the object, degrading the image
quality. In comparison, the proposed algorithm remains stable even with 36 subsets and produces accurate reconstructions.
Finally, Figure 4 shows the convergence rate curves of different OS-based algorithms with different numbers of subsets, and
we can see that with similar fast convergence rate in first few iterations, the proposed algorithm shows better stability even
when using many subsets for acceleration.

B. Shoulder scan with Barzilai-Borwein acceleration

In this experiment, we demonstrated accelerating the proposed algorithm using the Barzilai-Borwein (spectral) method [9]
that mimics the Hessian A′WA by Hk , αkDL. The scaling factor αk is solved by fitting the secant equation:

yk ≈ Hksk (60)
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Fig. 2: XCAT phantom: cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the reconstructed
image x(30) using the OS+momentum algorithm and the proposed algorithm with different numbers of subsets (M = 12, 24,
and 36).
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Fig. 3: XCAT phantom: cropped difference images (displayed from −30 to 30 HU) from the central transaxial plane of
x(30) − x? using the OS+momentum algorithm and the proposed algorithm with different numbers of subsets (M = 12, 24,
and 36).

in the weighted least-squares sense, i.e.,
αk = arg min

α≤1

1
2 ‖yk − αDLsk‖2P (61)

for some positive definite P, where
yk , ∇L

(
x(k)

)
−∇L

(
x(k−1)

)
(62)

and
sk , x(k) − x(k−1) . (63)

We choose P to be D−1
L since D−1

L is proportional to the step sizes of the voxels. By choose P = D−1
L , we are fitting the secant

equation with more weight for voxels with larger step sizes. Note that applying the Barzilai-Borwein acceleration changes
Hk every iteration, and the majorization condition does not necessarily hold. Hence, the convergence theorems developed in
Section I are not applicable. However, ordered-subsets (OS) based algorithms typically lack convergence proofs anyway, and
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Fig. 4: XCAT phantom: RMS differences between the reconstructed image x(k) and the reference reconstruction x? as a
function of iteration using OS-based algorithms with 12, 24, and 36 subsets. The dotted line shows the RMS differences using
the standard OS algorithm with one subset.
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Fig. 5: Shoulder scan: RMS differences between the reconstructed image x(k) and the reference reconstruction x? as a function
of iteration using the proposed algorithm without and with the Barzilai-Borwein acceleration. The dotted line shows the RMS
differences using the standard OS algorithm with one subset.

we find that this acceleration works well in practice. Figure 5 shows the RMS differences between the reconstructed image
x(k) and the reference reconstruction x? of the shoulder scan dataset as a function of iteration using the proposed algorithm
without and with the Barzilai-Borwein acceleration. As can be seen in Figure 5, the proposed algorithm with both M = 20
and M = 40 shows roughly 2-times acceleration in early iterations using the Barzilai-Borwein acceleration.

C. Truncated abdomen scan

In this experiment, we reconstructed a 600 × 600 × 239 image from an abdomen region helical CT scan with transaxial
truncation, where the sinogram has size 888 × 64 × 3516 and pitch 1.0. The maximum number of subsets suggested in [1]
is about 20. Figure 6 shows the cropped images from the central transaxial plane of the initial FBP image, the reference
reconstruction, and the reconstructed image using the proposed algorithm (OS-LALM-20-c-1) at the 30th iteration. This
experiment demonstrates how different OS-based algorithms behave when the number of subsets exceeds the suggested
maximum number of subsets. Figure 7 shows the difference images for different OS-based algorithms with 10, 20, and
40 subsets. As can be seen in Figure 7, the proposed algorithm works best for M = 20; when M is larger (M = 40),
ripples and light OS artifacts appear. However, it is still much better than the OS+momentum algorithm [10]. In fact, the OS
artifacts in the reconstructed image using the OS+momentum algorithm with 40 subsets are visible with the naked eye in the
display window from 800 to 1200 HU. The convergence rate curves in Figure 8 support our observation. In sum, the proposed
algorithm exhibits fast convergence rate and excellent gradient error tolerance even in the case with truncation.
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Fig. 6: Truncated abdomen scan: cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the
initial FBP image x(0) (left), the reference reconstruction x? (center), and the reconstructed image using the proposed algorithm
(OS-LALM-20-c-1) at the 30th iteration x(30) (right).
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Fig. 7: Truncated abdomen scan: cropped difference images (displayed from −30 to 30 HU) from the central transaxial plane
of x(30) − x? using OS-based algorithms.
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Fig. 8: Truncated abdomen scan: RMS differences between the reconstructed image x(k) and the reference reconstruction x?

as a function of iteration using OS-based algorithms with 10, 20, and 40 subsets. The dotted line shows the RMS differences
using the standard OS algorithm with one subset.

APPENDIX
OUTLINE OF THE PROPOSED OS-LALM ALGORITHM

We outlined the proposed OS-LALM algorithm for solving PWLS X-ray CT image reconstruction problems:

x̂ ∈ arg min
x∈Ω
{L(x) + R(x)} , (64)

where L(x) , 1
2 ‖y −Ax‖2W is the weighted quadratic data-fitting term, and R is an edge-preserving regularization term. Let

DL and DR denote the diagonal majorizing matrices of L and R, respectively, and [·]C denote the projection operator onto a
convex set C. The proposed OS-LALM algorithm (with downward continuation) is described in Algorithm 1. The inner loop
is the fast iterative shrinkage/thresholding algorithm (FISTA) [11] for solving the constrained weighted denoising problem:

ẑ ∈ arg min
z∈Ω

{
1
2

∥∥z−
(
x− (ρDL)

−1
s+
)∥∥2

ρDL
+ R(z)

}
. (65)

When n = 1, i.e., with a single gradient descent for (65), Algorithm 1 can be further simplified as Algorithm 2 that takes
1/M forward/back-projection and one regularizer gradient evaluation per iteration (looping over subsets). The computational
complexity of Algorithm 2 is almost the same as standard OS algorithm [12] with negligible overhead.

Algorithm 1: The proposed algorithm (OS-LALM-M -c-n) for solving PWLS X-ray CT image reconstruction problems.
Input: M ≥ 1, n ≥ 1, and initilize x by an FBP image.

initialize ρ = 1, m = 1, ζ = g = M∇L1(x)
for i = 1, 2, . . . do

s+ = ρζ + (1− ρ)g
initialize z = v = x, τ = 1
for j = 1, 2, . . . , n do

σ+ = ρDL

(
v −

(
x−

(
ρDL

)−1
s+
))

z+ =
[
v − (ρDL + DR)

−1
(σ+ +∇R(v))

]
Ω

τ+ =
(
1 +
√

1 + 4τ2
)
/ 2

v+ = z+ + τ−1
τ+ (z+ − z)

end
x+ = z+

ζ+ = M∇Lm+=m+1(x+)
g+ = ρ

ρ+1ζ
+ + 1

ρ+1g

ρ+ = π
i+1

√
1−

(
π

2i+2

)
2

end
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Algorithm 2: The proposed algorithm (OS-LALM-M -c-1) for solving PWLS X-ray CT image reconstruction problems.
Input: M ≥ 1 and initilize x by an FBP image.

initialize ρ = 1, m = 1, ζ = g = M∇L1(x)
for i = 1, 2, . . . do

s+ = ρζ + (1− ρ)g
x+ =

[
x− (ρDL + DR)

−1
(s+ +∇R(x))

]
Ω

ζ+ = M∇Lm+=m+1(x+)
g+ = ρ

ρ+1ζ
+ + 1

ρ+1g

ρ+ = π
i+1

√
1−

(
π

2i+2

)
2

end
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